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MASTER M1G-Algebre
Factorisation de X% — X sur [,

On veut résoudre 'exercice suivant :

Exercice .0.1. Factoriser X?? — X sur [y en irréductibles.

Treve de suspense, on a

XX = X(X-1)(XP+X34H1) (X4 X2+ 1) (X P+ X X3 X 2 1) (X X X3 X 1) (X O+ XA X 2 X 1) (X X3 X2 X+ 1)

"Pretty darn long, isn’t it ?" Tex Avery.

La factorisation a quelque chose de fascinant : de droite a gauche, elle est quasi-triviale,
il suffit de développer et de bourriner, de gauche a droite, elle est trés mystérieuse. Notez
que si vous pensiez 'inverse, vous étes soit, génial, soit, dyslexique, soit les deux.

C’est d’ailleurs exactement ce dont on a besoin dans la cryptographie : des transfor-
mations faciles a faire (le développement) et difficile & défaire (la factorisation).

Allons-y donc pour la factorisation.

Question 1. Si P, irréductible divise le polynéme X3% — X dans Fy[X], alors P est de
degré 1 ou de degré 5.

Effectivement, soit K = Fy[a] le corps de rupture de P (on peut le faire car P est
irréductible sur Fy) et si k est le degré de P, alors [K : Fy] = k et donc K ~ F%, ce qui
implique que le cardinal de K est 2¥ et donc par unicité des corps finis, K ~ Fo. Or, a,
qui est par construction racine de P est donc aussi racine de X3? — X, ainsi o € F35. Ceci
implique que

Fo CK=Fyu% = ]Fg[()é] C Fys

Le corps Fys est de dimension d sur For, on a donc 25 = (2¥)4 et donc k divise 5. 11
vient que £k =1 ou 5.
Et réciproquement, c¢’est vrai?

Question 2. Si P est un polyndéme irréductible de degré 1 ou 5, sur Fy, montrer qu’il
divise X32 — X,

Si P est de degré 1, ona P = X ou X — 1, qui divise clairement X?? — X. On suppose
P de degré 5. Soit v une racine de P et K = Fyla] le corps de rupture de P sur Fy.
Alors, comme précédemment, K = Fys et comme o € K = F39, il vient que « est racine
de X32 — X. Comme P est irréductible sur Fy annulant «, c’est le polynéme minimal de
a sur Fy, et il divise donc X3? — X.

Le polynome X3? — X n’a que des racines simples, puisque sa dérivée ne s’annule
jamais : c¢’est —1; il n’y a donc pas de multiplicité dans la décomposition de X3? — X
en polyndmes irréductibles sur Fy . 11 y a dans sa décomposition X, et (X — 1), seuls
polynémes de degré 1. Il reste donc 6 = 325—_2 polynoémes de degré 5. Quels sont ces 6
polynémes ?



Question 3. Montrer que les polynomes irréductibles de degré 5 sur Fy sont (X°+X3+41),
(XP+X24+1), (XP+ X+ X34+ X24+1), (X4 X+ X4+ X +1), (XP+ X+ X2+ X +1),
(XP4+ X2+ X2+ X +1).

Pour qu’un polynome de degré 5 soit irréductible sur Fy, il faut et il suffit que ces
deux conditions soient réalisées : 1) qu’il n’ait pas 0 ou 1 comme racine (en fait, qu’il n’ait
pas de diviseur de degré 1, 2) qu’il ne se décompose pas en un polynéme irréductible de
degré 2 sur Fy et un polynoéme irréductible de degré 3 sur Fy. Effectivement, la premiére
condition fait qu’il n’y aura pas de polynéme de degré 1 et donc pas de polynéme de degré
4 non plus dans sa décomposition, et la seconde, fera, qu’il n’y aura pas de polynome de
degré 2 ou 3.

La premiére condition est équivalente au fait que le facteur de degré 0 est 1, et ensuite
que le nombre de coefficients non nuls du polynéme est impair, puisque P(1) vaut 0 ou 1
selon la parité du nombre de coefficients non nuls.

La seconde condition n’est pas si dure a exprimer. Le seul polynome irréductible de
degré 2 est X? + X + 1, et qu'il n’existe que deux polynémes irréductible de degré 3 sur
Fy: X3+ X +1et X34+ X2+ 1, ce qui, au passage est exprimé par les formules :

X' X=X X-DX*+X+1), X - X=XX-DX*+X+1)(X*+ X2 +1).

Il faut donc éliminer les polynomes réductibles suivants (X2 + X +1)(X? + X +1) =
X5+ X4+ 1et (X2+X+1)(X3+X?2+1)= X5+ X + 1. Il ne reste donc plus que les
6 polynomes cités plus haut.

Résolution de [’exercice.

Les polynomes X, (X —1), (X°+X?+1), (X°+ X2 +1), (X°+ X 4+ X3+ X2 +1),
(XP4+ X1+ X3+ X +1), (XP+ X+ X2+ X +1), (X°+ X3+ X2+ X +1) sont irréductibles,
distincts, donc deux & deux premiers entre eux. Ils divisent tous X3? — X et donc, leur
produit (=leur ppcm) divise X32 — X. On a égalité par égalité des degrés.

Maintenant, on peut essayer de « partitionner »les racines de X3? — X en racines des
polynoémes irréductibles de la décomposition. Il y a {0}, puis, {1}. Et ensuite le casse-téte
commence. On va appeler a une racine de (X° + X? + 1).

Soit o une racine de X® + X2 + 1. Peut-on factoriser X® 4+ X2 + 1 totalement sur Fs, ?

8 't Cest-a-dire :

Exercice .0.2. Montrer que les racines de X°+ X241 sont o, o2, a?, o
X°+ X+ 1=(X-a)(X —a?)(X —a")(X —a®)(X — ')

En gros, comment, & partir d'une racine, trouver toutes les autres. Voici qui va nous
mettre sur la piste : Soit ¢ un automorphisme d’un corps K, pour tout P = >, ;X" €
K[X], on pose P? =Y, 0(a;) X" € K[X].

Question 4. Montrer que si § € K est racine de P, alors o(/3) est racine de P7.
Po((a(B)) = >, 0(a;)a(B) = o(P(B)) = o(0) = 0. D’ou lassertion.

Question 5. Montrer que a? est encore une racine de X° + X2 4 1.



On pose K = 3, 0 le Frobenius z — 22, o = 3 et enfin P = X° + X? + 1. Comme
P € Fy[X], ses coeflicients sont tous stables par le Frobenius. Donc, P? = P et donc
d’aprés ce qui précede, o(a) = o est racine de P.

Quelles sont les racines de P 7

Question 6. Montrer que le Frobenius de F3, est d’ordre 5 et déduire que a, o2, a*, o,

a'® sont tous distincts.

On note que le Frobenius, x — 22, que 'on va noter desormais F', est d’ordre 5 sur
[F3,. Effectivement, d’une part pour tout x dans Fz,, on a F5(x) = 22" = z. Donc lordre
de F divise 5. Or F # Id car 2? = x implique = 0 ou 1. Il est bien d’ordre 5.

On a donc une action du groupe Z/5Z ~ (F) sur I'ensemble des racines du polynome
X5+ X2+ 1.

Quel est le stabilisateur de av? C’est un sous-groupe d’ordre 1 ou 5 de (F). S’il était
d’ordre 5, alors on aurait « stable par F', et donc, a = 0 ou 1, absurde. Il est d’ordre 1.
Et donc l'orbite de a est de cardinal 5. Ils sont bien tous distincts.

Résolution de lexercice. C’est fini. On a cinq racines distinctes de X° + X2 + 1, de
degré 5, donc, ce sont les seules.

En fait, et il s’agit 1a d’'une introduction a la théorie de Galois, la partition cherchée
n’est rien autre qu’'une décomposition en orbites pour une action de groupe. Voila le lien
entre recherche de racines et théorie des groupes qui a révolutionné ’algébre.

Une derniére thématique :

Question 7. On vient de voir que P := X% + X2 + 1 était irréductible sur Fy. Est-il
irréductible sur Fy ?

Soit « une racine de P = X° + X2 4 1. Si on montre que Fy[a] est de degré 5 sur Fy,
c’est gagné. En effet, dans ce cas, I'évaluation en a envoie Fy[X] surjectivement F,[a] et
son noyau est un idéal engendré par un polynéme de degré 5, comme P est dans l'idéal,
P est générateur de I'idéal. Conclusion, F4[X]/(P) est le corps Fya] = Fy(cr). Donc, P
est irréductible sur Fy.

Montrons donc que Fyfa] est de degré 5 sur Fy, notons donc d ce degré. Notons que
d < 5, puisque d est le degré du polynéme minimal de o sur Fy, qui est forcément plus
petit que 5 (le degré de P. On a les deux tours de corps

]FQ C F4 - F4(Oé), ]FQ C ]Fg(Oé) = Fgg C F4<Oé).

La premiére tour donne [Fy(a) : Fy] = 2d, par le théoréme de la base téléscopique, et la
seconde que 5 divise [Fy(a) : Fy]. Comme 5 divise 2d, et que 5 et 2 sont premiers entre
eux, 5 divise d. Donc d = 5, puisque d < 5.

Plus généralement, si P est irréductible de degré m sur un corps K, et que LL est une
extension de K de degré n premier avec m, alors P reste irréductible sur L.

Pour terminer, faisons le point sur les outils utilisés.

Sur les extensions générales de corps :

1. Le théoréme de la base téléscopique : dans une tour de corps K C I. C M, on a
M : L][L : K] = [M : K]. Cela fournit un lien étroit entre théorie des corps et
arithmeétique.



2. Si P est irréductible de degré n sur K, alors K[X]/(P) est un corps et c’est une
extension de K de degré n.

3. Si K est un corps et L = K(«) une extension de degré n, alors 'évaluation en « de
K[X] dans L a pour noyau un idéal principal engendré par un polynéome P de degré
n, irréductible sur K.

4. En particulier, si @ € K[X] annule «, alors P divise Q.

5. Si K est un corps et L = K(«) une extension de degré n, et si P € K[X]| annule «
et est de degré n, il est irréductible sur K.

Sur les corps finis.

1. Soit ¢ = p", avec p premier. Le corps fini F, est I'ensemble des racines de X? — X
dans une cloture algébrique de F,. En particulier, tout élément non nul de F, est
une racine de l'unité.

2. Structure de corps : F, est de degré n sur F,,. Additivement, F, ~ F} (en fait comme
espace vectoriel, donc comme groupe). (I}, -) est isomorphe a (Z/(q — 1)Z, +).

3. Le Frobenius : ' : o — 2P est un automorphisme du corps I, dont les invariants
sont exactement le sous-corps [F,,. C’est un automorphisme d’ordre n.

4. Si P est un polynome de F,[X] et o une racine de P dans [F, alors F'(«) est encore
une racine de P.

Mieux, le groupe (F') engendré par le Frobenius agit sur 'ensemble des racines de P.
Les orbites de cette action correspondent a la décomposition en irréductibles de P sur
F,. Par exemple, si O est une orbite, alors [[5.,(X — ) est bien dans F,[X] et c’est un
facteur irréductible de P.



