Feuille d'exercices V.

Intégration

Exercice 1. Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré. Écrire de manière plus simple la quantité $\int f d\mu$ lorsque :

- 1. μ est une mesure de Dirac;
- 2. μ est la mesure de comptage sur \mathbb{N} .

Exercice 2. Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré. Prouver ou réfuter les assertions suivantes :

- 1. si $f = 1_A$ avec $A \in \mathcal{T}$ alors $\int f d\mu = \mu(A)$;
- 2. si $f = a1_A + b1_B$ avec $a, b \in \mathbb{R}$ et $A, B \in \mathcal{T}$ alors $\int f d\mu = a\mu(A) + b\mu(B)$;
- 3. si $f: \Omega \to [0, \infty]$ est mesurable et vérifie $\mu(f^{-1}(\{\infty\})) = 0$ alors f est intégrable;
- 4. si $f: \Omega \to [0, \infty]$ est intégrable alors $\mu(f^{-1}(\{\infty\})) = 0$;
- 5. si $f: \Omega \to [0, \infty]$ est mesurable et vérifie $\int f d\mu = 0$ alors f = 0;
- 6. si $f: \Omega \to [0, \infty]$ est mesurable et satisfait $\int f d\mu = 0$ alors f = 0 μ -p.p.;
- 7. si $f: \Omega \to [0, \infty]$ est mesurable et satisfait f = 0 μ -p.p. alors $\int f d\mu = 0$;
- 8. si $f: \Omega \to [0, \infty]$ est mesurable et $\int_{\Omega} f d\mu < \infty$ alors $f < \infty$ μ -p.p.
- 9. le produit de deux fonctions intégrables est intégrable.

Exercice 3. 1. On considère la fonction $f:[0,1] \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ x^2 & \text{si } x \notin \mathbb{Q} \end{cases}$$

Montrer que f est Lebesgue intégrable et calculer son intégrale.

2. Mêmes questions pour la fonction $f:[0,\pi/2]\to\mathbb{R}$ définie par

$$f(x) = \begin{cases} \sin(x) & \text{si } \cos(x) \in \mathbb{Q} \\ \sin^2(x) & \text{si } \cos(x) \notin \mathbb{Q} \end{cases}$$

Exercice 4. Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré. Si $f: \Omega \to [0, \infty]$ est mesurable alors $\int f d\mu = \sup\{(1-\varepsilon) \int u d\mu : u \text{ étagée}, \ 0 \le u \le f, 0 < \varepsilon < 1\}.$

Exercice 5. Soient I=(0,1) et $0<\alpha<\infty$. A quelle condition la fonction $x\mapsto \frac{1}{x^{\alpha}}$ est-elle Lebesgue intégrable sur I?

Exercice 6. Soit $\alpha \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$, $\int_0^1 \left(x^{\alpha} + \frac{e^x}{n}\right)^{-1} dx < +\infty$. En fonction de la valeur de α , déterminer, si elle existe, la limite suivante :

$$\lim_{n \to \infty} \int_0^1 \left(x^{\alpha} + \frac{e^x}{n} \right)^{-1} dx.$$

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction intégrable pour la mesure de Lebesgue λ . Soit

$$F(x) = \int_{]-\infty,x]} f d\lambda.$$

Montrer que F est continue sur \mathbb{R} .

Exercice 8. Pour tout $n \in \mathbb{N}$ soit $f_n : \mathbb{R} \to \mathbb{R}$ telle que

$$f_n(x) = \begin{cases} x - n & \text{si } x \ge n \\ 0 & \text{si } x < n \end{cases}$$

Montrer que

- 1. chaque f_n est borélienne positive;
- 2. $f_n \setminus 0$:
- 3. $\int f_n d\lambda$ ne converge pas vers $\int \lim_{n\to\infty} f_n d\lambda$.

Exercice 9. (*) Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesuré et $f: \Omega \to [0, \infty]$ une fonction mesurable.

- 1. Soit $A = \{x \in \Omega : f(x) \ge 1\}$. Déterminer $\lim_{n \to \infty} \int_A f^n d\mu$.
- 2. On suppose que $\int_{A^c} f d\mu < \infty$. Déterminer $\lim_{n \to \infty} \int_{A^c} f^n d\mu$.

Exercice 10. (\star)

1. Soit I un intervalle de \mathbb{R} . Montrer que si (f_n) est une suite de fonctions boréliennes positives sur I alors

$$\sum_{n\in\mathbb{N}} \int_{I} f_n d\lambda = \int_{I} (\sum_{n\in\mathbb{N}} f_n) d\lambda.$$

2. En déduire la valeur de

$$\sum_{n=3}^{\infty} \int_0^\infty \frac{x}{(1+x)^n} dx.$$

Exercice 11. En considérant, dans \mathbb{R} , la suite $f_n = 1_{[n,n+1)}$ montrer que l'hypothèse de domination est essentielle pour la validité du théorème de convergence dominée.

Exercice 12. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction λ -intégrable. Déterminer la limite suivante :

$$\lim_{n \to \infty} \int_0^\infty \exp(-n\sin^2 x) f(x) dx.$$

Exercice 13. (\star) Calculer la limite

$$\lim_{n \to \infty} \int_1^\infty \frac{n \sin(x/n)}{x^3} dx.$$

Exercice 14. (*)(formule de transfert) Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesuré et $f: \Omega \to \mathbb{R}$ une fonction mesurable. On définit sur $\mathcal{B}(\mathbb{R})$ la "mesure image" $\nu(B) = \mu(f^{-1}(B)), \forall B \in \mathcal{B}(\mathbb{R})$. (La mesure ν est notée souvent par $f_*\mu$.) Montrer que si $\Phi: \mathbb{R} \to [0, \infty)$ est une fonction borélienne nous avons la formule de transfert

$$\int_{\Omega} \Phi \circ f d\mu = \int_{\mathbb{R}} \Phi d\nu.$$

(Indication : On pourra considérer d'abord le cas où Φ est une fonction étagée.)