TD 1 - COORDONNÉES ET ENSEMBLES

Exercice 1 – Changement de coordonnées des points

Dessiner les points suivants, donnés en coordonnées cartesiennes, ensuite trouver leur expression en coordonnées polaires (ρ, φ) (dans le plan) ou cylindriques (ρ, φ, z) et sphériques (r, φ, θ) (dans l'espace) :

- a) Dans le plan : $(\sqrt{3}, 1)$, (2, -2), (0, 5), (-3, 0), (-1, -1).
- b) Dans l'espace : (1,1,1), (0,2,1), (1,-1,0), (0,1,-1), (0,0,3).

Exercice 2 – Expression en coordonnées cylindriques et sphériques

Exprimer les quantités suivantes en coordonnées cylindriques (ρ, φ, z) et sphériques (r, φ, θ) :

- a) $z(x^2 + y^2)$
- b) $x(y^2 + z^2)$
- c) $z\sqrt{x^2+y^2}$ [Attention : z peut être positif ou négatif]
- d) $(x^2 + y^2)^2 + z^4$

Exercice. Dessiner les sous-ensembles suivants de \mathbb{R}^2 ou de \mathbb{R}^3 .

a) Dans le plan:

$$A = \{(x,y) \in \mathbb{R}^2 \mid y \ge x^2, \ y \le x+1 \} , \quad B = \{(x,y) \in \mathbb{R}^2 \mid y \ge x^2 \}$$

$$C = \{\vec{x} \in \mathbb{R}^2 \mid \rho \le 3, \ 0 \le \varphi \le \pi/2 \} , \quad D = \{\vec{x} \in \mathbb{R}^2 \mid \rho \ge 3 \}$$

b) Dans l'espace:

$$\begin{split} E &= \left\{ (x,y,z) \in \mathbb{R}^3 \ \middle| \ x^2 \leq y \leq x+1, \ 0 \leq z \leq 2 \right\}, \\ F &= \left\{ (x,y,z) \in \mathbb{R}^3 \ \middle| \ y > x^2, \ 0 < z \right\}, \\ G &= \left\{ (x,y,z) \in \mathbb{R}^3 \ \middle| \ 0 \leq x \leq 10 \leq y \leq 1, \\ z \leq 1-x \right\}, \\ H &= \left\{ \vec{x} \in \mathbb{R}^3 \ \middle| \ \rho \leq 3, \ 0 \leq z \leq 2 \right\}, \\ I &= \left\{ \vec{x} \in \mathbb{R}^3 \ \middle| \ \rho \leq 3, \ 0 \leq \varphi \leq \pi/2 \right\}, \end{split}$$

Exercice. Déterminer la longueur des courbes suivantes :

- a) Soit $\gamma \colon [0, \pi/2] \to \mathbb{R}^2$, $t \mapsto (3\cos t, 3\sin t)$ un arc de cercle. Le dessiner et calculer la longueur.
- Trouver une paramétrisation pour le bord de l'ensemble A de l'exercice précédent. Indication 1 : paramétriser les deux parties lisses du bord avec deux courbes différentes. Calculer la longueur de ces courbes.

Indication 2: $\int \sqrt{1+x^2} \, dx = \frac{1}{2} \left(x \sqrt{1+x^2} + \operatorname{arsinh} x \right).$

— Déterminer la longueur de la courbe qui borne l'ensemble C de l'exercice précédent.

Exercice. Un bateau descend par une rivière de la ville A vers la ville B et puis il revient à la première ville. La distance entre les deux villes est de 50km. Normalement le bateau peut voyager à 20 km/h mais dû au courant la vitesse sur le premier trajet est de 25 km/h (soit 5 km/h plus rapide). Pour le retour le voyage est à contre-courant, la vitesse est seulement de 15 km/h (soit 5 km/h plus lent).

Quelle est la vitesse moyenne du bateau sur cette excursion?

TD 2 - FONCTIONS DE PLUSIEURS VARIABLES

Exercice 4 - Domaine de fonctions

Trouver le domaine des fonctions suivantes et le dessiner dans un plan ou dans l'espace :

a)
$$f(x,y) = \frac{\ln(x+y)}{e^{x+y}}$$

b)
$$g(x, y, z) = \frac{\ln(z)}{x - y}$$

c)
$$h(x,y) = \left(\sqrt{x^2 + y^2}, \frac{\sqrt{x^2 + 1}}{y}\right)$$

Exercice 5 – Lignes de niveau et graphe

Trouver les lignes de niveau des fonctions suivantes et dessiner celles des niveaux indiqués. Ensuite, dessiner le graphe de f en remontant chaque ligne de niveau à son hauteur.

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, dessiner les lignes des niveaux 0, 1, 2, et 3.

b)
$$f(x,y) = x^2 + 4y^2$$
, dessiner les lignes des niveaux 0, 1, 4 et 9.

c)
$$f(x,y) = \frac{2y}{x}$$
 (avec $x \neq 0$), dessiner les lignes des niveaux 0, 1, 2, -1 et -2.

Exercice 6 – Composées

Calculer les possibles composées des fonctions suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad f(x,y) = \sqrt{x^2 + y^2}$$

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad F(u,v) = \frac{u^2}{v^2}$$

$$g: \mathbb{R} \longrightarrow \mathbb{R}, \quad g(z) = z^4 + 1$$

$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \quad h(\rho,\theta) = (\rho\cos\theta, \rho\sin\theta)$$

$$\gamma: \mathbb{R} \longrightarrow \mathbb{R}^2, \quad \gamma(t) = (t+1, t-1)$$

Exercice 7 – Changement de coordonnées des fonctions

Exprimer les fonctions suivantes en coordonnées cylindriques et sphériques :

a)
$$f(x, y, z) = z(x^2 + y^2)$$

b)
$$g(x, y, z) = \ln(x^2 + y^2 + z^2)$$

c)
$$F(x,y,z) = \frac{\sqrt{x^2 + y^2} + z}{x^2 + y^2 + z^2}$$

$$d) G(x, y, z) = xy + z^2$$

TD 3 - DÉRIVÉES, GRADIENT, DIFFÉRENTIELLE, JACOBIENNE

Exercice 8 – Fonctions différentiables

Pour les fonctions suivantes, calculer les dérivées partielles (où exactes s'il n'y a qu'une variable) et détérminer l'ensemble où les fonctions sont différentiables :

a)
$$f(x,y) = y \sin(xy)$$

e)
$$G(R,T) = R^3T + R^2T^2 + RT^3$$

b)
$$g(u, v) = \left(uv^2, \frac{1}{u+v-1}\right)$$

f)
$$\phi(p,q) = (\ln(p^2q^2), \ln(p-q+1))$$

c)
$$h(x,y,z) = (x^2(y+1), xz^2, y+1)$$

g)
$$u(\omega, t) = (e^{\omega t}, \sin(\omega t), \omega t)$$

d)
$$\gamma(t) = (\sqrt{2+t}, \sqrt{2-t})$$

h)
$$F(r, \varphi, \theta) = (r \cos \varphi, r \sin \theta)$$

Exercice 9 - Gradient et différentielle des fonctions réelles

Pour les fonctions suivantes, ecrire le gradient et la différentielle en tout point, et puis au point indiqué :

a)
$$f(x,y) = y\sin(xy)$$
 en $\left(1, \frac{\pi}{2}\right)$

b)
$$G(R,T) = R^3T + R^2T^2 + RT^3$$
 en (3,2)

Exercice 10 - Matrice Jacobienne des fonctions vectorielles

Pour les fonctions vectorielles suivantes, calculer la matrice Jacobienne et, si possible, le déterminant Jacobien en tout point, et puis au point indiqué :

a)
$$g(u,v) = \left(uv^2, \frac{1}{u+v-1}\right)$$
 en $(1,1)$

b)
$$h(x,y,z) = (x^2(y+1), xz^2, y+1)$$
 en $(1,0,1)$

c)
$$\phi(p,q) = (\ln(p^2q^2), \ln(p-q+1))$$
 en $(1,1)$

d)
$$u(\omega, t) = (e^{\omega t}, \sin(\omega t), \omega t)$$
 en $(\pi, 1)$

e)
$$F(r, \varphi, \theta) = (r \cos \varphi, r \sin \theta)$$
 en $(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{4})$

Exercice 11 - Dérivée directionelle

Un randonneur se promène sur une montagne qui ressemble au graphe de la fonction $f(x,y) = xy^2$, dans un voisinage du point (2,1). Il arrive au point (2,1,2) = (2,1,f(2,1)) de la montagne depuis la direction $\vec{d} = 2\vec{i} - \vec{j}$, et là demarrent trois chemins de direction

$$\vec{u} = \vec{\imath} - 2\vec{\jmath}, \quad \vec{v} = \vec{\imath} + \vec{\jmath} \quad \text{et} \quad \vec{w} = \vec{\jmath} - \vec{\imath}.$$

- a) Quel chemin doit-il prendre pour monter la pente le plus doucement possible?
- b) Quelle est la direction où il faudrait réaliser un nouveau chemin qui <u>monterait</u> la pente le plus <u>rapidement</u> possible?
- c) Au retour, en passant par le même point, quel chemin doit-il prendre, parmi les quatre existant, pour <u>descendre</u> la pente le plus rapidement possible?

DÉRIVÉES DES FONCTIONS COMPOSÉES

Exercice 12 - Règle de la chaine

Soient x = x(t) et y = y(t) deux fonctions dérivables en tout $t \in \mathbb{R}$. Trouver la dérivée par rapport à t de

a)
$$f(x,y) = x^2 + 3xy + 5y^2$$
 b) $g(x,y) = \ln(x^2 + y^2)$

b)
$$g(x,y) = \ln(x^2 + y^2)$$

c)
$$h(x,y) = \left(\frac{x}{x+y}, \frac{y}{x-y}\right)$$

Exercice 13 - Règle de la chaine

Soit $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ une fonction différentiable sur \mathbb{R}^2 , de variables (x,y). Trouver la dérivée de f par rapport à t quand

a)
$$x = \sin t$$
 et $y = \cos t$

b)
$$x = e^{-t} \text{ et } y = e^{t}$$

Exercice 14 - Règle de la chaine

Soit z(x) = f(x, y(x)), où $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est une fonction de classe C^1 sur \mathbb{R}^2 et y = y(x) est une fonction de classe C^1 sur \mathbb{R} .

Calculer la dérivée z'(x) en fonction des dérivées partielles de f et de la dérivée de y par rapport à x. Appliquer la formule trouvée aux cas particuliers suivants (tous indépendants):

a)
$$f(x,y) = x^2 + 2xy + 4y^2$$

c)
$$y = e^{3x}$$

b)
$$f(x,y) = xy^2 + x^2y$$

d)
$$y = \ln x$$

Exercice 15 - Règle de la chaine

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction avec dérivées partielles

$$\frac{\partial f(x,y)}{\partial x} = \frac{2x}{y-1}$$
 et $\frac{\partial f(x,y)}{\partial y} = -\frac{x^2}{(y-1)^2}$.

- a) Calculer les dérivées partielles de la fonction F(u, v) = f(2u v, u 2v).
- b) Calculer la dérivée de la fonction $G(t) = f(t+1, t^2)$.

Exercice 16 – Différentielle de fonctions composées

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction différentiable sur \mathbb{R}^2 , et posons

a)
$$g(x,y) = f(x^2 - y^2, 2xy)$$

b)
$$g(x, y, z) = f(2x - yz, xy - 3z)$$

Exprimer les dérivées partielles de q en fonction de celles de f, et écrire la différentielle de q.

Exercice 17 – Jacobienne de fonctions composées

Soit $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ une fonction différentiable sur \mathbb{R}^2 , et posons

a)
$$g(x,y) = h(x^2 - y^2, 2xy)$$

b)
$$g(x, y, z) = h(2x - yz, xy - 3z)$$

Exprimer les dérivées partielles de g en fonction de celles de h, et écrire la matrice Jacobienne de g.

Exercice 18 – Jacobienne de fonctions composées

Soient $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ et $G: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ deux fonction différentiables sur \mathbb{R}^2 , dont on connait les matrices Jacobiennes

$$J_F(x,y) = \begin{pmatrix} y^2 & 2xy \\ 2x+1 & 1 \end{pmatrix}$$
 et $J_G(u,v) = \begin{pmatrix} -2u & 2v \\ 3u^2 & 1 \end{pmatrix}$

Calculer la matrice Jacobienne et le détérminant Jacobien des fonctions composées f(x,y) = G(F(x,y)) et g(u,v) = F(G(u,v)).

6

TD 5 HESSIENNE, TAYLOR, EXTREMA LOCAUX

Exercice 19 - Matrice Hessienne

Calculer la matrice Hessienne et le détérminant Hessien des fonctions suivantes, en tout point et puis au point indiqué:

a)
$$f(x,y) = x^3y + x^2y^2 + xy^3$$
 en $(1,-1)$ c) $h(x,y,z) = xy^2 + yz^2$ en $(0,1,2)$

c)
$$h(x, y, z) = xy^2 + yz^2$$
 en $(0, 1, 2)$

b)
$$g(\varphi, \theta) = \varphi \sin \theta - \theta \sin \varphi$$
 en $(0, \frac{\pi}{2})$

d)
$$F(u,v) = \frac{u^2 - v^2}{u^2 + v^2}$$
 en $(1,1)$

Exercice 20 – Fonctions harmoniques

Trouver les valeurs de $c \in \mathbb{R}^*$ pour lesquels la fonction $u(x, y, t) = x^2 + y^2 - c^2t^2$ est harmonique.

Exercice 21 - Laplacien

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^2 sur \mathbb{R} et posons F(x,y) = f(x-2y).

a) Calculer le Laplacien de
$$F$$
 en (x,y) , c'est-à-dire la valeur $\Delta F(x,y) = \frac{\partial^2 F}{\partial x^2}(x,y) + \frac{\partial^2 F}{\partial y^2}(x,y)$.

b) Déterminer toutes les fonctions f telles que $\Delta F(x,y) = 25(x-2y)^4$.

Exercice 22 - Formule de Taylor

Donner la partie principale du développement de Taylor à l'ordre 2 des fonctions suivantes, autour du point indiqué:

a)
$$f(x,y) = \frac{\cos x}{\cos y}$$
 autour de $(0,0)$

b)
$$g(x,y) = \ln(xy^2 + 1)$$
 autour de $(1,1)$ et puis de $(1,-1)$

Exercice 23 - Approximation

La puissance utilisée dans une résistance électrique est donnée par $P = E^2/R$ (en watts), où E est la différence de potentiel électrique (en volt) et R est la résistance (en ohm). Si E=200 volt et R=8 ohm, quelle est la modification de la puissance si E decroît de 5 volt et R de 0.2 ohm? Comparer les résultats obtenus par le calcul exact avec l'approximation fournie par la différentielle de P = P(E, R).

Exercice 24 – Points critiques et extrema

Pour chacune des fonctions suivantes, trouver et étudier les points critiques. La fonction admet-elle des extrema locaux?

7

a)
$$f(x,y) = x^2 + xy + y^2 + 2x + 3y$$

c)
$$F(x,y) = x^3 + y^3 + 3xy$$

b)
$$g(x,y) = (x-y)^2 + (x+y)^3$$

d)
$$G(x,y) = x^4 + y^4 - (x-y)^3$$

TD 6 – INTÉGRALES DOUBLES ET TRIPLES, AIRE ET VOLUME

Exercice 25 – Intégrales doubles

Calculer les intégrales doubles suivantes :

a)
$$\iint_D xy \ dx \ dy$$
, où $D = [0, 1] \times [0, 1]$.

b)
$$\iint_D (x-y) dx dy$$
, où D est la partie bornée du plan délimitée par les droites $x=0, y=x+2, y=-x$.

c)
$$\iint\limits_{D}\sin(x+y)\ dx\,dy,\quad \text{où }D\text{ est le triangle plein }D=\big\{(x,y)\mid x\geqslant 0,\ y\geqslant 0,\ x+y\leqslant \pi\big\}.$$

d)
$$\iint\limits_D (4-x^2-y^2)\ dx\,dy,\quad \text{où }D=\left\{(x,y)\mid x\geqslant 0,\ y\geqslant 0,\ x^2+y^2\leqslant 1\right\} \text{ est le quart de disque unité}.$$

e)
$$\iint\limits_D x^2 \ dx \ dy, \quad \text{où } D = \left\{ (x,y) \mid x \geqslant 0, \ 1 \leqslant x^2 + y^2 \leqslant 2 \right\} \text{ est un secteur d'anneau}.$$

Exercice 26 – Aire de surfaces planes

Calculer l'aire des surfaces S suivantes :

a) S est la partie bornée du plan délimitée par les courbes d'équation y = x et $y^2 = x$.

b)
$$S = \{(x, y) \in \mathbb{R}^2 \mid \frac{y^2}{2} \le x \le 2\}.$$

c) S est la partie du plan délimitée par l'ellipse d'équation $\frac{x^2}{4} + \frac{y^2}{9} = 1$. [Hint: utiliser le changement de variable $x = 2\rho \cos \varphi$ et $y = 3\rho \sin \varphi$.]

Exercice 27 - Intégrales triples

Calculer les intégrales triples suivantes :

a)
$$\iiint_{\Omega} x^3 y^2 z \ dx \ dy \ dz, \quad \text{où } \Omega = [0, 1] \times [0, 1] \times [0, 1].$$

b)
$$\iiint_{\Omega} (x^3 y^2 z - x y^2 z^3) \ dx \ dy \ dz, \quad \text{où } \Omega = [0, 1] \times [0, 1] \times [0, 1].$$

c)
$$\iiint\limits_{B} \frac{xy}{x^2+y^2+z^2} \ dx \ dy \ dz, \quad \text{où B est la boule de \mathbb{R}^3 de rayon 1 centrée en l'origine.}$$

Exercice 28 - Volumes

Calculer le volume des ensembles $\Omega \subset \mathbb{R}^3$ suivants :

- a) Ω est le tronc de cylindre d'équation $x^2 + y^2 = R^2$, pour $z \in [0, H]$.
- b) Ω est le recipient délimité en bas par le paraboloïde d'équation $z=x^2+y^2$ et en haut par le disque $D=\{(x,y,z)\mid x^2+y^2\leqslant 1,\ z=1\}.$ [Hint: utiliser les coordonnées cylindriques.]

TD 7 - MOYENNE, CENTRE DE MASSE

Exercice 29 – Quantité totale et moyenne

Une substance de concentration $f(x,y,z)=\frac{1}{z+1}$ occupe le recipient Ω délimité en bas par le paraboloïde $z=x^2+y^2$ et en haut par le disque $D=\{(x,y,z)\mid x^2+y^2\leqslant 1,\ z=1\}$. Trouver la quantité totale de substance contenue dans Ω et la quantité moyenne.

Exercice 30 - Centre de masse

- a) Trouver le centre de gravité de la surface plane homogène délimitée par la parabole $y = 6x x^2$ et la droite y = x.
- b) Déterminer le centre de gravité d'un demi-disque homogène.
- c) Calculer la masse totale du cube $[0,1] \times [0,1] \times [0,1]$ de \mathbb{R}^3 ayant pour densité de masse $\mu(x,y,z) = x^2y + xz^2$. Calculer ensuite le centre de masse du cube.

Exercice 31 – Culbuto homogène en équilibre

Un *culbuto* est un objet avec base arrondie fait de telle manière que si on le déplace de la position verticale il y revient en oscillant.

 $[{\tt Photo}: {\tt MONSIEUR} \ {\tt COLBUTO} \ {\tt de} \ {\tt HIBAI} \ {\tt AGORRIA} \ {\tt MUNITIS}]$

Considerons le culbuto homogène constitué d'une demi-boule de rayon 1 surmontée d'un cône de hauteur a > 0. Nous voulons trouver les valeurs de a pour lesquelles le culbuto revient à l'équilibre en position verticale, en sachant que cela arrive si le centre de masse G se trouve strictement en dessous du plan qui sépare la demi-boule du cône.

Soit K_a l'ensemble des points $(x, y, z) \in \mathbb{R}^3$ avec $-1 \le z \le a$ et tels que

$$\begin{cases} x^2 + y^2 + z^2 \leqslant 1 & \text{si } -1 \leqslant z \leqslant 0 & \text{(demi-boule)}, \\ x^2 + y^2 \leqslant \left(1 - \frac{z}{a}\right)^2 & \text{si } 0 \leqslant z \leqslant a & \text{(cône plein)}. \end{cases}$$

- a) Dessiner K_a et en calculer le volume.
- b) Pour tout $z \in [-1, a]$, soit D_z le disque contenu dans K_a à hauteur z fixée. Dessiner D_z , trouver son rayon et calculer son aire.
- c) Trouver le centre de masse de K_a , en sachant qu'il se trouve sur l'axe \vec{Oz} .
- d) Trouver les valeurs de a > 0 pour que le culbuto K_a revienne à l'équilibre en position verticale.