Calcul fonctionnel et semi-groupes analytiques sur les espaces L^p non commutatifs

Cédric Arhancet

Université de Franche-Comté

Lyon, octobre 2013

Plan

- 1 Semigroupes et calcul H^{∞}
- 2 Semigroupes sur les espaces L^p non commutatifs
- 3 Analyticité
- 4 R-Analyticité

Plan

- **1** Semigroupes et calcul H^{∞}
- 2 Semigroupes sur les espaces L^p non commutatifs
- 3 Analyticité
- 4 R-Analyticité

Définition

Un C₀-semigroupe sur un espace de Banach X

Définition

Un C_0 -semigroupe sur un espace de Banach X est une famille d'opérateurs $(T_t)_{t\geq 0}$ où $T_t\colon X\to X$ telle que :

$$T_0 = I$$
, et $T_{t+s} = T_t T_s$, $t, s \ge 0$

Définition

Un C_0 -semigroupe sur un espace de Banach X est une famille d'opérateurs $(T_t)_{t\geq 0}$ où $T_t\colon X\to X$ telle que :

$$T_0 = I$$
, et $T_{t+s} = T_t T_s$, $t, s \ge 0$

avec

$$t \mapsto T_t x$$

continue pour tout $x \in X$.

Définition

Un C_0 -semigroupe sur un espace de Banach X est une famille d'opérateurs $(T_t)_{t\geq 0}$ où $T_t\colon X\to X$ telle que :

$$T_0 = I$$
, et $T_{t+s} = T_t T_s$, $t, s \ge 0$

avec

$$t \mapsto T_t x$$

continue pour tout $x \in X$.

On note -A le générateur. Rappelons que

$$-Ax = \lim_{t\to 0} \frac{1}{t} (T_t x - x), \qquad x \in D(A).$$

Définition

Un C_0 -semigroupe sur un espace de Banach X est une famille d'opérateurs $(T_t)_{t\geq 0}$ où $T_t\colon X\to X$ telle que :

$$T_0 = I$$
, et $T_{t+s} = T_t T_s$, $t, s \ge 0$

avec

$$t \mapsto T_t x$$

continue pour tout $x \in X$.

On note -A le générateur. Rappelons que

$$-Ax = \lim_{t\to 0} \frac{1}{t} (T_t x - x), \qquad x \in D(A).$$

On note symboliquement $T_t = e^{-tA}$.

Le noyau de Poisson

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}$$

Le noyau de Poisson

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}$$

permet de définir le semigroupe de Poisson $(T_t)_{t\geq 0}$ par

$$T_t\colon L^\infty(\mathbb{T}) \longrightarrow L^\infty(\mathbb{T})$$
 $f \longmapsto P_{e^{-t}} * f.$

Le noyau de Poisson

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}$$

permet de définir le semigroupe de Poisson $(T_t)_{t\geq 0}$ par

$$T_t\colon L^\infty(\mathbb{T}) \longrightarrow L^\infty(\mathbb{T})$$
 $f \longmapsto P_{e^{-t}} * f.$

On a

$$T_t(e^{ik\cdot})=e^{-t|k|}e^{ik\cdot}, \qquad k\in\mathbb{Z}.$$

Le noyau de Poisson

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}$$

permet de définir le semigroupe de Poisson $(T_t)_{t\geq 0}$ par

$$T_t\colon L^\infty(\mathbb{T}) \longrightarrow L^\infty(\mathbb{T})$$
 $f \longmapsto P_{e^{-t}} * f.$

On a

$$T_t(e^{ik\cdot})=e^{-t|k|}e^{ik\cdot}, \qquad k\in\mathbb{Z}.$$

Il induit un C_0 -semigroupe d'applications contractantes :

$$T_t \colon L^p(\mathbb{T}) \to L^p(\mathbb{T}), \qquad 1$$

Le noyau de Poisson

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}$$

permet de définir le semigroupe de Poisson $(T_t)_{t\geq 0}$ par

$$T_t\colon L^\infty(\mathbb{T}) \longrightarrow L^\infty(\mathbb{T})$$
 $f \longmapsto P_{e^{-t}} * f.$

On a

$$T_t(e^{ik\cdot})=e^{-t|k|}e^{ik\cdot}, \qquad k\in\mathbb{Z}.$$

Il induit un C_0 -semigroupe d'applications contractantes :

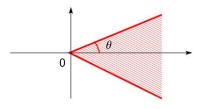
$$T_t \colon L^p(\mathbb{T}) \to L^p(\mathbb{T}), \qquad 1$$

On a

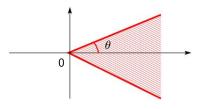
$$A(e^{ik\cdot}) = |k|e^{ik\cdot}, \qquad k \in \mathbb{Z}.$$

Pour tout $0 < \theta < \pi$

Pour tout $0 < \theta < \pi$, on note $\Sigma_{\theta} = \{z \in \mathbb{C}^* \colon -\theta < \operatorname{Arg}(z) < \theta\}$ le secteur ouvert d'angle 2θ autour de \mathbb{R}^+ .

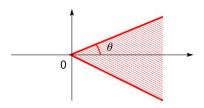


Pour tout $0 < \theta < \pi$, on note $\Sigma_{\theta} = \{z \in \mathbb{C}^* \colon -\theta < \operatorname{Arg}(z) < \theta\}$ le secteur ouvert d'angle 2θ autour de \mathbb{R}^+ .



Soit $(T_t)_{t\geq 0}$ un C_0 -semigroupe sur un espace de Banach X.

Pour tout $0 < \theta < \pi$, on note $\Sigma_{\theta} = \{z \in \mathbb{C}^* \colon -\theta < \operatorname{Arg}(z) < \theta\}$ le secteur ouvert d'angle 2θ autour de \mathbb{R}^+ .



Soit $(T_t)_{t\geq 0}$ un C_0 -semigroupe sur un espace de Banach X.

On dit qu'il est analytique quand $(T_t)_{t>0}$ admet une extension analytique borné

$$\Sigma_{\theta} \longrightarrow B(X)$$
 $z \longmapsto T_{z}$

pour un certain $0 < \theta < \frac{\pi}{2}$.

On considère une suite $(\varepsilon_k)_{k\geq 1}$ de variables de Rademacher indépendantes sur un espace de probabilité Ω_0 .

On considère une suite $(\varepsilon_k)_{k\geq 1}$ de variables de Rademacher indépendantes sur un espace de probabilité Ω_0 . On note

$$\operatorname{Rad}(X)\subset L^2(\Omega_0,X)$$

le sous-espace fermé engendré par les $\varepsilon_k \otimes x$.

On considère une suite $(\varepsilon_k)_{k\geq 1}$ de variables de Rademacher indépendantes sur un espace de probabilité Ω_0 . On note

$$\operatorname{Rad}(X)\subset L^2(\Omega_0,X)$$

le sous-espace fermé engendré par les $\varepsilon_k \otimes x$.

Définition

On dit qu'un ensemble $F \subset B(X)$ est R-borné s'il existe K telle que pour toute familles finies T_1, \ldots, T_n de F et x_1, \ldots, x_n de X, on ait

$$\left\| \sum_{k=1}^n \varepsilon_k \otimes T_k(x_k) \right\|_{\mathrm{Rad}(X)} \leq K \left\| \sum_{k=1}^n \varepsilon_k \otimes x_k \right\|_{\mathrm{Rad}(X)}.$$

On considère une suite $(\varepsilon_k)_{k\geq 1}$ de variables de Rademacher indépendantes sur un espace de probabilité Ω_0 . On note

$$\operatorname{Rad}(X)\subset L^2(\Omega_0,X)$$

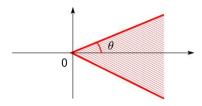
le sous-espace fermé engendré par les $\varepsilon_k \otimes x$.

Définition

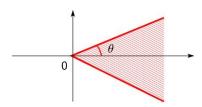
On dit qu'un ensemble $F \subset B(X)$ est R-borné s'il existe K telle que pour toute familles finies T_1, \ldots, T_n de F et x_1, \ldots, x_n de X, on ait

$$\left\| \sum_{k=1}^n \varepsilon_k \otimes T_k(x_k) \right\|_{\operatorname{Rad}(X)} \leq K \left\| \sum_{k=1}^n \varepsilon_k \otimes x_k \right\|_{\operatorname{Rad}(X)}.$$

Sur un espace de Hilbert H, un sous-ensemble de B(H) est borné ssi il est R-borné.



Soit $(T_t)_{t\geq 0}$ un C_0 -semigroupe sur un espace de Banach X.

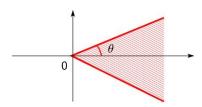


Soit $(T_t)_{t\geq 0}$ un C_0 -semigroupe sur un espace de Banach X.

On dit qu'il est R-analytique quand $(T_t)_{t>0}$ admet une extension analytique borné

$$\Sigma_{\theta} \longrightarrow B(X)$$
 $z \longmapsto T_{z}$

pour un certain $0<\theta<\frac{\pi}{2}$



Soit $(T_t)_{t\geq 0}$ un C_0 -semigroupe sur un espace de Banach X.

On dit qu'il est R-analytique quand $(T_t)_{t>0}$ admet une extension analytique borné

$$\Sigma_{\theta} \longrightarrow B(X)$$
 $z \longmapsto T_{z}$

pour un certain $0<\theta<\frac{\pi}{2}$ telle que

$$\{T(z)\colon z\in\Sigma_{\theta}\}$$

soit R-borné.

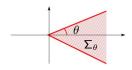
Analyticité et semigroupe de Poisson

Théorème

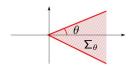
Supposons $1 . Le semigroupe de Poisson <math>(T_t)_{t \geq 0}$ est R-analytique sur $L^p(\mathbb{T})$.

Considérons $0 < \theta < \pi$

Considérons $0 < \theta < \pi$ et

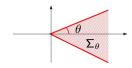


Considérons $0 < \theta < \pi$ et



 $H^\infty(\Sigma_\theta)=\{f\colon \Sigma_\theta o\mathbb C\,:\,\,f\,\, \text{born\'ee analytique}\}.$

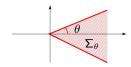
Considérons $0 < \theta < \pi$ et



$$H^{\infty}(\Sigma_{\theta}) = \{f \colon \Sigma_{\theta} \to \mathbb{C} : f \text{ born\'ee analytique}\}.$$

Soit $A: D(A) \to X$ un générateur à image dense d'un C_0 -semigroupe.

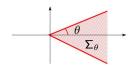
Considérons $0 < \theta < \pi$ et



 $H^{\infty}(\Sigma_{\theta}) = \{ f : \Sigma_{\theta} \to \mathbb{C} : f \text{ born\'ee analytique} \}.$

Soit $A: D(A) \to X$ un générateur à image dense d'un C_0 -semigroupe. Si θ est assez grand et $f \in H^{\infty}(\Sigma_{\theta})$, on peut définir un opérateur f(A).

Considérons $0 < \theta < \pi$ et



$$H^{\infty}(\Sigma_{\theta}) = \{ f : \Sigma_{\theta} \to \mathbb{C} : f \text{ born\'ee analytique} \}.$$

Soit $A: D(A) \to X$ un générateur à image dense d'un C_0 -semigroupe. Si θ est assez grand et $f \in H^{\infty}(\Sigma_{\theta})$, on peut définir un opérateur f(A).

Définition

A admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné s'il existe K telle que

$$||f(A)||_{X \to X} \le K||f||_{H^{\infty}(\Sigma_{\theta})}, \qquad f \in H^{\infty}(\Sigma_{\theta}).$$

Calcul H^{∞} et semigroupe de Poisson

Théorème

Supposons $1 . Le semigroupe de Poisson <math>(T_t)_{t \geq 0}$ admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné sur $L^p(\mathbb{T})$ pour un $0 < \theta < \frac{\pi}{2}$.

Plan

- 1 Semigroupes et calcul H^{∞}
- 2 Semigroupes sur les espaces L^p non commutatifs
- 3 Analyticité
- 4 R-Analyticité

Mathématiques non commutatives

Dictionnaire:

commutatif non commutatif

Mathématiques non commutatives

Dictionnaire:

```
\begin{array}{ccc} \text{commutatif} & \text{non commutatif} \\ & \text{fonction} & \longleftrightarrow & \text{op\'erateur} \end{array}
```

```
\begin{array}{cccc} \text{commutatif} & \text{non commutatif} \\ \text{fonction} & \longleftrightarrow & \text{op\'erateur} \\ & L^{\infty}(\Omega) & \longleftrightarrow & M \text{ alg\`ebre de von Neumann} \end{array}
```

```
\begin{array}{cccc} \text{commutatif} & \text{non commutatif} \\ \text{fonction} & \longleftrightarrow & \text{op\'erateur} \\ L^{\infty}(\Omega) & \longleftrightarrow & M \text{ alg\`ebre de von Neumann} \\ L^{p}(\Omega) & \longleftrightarrow & L^{p}(M) \\ \ell^{p} & \longleftrightarrow & S^{p} \end{array}
```

Soit *G* un groupe discret.

Soit *G* un groupe discret.

On note $(\delta_g)_{g \in G}$ la base canonique de ℓ_G^2 .

Soit *G* un groupe discret.

On note $(\delta_g)_{g \in G}$ la base canonique de ℓ_G^2 .

Soit $\lambda_{\mathbf{g}}$ la représentation régulière gauche de \mathbf{G} sur $\ell_{\mathbf{G}}^2$, i.e.

$$\lambda_g: \quad \ell_G^2 \longrightarrow \quad \ell_G^2 \\
\delta_h \longmapsto \delta_{gh}.$$

Soit G un groupe discret.

On note $(\delta_g)_{g \in G}$ la base canonique de ℓ_G^2 .

Soit $\lambda_{\mathbf{g}}$ la représentation régulière gauche de \mathbf{G} sur $\ell_{\mathbf{G}}^2$, i.e.

$$\lambda_g: \quad \ell_G^2 \longrightarrow \quad \ell_G^2 \\
\delta_h \longmapsto \delta_{gh}.$$

On définit l'algèbre de von Neumann par

$$\mathcal{L}G = \overline{\operatorname{vect}\{\lambda_{\operatorname{g}} \colon \operatorname{g} \in \operatorname{G}\}}^{w^*} \subset B(\ell_G^2).$$

Soit G un groupe discret.

On note $(\delta_g)_{g \in G}$ la base canonique de ℓ_G^2 .

Soit $\lambda_{\mathbf{g}}$ la représentation régulière gauche de \mathbf{G} sur $\ell_{\mathbf{G}}^2$, i.e.

$$\lambda_g: \ell_G^2 \longrightarrow \ell_G^2$$
 $\delta_h \longmapsto \delta_{gh}.$

On définit l'algèbre de von Neumann par

$$\mathcal{L}G = \overline{\operatorname{vect}\{\lambda_{\operatorname{g}} \colon \operatorname{g} \in \operatorname{G}\}}^{w^*} \subset B(\ell_G^2).$$

On peut définir une trace par

$$\operatorname{Tr}(x) = \langle \delta_e, x \delta_e \rangle_{\ell_G^2}, \qquad x \in \mathcal{L}G \quad (e \text{ neutre de } G).$$

Soit *G* un groupe discret.

On note $(\delta_g)_{g \in G}$ la base canonique de ℓ_G^2 .

Soit λ_g la représentation régulière gauche de G sur ℓ_G^2 , i.e.

$$\lambda_g: \ell_G^2 \longrightarrow \ell_G^2$$
 $\delta_h \longmapsto \delta_{gh}.$

On définit l'algèbre de von Neumann par

$$\mathcal{L}G = \overline{\operatorname{vect}\{\lambda_{\operatorname{g}} \colon \operatorname{g} \in \operatorname{G}\}}^{w^*} \subset B(\ell_G^2).$$

On peut définir une trace par

$$\operatorname{Tr}(x) = \langle \delta_e, x \delta_e \rangle_{\ell_G^2}, \qquad x \in \mathcal{L}G \quad (e \text{ neutre de } G).$$

On définit le complété $L^p(\mathcal{L}G)$ de $\mathcal{L}G$ pour la norme

$$||x||_{L^p(\mathcal{L}G)}=\mathrm{Tr}\left(|x|^p\right)^{\frac{1}{p}}, \qquad 1\leq p<\infty.$$

Désormais $G = \mathbb{F}_n$ est le groupe libre à n générateurs g_1, \ldots, g_n .

Désormais $G = \mathbb{F}_n$ est le groupe libre à n générateurs g_1, \ldots, g_n . Tout $g \in \mathbb{F}_n$ admet une unique décomposition

$$g = g_{i_1}^{k_1} g_{i_2}^{k_2} \cdots g_{i_l}^{k_l},$$

où $1 \le i_j \le n$, $k_j \in \mathbb{Z}^*$, et $i_j \ne i_{j+1}$.

Désormais $G = \mathbb{F}_n$ est le groupe libre à n générateurs g_1, \ldots, g_n . Tout $g \in \mathbb{F}_n$ admet une unique décomposition

$$g = g_{i_1}^{k_1} g_{i_2}^{k_2} \cdots g_{i_l}^{k_l},$$

où $1 \le i_j \le n$, $k_j \in \mathbb{Z}^*$, et $i_j \ne i_{j+1}$. La longueur g est

$$|g|=|k_1|+\cdots+|k_l|.$$

Désormais $G = \mathbb{F}_n$ est le groupe libre à n générateurs g_1, \dots, g_n . Tout $g \in \mathbb{F}_n$ admet une unique décomposition

$$g = g_{i_1}^{k_1} g_{i_2}^{k_2} \cdots g_{i_l}^{k_l},$$

où $1 \le i_j \le n$, $k_j \in \mathbb{Z}^*$, et $i_j \ne i_{j+1}$. La longueur g est

$$|g|=|k_1|+\cdots+|k_l|.$$

Pour tout $t \ge 0$, on a une contraction

$$T_t: \ \mathcal{L}F_n \longrightarrow \ \mathcal{L}F_n$$
 $\lambda_g \longmapsto e^{-t|g|}\lambda_g.$

Désormais $G = \mathbb{F}_n$ est le groupe libre à n générateurs g_1, \ldots, g_n . Tout $g \in \mathbb{F}_n$ admet une unique décomposition

$$g = g_{i_1}^{k_1} g_{i_2}^{k_2} \cdots g_{i_l}^{k_l},$$

où $1 \le i_j \le n$, $k_j \in \mathbb{Z}^*$, et $i_j \ne i_{j+1}$. La longueur g est

$$|g|=|k_1|+\cdots+|k_l|.$$

Pour tout t > 0, on a une contraction

$$T_t: \mathcal{L}F_n \longrightarrow \mathcal{L}F_n$$
 $\lambda_g \longmapsto e^{-t|g|}\lambda_g.$

On obtient le semigroupe de Poisson non-commutatif (Haagerup).

Désormais $G = \mathbb{F}_n$ est le groupe libre à n générateurs g_1, \dots, g_n . Tout $g \in \mathbb{F}_n$ admet une unique décomposition

$$g = g_{i_1}^{k_1} g_{i_2}^{k_2} \cdots g_{i_l}^{k_l},$$

où $1 \le i_j \le n$, $k_j \in \mathbb{Z}^*$, et $i_j \ne i_{j+1}$. La longueur g est

$$|g|=|k_1|+\cdots+|k_l|.$$

Pour tout $t \ge 0$, on a une contraction

$$T_t: \mathcal{L}F_n \longrightarrow \mathcal{L}F_n$$

$$\lambda_g \longmapsto e^{-t|g|}\lambda_g.$$

On obtient le semigroupe de Poisson non-commutatif (Haagerup). Il induit un C_0 -semigroupe sur $L^p(\mathcal{L}F_n)$.

• Si X est un espace de Banach et Ω un espace mesuré, on peut définir les espaces de Bochner

$$L^p(\Omega,X) = \left\{ f \colon \Omega \to X \colon \int_{\Omega} \|f(\omega)\|_X^p d\omega < \infty \right\}.$$

• Si X est un espace de Banach et Ω un espace mesuré, on peut définir les espaces de Bochner

$$L^p(\Omega,X) = \left\{ f \colon \Omega \to X \colon \int_{\Omega} \|f(\omega)\|_X^p d\omega < \infty \right\}.$$

• Soit E un espace d'opérateurs, i.e. un sous-espace fermé de $B(\ell^2)$.

• Si X est un espace de Banach et Ω un espace mesuré, on peut définir les espaces de Bochner

$$L^p(\Omega,X) = \left\{ f \colon \Omega \to X \colon \int_{\Omega} \|f(\omega)\|_X^p d\omega < \infty \right\}.$$

• Soit E un espace d'opérateurs, i.e. un sous-espace fermé de $B(\ell^2)$. On peut définir les espaces L^p non commutatifs

$$L^p(\mathcal{L}G, E)$$

à valeurs dans E.

• Si X est un espace de Banach et Ω un espace mesuré, on peut définir les espaces de Bochner

$$L^p(\Omega,X) = \left\{ f \colon \Omega \to X \colon \int_{\Omega} \|f(\omega)\|_X^p d\omega < \infty \right\}.$$

• Soit E un espace d'opérateurs, i.e. un sous-espace fermé de $B(\ell^2)$. On peut définir les espaces L^p non commutatifs

$$L^p(\mathcal{L}G, E)$$

à valeurs dans E.

• Dans la suite, E = OH désigne l'espace d'opérateurs hilbertien analogue de ℓ^2 introduit par Pisier.

Théorème (A.)

• Le semigroupe de Poisson non commutatif $(T_t)_{t\geq 0}$ sur

$$L^p(\mathcal{L}F_n, OH)$$

Théorème (A.)

• Le semigroupe de Poisson non commutatif $(T_t)_{t\geq 0}$ sur

$$L^p(\mathcal{L}F_n, OH)$$

est R-analytique pour 1 .

Théorème (A.)

• Le semigroupe de Poisson non commutatif $(T_t)_{t\geq 0}$ sur

$$L^p(\mathcal{L}F_n, OH)$$

est R-analytique pour 1 .

• Son générateur A admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné pour un $0 < \theta < \frac{\pi}{2}$.

Théorème (A.)

• Le semigroupe de Poisson non commutatif $(T_t)_{t\geq 0}$ sur

$$L^p(\mathcal{L}F_n, OH)$$

est R-analytique pour 1 .

- Son générateur A admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné pour un $0 < \theta < \frac{\pi}{2}$.
- On peut remplacer *OH* par un espace d'interpolation

$$E = (OH, F)_{\alpha}$$

où $0 < \alpha < 1$ et où F possède $OUMD'_q$ pour un certain q.

Théorème (A.)

• Le semigroupe de Poisson non commutatif $(T_t)_{t\geq 0}$ sur

$$L^p(\mathcal{L}F_n, OH)$$

est R-analytique pour 1 .

- Son générateur A admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné pour un $0 < \theta < \frac{\pi}{2}$.
- On peut remplacer *OH* par un espace d'interpolation

$$E = (OH, F)_{\alpha}$$

où $0 < \alpha < 1$ et où F possède $OUMD'_q$ pour un certain q.

 OUMD_q désigne une propriété similaire à la propriété d'inconditionnalité des différences de martingales (UMD) des espaces de Banach.

Plan

- 1 Semigroupes et calcul H^{∞}
- 2 Semigroupes sur les espaces L^p non commutatifs
- 3 Analyticité
- 4 R-Analyticité

Un célèbre théorème de Pisier dit que :

Un célèbre théorème de Pisier dit que :

un espace X est K-convexe, i.e. ne contient pas uniformément les ℓ_n^1 's ssi

Un célèbre théorème de Pisier dit que :

un espace X est K-convexe, i.e. ne contient pas uniformément les ℓ_n^1 's ssi

la projection de Rademacher $P \otimes Id_X$ est borné sur $L^2(\Omega, X)$.

Un célèbre théorème de Pisier dit que :

un espace X est K-convexe, i.e. ne contient pas uniformément les ℓ_n^1 's ssi

la projection de Rademacher $P \otimes Id_X$ est borné sur $L^2(\Omega, X)$.

Pour prouver ce théorème, il a utilisé une généralisation du résultat suivant.

Un célèbre théorème de Pisier dit que :

un espace X est K-convexe, i.e. ne contient pas uniformément les ℓ_n^1 's ssi

la projection de Rademacher $P \otimes Id_X$ est borné sur $L^2(\Omega,X)$.

Pour prouver ce théorème, il a utilisé une généralisation du résultat suivant.

Théorème (Pisier)

• Soit X un espace K-convexe.

Un célèbre théorème de Pisier dit que :

un espace X est K-convexe, i.e. ne contient pas uniformément les ℓ_n^1 's ssi

la projection de Rademacher $P \otimes Id_X$ est borné sur $L^2(\Omega, X)$.

Pour prouver ce théorème, il a utilisé une généralisation du résultat suivant.

Théorème (Pisier)

- Soit X un espace K-convexe.
- Soit $(T_t)_{t\geq 0}$ le semigroupe de Poisson.

Un célèbre théorème de Pisier dit que :

un espace X est K-convexe, i.e. ne contient pas uniformément les ℓ_n^1 's ssi

la projection de Rademacher $P \otimes Id_X$ est borné sur $L^2(\Omega, X)$.

Pour prouver ce théorème, il a utilisé une généralisation du résultat suivant.

Théorème (Pisier)

- Soit X un espace K-convexe.
- Soit $(T_t)_{t\geq 0}$ le semigroupe de Poisson.

Alors $(T_t \otimes Id_X)_{t \geq 0}$ est analytique sur $L^p(\mathbb{T}, X)$ pour tout 1 .

On dit qu'un espace d'opérateurs E est OK-convexe si $S^p(E)$ est K-convexe pour un (tout) 1 .

On dit qu'un espace d'opérateurs E est OK-convexe si $S^p(E)$ est K-convexe pour un (tout) 1 .

Théorème (A.)

• Soit $(T_t)_{t>0}$ le semigroupe de Poisson non commutatif.

On dit qu'un espace d'opérateurs E est OK-convexe si $S^p(E)$ est K-convexe pour un (tout) 1 .

Théorème (A.)

- Soit $(T_t)_{t\geq 0}$ le semigroupe de Poisson non commutatif.
- Soit E un espace OK-convexe.

On dit qu'un espace d'opérateurs E est OK-convexe si $S^p(E)$ est K-convexe pour un (tout) 1 .

Théorème (A.)

- Soit $(T_t)_{t\geq 0}$ le semigroupe de Poisson non commutatif.
- Soit E un espace OK-convexe.

Alors $(T_t \otimes Id_E)_{t \geq 0}$ est analytique sur

$$L^p(\mathcal{L}F_n, E)$$

pour tout 1 .

Plan

- 1 Semigroupes et calcul H^{∞}
- 2 Semigroupes sur les espaces L^p non commutatifs
- 3 Analyticité
- 4 R-Analyticité

Il faut faire apparaître de la *R*-bornitude.

Il faut faire apparaitre de la *R*-bornitude.

Théorème (A.)

• Soit M une algèbre de VN (= espace $L^{\infty}(\Omega)$ non commutatif)

Il faut faire apparaitre de la R-bornitude.

Théorème (A.)

• Soit M une algèbre de VN (= espace $L^{\infty}(\Omega)$ non commutatif) avec QWEP et munie d'une trace.

Il faut faire apparaître de la *R*-bornitude.

Théorème (A.)

- Soit M une algèbre de VN (= espace $L^{\infty}(\Omega)$ non commutatif) avec QWEP et munie d'une trace.
- Soit E un espace d'opérateurs OUMD'_p.

Il faut faire apparaitre de la R-bornitude.

Théorème (A.)

- Soit M une algèbre de VN (= espace $L^{\infty}(\Omega)$ non commutatif) avec QWEP et munie d'une trace.
- Soit E un espace d'opérateurs OUMD'_p.
- Considérons une suite décroissante de sous-algèbres de M :

$$M_1\supset M_2\supset\cdots$$
.

Il faut faire apparaitre de la R-bornitude.

Théorème (A.)

- Soit M une algèbre de VN (= espace $L^{\infty}(\Omega)$ non commutatif) avec QWEP et munie d'une trace.
- Soit E un espace d'opérateurs OUMD'_p.
- Considérons une suite décroissante de sous-algèbres de M :

$$M_1\supset M_2\supset\cdots$$
.

Alors l'ensemble des espérances conditionnelles

$$\mathbb{E}_k \otimes Id_E \colon L^p(M,E) \to L^p(M,E)$$

est R-borné.

Définition

Soit M une algèbre de VN (finie).

Définition

Soit M une algèbre de VN (finie). On dit M est QWEP

Définition

Soit M une algèbre de VN (finie).

On dit M est QWEP si M admet un plongement

$$\pi\colon M\to B(H)^{\mathcal{U}}$$

dans une ultrapuissance $B(H)^{\mathcal{U}}$ de B(H) où

Définition

Soit M une algèbre de VN (finie). On dit M est QWEP si M admet un plongement

$$\pi \colon M \to B(H)^{\mathcal{U}}$$

dans une ultrapuissance $B(H)^{\mathcal{U}}$ de B(H) où

• H est un espace de Hilbert

Définition

Soit M une algèbre de VN (finie). On dit M est QWEP si M admet un plongement

$$\pi\colon M\to B(H)^{\mathcal{U}}$$

dans une ultrapuissance $B(H)^{\mathcal{U}}$ de B(H) où

- H est un espace de Hilbert
- *U* est un ultrafiltre libre

Définition

Soit M une algèbre de VN (finie). On dit M est QWEP si M admet un plongement

$$\pi\colon M\to B(H)^{\mathcal{U}}$$

dans une ultrapuissance $B(H)^{\mathcal{U}}$ de B(H) où

- H est un espace de Hilbert
- ullet \mathcal{U} est un ultrafiltre libre
- tel qu'il existe une espérance conditionnelle normale

$$\mathbb{E} \colon B(H)^{\mathcal{U}} \to \pi(M).$$

Définition

Soit M une algèbre de VN (finie). On dit M est QWEP si M admet un plongement

$$\pi\colon M\to B(H)^{\mathcal{U}}$$

dans une ultrapuissance $B(H)^{\mathcal{U}}$ de B(H) où

- H est un espace de Hilbert
- *U* est un ultrafiltre libre
- tel qu'il existe une espérance conditionnelle normale

$$\mathbb{E} \colon B(H)^{\mathcal{U}} \to \pi(M).$$

(Connes) Toute algèbre de von Neumann est-elle QWEP?

• Soit $(\mathcal{F}_k)_{k\geq 1}$ une filtration d'un espace probabilisé Ω .

- Soit $(\mathcal{F}_k)_{k>1}$ une filtration d'un espace probabilisé Ω .
- Une suite $(x_k)_{k\geq 1}$ de variables aléatoires à valeurs dans un Banach est une martingale si

- Soit $(\mathcal{F}_k)_{k>1}$ une filtration d'un espace probabilisé Ω .
- Une suite $(x_k)_{k\geq 1}$ de variables aléatoires à valeurs dans un Banach est une martingale si

$$(\mathbb{E}_{\mathcal{F}_k} \otimes Id_E)(x_{k+1}) = x_k, \qquad k \geq 1.$$

- Soit $(\mathcal{F}_k)_{k>1}$ une filtration d'un espace probabilisé Ω .
- Une suite $(x_k)_{k\geq 1}$ de variables aléatoires à valeurs dans un Banach est une martingale si

$$(\mathbb{E}_{\mathcal{F}_k} \otimes Id_E)(x_{k+1}) = x_k, \qquad k \geq 1.$$

• La suite $(d_k)_{k\geq 1}$ défini par $d_k=x_k-x_{k-1}$ est la suite des différences de (x_k) .

- Soit $(\mathcal{F}_k)_{k>1}$ une filtration d'un espace probabilisé Ω .
- Une suite $(x_k)_{k\geq 1}$ de variables aléatoires à valeurs dans un Banach est une martingale si

$$(\mathbb{E}_{\mathcal{F}_k} \otimes Id_E)(x_{k+1}) = x_k, \qquad k \geq 1.$$

- La suite $(d_k)_{k\geq 1}$ défini par $d_k=x_k-x_{k-1}$ est la suite des différences de (x_k) .
- Une filtration d'une AVN M est une suite croissante $(M_k)_{k\geq 1}$ de sous-algèbres de M telles que $\cup_{k\geq 1}M_k$ soit w^* -dense dans M.

- Soit $(\mathcal{F}_k)_{k>1}$ une filtration d'un espace probabilisé Ω .
- Une suite $(x_k)_{k\geq 1}$ de variables aléatoires à valeurs dans un Banach est une martingale si

$$(\mathbb{E}_{\mathcal{F}_k} \otimes Id_E)(x_{k+1}) = x_k, \qquad k \geq 1.$$

- La suite $(d_k)_{k\geq 1}$ défini par $d_k=x_k-x_{k-1}$ est la suite des différences de (x_k) .
- Une filtration d'une AVN M est une suite croissante $(M_k)_{k\geq 1}$ de sous-algèbres de M telles que $\bigcup_{k\geq 1} M_k$ soit w^* -dense dans M.
- Une suite $(x_k)_{k\geq 1}$ de $L^p(M,E)$ est une martingale si la même relation est vérifiée.

Définition

Soit X un Banach.

Définition

Soit X un Banach. On dit que X est UMD

Définition

Soit X un Banach.

On dit que X est UMD s'il existe $K \ge 0$ telle que pour un (tout)

1 et

• tout choix de signes $\theta_k = \pm 1$,

Définition

Soit X un Banach.

On dit que X est UMD s'il existe $K \ge 0$ telle que pour un (tout)

$$1 et$$

- tout choix de signes $\theta_k = \pm 1$,
- toute suite de différences de martingales $(dx_k)_{k=1}^n \subset L^p(\Omega, X)$

Définition

Soit X un Banach.

On dit que X est UMD s'il existe $K \ge 0$ telle que pour un (tout)

$$1 et$$

- tout choix de signes $\theta_k = \pm 1$,
- toute suite de différences de martingales $(dx_k)_{k=1}^n \subset L^p(\Omega,X)$

on ait

$$\left\| \sum_{k=1}^n \theta_k dx_k \right\|_{L^p(\Omega,X)} \leq K \left\| \sum_{k=1}^n dx_k \right\|_{L^p(\Omega,X)}, \qquad n \in \mathbb{N}.$$

Définition

Soit E un espace d'opérateurs. Supposons 1 .

Définition

Soit E un espace d'opérateurs. Supposons $1 . On dit que E est <math>OUMD'_p$ s'il existe $K \ge 0$ telle que pour

Définition

Soit E un espace d'opérateurs. Supposons $1 . On dit que E est <math>OUMD'_p$ s'il existe $K \ge 0$ telle que pour

• tout choix de signes $\theta_k = \pm 1$,

Définition

Soit E un espace d'opérateurs. Supposons 1 . $On dit que E est <math>OUMD'_p$ s'il existe $K \ge 0$ telle que pour

- tout choix de signes $\theta_k = \pm 1$,
- toute suite de différences de martingale $(dx_k)_{k=1}^n \subset L^p(M, E)$ relative à une filtration $(M_k)_{k\geq 1}$ d'une AVN M avec QWEP

Définition

Soit E un espace d'opérateurs. Supposons 1 . $On dit que E est <math>OUMD'_p$ s'il existe $K \ge 0$ telle que pour

- tout choix de signes $\theta_k = \pm 1$,
- toute suite de différences de martingale $(dx_k)_{k=1}^n \subset L^p(M, E)$ relative à une filtration $(M_k)_{k\geq 1}$ d'une AVN M avec QWEP on ait

$$\left\| \sum_{k=1}^n \theta_k dx_k \right\|_{L^p(M,F)} \le K \left\| \sum_{k=1}^n dx_k \right\|_{L^p(M,F)}, \qquad n \in \mathbb{N}.$$

Définition

Soit E un espace d'opérateurs. Supposons 1 . $On dit que E est <math>OUMD'_p$ s'il existe $K \ge 0$ telle que pour

- tout choix de signes $\theta_k = \pm 1$,
- toute suite de différences de martingale $(dx_k)_{k=1}^n \subset L^p(M,E)$ relative à une filtration $(M_k)_{k\geq 1}$ d'une AVN M avec QWEP on ait

$$\left\| \sum_{k=1}^n \theta_k dx_k \right\|_{L^p(M,E)} \le K \left\| \sum_{k=1}^n dx_k \right\|_{L^p(M,E)}, \qquad n \in \mathbb{N}.$$

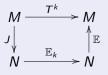
• Question : est-ce que $OUMD'_p$ dépend de p?

Dilatation de Rota

Définition

Soit M une AVN munie d'une trace. Un opérateur $T: M \to M$ vérifie la propriété de Rota s'il existe un diagramme

Définition



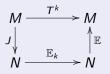
Définition

Soit M une AVN munie d'une trace. Un opérateur $T: M \to M$ vérifie la propriété de Rota s'il existe un diagramme

$$\begin{array}{ccc}
M & \xrightarrow{T^k} & M \\
\downarrow & & \downarrow \mathbb{E} \\
N & \xrightarrow{\mathbb{E}_k} & N
\end{array}$$

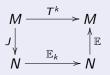
• où $k \in \mathbb{N}$ et N est une AVN munie d'une trace,

Définition



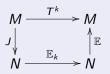
- où $k \in \mathbb{N}$ et N est une AVN munie d'une trace,
- $J: M \rightarrow N$ est une *-représentation fidèle préservant les traces,

Définition



- où $k \in \mathbb{N}$ et N est une AVN munie d'une trace,
- J: M → N est une *-représentation fidèle préservant les traces,
- \mathbb{E} : $N \to M$ est l'espérance conditionnelle associé à J,

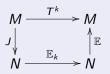
Définition



- où $k \in \mathbb{N}$ et N est une AVN munie d'une trace,
- J: M → N est une *-représentation fidèle préservant les traces,
- $\mathbb{E} : N \to M$ est l'espérance conditionnelle associé à J,
- $N_1 \supset N_2 \supset \cdots$ est une suite décroissante de sous-algèbres de N associées à des espérances conditionnelles \mathbb{E}_k .

Définition

Soit M une AVN munie d'une trace. Un opérateur $T: M \to M$ vérifie la propriété de Rota s'il existe un diagramme



- où $k \in \mathbb{N}$ et N est une AVN munie d'une trace.
- J: M → N est une *-représentation fidèle préservant les traces,
- \mathbb{E} : $N \to M$ est l'espérance conditionnelle associé à J,
- $N_1 \supset N_2 \supset \cdots$ est une suite décroissante de sous-algèbres de N associées à des espérances conditionnelles \mathbb{E}_k .

On peut montrer que chaque T_t en admet une avec N QWEP

Théorème (Arendt, Bu, Fackler...)

Soient $(T_{1,t})$ et $(T_{2,t})$ deux C_0 -semigroupes sur X_1 et X_2

Théorème (Arendt, Bu, Fackler...)

Soient $(T_{1,t})$ et $(T_{2,t})$ deux C_0 -semigroupes sur X_1 et X_2 tels que (X_1, X_2) soit un couple d'interpolation d'espaces K-convexes.

Théorème (Arendt, Bu, Fackler...)

Soient $(T_{1,t})$ et $(T_{2,t})$ deux C_0 -semigroupes sur X_1 et X_2 tels que (X_1, X_2) soit un couple d'interpolation d'espaces K-convexes. Supposons que $(T_{1,t})$ soit R-analytique et que

$$R(\{T_{2,t}: 0 < t < 1\}) < \infty$$

Théorème (Arendt, Bu, Fackler...)

Soient $(T_{1,t})$ et $(T_{2,t})$ deux C_0 -semigroupes sur X_1 et X_2 tels que (X_1, X_2) soit un couple d'interpolation d'espaces K-convexes. Supposons que $(T_{1,t})$ soit R-analytique et que

$$R(\{T_{2,t}: 0 < t < 1\}) < \infty$$

Alors le semigroupe (T_t) obtenu par interpolation défini sur

$$(X_1,X_2)_{\alpha}$$

est R-analytique pour tout $0 < \alpha < 1$.

ullet Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

• Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

Sur un Hilbert, tout ensemble borné est R-borné.

• Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

Sur un Hilbert, tout ensemble borné est R-borné. Donc $(T_t \otimes Id_{OH})_{t>0}$ est R-analytique sur cet espace.

• Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

Sur un Hilbert, tout ensemble borné est R-borné. Donc $(T_t \otimes Id_{OH})_{t \geq 0}$ est R-analytique sur cet espace.

• Chaque T_t admet une dilatation de Rota sur une algèbre QWEP :

$$T_t^k = \mathbb{E}\mathbb{E}_k J, \qquad k \ge 1.$$

• Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

Sur un Hilbert, tout ensemble borné est R-borné. Donc $(T_t \otimes Id_{OH})_{t \geq 0}$ est R-analytique sur cet espace.

• Chaque T_t admet une dilatation de Rota sur une algèbre QWEP :

$$T_t^k = \mathbb{E}\mathbb{E}_k J, \qquad k \ge 1.$$

Notons que OH est $OUMD'_q$.

• Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

Sur un Hilbert, tout ensemble borné est R-borné. Donc $(T_t \otimes Id_{OH})_{t \geq 0}$ est R-analytique sur cet espace.

• Chaque T_t admet une dilatation de Rota sur une algèbre QWEP :

$$T_t^k = \mathbb{E}\mathbb{E}_k J, \qquad k \ge 1.$$

Notons que OH est $OUMD'_q$. On déduit que $\{T_t \otimes Id_{OH}: t \geq 0\}$ est R-borné sur $L^q(\mathcal{L}F_n,OH)$.

• Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

Sur un Hilbert, tout ensemble borné est R-borné. Donc $(T_t \otimes Id_{OH})_{t \geq 0}$ est R-analytique sur cet espace.

• Chaque T_t admet une dilatation de Rota sur une algèbre QWEP :

$$T_t^k = \mathbb{E}\mathbb{E}_k J, \qquad k \ge 1.$$

Notons que OH est $OUMD'_q$. On déduit que $\{T_t \otimes Id_{OH}: t \geq 0\}$ est R-borné sur $L^q(\mathcal{L}F_n,OH)$.

Or

$$L^{p}(\mathcal{L}F_{n}, OH) = \left(L^{2}(\mathcal{L}F_{n}, OH), L^{q}(\mathcal{L}F_{n}, OH)\right)_{\alpha}.$$

• Le semigroupe $(T_t \otimes Id_{OH})_{t \geq 0}$ est analytique sur

$$L^2(\mathcal{L}F_n, OH).$$

Sur un Hilbert, tout ensemble borné est R-borné. Donc $(T_t \otimes Id_{OH})_{t \geq 0}$ est R-analytique sur cet espace.

• Chaque T_t admet une dilatation de Rota sur une algèbre QWEP :

$$T_t^k = \mathbb{E}\mathbb{E}_k J, \qquad k \ge 1.$$

Notons que OH est $OUMD'_q$. On déduit que $\{T_t \otimes Id_{OH}: t \geq 0\}$ est R-borné sur $L^q(\mathcal{L}F_n,OH)$.

Or

$$L^{p}(\mathcal{L}F_{n}, OH) = \left(L^{2}(\mathcal{L}F_{n}, OH), L^{q}(\mathcal{L}F_{n}, OH)\right)_{\alpha}.$$

On conclut par interpolation.

La présence de R-bornitude permet de réduire l'angle :

La présence de R-bornitude permet de réduire l'angle :

Proposition (Kalton, Weiss, 2001)

Soit (T_t) un C_0 -semigroupe de générateur -A sur un espace X.

La présence de R-bornitude permet de réduire l'angle :

Proposition (Kalton, Weiss, 2001)

Soit (T_t) un C_0 -semigroupe de générateur -A sur un espace X. Supposons que

• A admette un calcul fonctionnel $H^{\infty}(\Sigma_{\theta_0})$ borné pour un $0 < \theta_0 < \pi$.

La présence de R-bornitude permet de réduire l'angle :

Proposition (Kalton, Weiss, 2001)

Soit (T_t) un C_0 -semigroupe de générateur -A sur un espace X. Supposons que

- A admette un calcul fonctionnel $H^{\infty}(\Sigma_{\theta_0})$ borné pour un $0 < \theta_0 < \pi$.
- (T_t) soit R-analytique.

La présence de R-bornitude permet de réduire l'angle :

Proposition (Kalton, Weiss, 2001)

Soit (T_t) un C_0 -semigroupe de générateur -A sur un espace X. Supposons que

- A admette un calcul fonctionnel $H^{\infty}(\Sigma_{\theta_0})$ borné pour un $0 < \theta_0 < \pi$.
- (T_t) soit R-analytique.

Alors A admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné pour un $0 < \theta < \frac{\pi}{2}$.

La présence de R-bornitude permet de réduire l'angle :

Proposition (Kalton, Weiss, 2001)

Soit (T_t) un C_0 -semigroupe de générateur -A sur un espace X. Supposons que

- A admette un calcul fonctionnel $H^{\infty}(\Sigma_{\theta_0})$ borné pour un $0 < \theta_0 < \pi$.
- (T_t) soit R-analytique.

Alors A admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné pour un $0 < \theta < \frac{\pi}{2}$.

Des techniques de dilatation d'opérateurs permettent d'obtenir le calcul fonctionnel pour un angle $0 < \theta_0 < \pi$.

La présence de R-bornitude permet de réduire l'angle :

Proposition (Kalton, Weiss, 2001)

Soit (T_t) un C_0 -semigroupe de générateur -A sur un espace X. Supposons que

- A admette un calcul fonctionnel $H^{\infty}(\Sigma_{\theta_0})$ borné pour un $0 < \theta_0 < \pi$.
- (T_t) soit R-analytique.

Alors A admet un calcul fonctionnel $H^{\infty}(\Sigma_{\theta})$ borné pour un $0 < \theta < \frac{\pi}{2}$.

Des techniques de dilatation d'opérateurs permettent d'obtenir le calcul fonctionnel pour un angle $0 < \theta_0 < \pi$.