Corrigé-Interrogation III

Durée 45mn

EXERCICE.

1. On fixe un réel t < -1. Montrer que la fonction $x \mapsto \frac{e^x - 1}{x} e^{tx}$ est intégrale sur $]0, +\infty[$.

La fonction $x \mapsto \frac{e^x - 1}{x} e^{tx}$ est positive et continue sur $]0, +\infty[$.

En 0, on a $\frac{e^x - 1}{x} \xrightarrow[x \to 0]{} 1$ (soit par développement limité, soit par définition de la dérivée). Ainsi, $x \mapsto \frac{e^x - 1}{x} e^{tx}$ est prolongeable par continuité en 0.

 $En + \infty$, pour $x \ge 1$, on a $\frac{e^x - 1}{x} e^{tx} \le e^{(1+t)x}$ et comme 1 + t < 0, on en déduit que $\int_1^{+\infty} e^{(1+t)x} dx < +\infty$.

Ainsi, $\int_0^{+\infty} \frac{e^x - 1}{x} e^{tx} dx < +\infty$ et la fonction positive continue $x \mapsto \frac{e^x - 1}{x} e^{tx}$ est intégrale sur $]0, +\infty[$.

Dans la suite de l'exercice, on pose $F(t) = \int_0^{+\infty} \frac{e^x - 1}{x} e^{tx} dx$ pour tout $t \in]-\infty, -1[$.

2. Montrer que F est de classe C^1 sur $]-\infty, -1[$ et donner une formule pour la dérivée de F qui ne fasse pas intervenir d'intégrale.

On pose $f(x,t) = \frac{e^x - 1}{x} e^{tx} \ pour \ (t,x) \in]-\infty, -1[\times]0, +\infty[.$

- (a) On a vu dans la question précédente que pour tout t < -1, la fonction $x \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$.
- (b) Notons que comme composée de fonctions de classe C^{∞} , la fonction f est C^{∞} $sur] \infty, -1[\times]0, +\infty[$, et en particulier :
 - pour tout x > 0, la fonction $t \mapsto f(x,t)$ est C^1 sur $]-\infty,-1[$;
 - pour tout t < -1, la fonction $x \mapsto \frac{\partial f}{\partial t}(x,t)$ est continue donc borélienne sur $]0, +\infty[$.
- (c) Soit a < -1. Pour tout t < a et tout x > 0, on a

$$\left| \frac{\partial f}{\partial t}(x,t) \right| = (e^x - 1)e^{tx} \le e^x e^{ax} = e^{(1+a)x}$$

et comme 1+a<0, la fonction $x\mapsto e^{(1+a)x}$ est intégrale sur $]0,+\infty[$.

Par le théorème de dérivabilité des intégrales à paramètres, on en déduit que F est C^1 sur $]-\infty,a[$ pour tout a<-1 et donc sur $]-\infty,-1[$. De plus, pour tout t<-1, on a alors

$$F'(t) = \int_0^{+\infty} (e^x - 1) e^{tx} dx = -\frac{1}{1+t} + \frac{1}{t}.$$

- 3. Déterminer la limite de F(t) quand t tend vers $-\infty$.
 - (a) Rappelons que pour tout t < -1, la fonction $x \mapsto f(x,t)$ est continue donc borélienne.
 - (b) Pour tout x > 0, comme $e^{tx} \xrightarrow[t \to -\infty]{} 0$, on a $f(x,t) \xrightarrow[t \to -\infty]{} 0$.
 - (c) Pour tout t < -2, on a pour tout x > 0, $0 \le f(x,t) \le f(x,-2)$ et on a vu dans la première question que $x \mapsto f(x,-2)$ est intégrable sur $]0,\infty[$.

On en déduit par le théorème de convergence dominée que

$$\lim_{t \to -\infty} F(t) = \lim_{t \to -\infty} \int_0^{+\infty} f(x, t) \, dx = \int_0^{+\infty} \lim_{t \to -\infty} f(x, t) \, dx = \int_0^{+\infty} 0 \, dx = 0.$$

4. Donner une formule exprimant la valeur de F(t) pour tout t < -1 qui ne fasse pas intervenir d'intégrale.

D'après la question 2, F est une primitive de la fonction $t \mapsto \frac{1}{t} - \frac{1}{1+t}$. Il existe donc une constante C telle que pour tout t < -1,

$$F(t) = \ln(|t|) - \ln(|1+t|) + C = \ln\left(\frac{t}{1+t}\right) + C.$$

En passant à la limite en $-\infty$, on en déduit que C=0 et donc pour tout t<-1,

$$F(t) = \ln\left(\frac{t}{1+t}\right).$$