Agrégation — préparation à l'écrit d'analyse.

Feuille 3

Théorie de la mesure et intégration.

Exercice 1. Déterminer les limites suivantes

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n e^{x/2} \, \mathrm{d}x,$$
$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(x^n)}{x^n (1+x)} \, \mathrm{d}x,$$
$$\lim_{n \to \infty} \int_1^\infty \frac{1}{x(x^2+1)^{1/n}} \, \mathrm{d}x.$$

Exercice 2. En utilisant le théorème de Fubini et l'égalité $\frac{1}{x} = \int_0^\infty e^{-xt} dt$ valable pour x > 0, montrer

$$\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}.$$

Exercice 3. Soient $(X_1, \mathcal{F}_1, \mu_1)$ et $(X_2, \mathcal{F}_2, \mu_2)$ deux espaces mesurés. Donner un exemple d'une fonction mesurable $f: X_1 \times X_2 \to \mathbf{R}$ telle que les intégrales itérées existent et soient différentes.

Exercice 4.

Soit $f:[0,+\infty[\to[0,+\infty[$ une fonction borélienne.

1. Montrer qu'on définit une fonction continue $F:[0,+\infty[\to \mathbf{R} \text{ par la formule } (x\geqslant 0)$

$$F(x) = \int_0^\infty \frac{\arctan(xf(t))}{1 + t^2} dt.$$

- 2. Calculer la limite de F(x) lorsque x tend vers $+\infty$.
- 3. Montrer que F est dérivable sur $]0, +\infty[$.
- 4. Donner une condition nécessaire et suffisante pour que F soit dérivable en 0.

Exercice 5. Donner un sens à l'énoncé suivant dans le cadre de la théorie de Lebesgue, puis le prouver : si $f:[0,1] \to \mathbf{R}^+$ est une fonction intégrable, alors $\int_{[0,1]} f \, dm$ est l'aire comprise entre l'axe des abscisses et le graphe de f (on note m la mesure de Lebesgue sur \mathbf{R}).

Exercice 6. Variation totale (extrait sujet 2003, remanié)

Soit $n \in \mathbb{N}^*$. On appelle densité une fonction borélienne de $[0,1]^n$ dans \mathbb{R}^+ dont l'intégrale vaut 1. Si q et r sont deux densités, on pose

$$d_{VT}(q,r) = \sup_{0 \le f \le 1} \left| \int_{[0,1]^n} f(x)q(x) \, \mathrm{d}x - \int_{[0,1]^n} f(x)r(x) \, \mathrm{d}x \right|,$$

où le supremum est pris sur toutes les fonctions boréliennes de $[0,1]^n$ dans [0,1]. Montrer que

$$d_{VT}(q,r) = \frac{1}{2} \int_{[0,1]^n} |q(x) - r(x)| \, \mathrm{d}x.$$

Exercice 7. Montrer que pour tout $\varepsilon > 0$, il existe un ouvert $O \subset \mathbf{R}$ dense et vérifiant $m(O) \leqslant \varepsilon$ (où m désigne la mesure de Lebesgue sur \mathbf{R}).

Exercice 8. Soit (X, \mathcal{F}, μ) un espace mesuré, et $f: X \to \mathbf{R}$ une fonction intégrable.

1. Montrer que

$$\lim_{n \to \infty} \int |f| \mathbf{1}_{\{|f| > n\}} \, \mathrm{d}\mu = 0.$$

2. Montrer que pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que pour tout $A \in \mathcal{F}$,

$$\mu(A) \leqslant \delta \Longrightarrow \int_A |f| \, \mathrm{d}\mu \leqslant \varepsilon.$$

Exercice 9. Théorème d'Egoroff

Soit (X, \mathcal{F}, μ) un espace mesuré tel que $\mu(X) < +\infty$ et (f_n) une suite de fonctions mesurables de Xdans \mathbf{R} , convergeant simplement vers une fonction f. Le but de l'exercice est de montrer que pout tout $\varepsilon > 0$, il existe $A \in \mathcal{F}$ tel que $\mu(A) < \varepsilon$ et (f_n) converge vers f uniformément sur $X \setminus A$.

1. On pose pour $k \in \mathbf{N}^*$ et $n \in \mathbf{N}$,

$$E_n^k = \bigcap_{p \geqslant n} \{ x \in X \text{ t.q. } |f_p(x) - f(x)| \le 1/k \}.$$

Montrer que $E_n^k \in \mathcal{F}$. Quelle relation y a-t-il entre E_n^k et E_{n+1}^k ? entre E_n^k et E_n^{k+1} ? 2. Montrer que $\forall k \in \mathbf{N}^*, \ X = \bigcup_{n \in \mathbf{N}} E_n^k$. En déduire que

$$\forall \varepsilon > 0, \ \forall k \in \mathbf{N}^*, \ \exists n_k \in \mathbf{N} \text{ t.q. } \mu(X \setminus E_{n_k}^k) \leqslant \frac{\varepsilon}{2^k}.$$

3. Conclure.