Corrigé - Interrogation I

QUESTION DE COURS.

Soit E un \mathbb{R} -espace vectoriel.

- 1. Rappeler la définition d'une norme sur E.

 Une norme sur E est une application $\|\cdot\|: E \to [0, +\infty[$ qui satisfait :
 - (a) $\forall x \in E \quad ||x|| = 0 \Leftrightarrow x = 0_E$.
 - (b) $\forall x, y \in E \quad ||x + y|| \le ||x|| + ||y||$.
 - (c) $\forall \lambda \in \mathbb{R} \ \forall x \in E \ \|\lambda x\| = |\lambda| \cdot \|x\|.$
- 2. Soit $\|\cdot\|$ une norme sur E. Montrer que pour tous x et y éléments de E, on a

$$|||x|| - ||y||| \le ||x - y||.$$

Soit x et y deux éléments de E. Alors, $\|x\| = \|(x-y) + y\| \le \|x-y\| + \|y\|$, d où $\|x\| - \|y\| \le \|x-y\|$. De même, $\|y\| - \|x\| \le \|y-x\| = \|x-y\|$ et donc, $\|x\| - \|y\| \| \le \|x-y\|$.

EXERCICE 1. Pour tout $P \in \mathbb{R}[X]$, on pose

$$||P||_1 = \sum_{k=0}^n |a_k|, \quad ||P||_\infty = \max_{0 \le k \le n} |a_k| \quad \text{où } P = \sum_{k=0}^n a_k X^k.$$

On admet que $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ définissent deux normes sur le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$. Ces deux normes sont-elles équivalentes? Justifier.

Indication : on pourra considérer la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ définie par

$$P_n = 1 + X + X^2 + \ldots + X^n \text{ pour } n \ge 0.$$

Remarquons que pour tout $n \in \mathbb{N}$, on a $||P_n||_1 = n+1$ et $||P_n||_{\infty} = 1$. Si les normes $||\cdot||_1$ et $||\cdot||_{\infty}$ étaient équivalentes, il existerait deux réels positifs m et M tels que

$$\forall P \in \mathbb{R}[X], \ m\|P\|_{\infty} \le \|P\|_1 \le M\|P\|_{\infty}.$$

Mais, en considérant un entier $n_0 > M$, on obtiendrait $||P_{n_0}||_1 = n_0 + 1 \le M ||P_{n_0}||_{\infty} = M$, ce qui est une contradiction. Ces normes ne sont donc pas équivalentes.

EXERCICE 2. On munit \mathbb{R}^2 de la norme euclidienne et on considère la partie

$$A = \{(x, \sin(x)) \colon x \in \mathbb{R}\}.$$

La partie A est-elle ouverte, est-elle fermée? Justifier.

Montrons que A n'est pas ouverte : $(0,0) = (0,\sin(0)) \in A$ mais pour tout r > 0, l'élément (0,r/2) de \mathbb{R}^2 est dans la boule ouverte B((0,0),r) mais n'est pas dans A (car $r/2 \neq \sin(0)$.) La partie A ne contient donc aucune boule ouverte de centre (0,0). Cette partie n'est donc pas ouverte.

Autre rédaction possible : la suite $(0,1/n)_{n\in\mathbb{N}^*}$ converge vers $(0,0)\in A$ mais aucun élément de cette suite n'appartient à A (et en particulier, il n'existe pas d'entier $n_0>0$ tel que pour tout $n\geq n_0$, on ait $(0,1/n)\in A$). La partie A n'est donc pas ouverte.

Montrons que A est fermée : soit $(a_n)_{n\in\mathbb{N}}$ une suite d'éléments de A qui converge vers $l=(x,y)\in\mathbb{R}^2$. Pour chaque $n\in\mathbb{N}$, notons x_n le réel tel que $a_n=(x_n,\sin(x_n))$. Alors $(x_n)_{n\in\mathbb{N}}$ converge vers x et $(\sin(x_n))_{n\in\mathbb{N}}$ converge vers y. De plus, comme la fonction sinus est continue, $(\sin(x_n))_{n\in\mathbb{N}}$ converge vers $\sin(x)$. Par unicité de la limite, on en déduit que $y=\sin(x)$ et donc que $(x,y)\in A$. On a ainsi vérifié que la limite de toute suite convergente d'éléments de A est dans A, ce qui montre que A est fermée.

EXERCICE BONUS Soit $(E, \|\cdot\|)$ un espace vectoriel normé sur \mathbb{R} . Montrer que pour tout $(x, y) \in E^2$ tel que $x \neq 0$ et $y \neq 0$, on a

$$\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \le 2 \frac{\|x - y\|}{\|x\|}.$$

Soit $(x,y) \in E^2$ tel que $x \neq 0$ et $y \neq 0$. Alors,

$$\begin{split} \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| &= \left\| \frac{x - y}{\|x\|} + \frac{y}{\|x\|} - \frac{y}{\|y\|} \right\| \le \frac{\|x - y\|}{\|x\|} + \left\| \frac{y}{\|x\|} - \frac{y}{\|y\|} \right\| \\ &et \ \left\| \frac{y}{\|x\|} - \frac{y}{\|y\|} \right\| = \left| \frac{1}{\|x\|} - \frac{1}{\|y\|} \right| \|y\| = \frac{\left| \|y\| - \|x\| \right|}{\|x\|} \le \frac{\|y - x\|}{\|x\|}, \\ &d'où \ \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \le 2\frac{\|x - y\|}{\|x\|}. \end{split}$$