Suite de polygones

Leçons: 152, 181, 191, 226

Références :Gourdon algèbre et Carnet de voyage en Algébrie

Théorème 1 Soit $(z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$, n points du plan complexe donnés par leur affixe. Ils définissent, dans cet ordre, un polygone P donné par la liste de ses sommets. On définit par récurrence une suite de polygones (P_k) avec $P_0 = P$ et où les sommets de P_{k+1} sont les milieux des arêtes de P_k . Alors (P_k) converge vers l'isobarycentre de P.

Preuve:

On représente P_k par le n-uplet $Z_k = (z_{k,1}, z_{k,2}, \dots, z_{k,n})$. On veut montrer que $Z_k \underset{k \to +\infty}{\longrightarrow} (g, g, \dots, g)$ où g est l'isobarycentre de P.

La relation de récurrence s'écrit $Z_{k+1} = \left(\frac{z_{k,1} + z_{k,2}}{2}, \dots, \frac{z_{k,n} + z_{k,1}}{2}\right)$ que l'on peut réécrire sous la forme $Z_{k+1} = AZ_k$ où A est la matrice suiva

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \dots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \dots & 0 & \frac{1}{2} \end{pmatrix}$$

Par récurrence immédiate $Z_k = A^k Z_0$.

Montrons que A^k converge dans $M_n(\mathbb{C})$ muni d'une norme d'algèbre $|||\cdot|||$. Pour cela étudions les valeurs propres de A.

$$\chi_A(\lambda) = \det(A - \lambda I_n) = \begin{vmatrix} a_0 & a_1 & \dots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_2 & \dots & a_{n-1} & a_0 & a_1 \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{vmatrix} \text{ avec } a_0 = \frac{1}{2} - \lambda, \ a_1 = \frac{1}{2} \text{ et } a_i = 0 \ \forall i \ge 2$$

On reconnait un déterminant circulant.

Lemme 1 Soit
$$C$$
 la matrice circulante qui nous intéresse, $P(X) = \sum_{k=0}^{n-1} a_k X^k \in \mathbb{C}_{n-1}[X]$ et $\omega = e^{\frac{2i\pi}{n}}$ une racine primitive de l'unité. Alors $\det(C) = \prod_{j=0}^{n-1} P(\omega^j)$.

Preuve:

On considère
$$J = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix} = (\delta_{i,\sigma(j)})_{1 \leq i,j \leq n} \in M_n(\mathbb{C}).$$

où pour tout $j \in \{1, ..., n-1\}$ $\sigma(j) = j+1$ et $\sigma(n) = 1$. J est donc une matrice de permutation et un calcul direct nous donne P(J) = C. De plus, on remarque qu'en développant le déterminant $det(XI_n-J)$ par rapport à la première colonne, $\chi_J=X^n-1$ qui est scindé

à racines simples sur
$$\mathbb{C}$$
. On en déduit que J se diagonalise en $\Omega = diag(\omega^j, 0 \le j \le n-1)$. On a alors que $P(J)$ se diagonalise en $\sum_{k=0}^{n-1} a_k \Omega^k$ et donc $det(C) = det(P(J)) = \prod_{j=0}^{n-1} P(\omega^j)$.

On a alors
$$\chi_A(\lambda) = \prod_{j=0}^{n-1} P(\omega^j) = \prod_{j=0}^{n-1} \left(\frac{1}{2} - \lambda + \frac{1}{2}\omega^j\right) = \prod_{j=0}^{n-1} (y_j - \lambda)$$
 où $y_j = \frac{1 + \omega^j}{2}$. Comme $y_i = y_j \Leftrightarrow i = j$ le polynôme χ_A est scindé à racines simples donc A est diagonalisable ie $\exists P \in GL_n(\mathbb{C})$ tel que $A = PDP^{-1}$ avec $D = diag(y_j)$.

Or pour
$$j \neq 0$$
, on a $|y_j| = \left| \frac{1 + \omega^j}{2} \right| = \left| \cos \left(\frac{\pi j}{n} \right) \right| < 1$.

Or pour $j \neq 0$, on a $|y_j| = \left|\frac{1+\omega^j}{2}\right| = \left|\cos\left(\frac{\pi j}{n}\right)\right| < 1$. On a donc $A^k \underset{k \to +\infty}{\longrightarrow} Pdiag(1, 0, \dots, 0)P^{-1}$ qui converge bien dans $M_n(\mathbb{C})$. En notant Bla limite de A^k et $X = BZ_0$ on a donc $Z_k \xrightarrow[k \to +\infty]{} X$ et par continuité du passage à la limite on a X = AX. Or l'espace propre correspondant à la valeur propre 1 contient le vecteur $(1,1,\ldots,1)$ et comme il est de dimension 1 il le génère complètement donc X = (a, a, ..., a) c'est à dire que (P_k) converge vers le point d'affixe a.

Enfin on remarque que si g est l'isobarycentre de P_0 , il est aussi celui de P_k car on a

$$g_{k+1} = \frac{1}{n} \sum_{i=1}^{n} z_{k+1,i} = \frac{1}{n} \sum_{i=1}^{n} \frac{z_{k,i} + z_{k,i+1}}{2} = \frac{1}{n} \sum_{i=1}^{n} z_{k,i} = g_k$$

L'application qui a un vecteur associe son isobarycentre étant continue (car linéaire) donne que g est encore l'isobarycentre de X, d'où a=g.