Feuille d'exercices VII.

Ensembles et fonctions convexes

Exercice 1. Montrer que les ensembles C_i suivants sont convexes et trouver les cônes tengents $T_{C_i}(0)$ en 0 = (0,0):

1.
$$C_1 = [0, +\infty[\times \mathbb{R}, \ 2. \ C_2 = [0, +\infty[^2, \ 3. \ C_3 = [-1, 1]^2, \ 4. \ C_4 = \{(x, y) \in [0, 1]^2 : x \le y\}.$$

Exercice 2. 1. Soient A, B deux convexes. Montrer que $A \cap B$ est convexe.

Est-ce que $A \cup B$ est convexe?

- 2. Soit $A = \{0\} \cup [0, +\infty[^2]]$. Montrer que A est convexe dans \mathbb{R}^2 et calculer $T_A(0)$.
- 3. Soit $B =]-\infty, 0] \times \mathbb{R}$, calculer $T_B(0)$ et $T_{A \cap B}(0)$.
- 4. Soient A, B deux convexes généraux avec $c \in A \cap B$, trouver une relation entre $T_{A \cap B}(c)$ et $T_A(c) \cap T_B(c)$.

Exercice 3. Montrer les inégalités suivantes, à l'aide de raisonnements de convexité :

- 1. $\forall x \in \mathbb{R}, e^x \ge 1 + x$.
- 2. $\forall x > 0, \ \ln(x) \le x 1.$
- 3. $\forall x \in [0, \frac{\pi}{2}], \ \frac{2}{\pi}x \le \sin(x) \le x.$
- 4. $\forall x > -1, \ \sqrt{1+x} \le 1 + \frac{x}{2}.$

Exercice 4. Montrer que la fonction définie par $f(x) = \frac{e^x - 1}{x}$ pour $x \neq 0$ et f(0) = 1 est croissante sur \mathbb{R} .

Exercice 5. Soit f la fonction définie par la formule $f(x) = x^{2k}$, pour $k \in \mathbb{N}^*$.

- 1. En calculant la dérivée seconde, montrer que f est strictement convexe sur $]-\infty,0[$ et sur $]0,+\infty[$.
- 2. Montrer que f est strictement convexe sur \mathbb{R} .

Exercice 6. Soient E, F des e.v. sur \mathbb{R} .

- 1. Soient $f: E \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ deux fonctions telles que f est convexe et g est convexe et croissante. Montrer que $g \circ f$ est convexe.
- 2. Si $f: E \to \mathbb{R}$ est convexe et $A: F \to E$ linéaire, montrer que $f \circ A$ est convexe.
- 3. Montrer que $f(x,y) = (|2x+3y|+|x-y|)^p$ est convexe sur \mathbb{R}^2 pour $p \in [1,+\infty[$.

Exercice 7. 1. Prouver que la fonction f définie par f(x,y) = xy n'est pas convexe sur \mathbb{R}^2 , mais que les fonctions g, h définies par $g(x,y) = x^2 + y^2$ et $h(x,y) = x^2 + y^2 + xy$ le sont.

2. Montrer que les trois fonctions suivantes sont séparément convexes en x (pour chaque y) et en y (pour chaque x).

$$i(x,y) = exp(x+y), j(x,y) = exp(xy), k(x,y) = exp(x) + exp(y).$$

Lesquelles sont des fonctions convexes sur \mathbb{R}^2 ?

Exercice 8. Lesquels parmi les fonctions suivantes sont convexes sur $[-1,1]^2$:

$$h_1(x,y) = \frac{x^3 + y^3}{6}, h_2(x,y) = \frac{x^4 + y^4}{12}, h_3(x,y) = x^2 + y^2 + \frac{x^3}{3}, h_4(x,y) = x^4 + y^4 - 4xy.$$

Exercice 9. Soit $f(x, y, z) = (2x + y)^2 + (2x + z)^2 - x^2$.

1. Montrer que les restrictions de f aux sous-espaces :

$$C_1 = \{(x, y, 0), (x, y) \in \mathbb{R}^2\}, \ C_2 = \{(x, 0, z), (x, z) \in \mathbb{R}^2\}, \ C_3 = \{(0, y, z), (y, z) \in \mathbb{R}^2\}$$

sont convexes.

2. Est-ce que f est convexe sur \mathbb{R}^3 ?

Exercice 10. On s'intéresse au problème de minimiser la fonction f définie par :

$$f(x,y) = x^2 - 2x + y^4$$

sur le pavé $A := \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1/2, 0 \le y \le 2\} = [0,\frac{1}{2}] \times [0,2].$

- 1. Montrer que A est convexe.
- 2. Prouver que f est convexe sur A.
- 3. Montrer qu'il existe une solution unique du problème (Indication : rappeler pourquoi A est compact).
- 4. Trouver la solution.

Exercice 11. On s'intéresse au problème de minimiser la fonction

$$f(x,y) = \frac{x^4}{12} + \frac{x^2y^3}{12} + \frac{x^2}{2} + \frac{y^2}{2} + 4$$

sur le pavé $A := \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1\}.$

- 1. Prouver que f est strictement convexe sur A.
- 2. Montrer qu'il existe une solution unique du problème.
- 3. Trouver la solution.

Exercice 12. On s'intéresse au problème de minimiser la fonction

$$f(x,y) = e^{2(x^2-y)-\cos(x^2-y)}$$

sur le convexe $A := [0, +\infty[^2$.

- 1. Montrer que $g(x) = e^{2x-cos(x)}$ définit une fonction strictement convexe et strictement croissante sur \mathbb{R} .
- 2. Prouver que f est strictement convexe et continue sur A.
- 3. En utilisant le critère différentiel de minimisation d'une fonction convexe, montrer qu'il n'existe pas de solution au problème de minimisation.
- 4. Retrouver ce résultat en calculant l'infimum de f sur A et montrant qu'il n'est pas atteint.

Exercices plus difficiles

Exercice 13. Soit C un convexe et $f: C \to \mathbb{R}$ une fonction, montrer que f est convexe sur C si et seulement si pour tout intervalle $[a,b] \subset C$, la restriction $f_{|[a,b]}$ est convexe.

Exercice 14. 1. Soit C une partie fermée dans E e.v.n. telle que si $x, y \in C$ alors $\frac{x+y}{2} \in C$. Prouver que C est convexe.

2. Soit C convexe fermé de E. Soit $f:C\to\mathbb{R}$ une fonction continue telle que

$$\forall x, y \in C$$
 $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}.$

Montrer que f est convexe.

3. Même question C est juste convexe mais pas fermé. (Indication: utiliser l'ex. 13)

Exercice 15. 1. Montrer que la fonction $x \mapsto e^{2x-\cos(x)}$ est convexe sur \mathbb{R} .

- 2. Soit $f: I \to]0, +\infty[$, où I est un intervalle de \mathbb{R} . Montrer que si $\ln(f)$ est convexe alors f est convexe. Réciproque?
- 3. Application: Montrer que $x \mapsto (1+x)^x$ est convexe sur $]-1,+\infty[$.

Exercice 16. Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est convexe et tend vers 0 quand x tend vers $+\infty$ alors f est à valeurs positives (on pourra commencer par justifier le fait que f est décroissante).

Exercice 17. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe.

- 1. Montrer que si f est à valeurs négatives alors f est constante.
- 2. Montrer que s'il existe a, b tels que $f(x) \leq ax + b$ pour tout $x \in \mathbb{R}$ alors f est une fonction affine.

Exercice 18. Soit $f: [0, +\infty[\to [0, +\infty[$ une fonction concave. Montrer que pour tout $x, y \ge 0$ on a $f(x+y) \le f(x) + f(y)$.

Exercice 19. Soit f une fonction de $[0, +\infty[$ dans \mathbb{R} , majorée, de classe C^2 . On suppose qu'il existe a > 0 tel que

$$\forall x \ge 0 \ f''(x) \ge af(x) \ge 0 \ .$$

- 1. Montrer que f est décroissante.
- 2. Déterminer la limite de f'(x) quand x tend vers $+\infty$.
- 3. Montrer que f(x) tend vers 0 quand x tend vers $+\infty$.
- 4. Montrer que pour tout $x \ge 0$ on a $f(x) \le f(0)e^{-x\sqrt{a}}$.

Exercice 20. Montrer que pour S une partie fermé non-vide de E e.v.n. alors la fonction distance $d_S(x) := d(x, S) = \inf_{s \in S} ||x - s||$ est convexe si et seulement si S est convexe.

Exercices d'entraînements

Exercice 21. Commençons avec la définition du cône normal qui est le polaire du cône tangent, c'est à dire si $C \subset \mathbb{R}^n$ est un ensemble convexe et $a \in C$ alors le cône normal du convexe C au point a est

$$N_C(a) := \{ v \in \mathbb{R}^n : \forall u \in T_C(a), \langle v, u \rangle \le 0 \} = \{ v \in \mathbb{R}^n : \forall u \in C, \langle v, u - a \rangle \le 0 \},$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire sur \mathbb{R}^n .

Montrer que les enssemble C_i définis ci-dessous sont convexes et trouver les cônes normaux $N_{C_i}(a_i)$:

- 1. $C_5 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ en $a_1 = (0, 0)$ et en $a_2 = (0, 1)$.
- 2. $C_6 = \{(x,y) \in \mathbb{R}^2 : |x-1| + |y| \le 1\}$ en $a_1 = (0,0)$, en $a_3 = (1,0)$ et en $a_4 = (1/2,1/2)$.

Exercice 22. On s'intéresse au problème de minimiser la fonction

$$f(x,y) = x^4 + x^2y^3 + 9x^2 + 8y^2 + 4$$

sur le pavé $A := \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1\}.$

- 1. Prouver que f est strictement convexe sur A.
- 2. Montrer qu'il existe une solution unique du problème (Indication : rappeler pour-quoi A est compact)
- 3. Trouver la solution.

Exercice 23. Lesquels parmi les fonctions suivantes sont convexes sur \mathbb{R}^2 :

$$f_0(x,y) = x^2 + y^2 + x^4, \ f_1(x,y) = x^2 + y^2 + x^3, \ f_2(x,y) = x^4 + y^4 - 4xy, \ f_3(x,y) = \cos(x+y),$$
$$f_4(x,y) = xe^y + ye^x, \ f_5(x,y) = |x+1| + |y|, \ f_6(x,y) = (|x+1| + |y|)^2.$$

Exercice 24. Lesquels parmi les fonctions suivantes sont convexes sur $[0,1]^2$:

$$g_1(x,y) = \frac{x^3 + y^5}{6}, \ g_2(x,y) = \frac{x^4 + y^6}{12}, \ g_3(x,y) = -\sqrt{2 - (x^2 + y^2)}$$
$$g_4(x,y) = \frac{x^2 y^2}{2}, \ g_5(x,y) = \cos(xy), \ g_6(x,y) = x^2 + y^2 + \frac{x^3}{6}.$$