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MASTER M1G-Algèbre

Factorisation de Xq −X sur Fp

On veut résoudre l’exercice suivant :

Exercice .0.1. Factoriser X32 −X sur F2 en irréductibles.

Trève de suspense, on a
X32−X = X(X−1)(X5+X3+1)(X5+X2+1)(X5+X4+X3+X2+1)(X5+X4+X3+X+1)(X5+X4+X2+X+1)(X5+X3+X2+X+1)

"Pretty darn long, isn’t it ?" Tex Avery.

La factorisation a quelque chose de fascinant : de droite à gauche, elle est quasi-triviale,
il suffit de développer et de bourriner, de gauche à droite, elle est très mystèrieuse. Notez
que si vous pensiez l’inverse, vous êtes soit, génial, soit, dyslexique, soit les deux.

C’est d’ailleurs exactement ce dont on a besoin dans la cryptographie : des transfor-
mations faciles à faire (le développement) et difficile à défaire (la factorisation).

Allons-y donc pour la factorisation.

Question 1. Si P , irréductible divise le polynôme X32 − X dans F2[X], alors P est de
degré 1 ou de degré 5.

Effectivement, soit K = F2[α] le corps de rupture de P (on peut le faire car P est
irréductible sur F2) et si k est le degré de P , alors [K : F2] = k et donc K ' Fk2, ce qui
implique que le cardinal de K est 2k et donc par unicité des corps finis, K ' F2k . Or, α,
qui est par construction racine de P est donc aussi racine de X32−X, ainsi α ∈ F32. Ceci
implique que

F2 ⊂ K = F2k = F2[α] ⊂ F25

Le corps F25 est de dimension d sur F2k , on a donc 25 = (2k)d et donc k divise 5. Il
vient que k = 1 ou 5.

Et réciproquement, c’est vrai ?

Question 2. Si P est un polynôme irréductible de degré 1 ou 5, sur F2, montrer qu’il
divise X32 −X.

Si P est de degré 1, on a P = X ou X− 1, qui divise clairement X32−X. On suppose
P de degré 5. Soit α une racine de P et K = F2[α] le corps de rupture de P sur F2.
Alors, comme précédemment, K = F25 et comme α ∈ K = F32, il vient que α est racine
de X32 −X. Comme P est irréductible sur F2 annulant α, c’est le polynôme minimal de
α sur F2, et il divise donc X32 −X.

Le polynôme X32 − X n’a que des racines simples, puisque sa dérivée ne s’annule
jamais : c’est −1 ; il n’y a donc pas de multiplicité dans la décomposition de X32 − X
en polynômes irréductibles sur F2 . Il y a dans sa décomposition X, et (X − 1), seuls
polynômes de degré 1. Il reste donc 6 = 32−2

5
polynômes de degré 5. Quels sont ces 6

polynômes ?
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Question 3. Montrer que les polynômes irréductibles de degré 5 sur F2 sont (X5+X3+1),
(X5+X2+1), (X5+X4+X3+X2+1), (X5+X4+X3+X+1), (X5+X4+X2+X+1),
(X5 +X3 +X2 +X + 1).

Pour qu’un polynôme de degré 5 soit irréductible sur F2, il faut et il suffit que ces
deux conditions soient réalisées : 1) qu’il n’ait pas 0 ou 1 comme racine (en fait, qu’il n’ait
pas de diviseur de degré 1, 2) qu’il ne se décompose pas en un polynôme irréductible de
degré 2 sur F2 et un polynôme irréductible de degré 3 sur F2. Effectivement, la première
condition fait qu’il n’y aura pas de polynôme de degré 1 et donc pas de polynôme de degré
4 non plus dans sa décomposition, et la seconde, fera, qu’il n’y aura pas de polynôme de
degré 2 ou 3.

La première condition est équivalente au fait que le facteur de degré 0 est 1, et ensuite
que le nombre de coefficients non nuls du polynôme est impair, puisque P (1) vaut 0 ou 1
selon la parité du nombre de coefficients non nuls.

La seconde condition n’est pas si dure à exprimer. Le seul polynôme irréductible de
degré 2 est X2 +X + 1, et qu’il n’existe que deux polynômes irréductible de degré 3 sur
F2 : X3 +X + 1 et X3 +X2 + 1, ce qui, au passage est exprimé par les formules :

X4 −X = X(X − 1)(X2 +X + 1), X8 −X = X(X − 1)(X3 +X + 1)(X3 +X2 + 1).

Il faut donc éliminer les polynômes réductibles suivants (X2 +X + 1)(X3 +X + 1) =
X5 +X4 + 1 et (X2 +X + 1)(X3 +X2 + 1) = X5 +X + 1. Il ne reste donc plus que les
6 polynômes cités plus haut.

Résolution de l’exercice.
Les polynômes X, (X − 1), (X5 +X3 +1), (X5 +X2 +1), (X5 +X4 +X3 +X2 +1),

(X5+X4+X3+X+1), (X5+X4+X2+X+1), (X5+X3+X2+X+1) sont irréductibles,
distincts, donc deux à deux premiers entre eux. Ils divisent tous X32 − X et donc, leur
produit (=leur ppcm) divise X32 −X. On a égalité par égalité des degrés.

Maintenant, on peut essayer de « partitionner »les racines de X32 −X en racines des
polynômes irréductibles de la décomposition. Il y a {0}, puis, {1}. Et ensuite le casse-tête
commence. On va appeler α une racine de (X5 +X2 + 1).

Soit α une racine de X5+X2+1. Peut-on factoriser X5+X2+1 totalement sur F32 ?

Exercice .0.2. Montrer que les racines deX5+X2+1 sont α, α2, α4, α8, α16. C’est-à-dire :

X5 +X2 + 1 = (X − α)(X − α2)(X − α4)(X − α8)(X − α16)

En gros, comment, à partir d’une racine, trouver toutes les autres. Voici qui va nous
mettre sur la piste : Soit σ un automorphisme d’un corps K, pour tout P =

∑
i aiX

i ∈
K[X], on pose P σ =

∑
i σ(ai)X

i ∈ K[X].

Question 4. Montrer que si β ∈ K est racine de P , alors σ(β) est racine de P σ.

P σ((σ(β)) =
∑

i σ(ai)σ(β)
i = σ(P (β)) = σ(0) = 0. D’où l’assertion.

Question 5. Montrer que α2 est encore une racine de X5 +X2 + 1.
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On pose K = F32, σ le Frobenius x 7→ x2, α = β et enfin P = X5 +X2 + 1. Comme
P ∈ F2[X], ses coefficients sont tous stables par le Frobenius. Donc, P σ = P et donc
d’après ce qui précède, σ(α) = α2 est racine de P .

Quelles sont les racines de P ?

Question 6. Montrer que le Frobenius de F32 est d’ordre 5 et déduire que α, α2, α4, α8,
α16 sont tous distincts.

On note que le Frobenius, x 7→ x2, que l’on va noter desormais F , est d’ordre 5 sur
F32. Effectivement, d’une part pour tout x dans F32, on a F 5(x) = x2

5
= x. Donc l’ordre

de F divise 5. Or F 6= Id car x2 = x implique x = 0 ou 1. Il est bien d’ordre 5.
On a donc une action du groupe Z/5Z ' 〈F 〉 sur l’ensemble des racines du polynôme

X5 +X2 + 1.
Quel est le stabilisateur de α ? C’est un sous-groupe d’ordre 1 ou 5 de 〈F 〉. S’il était

d’ordre 5, alors on aurait α stable par F , et donc, α = 0 ou 1, absurde. Il est d’ordre 1.
Et donc l’orbite de α est de cardinal 5. Ils sont bien tous distincts.

Résolution de l’exercice. C’est fini. On a cinq racines distinctes de X5 + X2 + 1, de
degré 5, donc, ce sont les seules.

En fait, et il s’agit là d’une introduction à la théorie de Galois, la partition cherchée
n’est rien autre qu’une décomposition en orbites pour une action de groupe. Voilà le lien
entre recherche de racines et théorie des groupes qui a révolutionné l’algèbre.

Une dernière thématique :

Question 7. On vient de voir que P := X5 + X2 + 1 était irréductible sur F2. Est-il
irréductible sur F4 ?

Soit α une racine de P = X5 +X2 + 1. Si on montre que F4[α] est de degré 5 sur F4,
c’est gagné. En effet, dans ce cas, l’évaluation en α envoie F4[X] surjectivement F4[α] et
son noyau est un idéal engendré par un polynôme de degré 5, comme P est dans l’idéal,
P est générateur de l’idéal. Conclusion, F4[X]/(P ) est le corps F4[α] = F4(α). Donc, P
est irréductible sur F4.

Montrons donc que F4[α] est de degré 5 sur F4, notons donc d ce degré. Notons que
d ≤ 5, puisque d est le degré du polynôme minimal de α sur F4, qui est forcément plus
petit que 5 (le degré de P . On a les deux tours de corps

F2 ⊂ F4 ⊂ F4(α), F2 ⊂ F2(α) = F32 ⊂ F4(α).

La première tour donne [F4(α) : F2] = 2d, par le théorème de la base téléscopique, et la
seconde que 5 divise [F4(α) : F2]. Comme 5 divise 2d, et que 5 et 2 sont premiers entre
eux, 5 divise d. Donc d = 5, puisque d ≤ 5.

Plus généralement, si P est irréductible de degré m sur un corps K, et que L est une
extension de K de degré n premier avec m, alors P reste irréductible sur L.

Pour terminer, faisons le point sur les outils utilisés.
Sur les extensions générales de corps :

1. Le théorème de la base téléscopique : dans une tour de corps K ⊂ L ⊂ M, on a
[M : L][L : K] = [M : K]. Cela fournit un lien étroit entre théorie des corps et
arithmétique.
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2. Si P est irréductible de degré n sur K, alors K[X]/(P ) est un corps et c’est une
extension de K de degré n.

3. Si K est un corps et L = K(α) une extension de degré n, alors l’évaluation en α de
K[X] dans L a pour noyau un idéal principal engendré par un polynôme P de degré
n, irréductible sur K.

4. En particulier, si Q ∈ K[X] annule α, alors P divise Q.
5. Si K est un corps et L = K(α) une extension de degré n, et si P ∈ K[X] annule α

et est de degré n, il est irréductible sur K.

Sur les corps finis.
1. Soit q = pn, avec p premier. Le corps fini Fq est l’ensemble des racines de Xq −X

dans une clôture algébrique de Fp. En particulier, tout élément non nul de Fq est
une racine de l’unité.

2. Structure de corps : Fq est de degré n sur Fp. Additivement, Fq ' Fnp (en fait comme
espace vectoriel, donc comme groupe). (F∗q, ·) est isomorphe à (Z/(q − 1)Z,+).

3. Le Frobenius : F : x 7→ xp est un automorphisme du corps Fq dont les invariants
sont exactement le sous-corps Fp. C’est un automorphisme d’ordre n.

4. Si P est un polynôme de Fp[X] et α une racine de P dans Fq, alors F (α) est encore
une racine de P .

Mieux, le groupe 〈F 〉 engendré par le Frobenius agit sur l’ensemble des racines de P .
Les orbites de cette action correspondent à la décomposition en irréductibles de P sur
Fp. Par exemple, si O est une orbite, alors

∏
β∈O(X − β) est bien dans Fp[X] et c’est un

facteur irréductible de P .


