
BASE DES POLYNOMES DE HILBERT

1 Séries polynomiales
Voici un exemple d’utilité des bases en dimension finie, qui peut constituer une alternative

à l’exemple classique des bases utilisées pour calculer la suite de Fibonacci. Il s’agit de la
base des polynômes de Hilbert.
PROBLEME : Soit P un polynôme de R[X]. Calculer pour tout n, SP (n) := P (0) +P (1) +
. . .+ P (n).

Pour cela, supposons que l’on ait trouvé un polynôme Q tel que

Q(X + 1)−Q(X) = P (X), Q(0) = 0.

Alors, le problème sera résolu, puisque

SP (n) = P (0)+P (1)+. . .+P (n) = Q(1)−Q(0)+Q(2)−Q(1)+. . .+Q(n+1)−Q(n) = Q(n+1),

par simplifications en cascades.

Remarque : Le problème s’apparente à l’intégration de P . On dit que P est la dérivée
discrète de Q et donc que Q est une primitive discrète de P . On notera dans la suite D la
dérivée discrète : DQ(X) = Q(X + 1)−Q(X).
On note maintenant Hn le n-ième polynôme de Hilbert :

Hk := 1
k!
X(X − 1) . . . (X − k + 1).

Alors, il est clair que Hk est un polynôme de degré k et

DHk+1 = Hk.

Effectivement :

DHk+1(X) = Hk+1(X+1)−Hk+1(X) =
1

(k + 1)!
(X+1)(X) . . . (X−k+1)− 1

(k + 1)!
(X)(X−1) . . . (X−k)

=
1

(k + 1)!
X(X − 1) . . . (X − k + 1)[X + 1−X + k)] = Hk(X).

Donc (Hk) est une base de l’espace vectoriel des polynômes R[X] et de plus, si on dé-
compose P dans la base des Hk,

P = α0H0 + α1H1 + . . .+ αmHm,



et si on pose
Q = α0H1 + α1H2 + . . .+ αmHm+1,

Il vient par linéarité de D :

DQ = α0DH1 + α1DH2 + . . .+ αmDHm+1 = α0H0 + α1H1 + . . .+ αmHm = P.

Ce qui fournit la solution à notre problème : SP (n) = Q(n+ 1).

2 Dual des polynômes de Hilbert
Il reste à comprendre comment trouver les coordonnées de P dans la base des polynômes

de Hilbert, et ceci revient à en connaître la base duale.
Soit En = R[X]n l’espace des polynômes réels de dimension inférieure ou égale à n. On

considère pour tout k l’application ∆k de En dans R définie par

∆k(P ) = Dk(P )(0).

L’application ∆k est clairement une forme linéaire sur En.
On trouve ∆k(Hk) = Dk(Hk)(0) = H0(0) = 1. Maintenant, si k > m, il est clair que

Dk(Hm) = 0, et donc ∆k(Hm) = 0. Enfin, si k < m, alors ∆k(Hm) = Dk(Hm)(0) =
Hm−k(0) = 0.

Conclusion, (H0, H1, · · · , Hn) et (∆0,∆1, · · · ,∆n) sont des bases duales. Ceci permet
d’écrire par la formule bien connue x = e∗1(x)e1 + · · ·+ e∗n(x)en des coordonnées d’un vecteur
dans une base (e1, · · · , en) à l’aide de la base duale, que pour tout P de En :

P = ∆0(P )H0 + ∆1(P )H1 + · · ·+ ∆n(P )Hn.

3 Application à l’arithmétique
Nous allons donner un critère pour qu’un polynôme réel P (ou complexe, ça marche

aussi !) définisse une fonction polynomiale de Z dans Z, c’est-à-dire que P (a) ∈ Z pour tout
a ∈ Z.
Théorème. Un polynôme P de En vérifie P (a) ∈ Z pour tout a dans Z si et seulement si
ses coordonnées dans la base des polynômes de Hilbert sont entières, ou dit autrement, si et
seulement si ∆k(P ) est entier pour tout k de 0 à n.

Preuve. Supposons que P (a) ∈ Z pour tout a dans Z. Alors, D(P )(a) = P (a + 1) − P (a)
est également entier pour tout a dans Z, et par récurrence, Dk(P )(a) est entier pour tout a
dans Z et pour tout k. En particulier ∆k(P ) ∈ Z, d’où l’implication.

Réciproquement, si l’on montre que pour tout k et tout entier a, Hk(a) est entier, alors
la propriété sera également vraie pour tout polynôme combinaison entière des Hk.

Ceci est vrai pour H0 = 1, puis, par récurrence, pour k ≥ 0 en utilisant la formule

Hk+1(a) = Hk+1(a)−Hk+1(0) = Hk(0) +Hk(1) + · · ·+Hk(a− 1).



Remarque. On a une méthode alternative pour montrer que Hn(Z) ⊂ Z. En fait, si a ∈ Z,
alors, soit 1) a ≥ n, Hn(a) =

(
a
n

)
, soit 2) 0 ≤ a ≤ n − 1, Hn(a) = 0, soit 3) a ≤ −1,

Hn = (−1)n
(
n−1−a

n

)
.


