On Hardy's and Caffarelli, Kohn, Nirenberg's inequalites.

Séminaire EDP-Analyse de I'Institut Camille Jordan, Lyon, April 2019

Hoai-Minh Nguyen

École Polytechnique Fédérale de Lausanne EPFL, Switzerland

joint with Marco Squassina

Outline

1 Known results related to Hardy＇s and Caffarelli，Kohn， Nirenberg＇s（CKN＇s）inequalities

2 CKN＇s inequalities for fractional Sobolev spaces

3 New perspectives of Hardy＇s and CKN＇s inequalities in Sobolev spaces．

Section 1: Known results related to Hardy's and CKN's inequalities

Hardy's inequalities

1 For $1 \leqslant p<d$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Hardy's inequalities

1 For $1 \leqslant p<d$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|\mathfrak{u}|^{\mathrm{p}}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

2 For $\mathrm{p}>\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|\mathfrak{u}|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}} \backslash\{0\}\right)
$$

Standard proof is based on integration by parts.

Hardy's inequalities

1 For $1 \leqslant p<d$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{\mathrm{p}}}{|x|^{\mathrm{p}}} \mathrm{~d} x \leqslant \mathrm{C} \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

2 For $\mathrm{p}>\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|\mathfrak{u}|^{\mathrm{p}}}{|x|^{\mathrm{p}}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla \mathfrak{u}|^{\mathrm{p}} \mathrm{~d} x \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}} \backslash\{0\}\right)
$$

3 For $p=d>1, \ldots$
Standard proof is based on integration by parts.

Hardy's inequalities

1 For $1 \leqslant p<d$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{\mathrm{p}}}{|x|^{\mathrm{p}}} \mathrm{~d} x \leqslant \mathrm{C} \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

2 For $p>d$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|\mathfrak{u}|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla \mathfrak{u}|^{\mathrm{p}} \mathrm{~d} x \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}} \backslash\{0\}\right)
$$

3 For $p=d>1, \ldots$.
Standard proof is based on integration by parts.

Caffarelli, Kohn, Nirenberg's inequalities, CM 84

Let $p \geqslant 1, q \geqslant 1, \tau>0,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$. One has

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d}\right)} \leqslant\left. C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\| \| x\right|^{\beta} u \|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)} \quad \forall u \in C_{c^{c}}^{1}\left(\mathbb{R}^{d}\right)
$$

under the following conditions

$$
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right)
$$

with $\gamma=a \sigma+(1-a) \beta$,

$$
0 \leqslant \alpha-\sigma \quad \text { and } \quad\left(\alpha-\sigma \leqslant 1 \quad \text { if } \quad \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-1}{d}\right)
$$

and

$$
\frac{1}{\tau}+\frac{\gamma}{d}, \quad \frac{1}{p}+\frac{\alpha}{d}, \quad \frac{1}{q}+\frac{\beta}{d}>0
$$

Comments on the CKN inequality

- This inequality is related to Gagliardo-Nirenberg's inequality when $\alpha=\beta=\gamma=0$, Gagliardo RM 59, Nirenberg ASNSP 59.
- A full story of Gagliardo-Nirenberg's inequality for fractional Sobolev spaces is due to Brezis and Mironescu AIHP 18. - The proof of CKN's inequality is based on

Comments on the CKN inequality

- This inequality is related to Gagliardo-Nirenberg's inequality when $\alpha=\beta=\gamma=0$, Gagliardo RM 59, Nirenberg ASNSP 59.
- A full story of Gagliardo-Nirenberg's inequality for fractional Sobolev spaces is due to Brezis and Mironescu AIHP 18.
- The proof of CKN's inequality is based on - Integration by parts and symmetrization in the case

Comments on the CKN inequality

- This inequality is related to Gagliardo-Nirenberg's inequality when $\alpha=\beta=\gamma=0$, Gagliardo RM 59, Nirenberg ASNSP 59.
- A full story of Gagliardo-Nirenberg's inequality for fractional Sobolev spaces is due to Brezis and Mironescu AIHP 18.
- The proof of CKN's inequality is based on
\qquad

Comments on the CKN inequality

- This inequality is related to Gagliardo-Nirenberg's inequality when $\alpha=\beta=\gamma=0$, Gagliardo RM 59, Nirenberg ASNSP 59.
- A full story of Gagliardo-Nirenberg's inequality for fractional Sobolev spaces is due to Brezis and Mironescu AIHP 18.
- The proof of CKN's inequality is based on
- Integration by parts and symmetrization in the case

$$
0 \leqslant \alpha-\sigma \leqslant 1
$$

Comments on the CKN inequality

- This inequality is related to Gagliardo-Nirenberg's inequality when $\alpha=\beta=\gamma=0$, Gagliardo RM 59, Nirenberg ASNSP 59.
- A full story of Gagliardo-Nirenberg's inequality for fractional Sobolev spaces is due to Brezis and Mironescu AIHP 18.
- The proof of CKN's inequality is based on
- Integration by parts and symmetrization in the case

$$
0 \leqslant \alpha-\sigma \leqslant 1
$$

- Interpolation \& the application of the previous case when $\alpha-\sigma>1$ and $\frac{1}{\tau}+\frac{\gamma}{d} \neq \frac{1}{p}+\frac{\alpha-1}{d}$
- CKN's inequality generalizes Hardy's inequality when 1

Comments on the CKN inequality

- This inequality is related to Gagliardo-Nirenberg's inequality when $\alpha=\beta=\gamma=0$, Gagliardo RM 59, Nirenberg ASNSP 59.
- A full story of Gagliardo-Nirenberg's inequality for fractional Sobolev spaces is due to Brezis and Mironescu AIHP 18.
- The proof of CKN's inequality is based on
- Integration by parts and symmetrization in the case

$$
0 \leqslant \alpha-\sigma \leqslant 1
$$

- Interpolation \& the application of the previous case when $\alpha-\sigma>1$ and $\frac{1}{\tau}+\frac{\gamma}{d} \neq \frac{1}{p}+\frac{\alpha-1}{d}$
- CKN's inequality generalizes Hardy's inequality when $1<p<d$.

Section 2: CKN's inequality for fractional Sobolev spaces

CKN＇s inequality for fractional Sobolev spaces

－Goals：extending CKN＇s inequality for fractional Sobolev spaces and searching for variants of Hardy＇s inequality when $p>d$ ．Recall

$$
|u|_{W^{s, p}}^{p}:=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{|\mathfrak{u}(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y \text { for } u \in L^{p}\left(\mathbb{R}^{d}\right)
$$

CKN's inequality for fractional Sobolev spaces

- Goals: extending CKN's inequality for fractional Sobolev spaces and searching for variants of Hardy's inequality when $p>d$. Recall

$$
|u|_{W^{s, p}}^{p}:=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y \text { for } u \in L^{p}\left(\mathbb{R}^{d}\right) .
$$

- Known results: (Hardy's type-inequalities):
- Mazya \& Shaposhnikova JFA 02 (harmonic analysis, extension technique), Frank \& Seiringer JFA 08 (ground state representation formula): $a=1, \tau=p, \alpha=0$ and $\gamma=-s$.
- Sharp constant and the remainder are considered by Frank \& Seiringer and Abdellaoui \& Bentifour.

CKN's inequality for fractional Sobolev spaces

- Goals: extending CKN's inequality for fractional Sobolev spaces and searching for variants of Hardy's inequality when $p>d$. Recall

$$
|u|_{W^{s, p}}^{p}:=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y \text { for } u \in L^{p}\left(\mathbb{R}^{d}\right)
$$

- Known results: (Hardy's type-inequalities):
- Mazya \& Shaposhnikova JFA 02 (harmonic analysis, extension technique), Frank \& Seiringer JFA 08 (ground state representation formula): $a=1, \tau=p, \alpha=0$ and $\gamma=-s$.
■ Abdellaoui \& Bentifour JFA 17 (Picone's inequality): $a=1$, $\tau=p d /(d-s p),-(d-s p) / p<\alpha=\gamma<0$, and $1<p<d / s$.

CKN's inequality for fractional Sobolev spaces

- Goals: extending CKN's inequality for fractional Sobolev spaces and searching for variants of Hardy's inequality when $p>d$. Recall

$$
|u|_{W^{s, p}}^{p}:=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y \text { for } u \in L^{p}\left(\mathbb{R}^{d}\right)
$$

- Known results: (Hardy's type-inequalities):
- Mazya \& Shaposhnikova JFA 02 (harmonic analysis, extension technique), Frank \& Seiringer JFA 08 (ground state representation formula): $a=1, \tau=p, \alpha=0$ and $\gamma=-s$.
- Abdellaoui \& Bentifour JFA 17 (Picone's inequality): $a=1$, $\tau=p d /(d-s p),-(d-s p) / p<\alpha=\gamma<0$, and $1<p<d / s$.
- Sharp constant and the remainder are considered by Frank \& Seiringer and Abdellaoui \& Bentifour.

CKN's inequality for fractional Sobolev spaces

- Goals: extending CKN's inequality for fractional Sobolev spaces and searching for variants of Hardy's inequality when $p>d$. Recall

$$
|u|_{W^{s, p}}^{p}:=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y \text { for } u \in L^{p}\left(\mathbb{R}^{d}\right)
$$

- Known results: (Hardy's type-inequalities):
- Mazya \& Shaposhnikova JFA 02 (harmonic analysis, extension technique), Frank \& Seiringer JFA 08 (ground state representation formula): $a=1, \tau=p, \alpha=0$ and $\gamma=-s$.
■ Abdellaoui \& Bentifour JFA 17 (Picone's inequality): $a=1$, $\tau=p d /(d-s p),-(d-s p) / p<\alpha=\gamma<0$, and $1<p<d / s$.
- Sharp constant and the remainder are considered by Frank \& Seiringer and Abdellaoui \& Bentifour.
- Notation:

$$
|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{p}=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{|x|^{\frac{\alpha p}{2}}|y|^{\frac{\alpha p}{2}}|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y
$$

Statement of the results

Let $p>1, q \geqslant 1, \tau>0,0<s<1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be s.t.

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-s}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right), \tag{2.1}
\end{equation*}
$$

Statement of the results

Let $p>1, q \geqslant 1, \tau>0,0<s<1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be s.t.

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-s}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right), \tag{2.1}
\end{equation*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
\begin{equation*}
0 \leqslant \alpha-\sigma \quad \text { and } \quad\left(\alpha-\sigma \leqslant s \text { if } \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-s}{d}\right) . \tag{2.2}
\end{equation*}
$$

Theorem (Ng. \& Squassina JFA 17)

Statement of the results

Let $p>1, q \geqslant 1, \tau>0,0<s<1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be s.t.

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-s}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right), \tag{2.1}
\end{equation*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
\begin{equation*}
0 \leqslant \alpha-\sigma \quad \text { and } \quad\left(\alpha-\sigma \leqslant s \text { if } \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-s}{d}\right) . \tag{2.2}
\end{equation*}
$$

Theorem (Ng. \& Squassina JFA 17)

Assume (2.1) and (2.2). If $1 / \tau+\gamma / d>0$ then

Statement of the results

Let $p>1, q \geqslant 1, \tau>0,0<s<1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be s.t.

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-s}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right), \tag{2.1}
\end{equation*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
\begin{equation*}
0 \leqslant \alpha-\sigma \quad \text { and } \quad\left(\alpha-\sigma \leqslant s \text { if } \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-s}{d}\right) . \tag{2.2}
\end{equation*}
$$

Theorem (Ng. \& Squassina JFA 17)

Assume (2.1) and (2.2). If $1 / \tau+\gamma / \mathrm{d}>0$ then

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d}\right)} \leqslant C|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)} \quad \forall u \in C_{c}^{1}\left(\mathbb{R}^{d}\right),
$$

Statement of the results

Let $p>1, q \geqslant 1, \tau>0,0<s<1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be s.t.

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-s}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right), \tag{2.1}
\end{equation*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
\begin{equation*}
0 \leqslant \alpha-\sigma \quad \text { and } \quad\left(\alpha-\sigma \leqslant s \text { if } \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-s}{d}\right) . \tag{2.2}
\end{equation*}
$$

Theorem (Ng. \& Squassina JFA 17)

Assume (2.1) and (2.2). If $1 / \tau+\gamma / \mathrm{d}>0$ then

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d}\right)} \leqslant C|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)} \quad \forall u \in C_{c}^{1}\left(\mathbb{R}^{d}\right),
$$

and if $1 / \tau+\gamma / d<0$

Statement of the results

Let $p>1, q \geqslant 1, \tau>0,0<s<1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be s.t.

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-s}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right), \tag{2.1}
\end{equation*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
\begin{equation*}
0 \leqslant \alpha-\sigma \quad \text { and } \quad\left(\alpha-\sigma \leqslant s \text { if } \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-s}{d}\right) . \tag{2.2}
\end{equation*}
$$

Theorem (Ng. \& Squassina JFA 17)

Assume (2.1) and (2.2). If $1 / \tau+\gamma / d>0$ then

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d}\right)} \leqslant C|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)} \quad \forall u \in C_{c}^{1}\left(\mathbb{R}^{d}\right),
$$

and if $1 / \tau+\gamma / \mathrm{d}<0$ then

$$
\left\||x|^{\gamma} u\right\|_{\mathrm{L}^{\tau}\left(\mathbb{R}^{\mathrm{d}}\right)} \leqslant \mathrm{C}|u|_{\mathbf{W}^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{\mathrm{a}}\left|\left\|\left.x\right|^{\beta} u\right\|_{\mathrm{L}^{q}\left(\mathbb{R}^{\mathrm{d}}\right)}^{(1-a \mathrm{a}} \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}} \backslash\{0\}\right) .\right.
$$

Our approach

- Starting point: Sobolev's and Poincare's inequalities; NO integration by parts.
- Inspiration: harmonic analysis; however, instead of localizing frequency, we localize space variables.

Our approach

■ Starting point: Sobolev's and Poincare's inequalities; NO integration by parts.

Inspiration: harmonic analysis; however, instead of localizing frequency, we localize space variables. The internolation nart is insnired from the proof of CKN's inequality.

Our approach

■ Starting point：Sobolev＇s and Poincare＇s inequalities；NO integration by parts．
■ Inspiration：harmonic analysis；however，instead of localizing frequency，we localize space variables．

Our approach

■ Starting point：Sobolev＇s and Poincare＇s inequalities；NO integration by parts．
■ Inspiration：harmonic analysis；however，instead of localizing frequency，we localize space variables．
－The interpolation part is inspired from the proof of CKN＇s inequality．

A new proof of Hardy's inequality

Recall Hardy's inequality, for $1 \leqslant \mathrm{p}<\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{dx} \quad \text { for } u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

By Poincare's inequality, we have

A new proof of Hardy's inequality

Recall Hardy's inequality, for $1 \leqslant \mathrm{p}<\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{\mathrm{p}}}{|x|^{\mathrm{p}}} \mathrm{~d} x \leqslant \mathrm{C} \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \text { for } u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Here is the proof. Set

$$
\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{k+1}\right\} .
$$

By Poincare's inequality, we have

A new proof of Hardy's inequality

Recall Hardy's inequality, for $1 \leqslant \mathrm{p}<\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{\mathrm{p}}}{|x|^{\mathrm{p}}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \text { for } u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Here is the proof. Set

$$
\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{k+1}\right\} .
$$

By Poincare's inequality, we have

$$
f_{\mathbb{C}_{k}}\left|u-f_{\mathbb{C}_{k}} u\right|^{p} d x \leqslant C 2^{k p} f_{\mathbb{C}_{k}}|\nabla u|^{p} d x
$$

By Poincare's inequality, we also have

A new proof of Hardy's inequality

Recall Hardy's inequality, for $1 \leqslant \mathrm{p}<\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \text { for } u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Here is the proof. Set

$$
\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{k+1}\right\} .
$$

By Poincare's inequality, we have

$$
f_{\mathbb{C}_{k}}\left|u-f_{\mathbb{C}_{k}} u\right|^{p} d x \leqslant C 2^{k p} f_{\mathbb{C}_{k}}|\nabla u|^{p} d x
$$

which yields

$$
\int_{\mathbb{C}_{k}} \frac{|u|^{p}}{|x|^{p}} d x \sim 2^{-k p} \int_{\mathbb{C}_{k}}|u|^{p} \leqslant C \int_{\mathbb{C}_{k}}|\nabla u|^{p} d x+C 2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p}
$$

By Poincare's inequality, we also have

A new proof of Hardy's inequality

Recall Hardy's inequality, for $1 \leqslant \mathrm{p}<\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \text { for } u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Here is the proof. Set

$$
\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{k+1}\right\} .
$$

By Poincare's inequality, we have

$$
f_{\mathbb{C}_{k}}\left|u-f_{\mathbb{C}_{k}} u\right|^{p} d x \leqslant C 2^{k p} f_{\mathbb{C}_{k}}|\nabla u|^{p} d x
$$

which yields

$$
\int_{\mathbb{C}_{k}} \frac{|u|^{p}}{|x|^{p}} d x \sim 2^{-k p} \int_{\mathbb{C}_{k}}|u|^{p} \leqslant C \int_{\mathbb{C}_{k}}|\nabla u|^{p} d x+C 2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p}
$$

By Poincare's inequality, we also have

$$
\left|f_{\mathbb{C}_{k+1}} u-f_{\mathbb{C}_{k}} u\right|^{p} d x \leqslant C 2^{k p} f_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x
$$

A new proof of Hardy's inequality

Recall Hardy's inequality, for $1 \leqslant \mathrm{p}<\mathrm{d}$,

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant C \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{\mathrm{p}} \mathrm{~d} x \quad \text { for } u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Here is the proof. Set

$$
\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{k+1}\right\} .
$$

By Poincare's inequality, we have

$$
f_{\mathbb{C}_{k}}\left|u-f_{\mathbb{C}_{k}} u\right|^{p} d x \leqslant C 2^{k p} f_{\mathbb{C}_{k}}|\nabla u|^{p} d x
$$

which yields

$$
\int_{\mathbb{C}_{k}} \frac{|u|^{p}}{|x|^{p}} d x \sim 2^{-k p} \int_{\mathbb{C}_{k}}|u|^{p} \leqslant C \int_{\mathbb{C}_{k}}|\nabla u|^{p} d x+C 2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p}
$$

By Poincare's inequality, we also have

$$
\left|f_{\mathbb{C}_{k+1}} u-f_{\mathbb{C}_{k}} u\right|^{p} d x \leqslant C 2^{k p} f_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x
$$

It follows that
$2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p} \leqslant C_{c} \int_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x+c 2^{(k+1)(d-p)}\left|f_{\mathbb{C}_{k+1}} u\right|^{p}$. for $c>2^{p-d}$,

It follows that
$2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p} \leqslant C_{c} \int_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x+c 2^{(k+1)(d-p)}\left|f_{\mathbb{C}_{k+1}} u\right|^{p}$. for $\mathrm{c}>2^{\mathrm{p}-\mathrm{d}}$, in particular for $\mathrm{c}=\left(2^{\mathrm{p}-\mathrm{d}}+1\right) / 2<1$.

It follows that
$2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p} \leqslant C_{c} \int_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x+c 2^{(k+1)(d-p)}\left|f_{\mathbb{C}_{k+1}} u\right|^{p}$.
for $\mathrm{c}>2^{p-\mathrm{d}}$, in particular for $\mathrm{c}=\left(2^{p-d}+1\right) / 2<1$. This implies

$$
\sum_{k} 2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p} \leqslant C \sum_{k} \int_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x \leqslant C \int_{\mathbb{R}^{d}}|\nabla u|^{p} .
$$

The proof is complete.

It follows that
$2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p} \leqslant C_{c} \int_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x+c 2^{(k+1)(d-p)}\left|f_{\mathbb{C}_{k+1}} u\right|^{p}$.
for $\mathrm{c}>2^{\mathrm{p}-\mathrm{d}}$ ，in particular for $\mathrm{c}=\left(2^{\mathrm{p}-\mathrm{d}}+1\right) / 2<1$ ．This implies

$$
\sum_{k} 2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p} \leqslant C \sum_{k} \int_{\mathbb{C}_{k} \cup C_{k+1}}|\nabla u|^{p} d x \leqslant C \int_{\mathbb{R}^{d}}|\nabla u|^{p} .
$$

We derive that

$$
\begin{aligned}
\sum_{k} 2^{-k p} \int_{\mathbb{C}_{k}}|u|^{p} & \leqslant c \sum_{k} \int_{\mathbb{C}_{k}}|\nabla u|^{p} d x+c \sum_{k} 2^{k(d-p)}\left|f_{\mathbb{C}_{k}} u\right|^{p} \\
& \leqslant C \int_{\mathbb{R}^{d}}|\nabla u|^{p} .
\end{aligned}
$$

The proof is complete．

Proof of CKN's inequality for the main case

Let $p>1, q \geqslant 1, \tau>0,0<s<1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be s.t.

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-s}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right) \tag{2.3}
\end{equation*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
\begin{equation*}
0 \leqslant \alpha-\sigma \leqslant s \tag{2.4}
\end{equation*}
$$

Theorem

Assume (2.3) and (2.4). We have, for $1 / \tau+\gamma / \mathrm{d}>0$,

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d}\right)} \leqslant \mathrm{C}|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{\mathrm{a}}\left\||x|^{\beta} u\right\|_{\mathrm{L}^{\mathrm{q}}\left(\mathbb{R}^{\mathrm{d}}\right)}^{(1-\mathrm{a})} \quad \forall u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right),
$$

$$
|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{p}=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|x|^{\frac{\alpha p}{2}}|y|^{\frac{\alpha p}{2}}|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y .
$$

Lemma（Gagliardo－Nirenberg＇s inequality）
Let $\mathrm{d} \geqslant 1,0<\mathrm{s}<1, \mathrm{p}>1, \mathrm{q} \geqslant 1, \tau>0$ ，and $0<\mathrm{a} \leqslant 1$ be s．t．

$$
\frac{1}{\tau}=a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

Lemma（Gagliardo－Nirenberg＇s inequality）
Let $\mathrm{d} \geqslant 1,0<\mathrm{s}<1, \mathrm{p}>1, \mathrm{q} \geqslant 1, \tau>0$ ，and $0<\mathrm{a} \leqslant 1$ be s．t．

$$
\frac{1}{\tau}=a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

We have

$$
\|u\|_{L^{\tau}\left(\mathbb{R}^{d}\right)} \leqslant C|u|_{W^{s, p}\left(\mathbb{R}^{d}\right)}^{a}\|u\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{1-a} \quad \text { for } u \in C_{c}^{1}\left(\mathbb{R}^{d}\right) .
$$

Lemma

Let $\mathrm{d} \geqslant 1, \mathrm{p}>1,0<\mathrm{s}<1, \mathrm{q} \geqslant 1, \tau>0$, and $0<\mathrm{a} \leqslant 1$ be s.t.

$$
\frac{1}{\tau} \geqslant a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

Lemma

Let $\mathrm{d} \geqslant 1, \mathrm{p}>1,0<\mathrm{s}<1, \mathrm{q} \geqslant 1, \tau>0$, and $0<\mathrm{a} \leqslant 1$ be s.t.

$$
\frac{1}{\tau} \geqslant a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

Let $\lambda>0,0<r<R$, and set $D:=\left\{x \in \mathbb{R}^{d}: \lambda r<|x|<\lambda R\right\}$.

Lemma

Let $\mathrm{d} \geqslant 1, \mathrm{p}>1,0<\mathrm{s}<1, \mathrm{q} \geqslant 1, \tau>0$, and $0<\mathrm{a} \leqslant 1$ be s.t.

$$
\frac{1}{\tau} \geqslant a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

Let $\lambda>0,0<r<R$, and set $D:=\left\{x \in \mathbb{R}^{d}: \lambda r<|x|<\lambda R\right\}$. Then, $\forall u \in C^{1}(\overline{\mathrm{D}})$,

$$
\begin{aligned}
& \left(f_{D}\left|u-f_{D} u\right|^{\tau} d x\right)^{1 / \tau} \\
& \quad \leqslant C\left(\lambda^{s p-d}|u|_{W^{s, p}(D)}^{p}\right)^{a / p}\left(f_{D}|u|^{q} d x\right)^{(1-a) / q} .
\end{aligned}
$$

Proof. By scaling, one can assume that $\lambda=1$.
From the previous lemma, we derive that

[^0]Proof. By scaling, one can assume that $\lambda=1$. Let $0<s^{\prime} \leqslant s$ and $\tau^{\prime} \geqslant \tau$ be such that

$$
\frac{1}{\tau^{\prime}}=a\left(\frac{1}{p}-\frac{s^{\prime}}{d}\right)+(1-a) \frac{1}{q}
$$

From the previous lemma, we derive that

Proof．By scaling，one can assume that $\lambda=1$ ．Let $0<s^{\prime} \leqslant s$ and $\tau^{\prime} \geqslant \tau$ be such that

$$
\frac{1}{\tau^{\prime}}=a\left(\frac{1}{p}-\frac{s^{\prime}}{d}\right)+(1-a) \frac{1}{q}
$$

From the previous lemma，we derive that

$$
\left\|u-f_{D} u\right\|_{L^{\tau^{\prime}}(D)} \leqslant C|u|_{W^{s^{\prime}, p}(D)}^{a}\|u\|_{L q(D)}^{1-a} .
$$

Proof. By scaling, one can assume that $\lambda=1$. Let $0<s^{\prime} \leqslant s$ and $\tau^{\prime} \geqslant \tau$ be such that

$$
\frac{1}{\tau^{\prime}}=a\left(\frac{1}{p}-\frac{s^{\prime}}{d}\right)+(1-a) \frac{1}{q}
$$

From the previous lemma, we derive that

$$
\left\|u-f_{D} u\right\|_{L^{\tau^{\prime}}(D)} \leqslant C|u|_{W^{s^{\prime}, p}(D)}^{a}\|u\|_{L^{q}(D)}^{1-a} .
$$

Since $|\mathfrak{u}|_{W^{s^{\prime}, p}(D)} \leqslant C|u|_{\mathcal{W}^{s, p}(D)},\|\mathfrak{u}\|_{L^{\tau}(D)} \leqslant C\|u\|_{L^{\tau^{\prime}}(D)}$, the conclusion follows.

Proof of CKN's inequality

$$
\text { Recall } \mathbb{C}_{\mathrm{k}}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{\mathrm{k}+1}\right\} .
$$

balance law

It follows that

Proof of CKN's inequality

Recall $\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{\mathrm{k}+1}\right\}$. We have, $(\alpha-\sigma \geqslant 0+$ balance law),

$$
\frac{1}{\tau} \geqslant a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

Using the balance law, we derive that

Proof of CKN's inequality

Recall $\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{\mathrm{k}+1}\right\}$. We have, $(\alpha-\sigma \geqslant 0+$ balance law),

$$
\frac{1}{\tau} \geqslant a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

It follows that

$$
\begin{aligned}
\left(f_{\mathbb{C}_{k}} \mid u\right. & \left.-\left.f_{\mathbb{C}_{k}} u\right|^{\tau} d x\right)^{1 / \tau} \\
& \leqslant C\left(2^{-(d-s p) k}|u|_{W^{s, p}\left(\mathbb{C}_{k}\right)}^{p}\right)^{a / p}\left(f_{\mathbb{C}_{k}}|u|^{q} d x\right)^{(1-a) / q}
\end{aligned}
$$

Using the balance law, we derive that

Proof of CKN's inequality

Recall $\mathbb{C}_{k}:=\left\{x \in \mathbb{R}^{\mathrm{d}}: 2^{\mathrm{k}} \leqslant|x|<2^{k+1}\right\}$. We have, $(\alpha-\sigma \geqslant 0+$ balance law),

$$
\frac{1}{\tau} \geqslant a\left(\frac{1}{p}-\frac{s}{d}\right)+(1-a) \frac{1}{q} .
$$

It follows that

$$
\begin{aligned}
\left(f_{\mathbb{C}_{k}} \mid u\right. & \left.-\left.f_{\mathbb{C}_{k}} u\right|^{\tau} d x\right)^{1 / \tau} \\
& \leqslant C\left(2^{-(d-s p) k}|u|_{W^{s, p}\left(\mathbb{C}_{k}\right)}^{p}\right)^{a / p}\left(f_{\mathbb{C}_{k}}|u|^{q} d x\right)^{(1-a) / q}
\end{aligned}
$$

Using the balance law, we derive that
$\int_{\mathbb{C}_{k}}|x|^{\gamma \tau}|u|^{\tau} d x \leqslant C|u|_{W^{s, p, \alpha}}^{a \tau}\left(\mathbb{C}_{k}\right)\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{C}_{k}\right)}^{(1-a) \tau}+C 2^{(\gamma \tau+d) k}\left|f_{\mathbb{C}_{k}} u\right|^{\tau}$,

Since

$$
\begin{aligned}
& \quad\left|f_{\mathbb{C}_{k}} u-f_{\mathbb{C}_{k+1}} u\right|^{\tau} \\
& \leqslant C\left(2^{-(d-s p) k}|u|_{W^{s, p}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{p}\right)^{a \tau / p}\left(f_{\mathbb{C}_{k} \cup \mathbb{C}_{k+1}}|u|^{q} d x\right)^{(1-a) \tau / q},
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left|f_{\mathbb{C}_{k}} u-f_{\mathbb{C}_{k+1}} u\right|^{\tau} \\
\leqslant & C\left(2^{-(d-s p) k}|u|_{W^{s, p}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{p}\right)^{a \tau / p}\left(f_{\mathbb{C}_{k} \cup \mathbb{C}_{k+1}}|u|^{q} d x\right)^{(1-a) \tau / q}
\end{aligned}
$$

we obtain, with $c=2 /\left(1+2^{\gamma \tau+d}\right)<1$,

$$
\begin{aligned}
& 2^{(\gamma \tau+d) k}\left|f_{\mathbb{C}_{k}} u\right|^{\tau} \leqslant C|u|_{W^{s, p, \alpha}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{a \tau}| ||x|^{\beta} u \|_{L^{q}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{(1-a) \tau} \\
&+c 2^{(\gamma \tau+d)(k+1)}\left|f_{\mathbb{C}_{k+1}} u\right|^{\tau} .
\end{aligned}
$$

This yields

$$
\begin{align*}
\sum_{k} 2^{(\gamma \tau+d) k} \mid & \left.f_{\mathbb{C}_{k}} u\right|^{\tau} \\
& \leqslant C \sum_{k}|u|_{W^{s, p, \alpha}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{a \tau}\left\|\left.x\right|^{\beta} u\right\|_{L^{q}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{(1-a) \tau} \tag{2.6}
\end{align*}
$$

Combining (2.5) and (2.6) yields

$$
\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x \leqslant\left. C \sum_{k}|u|_{W^{s, p}, \alpha}^{a} \tau\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)| | x\right|^{\beta} u \|_{L^{q}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{(1-a) \tau} .
$$

Combining（2．5）and（2．6）yields

$$
\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x \leqslant\left. C \sum_{k}|u|_{W^{s, p}, \alpha}^{a} \tau\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)| | x\right|^{\beta} u \|_{L^{q}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{(1-a) \tau} .
$$

One has，for $s \geqslant 0, t \geqslant 0$ with $s+t \geqslant 1$ ，and for $x_{k} \geqslant 0$ and $y_{k} \geqslant 0$ ，

$$
\sum_{k=m}^{n} x_{k}^{s} y_{k}^{t} \leqslant\left(\sum_{k=m}^{n} x_{k}\right)^{s}\left(\sum_{k=m}^{n} y_{k}\right)^{t}
$$

Applying this inequality with $s=a \tau / p$ and $t=(1-a) \tau / q$ ，we since $a / p+(1-a) / q \geqslant 1 / \tau$ thanks to the fact $\alpha-\sigma \leqslant s$ ．

Combining (2.5) and (2.6) yields

$$
\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x \leqslant C \sum_{k}|u|_{W^{s, p, \alpha}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{\mathfrak{a} \tau}| ||x|^{\beta} u \|_{L^{q}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{(1-\mathfrak{a}) \tau} .
$$

One has, for $s \geqslant 0, t \geqslant 0$ with $s+t \geqslant 1$, and for $x_{k} \geqslant 0$ and $y_{k} \geqslant 0$,

$$
\sum_{k=m}^{n} x_{k}^{s} y_{k}^{t} \leqslant\left(\sum_{k=m}^{n} x_{k}\right)^{s}\left(\sum_{k=m}^{n} y_{k}\right)^{t}
$$

Applying this inequality with $s=a \tau / p$ and $t=(1-a) \tau / q$, we obtain that

$$
\left.\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x \leqslant\left. C|u|_{W^{s, p, \alpha}}^{a \tau}\left(\cup_{k=m}^{\infty} \mathbb{C}_{k}\right)| | x\right|^{\beta} u \|_{L^{q}\left(\cup_{k=m}^{\infty}(1-a) \tau\right.}^{(1-a)} \mathbb{C}_{k}\right),
$$

Combining (2.5) and (2.6) yields

$$
\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x \leqslant C \sum_{k}|u|_{W^{s, p, \alpha}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{\mathfrak{a} \tau}| ||x|^{\beta} u \|_{L^{q}\left(\mathbb{C}_{k} \cup \mathbb{C}_{k+1}\right)}^{(1-a) \tau} .
$$

One has, for $s \geqslant 0, t \geqslant 0$ with $s+t \geqslant 1$, and for $x_{k} \geqslant 0$ and $y_{k} \geqslant 0$,

$$
\sum_{k=m}^{n} x_{k}^{s} y_{k}^{t} \leqslant\left(\sum_{k=m}^{n} x_{k}\right)^{s}\left(\sum_{k=m}^{n} y_{k}\right)^{t}
$$

Applying this inequality with $s=a \tau / p$ and $t=(1-a) \tau / q$, we obtain that

$$
\left.\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x \leqslant C|u|_{W^{s, p, \alpha}}^{a \tau}\left(\cup_{k=m}^{\infty} \mathbb{C}_{k}\right)\left\||x|^{\beta} u\right\|_{L^{q}\left(\cup_{k=m}^{\infty}(1-a) \tau\right.}^{(1-a)} \mathbb{C}_{k}\right),
$$

since $a / p+(1-a) / q \geqslant 1 / \tau$ thanks to the fact $\alpha-\sigma \leqslant s$.

On the limiting case

> Theorem（Ng．\＆Squassina JFA 17）
> Let $d \geqslant 1, p>1,0<s<1, q \geqslant 1, \tau>1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that（2．3）holds and

$$
0 \leqslant a-\sigma \leqslant s
$$

On the limiting case

Theorem (Ng. \& Squassina JFA 17)

Let $d \geqslant 1, p>1,0<s<1, q \geqslant 1, \tau>1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that (2.3) holds and

$$
0 \leqslant a-\sigma \leqslant s
$$

Let $u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)$, and $0<\mathrm{r}<\mathrm{R}$. We have

On the limiting case

Theorem (Ng. \& Squassina JFA 17)

Let $d \geqslant 1, p>1,0<s<1, q \geqslant 1, \tau>1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that (2.3) holds and

$$
0 \leqslant a-\sigma \leqslant s .
$$

Let $u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)$, and $0<\mathrm{r}<\mathrm{R}$. We have
i) if $1 / \tau+\gamma / d=0$ and supp $u \subset B_{R}$, then

$$
\left(\int_{\mathbb{R}^{d}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}(2 R /|x|)}|u|^{\tau} d x\right)^{1 / \tau} \leqslant C|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)},
$$

On the limiting case

Theorem (Ng. \& Squassina JFA 17)

Let $d \geqslant 1, p>1,0<s<1, q \geqslant 1, \tau>1,0<a \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that (2.3) holds and

$$
0 \leqslant a-\sigma \leqslant s .
$$

Let $u \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)$, and $0<\mathrm{r}<\mathrm{R}$. We have
i) if $1 / \tau+\gamma / \mathrm{d}=0$ and supp $u \subset B_{R}$, then

$$
\left(\int_{\mathbb{R}^{d}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}(2 R /|x|)}|u|^{\tau} d x\right)^{1 / \tau} \leqslant C|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)},
$$

ii) if $1 / \tau+\gamma / \mathrm{d}=0$ and supp $\mathrm{u} \cap \mathrm{B}_{\mathrm{r}}=\emptyset$, then

$$
\left(\int_{\mathbb{R}^{d}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}(2|x| / r)}|\mathfrak{u}|^{\tau} d x\right)^{1 / \tau} \leqslant C|u|_{W^{s, p, \alpha}\left(\mathbb{R}^{d}\right)}^{\mathrm{a}}\left\||x|^{\beta} u\right\|_{\mathrm{L}^{q}\left(\mathbb{R}^{\mathrm{d}}\right)}^{(1-a)} .
$$

Section 3: New perspectives of Hardy's and Caffarelli, Kohn, Nirenberg's inequalities

Motivations

Define, for $\mathrm{d} \geqslant 1$ and $\mathrm{p} \geqslant 1$,

$$
I_{\delta}(u):=\int_{\substack{\mathbb{R}^{\mathrm{d}} \\|u(x)-u(y)|>\delta}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{\delta^{p}}{|x-y|^{\mathrm{d}+\mathrm{p}}} \mathrm{~d} x \mathrm{~d} y \quad \forall u \in \mathrm{~L}^{p}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

2 I I_{δ} appears in an estimate for the topological degree due to Bourgain, Brezis, \& Ng., CRAS 05, and Ng. JAM 07

Motivations

Define, for $\mathrm{d} \geqslant 1$ and $\mathrm{p} \geqslant 1$,

$$
I_{\delta}(u):=\int_{\substack{\mathbb{R}^{\mathrm{d}} \\|u(x)-u(y)|>\delta}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{\delta^{p}}{|x-y|^{\mathrm{d}+\mathrm{p}}} \mathrm{~d} x \mathrm{~d} y \quad \forall u \in \mathrm{~L}^{p}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

$1 I_{\delta}$ is related to the semi-norm of $W^{s, q}\left(\mathbb{R}^{d}\right)$:

$$
|u|_{W^{s, q}\left(\mathbb{R}^{d}\right)}^{q}:=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)-u(y)|^{q}}{|x-y|^{\mathrm{d}+s q}} d x d y .
$$

where $\ell_{d}=\sqrt{2+\frac{2}{d+1}}$

Motivations

Define, for $\mathrm{d} \geqslant 1$ and $\mathrm{p} \geqslant 1$,

$$
I_{\delta}(u):=\int_{\substack{\mathbb{R}^{d} \\|u(x)-u(y)|>\delta}} \int_{\mathbb{R}^{d}} \frac{\delta^{p}}{|x-y|^{d+p}} d x d y \quad \forall u \in L^{p}\left(\mathbb{R}^{d}\right) .
$$

$1 I_{\delta}$ is related to the semi-norm of $W^{s, q}\left(\mathbb{R}^{d}\right)$:

$$
|u|_{W^{s, q}\left(\mathbb{R}^{d}\right)}^{q}:=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)-u(y)|^{q}}{|x-y|^{\mathrm{d}+s q}} d x d y .
$$

$2 \mathrm{I}_{\delta}$ appears in an estimate for the topological degree due to Bourgain, Brezis, \& Ng., CRAS 05, and Ng. JAM 07
where $\ell_{d}=\sqrt{2+\frac{2}{d+1}}$.

Motivations

Define, for $\mathrm{d} \geqslant 1$ and $\mathrm{p} \geqslant 1$,

$$
I_{\delta}(u):=\int_{\substack{\mathbb{R}^{d} \\|u(x)-u(y)|>\delta}} \int_{\mathbb{R}^{d}} \frac{\delta^{p}}{|x-y|^{d+p}} d x d y \quad \forall u \in L^{p}\left(\mathbb{R}^{d}\right) .
$$

$1 I_{\delta}$ is related to the semi-norm of $W^{s, q}\left(\mathbb{R}^{d}\right)$:

$$
|u|_{W^{s, q}\left(\mathbb{R}^{d}\right)}^{q}:=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)-u(y)|^{q}}{|x-y|^{\mathrm{d}+s q}} d x d y .
$$

$2 \mathrm{I}_{\delta}$ appears in an estimate for the topological degree due to Bourgain, Brezis, \& Ng., CRAS 05, and Ng. JAM 07
where $\ell_{d}=\sqrt{2+\frac{2}{d+1}}$.

Theorem（Ng．JFA 06，Bourgain \＆Ng．CRAS 06）
Let $d \geqslant 1,1<m<t m$ and $u \in I P\left(\mathbb{R}^{d}\right)$ Then
1

2

$$
\lim _{\delta \rightarrow 0} I_{\delta}(u)=K_{\mathrm{d}, \mathrm{p}} \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{p} \quad \forall u \in W^{1, \mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right) .
$$

（3）If

$$
\liminf _{\delta \rightarrow 0} \mathrm{I}_{\delta}(\mathrm{u})<+\infty,
$$

then $u \in W^{1, p}\left(\mathbb{R}^{d}\right)$ ．
Related works：Bourgain，Brezis，\＆Mironescu 01，Davila 02.

Theorem (Ng. JFA 06, Bourgain \& Ng. CRAS 06)

Let $\mathrm{d} \geqslant 1,1<\mathrm{p}<+\infty$ and $\mathrm{u} \in \mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$. Then
1

$$
I_{\delta}(u) \leqslant C_{d, p} \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{p} \quad \forall u \in W^{1, p}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Related works: Bourgain, Brezis, \& Mironescu 01, Davila 02.

Theorem（Ng．JFA 06，Bourgain \＆Ng．CRAS 06）

Let $\mathrm{d} \geqslant 1,1<\mathrm{p}<+\infty$ and $\mathrm{u} \in \mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$ ．Then
1

$$
I_{\delta}(u) \leqslant C_{d, p} \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{p} \quad \forall u \in W^{1, p}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

2

$$
\lim _{\delta \rightarrow 0} I_{\delta}(u)=K_{d, p} \int_{\mathbb{R}^{\mathrm{d}}}|\nabla u|^{p} \quad \forall u \in W^{1, p}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Related works：Bourgain，Brezis，\＆Mironescu 01，Davila 02.

Theorem（Ng．JFA 06，Bourgain \＆Ng．CRAS 06）

Let $\mathrm{d} \geqslant 1,1<\mathrm{p}<+\infty$ and $\mathrm{u} \in \mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$ ．Then
1

$$
I_{\delta}(u) \leqslant C_{d, p} \int_{\mathbb{R}^{d}}|\nabla u|^{p} \quad \forall u \in W^{1, p}\left(\mathbb{R}^{d}\right) .
$$

2

$$
\lim _{\delta \rightarrow 0} I_{\delta}(u)=K_{d, p} \int_{\mathbb{R}^{d}}|\nabla u|^{p} \quad \forall u \in W^{1, p}\left(\mathbb{R}^{d}\right)
$$

3 If

$$
\liminf _{\delta \rightarrow 0} \mathrm{I}_{\delta}(u)<+\infty,
$$

then $u \in W^{1, p}\left(\mathbb{R}^{\mathrm{d}}\right)$ ．
Related works：Bourgain，Brezis，\＆Mironescu 01，Davila 02.

Theorem (Ng. CVPDE, 11)

Let $\mathrm{p} \geqslant 1, \mathrm{Q}$ be a cube or a ball of \mathbb{R}^{d}. Then $\exists \mathrm{C}>0$ s.t. for all $\delta>0$:

$$
\begin{aligned}
& \iint_{Q^{2}}|u(x)-u(y)|^{p} d x d y \\
& \leqslant C\left(|Q|^{\frac{d+p}{d}} \quad \iint_{Q^{2}} \frac{\delta^{p}}{|x-y|^{d+p}} d x d y+\delta^{p}|Q|^{2}\right) . \\
& |u(x)-u(y)|>\delta
\end{aligned}
$$

A variant of Sobolev's inequality also holds for I_{δ} for $1<\mathrm{p}<\mathrm{d}$.
Question: How's about Hardy's and Caffarelli, Kohn, Nirenberg's inequalities?

Variants of Hardy's inequalities

Theorem (Ng. \& Squassina JAM, to appear)
 Let $\mathrm{d} \geqslant 1, \mathrm{p} \geqslant 1,0<\mathrm{r}<\mathrm{R}$, and $\mathrm{u} \in \mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$.

Variants of Hardy's inequalities

Theorem (Ng. \& Squassina JAM, to appear)
Let $\mathrm{d} \geqslant 1, \mathrm{p} \geqslant 1,0<\mathrm{r}<\mathrm{R}$, and $\mathrm{u} \in \mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$. We have i) if $1 \leqslant p<d$ and supp $u \subset B_{R}$, then

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leqslant C\left(I_{\delta}(u)+R^{d-p} \delta^{p}\right),
$$

Variants of Hardy's inequalities

Theorem (Ng. \& Squassina JAM, to appear)
Let $\mathrm{d} \geqslant 1, \mathrm{p} \geqslant 1,0<\mathrm{r}<\mathrm{R}$, and $\mathrm{u} \in \mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$. We have
i) if $1 \leqslant p<d$ and supp $u \subset B_{R}$, then

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leqslant C\left(I_{\delta}(u)+R^{d-p} \delta^{p}\right),
$$

ii) if $p>d$ and supp $u \subset \mathbb{R}^{d} \backslash B_{r}$, then

$$
\int_{\mathbb{R}^{\mathrm{d}}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leqslant C\left(I_{\delta}(u)+r^{d-p} \delta^{p}\right),
$$

Similar results hold for the case $\mathrm{p}=\mathrm{d}$.

Theorem (Ng. \& Squassina JAM, to appear)

Let $\mathrm{d} \geqslant 2,1<\mathrm{p}<\mathrm{d}, \tau>0,0<\mathrm{r}<\mathrm{R}$, and $\mathrm{u} \in \mathrm{L}_{\mathrm{loc}}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$. Assume that

$$
\frac{1}{\tau}+\frac{\gamma}{\mathrm{d}}=\frac{1}{\mathrm{p}}+\frac{\alpha-1}{\mathrm{~d}} \quad \text { and } \quad 0 \leqslant \alpha-\gamma \leqslant 1 .
$$

Theorem (Ng. \& Squassina JAM, to appear)

Let $\mathrm{d} \geqslant 2,1<\mathrm{p}<\mathrm{d}, \tau>0,0<\mathrm{r}<\mathrm{R}$, and $\mathrm{u} \in \mathrm{L}_{\mathrm{loc}}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$. Assume that

$$
\frac{1}{\tau}+\frac{\gamma}{\mathrm{d}}=\frac{1}{\mathrm{p}}+\frac{\alpha-1}{\mathrm{~d}} \quad \text { and } \quad 0 \leqslant \alpha-\gamma \leqslant 1 .
$$

We have
i) if $d-p+p \alpha>0$ and supp $u \subset B_{R}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leqslant C\left(I_{\delta}(u, \alpha)+R^{d-p+p \alpha} \delta^{p}\right),
$$

Theorem（Ng．\＆Squassina JAM，to appear）

Let $\mathrm{d} \geqslant 2,1<\mathrm{p}<\mathrm{d}, \tau>0,0<\mathrm{r}<\mathrm{R}$ ，and $\mathrm{u} \in \mathrm{L}_{\mathrm{loc}}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$ ．Assume that

$$
\frac{1}{\tau}+\frac{\gamma}{\mathrm{d}}=\frac{1}{\mathrm{p}}+\frac{\alpha-1}{\mathrm{~d}} \quad \text { and } \quad 0 \leqslant \alpha-\gamma \leqslant 1 .
$$

We have
i）if $d-p+p \alpha>0$ and supp $u \subset B_{R}$ ，then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leqslant C\left(I_{\delta}(u, \alpha)+R^{d-p+p \alpha} \delta^{p}\right),
$$

ii）if $\mathrm{d}-\mathrm{p}+\mathrm{p} \alpha<0$ and supp $u \subset \mathbb{R}^{\mathrm{d}} \backslash \mathrm{B}_{\mathrm{r}}$ ，then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leqslant C\left(I_{\delta}(u, \alpha)+r^{d-p+p \alpha} \delta^{p}\right)
$$

Theorem (Ng. \& Squassina JAM, to appear)

Let $\mathrm{d} \geqslant 2,1<\mathrm{p}<\mathrm{d}, \tau>0,0<\mathrm{r}<\mathrm{R}$, and $\mathrm{u} \in \mathrm{L}_{\mathrm{loc}}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$. Assume that

$$
\frac{1}{\tau}+\frac{\gamma}{\mathrm{d}}=\frac{1}{\mathrm{p}}+\frac{\alpha-1}{\mathrm{~d}} \quad \text { and } \quad 0 \leqslant \alpha-\gamma \leqslant 1 .
$$

We have
i) if $\mathrm{d}-\mathrm{p}+\mathrm{p} \alpha>0$ and supp $u \subset \mathrm{~B}_{\mathrm{R}}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leqslant C\left(I_{\delta}(u, \alpha)+R^{d-p+p \alpha} \delta^{p}\right),
$$

ii) if $\mathrm{d}-\mathrm{p}+\mathrm{p} \alpha<0$ and supp $\mathrm{u} \subset \mathbb{R}^{\mathrm{d}} \backslash \mathrm{B}_{\mathrm{r}}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leqslant C\left(I_{\delta}(u, \alpha)+r^{d-p+p \alpha} \delta^{p}\right)
$$

- Variants for $p=d \geqslant 2$ and also for $p=d=1$ hold.

Theorem (Ng. \& Squassina JAM, to appear)

Let $\mathrm{d} \geqslant 2,1<\mathrm{p}<\mathrm{d}, \tau>0,0<\mathrm{r}<\mathrm{R}$, and $\mathrm{u} \in \mathrm{L}_{\mathrm{loc}}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{d}}\right)$. Assume that

$$
\frac{1}{\tau}+\frac{\gamma}{\mathrm{d}}=\frac{1}{\mathrm{p}}+\frac{\alpha-1}{\mathrm{~d}} \quad \text { and } \quad 0 \leqslant \alpha-\gamma \leqslant 1 .
$$

We have
i) if $\mathrm{d}-\mathrm{p}+\mathrm{p} \alpha>0$ and supp $u \subset B_{R}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leqslant C\left(I_{\delta}(u, \alpha)+R^{d-p+p \alpha} \delta^{p}\right),
$$

ii) if $\mathrm{d}-\mathrm{p}+\mathrm{p} \alpha<0$ and supp $u \subset \mathbb{R}^{\mathrm{d}} \backslash \mathrm{B}_{\mathrm{r}}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leqslant C\left(I_{\delta}(u, \alpha)+r^{d-p+p \alpha} \delta^{p}\right)
$$

- Variants for $\mathrm{p}=\mathrm{d} \geqslant 2$ and also for $\mathrm{p}=\mathrm{d}=1$ hold.
- Variants for $0<a<1$ hold.

Thank you for your attention!

[^0]:

