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Feuille 23
Théorémes de point fixe

Exercice 1. Théorémes basés sur ’ordre dans R
Soit I = [a,b] un segment de R.

1. Soit f: I — I continue. Montrer que f admet un point fixe.
2. Soit f : I — R continue telle que I C f(I). Montrer que f admet un point fixe.
3. Soit f : I — I croissante. Montrer que f admet un point fixe.

Exercice 2. Théoréme du point fixe de Banach (dans un espace complet)
Soit (F,d) un espace métrique complet non vide. Soit A € [0,1] et f : E — FE une application vérifiant
d(f(z), f(y)) < Ad(z,y) pour tous z,y € E. Montrer que f admet un unique point fixe.

Exercice 3. Dans un espace compact
Soit (E,d) un espace métrique compact non vide et f : E — E telle que d(f(z), f(y)) < d(x,y) pour
tous z,y € FE avec x # y. Montrer que f admet un unique point fixe.

En considérant E = [1,00[ et f : © — 2 + 1/x, montrer que la conclusion n’est plus satisfaite si on
suppose seulement (F,d) complet.

Exercice 4. Dans un convexe compact
Soit K un convexe compact non vide d’'un espace vectoriel normé, et f : K — K une fonction vérifiant
If(x) = f(»)] < ||z — y|| pour tous z,y € K. Montrer que f admet un point fixe. Est-il unique ?

Indication. Pour a € K et € €]0, 1], considérer x — ea + (1 —¢) f(x).

Remarque. Le théoréme de Brouwer affirme que si B est (homéomorphe a) la boule-unité de R™,
toute fonction continue f : B — B admet un point fixe; ce résultat est considérablement plus difficile &
démontrer.

Exercice 5. Perturbation de ’identité
Soit f : R® — R"™ une fonction k-Lipschitzienne avec £k < 1. On va montrer que g = Id — f est
bijective d’inverse continue.

1. Montrer que g est injective.

2. En utilisant un théoréme de point fixe, montrer que g est surjective.

I est continue.

3. Motnrer que g~
Exercice 6. Théoréme de « point fixe » de Kakutani

Soit K un convexe compact non vide de R"™. On appelle correspondance de K dans K une fonction de
K dans ’ensemble des parties non vides de K. On dit qu’une correspondance -y est fermée si ’ensemble
Gr(y) ={(z,y) : z € K,y € v(x)} est fermé, et on dit que v est convexe si pour tout x € K, ensemble
~v(x) est convexe.

Le théoréme de Kakutani, fondamental en économie et en théorie des jeux pour démontrer I’existence
d’équilibres, s’énonce ainsi : pour tout correspondance fermée convexe de K dans K, il existe x € K tel
que = € y(x).

1. Démontrer le théoréme de Kakutani en dimension 1.

2. Donner des contre-exemples montrant que le résultat est faux sans ’hypothése « fermé », puis sans
I’hypothése « convexe ».

3. On va maintenant montrer que le théoréme de Kakutani en dimension n est équivalent au théoréme
de Brouwer.

(a) Montrer que le théoréme de Kakutani implique le théoréme de Brouwer.



(b) Montrer le lemme suivant (de partition de 'unité) : si Uy, ..., Uy sont des ouverts recouvrant
K, alors il existe des fonction continues fi,..., fr : K — [0,1] vérifiant f; +---+ f, = 1 et
fi(x) =0 pour z € K\ U;.

(¢) On se donne une correspondance fermée convexe 7, et U un ouvert de K x K contenant Gr(7y).
Pour ¢ > 0, on définit une nouvelle correspondance ¢ par la formule

ly—z|<e

Montrer que Gr(v¢) C U pour ¢ assez petit (raisonner par ’absurde).
(d) Montrer que U contient le graphe d’une fonction continue.

(e) Démontrer le théoréme de Kakutani comme conséquence du théoréme de Brouwer.

Exercice 7. Théoréme de Markov—Kakutani (sans lien avec le précédent!)
Soit E un espace vectoriel normé et K C E un compact convexe non vide.

1. Soit f : E — FE une application affine continue telle que f(K) C K. Soit a € K. On pose
— 1 \n k

apn = ntl Zk:of (a)

(a) Montrer que a, € K et que ||f(an) — an|| tend vers 0 lorsque n tend vers l'infini.

b)

(

(¢) Montrer que I’ensemble des points fixes de f dans K est un compact convexe non vide.

En déduire que f admet au moins un point fixe dans K.

2. Supposons maintenant que K est stable par une famille (f;);c; d’applicaions affines continues qui
commutent deux & deux.

(a) Supposons I fini. Montrer qu’il existe un point de K qui est fixe pour tous les f;.

(b) Montrer que la propriété reste vraie pour I infini.



