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Standard proof is based on integration by parts.
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o A full story of Gagliardo-Nirenberg's inequality for fractional
Sobolev spaces is due to Brezis and Mironescu AIHP 18.

e The proof of CKN's inequality is based on

m Integration by parts and symmetrization in the case
O0<a—o<«<1.
m Interpolation & the application of the previous case when
1,v 41, a1
x«—o>1land 2 + 3 # 5+ %5

o CKN'’s inequality generalizes Hardy's inequality when 1 <p < d.
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and searching for variants of Hardy’s inequality when p > d. Recall
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Our approach

m Starting point: Sobolev's and Poincare's inequalities; NO
integration by parts.

m Inspiration: harmonic analysis; however, instead of localizing
frequency, we localize space variables.

m The interpolation part is inspired from the proof of CKN's
inequality.
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Proof of CKN's inequality for the main case
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Related works: Bourgain, Brezis, & Mironescu 01, Davila 02.



Theorem (Ng. CVPDE, 11)

Let p > 1, Q be a cube or a ball of R&. Then 3C > 0 s.t. for all
5> 0:

// y)|P dx dy
2

(ks //Q e dxdy + 57IQP).

A variant of Sobolev's inequality also holds for I for 1 < p < d.

Question: How's about Hardy's and Caffarelli, Kohn,
Nirenberg's inequalities?



Variants of Hardy's inequalities

Theorem (Ng. & Squassina JAM, to appear)
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ii) ifp>d and suppu C R4\ By, then

P
/ [ulx)l dx < C (Is(u) +147P8P),
R4 Ix[P

Similar results hold for the case p = d.



Theorem (Ng. & Squassina JAM, to appear)

Letd>2,1<p<d t>00<7r<R, anduel? (RY). Assume
that 1 1

a_
R,

- = and 0<a—vy<l.
d p

Al



Theorem (Ng. & Squassina JAM, to appear)

Letd>2,1<p<d t>00<7r<R, anduel? (RY). Assume
that 1 1
y_-,%=-
d p d

Al

+ and 0<a—vy<l1.

We have
i) if and , then

Is(w, o)



Theorem (Ng. & Squassina JAM, to appear)

Letd>2,1<p<d t>00<7r<R, anduel? (RY). Assume
that 1 1
y_-,%=-
d p

Al

+ and 0<a—vy<l1.

We have
i) if and , then

Is(w, o)

i) ifd—p+px<0 andsuppu C R4\ B, then

p/T
( |X|YT|u(X)‘T dX) <C (Ié(u, 0() + rd*er‘p(x&p).
Rd



Theorem (Ng. & Squassina JAM, to appear)

Letd>2,1<p<d t>00<7r<R, anduel? (RY). Assume
that 1 1
y_-,%=-
d p

Al

+ and 0<a—vy<l1.

We have
i) if and , then

Is(w, o)

i) ifd—p+px<0 andsuppu C R4\ B, then

p/T
( |X|YT|u(X)‘T dX) <C (Ié(u, 0() + rd*er‘p(x&p).
Rd

e Variants for p =d > 2 and also for p=d =1 hold.
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Letd>2,1<p<d t>00<7r<R, anduel? (RY). Assume
that 1 1
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We have
i) if and , then

Is(w, o)

i) ifd—p+px<0 andsuppu C R4\ B, then

p/T
( () dX> < C (Is(u, &) + 197 PFPEEP),
R4

e Variants for p =d > 2 and also for p=d =1 hold.
e Variants for 0 < a < 1 hold.



Thank you for your attention!
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