Chapitre 1

Espaces métriques

1.1 Distances

La notion de distance a été introduite pour formaliser les propriétés d'une façon de mesurer l'écart entre des éléments d'un même ensemble; ces propriétés sont modelées sur celles de la longueur d'un vecteur dans \mathbb{R}^2 ou \mathbb{R}^3 .

Définition 1.1. Soit X un ensemble. Une distance sur X est une fonction $d: X \times X \to [0, +\infty[$ satisfaisant les propriétés suivantes :

- 1. $\forall x, y \in X \quad d(x, y) = 0 \Leftrightarrow x = y$.
- 2. $\forall x, y \in X \quad d(x, y) = d(y, x)$.
- 3. $\forall x, y, z \in X$ $d(x, z) \le d(x, y) + d(y, z)$.

On dit alors que (X, d) est un espace métrique.

La première des trois propriétés ci-dessus est appelée axiome de séparation : elle dit en particulier que deux points distincts sont nécessairement à distance strictement positive. La deuxième propriété est l'axiome de symétrie. Enfin, la troisième est appelée inégalité triangulaire. C'est peut-être la moins intuitive; dans \mathbb{R}^2 , muni de sa notion usuelle de distance, elle correspond au fait que la longueur d'un côté d'un triangle est toujours inférieure à la somme des longueurs des deux autres côtés.

Propriété 1.2. Dans un espace métrique (X, d), pour tout $x, y, z \in X$, on a $|d(x, z) - d(y, z)| \le d(x, y)$. (Preuve en exercice.)

L'exemple le plus important d'espace métrique est \mathbb{R} muni de la distance d(x,y)=|x-y|; plus généralement, presque toutes les distances que nous rencontrerons proviennent d'une *norme*, dont nous rappelons la définition maintenant.

Définition 1.3. Soit X un espace vectoriel sur \mathbb{R} (resp. sur \mathbb{C}). Une *norme* sur X est une fonction $\|\cdot\|: X \to [0, +\infty[$ satisfaisant les conditions suivantes :

- 1. $\forall x \in X \quad ||x|| = 0 \Leftrightarrow x = 0.$
- 2. $\forall x, y \in X \quad ||x + y|| \le ||x|| + ||y||$.
- 3. $\forall \lambda \in \mathbb{R} \text{ (resp. } \in \mathbb{C}) \ \forall x \in X \ \|\lambda x\| = |\lambda| \cdot \|x\|.$

On dit alors que $(X, \|\cdot\|)$ est un espace normé.

Exemple. La norme associée au produit scalaire d'un espace euclidien, appelée norme euclidienne.

Exemple. Pour $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, on pose

$$||x||_1 = \sum_{i=1}^n |x_i| \text{ et } ||x||_{\infty} = \max(|x_1|, \dots, |x_n|).$$

Les fonctions $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sont des normes sur \mathbb{R}^n . (Preuve en exercice.)

Propriété 1.4. Si $(X, \|\cdot\|)$ est un espace normé, alors la fonction $d: X \times X \to [0, +\infty[$ définie par $d(x, y) = \|x - y\|$ est une distance sur X. (Preuve en exercice.)

On dira que d définie comme ci-dessus est la distance induite par $\|\cdot\|$. Ce sont les distances avec lesquelles nous travaillerons principalement; l'ensemble X ne sera pas forcément un espace vectoriel tout entier, c'est pourquoi la remarque suivante sera importante : si (X,d) un espace métrique, et $A\subseteq X$, alors la restriction de d à A munit A d'une structure d'espace métrique.

Exercice 1.5. Soit X un ensemble. On définit une fonction $d: X \times X \to [0, +\infty[$ en posant

$$\forall x, y \in X \quad d(x, y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{sinon} \end{cases}.$$

Montrer que d est une distance sur X, appelée distance discrète.

Définition 1.6. Soit (X, d) un espace métrique, $x \in X$ et $r \ge 0$. On définit :

- La boule ouverte de centre x et de rayon r par

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

- La boule fermée de centre x et de rayon r par

$$\overline{B}(x,r) = \{ y \in X : d(x,y) \le r \}.$$

Montrer que, s Pour \mathbb{R} muni de la distance usuelle, B(x,r) =]x - r, x + r[et $\overline{B}(x,r) = [x - r, x + r].$

Exercice 1.7. Représenter les boules ouvertes/fermées dans \mathbb{R}^2 pour les distances associées aux normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ de centre (1,0) et de rayon 1.

Exercice 1.8. Déterminer les boules ouvertes et les boules fermées d'un ensemble X muni de la distance discrète.

Proposition 1.9. Soit (X, d_X) et (Y, d_Y) deux espaces métriques. Alors d_1 et d_{∞} définies pour (x_1, y_1) et (x_2, y_2) dans $X \times Y$ par

$$d_1((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2) \quad et$$

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max(d_X(x_1, x_2), d_Y(y_1, y_2))$$

sont des distances sur $X \times Y$. On appellera d_{∞} la distance produit de d_X et d_Y .

Preuve:

Les applications d_1 et d_{∞} sont à valeurs dans $[0, +\infty[$ et satisfont de manière évidente les deux premières propriétés (axiome de séparation et axiome de symétrie).

Vérifions l'inégalité triangulaire : soit (x_1, y_1) , (x_2, y_2) et (x_3, y_3) dans $X \times Y$. Alors,

$$d_1((x_1, y_1), (x_3, y_3)) = d_X(x_1, x_3) + d_Y(y_1, y_3) \le d_X(x_1, x_2) + d_X(x_2, x_3) + d_Y(y_1, y_2) + d_Y(y_1, y_3)$$
$$= d_1((x_1, y_1), (x_2, y_2)) + d_1((x_2, y_2), (x_3, y_3)).$$

On a

$$d_X(x_1, x_3) \le d_X(x_1, x_2) + d_X(x_2, x_3) \le \max(d_X(x_1, x_2), d_Y(y_1, y_2)) + \max(d_X(x_2, x_3), d_Y(y_2, y_3))$$

d'où

$$d_X(x_1, x_3) \le d_{\infty}((x_1, y_1), (x_2, y_2)) + d_{\infty}((x_2, y_2), (x_3, y_3)).$$

De même,

$$d_Y(y_1, y_3) \le d_{\infty}((x_1, y_1), (x_2, y_2)) + d_{\infty}((x_2, y_2), (x_3, y_3))$$
.

Ainsi.

$$d_{\infty}((x_1, y_1), (x_3, y_3)) = \max(d_X(x_1, x_3), d_Y(y_1, y_3)) \le d_{\infty}((x_1, y_1), (x_2, y_2)) + d_{\infty}((x_2, y_2), (x_3, y_3)).$$

1.2 Suites dans un espace métrique

L'intérêt principal de la notion de distance, pour nous, est de pouvoir formaliser la notion de suites convergentes : une suite $(x_n)_{n\geq 0}$ converge vers x si et seulement si la distance $d(x_n, x)$ tend vers 0 quand n tend vers l'infini. Avec des quantificateurs, on obtient la définition suivante.

Définition 1.10. Soit (X, d) un espace métrique, $(x_n)_{n\geq 0}$ une suite d'éléments de X et $x\in X$. On dit que la suite $(x_n)_{n\geq 0}$ converge vers x si :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ d(x_n, x) \leq \varepsilon$$
,

c'est-à-dire si :

$$d(x_n,x) \xrightarrow[n \to +\infty]{} 0$$
.

Propriété 1.11. Soit (X, d) un espace métrique et (x_n) une suite d'éléments de X, qui converge à la fois vers x et x'. Alors x = x', autrement dit, la limite d'une suite convergente est unique. (Preuve en exercice.)

Proposition 1.12. Soit (X, d_X) et (Y, d_Y) deux espaces métriques. On munit $X \times Y$ de la distance produit d_{∞} définie à la Proposition 1.9. Alors une suite $(x_n, y_n)_{n \geq 0}$ d'éléments de $X \times Y$ converge vers (x, y) si, et seulement si, $(x_n)_{n \geq 0}$ converge vers x et $(y_n)_{n \geq 0}$ converge vers y. (Preuve en exercice.)

Ce résultat reste vrai si on remplace d_{∞} par d_1 . (Preuve en exercice.)

Ainsi, dans \mathbb{R}^n muni de la distance induite par $\|\cdot\|_{\infty}$, on retrouve le fait qu'une suite est convergente si et seulement si chaque suite de coordonnées converge.

A priori, la notion de convergence dépend de la distance considérée sur X; mais il arrive que des distances différentes aient les mêmes suites convergentes.

Définition 1.13. Soit X un espace vectoriel, et $\|\cdot\|_1$, $\|\cdot\|_2$ deux normes sur X. On dit que $\|\cdot\|_1$ et $\|\cdot\|_2$ sont équivalentes s'il existe des constantes m, M strictement positives et telles que :

$$\forall x \in X \quad m||x||_1 \le ||x||_2 \le M||x||_1$$
.

Exercice 1.14. Montrer que la norme du sup et la norme euclidienne sur \mathbb{R}^n sont équivalentes.

On reverra plus tard le théorème, normalement déjà connu et qu'il est en tout cas sans doute utile d'avoir en tête, selon lequel toutes les normes sur \mathbb{R}^n sont équivalentes.

Cette définition a un analogue pour les distances :

Définition 1.15. Soit X un ensemble. Deux distances d_1, d_2 sur X sont dites équivalentes s'il existe des constantes m, M strictement positives et telles que :

$$\forall x, y \in X \quad md_1(x, y) \le d_2(x, y) \le Md_1(x, y)$$
.

Bien sûr, si d_1, d_2 sont les distances associées à des normes équivalentes, alors elles sont elles-mêmes équivalentes. Cette définition est importante pour nous à cause de la propriété suivante.

Proposition 1.16. Soit X un ensemble et d_1, d_2 deux distances sur X. Si d_1 et d_2 sont équivalentes, alors une suite $(x_n)_{n>0}$ converge dans (X, d_1) si et seulement si elle converge dans (X, d_2) .

Autrement dit : deux distances équivalentes ont les mêmes suites convergentes.

Preuve:

Soit deux constantes m,M strictement positives telles que :

$$\forall x, y \in X \quad md_1(x, y) \le d_2(x, y) \le Md_1(x, y) .$$

Soit (x_n) une suite et x un élément de X. On a alors pour tout $n \in \mathbb{N}$,

$$md_1(x_n, x) \le d_2(x_n, x) \le Md_1(x_n, y)$$
,

ce qui entraı̂ne que :

$$d_1(x_n,x) \underset{n \to +\infty}{\longrightarrow} 0$$
 si et seulement si $d_2(x_n,x) \underset{n \to +\infty}{\longrightarrow} 0$.

Quand on peut considérer des suites, on peut aussi considérer des suites extraites...

Définition 1.17. Soit X un ensemble, et $(x_n)_{n\geq 0}$ une suite d'éléments de X. Une suite extraite de $(x_n)_{n\geq 0}$ est une sous-suite de la forme $(x_{n_k})_{k\geq 0}$ où $(n_k)_{k\geq 0}$ est une suite strictement croissante d'entiers, ou, de manière équivalente, de la forme $(x_{\varphi(k)})_{k\geq 0}$, où $\varphi \colon \mathbb{N} \to \mathbb{N}$ est une fonction strictement croissante (il suffit de poser pour $k\geq 0$, $\varphi(k)=n_k$).

Intuitivement : une suite extraite est obtenue en ne gardant que certains termes de la suite $(x_n)_{n\geq 0}$ et en oubliant les autres ; par exemple, la suite $(x_{2k})_{k\geq 0}$ est une suite extraite de la suite $(x_n)_{n\geq 0}$.

Propriété 1.18. Soit $\varphi \colon \mathbb{N} \to \mathbb{N}$ une fonction strictement croissante. Alors pour tout $k \in \mathbb{N}$ on a $\varphi(k) \geq k$ (et en particulier $\varphi(k)$ tend vers $+\infty$!). (Preuve en exercice.)

Proposition 1.19. Soit (X,d) un espace métrique. Si $(x_n)_{n\geq 0}$ est une suite convergente alors toute suite extraite $(x_{\varphi(k)})_{k\geq 0}$ est convergente. (Preuve en exercice.)

Exercice 1.20. Soit (X, d) un espace métrique et (x_n) une suite d'éléments de X.

Supposons d'abord que les suites (x_{2k}) et (x_{2k+1}) convergent vers la même limite. Montrer que (x_n) est convergente. Ce résultat reste-t-il vrai si l'on ne suppose pas que les limites de (x_{2k}) et (x_{2k+1}) sont égales? Montrer que si (x_{2k}) , (x_{2k+1}) et (x_{3k}) sont toutes les trois convergentes alors (x_n) est convergente.

Proposition 1.21. Toute suite de réels admet une sous-suite monotone.

Preuve:

Soit (x_n) une suite de réels. Pour cette preuve, on dira qu'un entier n est un pic, si pour tout m > n, $x_n > x_m$. S'il y a une infinité de pics $n_0 < n_1 < n_2 < \ldots < n_k < \ldots$, alors la suite extraite (x_{n_k}) est strictement décroissante.

Sinon, il existe un entier N tel qu'aucun entier $n \ge N$ n'est un pic. On construit alors par récurrence une suite strictement croissante d'entiers (n_k) tel que la sous-suite (x_{n_k}) soit croissante : pour l'initialisation, on pose $n_0 = N$. Supposons que l'on a choisit $N = n_0 < n_1 < \ldots < n_k$, tel que $x_{n_0} \le \ldots \le x_{n_k}$ (condition vide si k = 0). Comme $n_k \ge N$, n_k n'est pas un pic et par conséquent il existe $n_{k+1} > n_k$ tel que $x_{n_k} \le x_{n_{k+1}}$.

1.3 Ouverts et fermés

Si on est intéressé plus par la notion de "proximité" induite par une distance que par les valeurs exactes de la distance, on est amené à la notion d'ouvert : $A \subseteq X$ est ouvert ssi, dès que $a \in A$, tout point suffisamment proche de a appartient à A. Autrement dit, A contient une petite boule non vide autour de chacun des ses points.

Définition 1.22. Soit (X, d) un espace métrique. Une partie A de X est un ouvert si

$$\forall a \in A \ \exists r > 0 \ B(a,r) \subseteq A.$$

Une boule ouverte est bien un ouvert! L'ensemble X tout entier et l'ensemble vide \emptyset sont des ouverts. Dans \mathbb{R} , muni de la distance usuelle, tout intervalle ouvert est un ouvert (intervalles de la forme $]a,b[,]-\infty,a[,]b,+\infty[$ et $]-\infty,+\infty[$, avec $a,b\in\mathbb{R}$).

Exercice 1.23. Vérifier qu'une partie A d'un espace métrique est un ouvert si et seulement si

$$\forall a \in A \ \exists n \in \mathbb{N}^* \ \overline{B}(a, 1/n) \subseteq A.$$

Exercice 1.24. Vérifier qu'une partie A d'un espace métrique est un ouvert si et seulement si

$$\forall a \in A \ \exists r > 0 \ \overline{B}(a,r) \subseteq A.$$

La notion d'ouvert dépend de la distance sur X; par contre pour deux distances équivalentes les ouverts sont les mêmes.

Exercice 1.25. 1. Donner un exemple de deux distances sur \mathbb{R} qui ne définissent pas les mêmes ouverts.

2. Soit X un ensemble et d_1, d_2 deux distances équivalentes sur X. Montrer qu'une partie A de X est un ouvert de (X, d_1) si et seulement si elle est un ouvert de (X, d_2) .

Théorème 1.26. Soit A une partie d'un espace métrique (X,d). Alors, A est un ouvert si et seulement pour toute suite (x_n) d'éléments de X qui converge vers un élément de A, alors x_n appartient à A pour tout n suffisamment grand.

Preuve:

Supposons A ouvert et considérons une suite (x_n) d'éléments de X qui converge vers $a \in A$. Comme A est ouvert, il existe r > 0 tel que $B(a,r) \subseteq A$. La convergence de la suite vers a, entraı̂ne qu'il existe un entier N tel que pour tout $n \geq N$, $d(x_n, a) < r$, c'est-à-dire tel que pour tout $n \geq N$, $x_n \in B(a,r) \subseteq A$.

Réciproquement, si A n'est pas ouvert, il existe $a \in A$ tel que pour tout $n \in \mathbb{N}$, $B(a, \frac{1}{n+1}) \not\subset A$. On choisit ainsi pour tout n, un élément $x_n \in B(a, \frac{1}{n+1}) \setminus A$. Alors aucun élément de la suite x_n n'appartient à A mais elle converge vers a qui appartient à A.

Définition 1.27. Une partie A d'un espace métrique est un fermé si son complémentaire $X \setminus A$ est ouvert.

Une boule fermée est bien un fermé! L'ensemble X tout entier et l'ensemble vide sont des fermés. Dans \mathbb{R} , muni de la distance usuelle, tout intervalle fermé est un fermé.

Les fermés sont caractérisés par la propriété suivante : la limite de toute suite convergente d'éléments d'un fermé est dans ce fermé. Notons que toute propriété des ouverts se traduit, par passage au complémentaire, en une propriété des fermés.

Proposition 1.28. Soit A une partie d'un espace métrique (X,d). Alors, A est un fermé si et seulement pour toute suite (x_n) d'éléments de A qui converge vers un élément x de X, alors x appartient à A.

Preuve:

Supposons A fermé. Soit (x_n) une suite d'éléments de A qui converge vers un élément x. Comme aucun x_n n'est dans l'ouvert $X \setminus A$, (encore moins pour tout n suffisamment grand), d'après le théorème 1.26, x ne peut appartenir à l'ouvert $X \setminus A$ et donc appartient à A.

Réciproquement, si A n'est pas fermé, c'est-à-dire si $X \setminus A$ n'est pas ouvert, alors le théorème 1.26 garantit l'existence d'une suite (x_n) d'éléments n'appartenant pas à $X\setminus A$, c'est-à-dire appartenant à A, qui converge vers un élément de $X \setminus A$.

Proposition 1.29. Dans un espace métrique (X, d) donné,

- 1. $si(O_i)_{i\in I}$ est une famille d'ouverts, alors $\bigcup_{i\in I} O_i$ est également un ouvert (une union quelconque d'ouverts est un ouvert);
- 2. si O_1, \ldots, O_n sont des ouverts, alors $O_1 \cap \ldots \cap O_n$ est également un ouvert (une intersection finie d'ouverts est un ouvert);
- 3. si $(F_i)_{i\in I}$ est une famille de fermés, alors $\bigcap_{i\in I} F_i$ est également un fermé (une intersection quelconque de fermés est un fermé);
- 4. si F_1, \ldots, F_n sont des fermés, alors $F_1 \cup \ldots \cup F_n$ est également un fermé (une union finie de fermés est un fermé).

Preuve:

- (1) Soit $a \in \bigcup_{i \in I} O_i$, alors il existe $i_0 \in I$ tel que $a \in O_{i_0}$. Comme O_{i_0} est ouvert, il existe r > 0, tel que $B(a,r) \subseteq O_{i_0} \subseteq \bigcup_{i \in I} O_i$, ce qui permet de conclure.
- (2) Soit $a \in O_1 \cap \ldots \cap O_n$, alors pour chaque $i \in \{1, \ldots, n\}$, on a $a \in O_i$ qui est un ouvert. Ainsi, pour chaque $i \in \{1, \ldots, n\}$, il existe $r_i > 0$ tel que $B(a, r_i) \subseteq O_i$. En posant $r = \min(r_1, \ldots, r_n)$, on en déduit que la boule ouverte B(a,r) est incluse dans chacun des O_i et donc que $B(a,r) \subseteq O_1 \cap \ldots \cap O_n$, ce qui permet de conclure.
- (3) On a $X \setminus \bigcap_{i \in I} F_i = \bigcup_{i \in I} (X \setminus F_i)$, qui est ouvert par (1). Ainsi, $\bigcap_{i \in I} F_i$ est fermé. (4) On a $X \setminus (F_1 \cup \ldots \cup F_n) = (X \setminus F_1) \cap \ldots \cap (X \setminus F_n)$, qui est ouvert par (2), et donc $F_1 \cup \ldots \cup F_n$
- est fermé.

Exercice 1.30. 1. Donner un exemple d'une intersection d'ouverts qui n'est pas un ouvert.

2. Donner un exemple d'une union de fermés qui n'est pas un fermé.

Définition 1.31. Étant donné un espace métrique (X, d), et une partie $A \subseteq X$, l'intérieur de A, dénoté \mathring{A} , est la réunion de tous les ouverts contenus dans A, c'est-à-dire

$$\mathring{A} = \bigcup_{\substack{O \text{ ouvert} \\ O \subseteq A}} O.$$

Par définition, \mathring{A} est un ouvert, est contenu dans A, et il contient tous les autres ouverts contenus dans A: c'est le plus grand ouvert contenu dans A. Attention, \mathring{A} peut tout à fait être vide même si A ne l'est pas!

Propriété 1.32. Soit A une partie d'un espace métrique (X, d). Alors pour tout $x \in X$, on a

$$x \in \mathring{A} \iff \exists r > 0 \text{ tel que } B(x,r) \subseteq A.$$

(Preuve en exercice.)

Définition 1.33. Étant donné un espace métrique (X, d), et une partie $A \subseteq X$, l'adhérence de A, notée \overline{A} , est l'intersection de tous les fermés contenant A, c'est-à-dire

$$\overline{A} = \bigcap_{\substack{F \text{ fermé} \\ F \supset A}} F.$$

Cette fois, \overline{A} est un fermé, contient A, et est contenu dans tous les autres fermés qui contiennent A: c'est le plus petit de tous les fermés contenant A.

Propriété 1.34. Soit (X,d) un espace métrique, et $A \subseteq X$. On a $\overline{X \setminus A} = X \setminus \mathring{A}$ et $\overline{X \setminus A} = X \setminus \overline{A}$. (Preuve en exercice.)

Propriété 1.35. Soit (X, d) un espace métrique, $A \subseteq X$ et $x \in X$. Il existe une suite d'éléments de A qui converge vers x si, et seulement si, $B(x, r) \cap A \neq \emptyset$ pour tout r > 0. (Preuve en exercice.)

Ceci nous permet d'établir la caractérisation suivante de l'adhérence, qui est fondamentale.

Proposition 1.36. Soit (X, d) un espace métrique, A une partie de X et $x \in X$. Alors $x \in \overline{A}$ si, et seulement si, il existe une suite d'éléments de A qui converge vers x.

Preuve:

Supposons qu'il existe une suite d'éléments de A qui converge vers $x \in X$. Alors, pour tout fermé F contenant A, il existe aussi une suite (la même!) d'éléments de F qui converge vers x; par conséquent, x appartient à F. Donc x appartient à tous les fermés qui contiennent $A: x \in \overline{A}$.

Réciproquement, supposons qu'il n'existe pas de suite d'éléments de A qui converge vers $x \in X$. Alors, d'après la propriété 1.35, il doit exister r > 0 tel que $B(x,r) \cap A = \emptyset$. Autrement dit, $X \setminus B(x,r)$ est un fermé de X, contenant A, mais auquel x n'appartient pas : $x \notin \overline{A}$.

Exercice 1.37. Déterminer l'intérieur et l'adhérence de \mathbb{Q} , $[0,1] \cap \mathbb{Q}$, $]0,1[\cap \mathbb{Q}$ (dans \mathbb{R} muni de sa distance usuelle).

Proposition 1.38. Soit $(E, \|\cdot\|)$ un espace vectoriel normé (on considère E muni de la distance induite par sa norme). Soit $a \in E$ et r > 0.

- 1. L'intérieur de la boule fermée $\overline{B}(a,r)$ est la boule ouverte B(a,r).
- 2. L'adhérence de la boule ouverte B(a,r) est la boule fermée $\overline{B}(a,r)$.

(Preuve en exercice.)

Exercice 1.39. Les deux propriétés de la proposition ci-dessus sont elles vraies pour tout espace métrique?

Définition 1.40. Soit (X,d) un espace métrique, et $A \subseteq X$. On dit que A est dense dans X si $\overline{A} = X$.

Par exemple, il est bien connu que \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont tous les deux denses dans \mathbb{R} .