Feuille d'exercices VII.

Intégrales à paramètres

Exercice 1. Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction intégrable et μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que leurs transformées de Fourier \hat{f} et $\hat{\mu}$ sont continues sur \mathbb{R} :

$$\hat{f}(x) = \int_{-\infty}^{\infty} f(t)e^{itx}dt, \quad \hat{\mu}(x) = \int_{-\infty}^{\infty} e^{itx}d\mu(t)$$

Exercice 2. Soient $f(x) = (\int_0^x e^{-t^2} dt)^2$ et $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 1. Montrer que f et g sont C^1 et calculer f'(x) et g'(x).
- 2. Montrer que f'(x)+g'(x)=0 pour tout $x\in\mathbb{R}$, en déduire la valeure de f(x)+g(x).
- 3. En déduire que $\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$

Exercice 3. On pose $F(x) = \int_0^\infty e^{-t^2} \cos(tx) dt$.

- 1. Montrer que F est bien définie sur \mathbb{R} .
- 2. Montrer que F est continûment dérivable. Donner une expression de F'(x).
- 3. Montrer que pour tout $x \in \mathbb{R}$, on a $F'(x) + \frac{x}{2}F(x) = 0$ En déduire que la fonction $G(x) = e^{\frac{x^2}{4}}F(x)$ est constante.
- 4. Donner l'expression de F(x) pour $x \in \mathbb{R}$ en utilisant le résultat de l'exercice 1.3
- 5. En déduire la transformée de Fourier d'une variable gaussienne standard

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} e^{itx} dt.$$

Exercice 4. On pose $F(x) = \int_0^\infty e^{-tx} \frac{\sin(t)}{t} dt$.

- 1. Montrer que F est bien définie et continue sur $]0,\infty[$
- 2. Montrer que F est continûment dérivable sur $]0, \infty[$.
- 3. Montrer que F est aussi bien définie en 0 comme intégrale de Riemann semi-convergente : $F(0) = \lim_{K \to \infty} \int_0^K \frac{\sin(t)}{t} dt$. (Indication : utiliser une intégration par partie).
- 4. Montrer que F est continue en 0. (Indication : il faut utiliser une méthode standard pour les intégrales semi-convergentes. On pourra décomposer $F(x) = F_0(x) + F_1(x)$ pour les intégrales sur $]0,1],]1,+\infty[$, et utiliser une intégration par partie $v'(t) = \sin(t), u(t) = e^{-tx}/t$ sur F_1 pour obtenir la formule alternative suivante :

$$F_0(x) = \int_0^1 e^{-tx} \frac{\sin(t)}{t} dt, \qquad F_1(x) = \int_1^\infty e^{-tx} \frac{\sin(t)}{t} dt = e^{-x} \cos(1) + \int_1^\infty (xt+1)e^{-tx} \frac{\cos(t)}{t^2} dt.$$

Exercice 5. Pour x > 0, on pose $\varphi(x) = \int_0^1 e^{-x/t} dt$.

Montrer que φ est de classe C^2 sur $]0, +\infty[$ et que $\varphi''(x) = \frac{e^{-x}}{x}$ pour x > 0.

Théorèmes de Fubini et mesures produits

Exercice 6. Soit $f \geq 0$ une fonction mesurable positive μ une mesure σ -finie sur (Ω, \mathcal{T}) , montrer que pour $p \in]0, \infty[$:

$$\int f^p d\mu = \int_0^\infty pt^{p-1}\mu(\{\omega : f(\omega) > t\})dt.$$

Exercice 7. On considère le domaine $\Delta \subseteq \mathbb{R}^2$ délimité par les droites $y=0,\ y=1,\ y=2-x$ et y=1+x. Calculer $\iint_{\Delta} xydx\,dy$.

Exercice 8. Calculer
$$\iint_D (x+y)e^{-(x+y)}dxdy$$
, où
$$D = \{(x,y) \in \mathbb{R}^2 \colon 0 \le x, \ 0 \le y, \ x+y \le 1\}.$$

Exercice 9. Pour $(x,y) \in [-1,1]^2$, on pose

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que les intégrales itérées de f existent et sont égales.
- 2. La fonction f est-elle λ_2 -intégrable sur $[-1,1]^2$?

Exercice 10. Soient ν la mesure de comptage sur \mathbb{Z} et $\rho = \frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$ la mesure de Rademacher. Soit s(x,y) = x + y donnant une fonction $s : \mathbb{Z}^2 \to \mathbb{Z}$. Montrer que la mesure image par s de la mesure produit est $s_*(\nu \otimes \rho) = \nu$.

Exercice 11. Soit
$$D = [0,1]^2$$
. Calculer $\iint_D \frac{dx \, dy}{(x+y+1)^2}$ et $\iint_D \frac{dx \, dy}{(x+y)^2}$.

Exercice 12. Soient f, g des fonctions mesurables positives sur \mathbb{R} . On rappelle que $||f||_1 = \int_{\mathbb{R}} |f(x)| d\lambda(x)$. On définit la convolution de f, g par :

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y)d\lambda(y) \in [0, +\infty].$$

- 1. Montrer que f * g est, mesurable et que $||f * g||_1 = ||f||_1 ||g||_1$.
- 2. Montrer que la définition de f * g s'étend pour presque tout x aux $f, g \in L^1(\mathbb{R}, d\lambda)$, que $f * g \in L^1(\mathbb{R}, d\lambda)$ et $||f * g||_1 \leq ||f||_1 ||g||_1$.
- 3. Montrer que pour f,g,h toutes mesurables positives ou toutes intégrables, alors f*(g*h)=(f*g)*h.

Changements de variables

Exercice 13. Soit D = B((0,1),1) dans le plan. Calculer $\iint_D (x^2 + y^2) dx dy$.

Exercice 14. Soit $B=\{(x,y)\in\mathbb{R}^2\colon (x^2+y^2)<9\}$. Justifier que l'intégrale $\iint_B \frac{1}{(x^2+y^2)^{2/3}}\,dxdy$ est convergente et donner sa valeur.

Exercice 15. Soit
$$D = \{(x,y) \in \mathbb{R}^2 : (x^2 + y^2)^2 < xy\}$$
. Calculer $\iint_D \sqrt{xy} \, dx \, dy$.

Exercice 16. Soit $D = \{(x, y) \in \mathbb{R}^2 : y^2 - 2x < 0, x^2 - 2y < 0\}$. Calculer $\iint_D e^{\frac{x^3 + y^3}{xy}} dx dy$. (Indication : poser $x = u^2v$ et $y = uv^2$)

Exercice 17. On pose $I = \int_0^{+\infty} e^{-t^2} dt$. Calculer $J = \iint_{]0,+\infty[^2} e^{-(x^2+y^2)} dx dy$ en fonction de I. Calculer J en utilisant les coordonnées polaires. En déduire la valeur de I.

Exercice 18. Calculer l'intégrale $\iiint_D \frac{z}{x^2+y^2} dx \, dy \, dz$ où $D=\{(x,y,z)\in\mathbb{R}^3\colon 1< x^2+y^2< z^2< 4\}.$

Exercice 19. Soit $D = \{(x, y, z) \in \mathbb{R}^3 : 0 < z < x^2 + y^2 < 1\}.$

Justifier que l'intégrale $\iiint_D \ln(x^2 + y^2) dx dy dz$ est convergente et donner sa valeur.