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École Centrale de Marseille

21 avril 2015



2/31

Fonctions harmoniques classiques

Une fonction u de classe C 2 sur un ouvert D ⊂ Rd est harmonique
sur D si

∆u(x) =
∂2u

∂x2
1

(x) + ...+
∂2u

∂x2
d

(x) = 0, x ∈ D.

Wt – mouvement brownien sur Rd

τU = inf {t > 0 : Wt /∈ U} – premier temps de sortie de U

Théorème (S. Kakutani, 1944)

Une fonction u continue sur un ouvert D ⊂ Rd est harmonique sur
D si et seulement si

u(x) = Exu(WτU ), x ∈ U,

pour tout ouvert borné U ⊂⊂ D.
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Noyau de Poisson classique

B :=
{

x ∈ Rd : |x | < 1
}

– boule unité dans Rd

S := ∂B – sphère unité

Le noyau de Poisson de B pour Wt est donné par

PB(x , y) =
1− |x |2

|x − y |d
.

σ – mesure de Hausdorff normalisée sur S

Pour tout ensemble borélien A ⊆ S on a

Px(WτB ∈ A) =

∫
A

PB(x , y)σ(dy), x ∈ B.
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Intégrales de Poisson

M(S) – ensemble des mesures signées finies sur S

Pour µ ∈M(S) et f ∈ L1(S, σ) on définit les intégrales de Poisson
de µ et de f comme

PB [µ](x) =

∫
S

PB(x , y)µ(dy), PB [f ](x) =

∫
S

PB(x , y)f (y)σ(dy).

Théorème (Représentation de Martin-Poisson)

Pour toute mesure positive µ ∈M(S) la fonction u(x) = PB [µ](x)
est harmonique positive sur B. Inversement, si u est harmonique
positive sur B, alors il existe une seule mesure positive µ ∈M(S)
telle que u = PB [µ].



5/31

Convergence non-tangentielle

Pour z ∈ S et β > 0 on définit un cône Γβ(z) comme

Γβ(z) = {x ∈ B : |x − z | < (1 + β)(1− |x |)} .

Théorème de Fatou

Soit u une fonction harmonique positive sur B et soit µ ∈M(S)
une mesure positive telle que u = PB [µ]. Soit µ = µa + µs la
décomposition de Lebesgue de µ par rapport à σ, où dµa = fdσ et
µs⊥σ. Alors pour σ-presque tout z ∈ S et pour tout β > 0 on a

lim
Γβ(z)3x→z

u(x) = f (z).
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Espaces de Hardy classiques

Définition

Une fonction u appartient à l’espace de Hardy hp(B), où p ≥ 1 est
fixé, si u est harmonique sur B et

‖u‖hp := sup
0<r<1

(∫
S
|u(rx)|pσ(dx)

)1/p

<∞.

Si u est harmonique positive sur B, alors

‖u‖h1 = u(0) <∞.
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Espaces de Hardy classiques

Théorème

1 u ∈ h1(B) si et seulement si u = PB [µ] pour une mesure
unique µ ∈M(S). De plus,

‖u‖h1 = ‖µ‖ := |µ|(S).

2 u ∈ hp(B) pour p > 1 fixé, si et seulement si u = PB [f ] pour
une fonction unique f ∈ Lp(S, σ). De plus,

‖u‖hp = ‖f ‖p :=

(∫
S
|f |pdσ

) 1
p

.
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Laplacien fractionnaire perturbé

Définition

Soit α ∈ (0, 2). Pour une bonne fonction u sur Rd on définit le
Laplacien fractionnaire de u comme

−(−∆)α/2u(x) := lim
ε→0

Cd ,α

∫
|x−y |>ε

u(y)− u(x)

|x − y |d+α
dy .

On définit le Laplacien fractionnaire perturbé comme

L = −(−∆)α/2 + b · ∇,

avec |b| ∈ Kα−1
d , i.e.,

lim
ε→0

sup
x∈Rd

∫
|x−z|<ε

|b(z)||x − z |α−1−ddz = 0.
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Processus stochastique sous-jacent

(Xt ,Px) – processus de Markov associé à L

Si b ≡ 0, alors Xt est le processus de Lévy α-stable
symétrique, donné par la fonction caractéristique suivante:

Exe iξ·(Xt−x) = e−t|ξ|
α
, x , ξ ∈ Rd , t > 0

Si b(x) = x , alors Xt est appelé le processus
d’Ornstein-Uhlenbeck α-stable.

τU := inf {t > 0 : Xt /∈ U} – premier temps de sortie de U
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Fonctions L-harmoniques

Définition

On dit qu’une fonction u : Rd 7→ R est L-harmonique sur D si

u(x) = Exu(XτU ), x ∈ U,

pour tout ouvert borné U ⊂⊂ D. Si, en plus, u ≡ 0 sur Dc , alors u
est dite L-harmonique singulière sur D.

Exemple

La fonction

v(x) =

{(
1− |x |2

)α/2−1
, |x | < 1,

0, |x | ≥ 1,

est α-harmonique (L-harmonique pour b ≡ 0) singulière sur B.
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Noyau de Martin

D – domaine borné de classe C 1,1

pD
L (t, x , y) – densité de transition de Xt tué à la sortie de D

Définition

La fonction de Green de L pour D est donnée par

GLD (x , y) =

∫ ∞
0

pD
L (t, x , y)dt.

On définit le noyau de Martin de L pour D par la limite suivante

MLD(x , z) = lim
y→z

GLD (x , y)

GLD (x0, y)
, x ∈ D, z ∈ ∂D,

où x0 ∈ D est un point fixé.
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Noyau de Poisson

Définition

On définit le noyau de Poisson de L pour D par la formule
d’Ikeda-Watanabe

PLD(x , z) = Cd ,α

∫
D

GLD (x , y)

|y − z |d+α
dy , x ∈ D, z ∈ (D)c .

Pour tout A ⊂ (D)c on a

Px(XτD ∈ A) =

∫
A

PLD(x , z)dz , x ∈ D.
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Cas particuliers

Le noyau de Poisson de −(−∆)α/2 pour B est donné par

PB(x , z) = Cd ,α

(
1− |x |2

|z |2 − 1

)α
2 1

|x − z |d
, x ∈ B, z ∈ (B)c .

Le noyau de Martin de −(−∆)α/2 pour B est donné par

MB(x , z) =

(
1− |x |2

)α/2

|x − z |d
, x ∈ B, z ∈ S.
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Résultats principaux (1 < α < 2)

Théorème

Pour x ∈ D et z ∈ ∂D notons

lD(x , z) = MD(x , z) +

∫
D

GLD (x , y)b(y) · ∇yMD(y , z)dy .

La fonction lD(x , z) est strictement positive sur D × ∂D. De plus,
le noyau de Martin de L pour D existe et on a

MLD(x , z) =
lD(x , z)

lD(x0, z)
.

De plus,

MLD(x , z) ≈ MD(x , z) ≈ δD(x)α/2

|x − z |d
.
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Résultats principaux (1 < α < 2)

Théorème (Représentation de Martin)

Pour toute mesure positive µ ∈M(∂D) la fonction

u(x) = MLD [µ](x) =

∫
∂D

MLD(x , z)µ(dz)

est positive et L-harmonique singulière sur D. Inversement, si u
est positive et L-harmonique singulière sur D, alors il existe une
seule mesure positive µ ∈M(∂D) telle que u = MLD [µ].
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Résultats principaux (1 < α < 2)

Corollaire (Formule de perturbation pour les fonctions
L-harmoniques singulières)

Soit u = MLD [µ] pour une mesure positive µ ∈M(∂D). On définit

u∗(x) =

∫
∂D

MD(x , z)
µ(dz)

lD(x0, z)
, x ∈ D.

Alors, u∗ est α-harmonique singulière sur D et on a

u(x) = u∗(x) +

∫
D

GLD (x , y)b(y) · ∇u∗(y)dy .
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Résultats principaux (1 < α < 2)

Théorème de Fatou relatif

Soient u, v deux fonctions L-harmoniques singulières et positives
sur D et soient µ, ν ∈M(∂D) deux mesures telles que u = MLD [µ]
et v = MLD [ν]. Soit µ = µa + µs la décomposition de Lebesgue de
µ par rapport à ν, où dµa = fdν et µs⊥ν. Alors pour ν-presque
tout z ∈ ∂D et pour tout β > 0 on a

lim
Γβ(z)3x→z

u(x)

v(x)
= f (z).
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Résultats principaux (1 < α < 2)

Soit

N(x) := MLD [σ](x) =

∫
∂D

MLD(x , z)σ(dz).

On a
N(x) ≈ δD(x)α/2−1.

Définition

Pour p ≥ 1 on définit l’espace de Hardy Hp
L(D) comme l’ensemble

des fonctions u L-harmoniques singulières sur D vérifiant

‖u‖Hp
L

:= sup
0<r<r0

(∫
∂D

∣∣∣∣ u(πr (x))

N(πr (x))

∣∣∣∣p σ(dx)

)1/p

<∞.
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Résultats principaux (1 < α < 2)

Théorème (Théorème de représentation pour Hp
L(D))

Soit u singulière L-harmonique sur D.

1 u ∈ H1
L(D) si et seulement si u = MLD [µ] pour une mesure

µ ∈M(∂D). De plus, µ est unique et il existe une constante
positive C = C (α, b,D) telle que

C−1‖µ‖ ≤ ‖u‖H1
L
≤ C‖µ‖.

2 Fixons p > 1. Alors u ∈ Hp
L(D) si et seulement si u = MLD [f ]

pour une fonction f ∈ Lp(∂D, σ). De plus, f est unique et il
existe une constante positive C = C (α, b,D) telle que

C−1‖f ‖p ≤ ‖u‖Hp
L
≤ C‖f ‖p.
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Démonstrations: noyau de Martin

Le point de départ pour l’existence du noyau de Martin est la
formule de perturbation pour la fonction de Green de L

GLD (x , y) = GD(x , y) +

∫
D

GLD (x , z)b(z) · ∇zGD(z , y)dz ,

et la comparaison

GLD (x , y) ≈ GD(x , y) ≈ |x − y |α−d
(
δD(x)α/2δD(y)α/2

|x − y |α
∧ 1

)

K. Bogdan, T. Jakubowski, Estimates of the Green
function for the fractional Laplacian perturbed by gradient,
Potential Analysis, Volume 36, Number 3 (2012), 455-481.
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Démonstrations: noyau de Martin

Le but est de montrer que

MLD(x , z) := lim
y→z

GLD (x , y)

GLD (x0, y)
=

lD(x , z)

lD(x0, z)
, x ∈ D, z ∈ ∂D,

d’où

lD(x , z) = MD(x , z) +

∫
D

GLD (x , y)b(y) · ∇yMD(y , z)dy .

L’idée:

GLD (x , y)

GLD (x0, y)
=

GLD (x , y)

GD(x0, y)

GD(x0, y)

GLD (x0, y)
.
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Démonstrations: noyau de Martin

Lemme

Pour tout x ∈ D et z ∈ ∂D on a

lim
y→z

∇xGD(x , y)

GD(x0, y)
= ∇xMD(x , z).

Soit Q ∈ D, z ∈ ∂D et soit r > 0 tel que B(Q, r) ⊂ D et
B(Q, r) ∩ B(z , r) = ∅. Alors

∇xGD(x , y)

GD(x0, y)
= ∇x

∫
B(Q,r)c

PB(Q,r)(x ,w)
GD(w , y)

GD(x0, y)
dw

=

∫
B(Q,r)c

∇xPB(Q,r)(x ,w)
GD(w , y)

GD(x0, y)
dw

pour tout x ∈ B(Q, r) et y ∈ B(z , r) ∩ D.
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Démonstrations: noyau de Martin

Ensuite on montre l’intégrabilité uniforme:∣∣∣∣GLD (x ,w)b(w) · ∇wGD(w , y)

GD(x0, y)

∣∣∣∣ ≤ C
GD(x ,w)GD(w , y)|b(w)|

GD(x , y) dist(w , ∂D) ∧ |w − y |

≤ C |b(w)|(|x − w |α−1−d + |y − w |α−1−d).

C’est une consequence des estimés du gradient ∇GD , de la
propriété de Harnack au bord, et du Théorème 3G:

GD(x ,w)GD(w , y)

GD(x , y)
≤ C

(
δD(w) ∧ |x − w |
|x − w |α−1−d ∨ δD(w) ∧ |y − w |

|y − w |α−1−d

)
.
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Démonstrations: noyau de Martin

Finalement,

lim
y→z

GLD (x , y)

GD(x0, y)
= MD(x , z) +

∫
D

GLD (x ,w)b(w) · ∇wMD(w , z)dw

= lD(x , z),

et

GLD (x , y)

GLD (x0, y)
=

GLD (x , y)

GD(x0, y)

GD(x0, y)

GLD (x0, y)
→ lD(x , z)

lD(x0, z)
,

quand D 3 y → z ∈ ∂D.
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Démonstrations: représentation de Martin

La L-harmonicité et l’unicité de la représentation de Martin est
une consequence des propriétés suivantes:

le noyau de Martin MLD(·, ·) est continu sur D × ∂D,

pour tout z ∈ ∂D, MLD(·, z) est une fonction positive et
L-harmonique singulière sur D,

MLD(x , z) ≈ MD(x , z) ≈ δD(x)α/2

|x − z |d
.
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Démonstrations: représentation de Martin

L’existence: soit u L-harmonique singulière et positive sur D. Alors

u(x) =

∫
Dc

1/n

PLD1/n
(x , y)u(y)dy =

=

∫
Dc

1/n

u(y)
[
PD1/n

(x , y)

+

∫
D1/n

GLD1/n
(x ,w)b(w) · ∇wPD1/n

(w , y)dw

]
dy .

Notons

u∗n(x) =

∫
Dc

1/n

PD1/n
(x , y)u(y)dy .
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Démonstrations: représentation de Martin

D’après le théorème de Fubini et de convergence dominée,

u(x) = u∗n(x) +

∫
D

GLD1/n
(x ,w)b(w) · ∇u∗n(w)dw .

D’après la formule d’Ikeda-Watanabe,

u∗n(x) =

∫
Dc

1/n

∫
D1/n

u(y)Cd ,α

GD1/n
(x , ξ)

|ξ − y |d+α
dξdy .

On définit

µn(dξ) = Cd ,αGD1/n
(x0, ξ)

∫
D1/n

u(y)

|ξ − y |d+α
dydξ.
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Démonstrations: représentation de Martin

La suite µn est uniformément bornée et tendue avec supp(µn) ⊂ D
et on a

u∗n(x) =

∫
D1/n

GD1/n
(x , ξ)

GD1/n
(x0, ξ)

µn(dξ).

On choisit une sous-suite µnk convergente vers une mesure µ avec
supp(µ) ⊂ ∂D. Alors, la limite

lim
k

u∗nk (x) = u∗(x)

existe pour tout x ∈ D et on a

u∗(x) =

∫
∂D

MD(x , z)dµ(z).
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Démonstrations: représentation de Martin

Finalement, il faut justifier le passage à la limite sous l’intégrale∫
D

GLD1/n
(x ,w)b(w) · ∇u∗n(w)dw .

Pour cela, on utilise l’estimé

GLD1/n
(x ,w)|b(w)||∇u∗n(w)| ≤ CGD1/n

(x ,w)|b(w)| u∗(w)

δD1/n
(w)

,

la représentation de Martin de u∗ et l’intégrabilite uniforme du
terme

GD1/n
(x ,w)MD(w , z)|b(w)|

δD1/n
(w)

par rapport à z ∈ ∂D et n ∈ N.
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MERCI POUR VOTRE ATTENTION !


