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Fonctions harmoniques classiques

Une fonction u de classe C? sur un ouvert D C RY est harmonique
sur D si

d%u d%u

(x)=0, xeD.

W, — mouvement brownien sur RY
Ty =inf{t >0: W; ¢ U} — premier temps de sortie de U

Théoreme (S. Kakutani, 1944)

Une fonction u continue sur un ouvert D C RY est harmonique sur
D si et seulement si

u(x) =E*u(W,,), xeU,

pour tout ouvert borné U CC D.




Noyau de Poisson classique

B :={x € R?: |x| < 1} - boule unité dans R?

S := 0B - sphére unité

Le noyau de Poisson de B pour W; est donné par

1—|x/?

Ix —yld”

Pg(x,y) =

o — mesure de Hausdorff normalisée sur S

Pour tout ensemble borélien A C 'S on a

PY(W,, € A) = /A Pg(x,y)o(dy), x € B.




Intégrales de Poisson

M(S) — ensemble des mesures signées finies sur S

Pour j1 € M(S) et f € LY(S, ) on définit les intégrales de Poisson
de u et de f comme

Polul(x) = /S Pe(x, y)u(dy), Pslfl(x) = /S Pe(x, ) (y)o(dy).

Théoreme (Représentation de Martin-Poisson)

Pour toute mesure positive u € M(S) la fonction u(x) = Pg[u](x)
est harmonique positive sur B. Inversement, si u est harmonique
positive sur B, alors il existe une seule mesure positive i € M(S)
telle que u = Pglp].




Convergence non-tangentielle

Pour z € S et 8 > 0 on définit un cone g(z) comme

Ms(z) ={x€B:|x—z| < (14+6)(1—|x])}-

Théoreme de Fatou

Soit u une fonction harmonique positive sur B et soit . € M(S)
une mesure positive telle que u = Pg[p]. Soit = pa+ s la
décomposition de Lebesgue de i par rapport a o, oli du, = fdo et
s Lo. Alors pour o-presque tout z € S et pour tout >0 on a

lim  u(x) = f(z2).

Mg(z)ox—z




Espaces de Hardy classiques

Définition

Une fonction u appartient a I'espace de Hardy hP(B), ot p > 1 est
fixé, si u est harmonique sur B et

1/p
l|ul|pe := sup </] rx)|Po( dx)) < 00.

0<r<1

Si u est harmonique positive sur B, alors

llullpr = u(0) < oo.



Espaces de Hardy classiques

Théoreme

@ u € hY(B) si et seulement si u = Pg[u] pour une mesure
unique p € M(S). De plus,

ullp = llpll == 1p(S)-

@ u € hP(B) pour p > 1 fixé, si et seulement si u = Pg[f]| pour
une fonction unique f € LP(S, o). De plus,

1
P
lallse = ]l = ( / \fv’do—) .
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Laplacien fractionnaire perturbé

Soit a € (0,2). Pour une bonne fonction u sur RY on définit le
Laplacien fractionnaire de u comme

——Aa/2ux::|imCa/ uly) —ulx)
(—4) (x) G, xeylse X — ylote y

On définit le Laplacien fractionnaire perturbé comme
L=—(-A)*?+b-V,

avec |b| € K571, ie,

lim sup / |b(2)||x — z|*"*"9dz = 0.
|x—z|<e

e—0 x€Rd




Processus stochastique sous-jacent

(X¢,PX) — processus de Markov associé a £

@ Si b =0, alors X; est le processus de Lévy a-stable
symétrique, donné par la fonction caractéristique suivante:

EXeld(Xe=) — = tlll*  y ¢ cRY >0 J

@ Si b(x) = x, alors X; est appelé le processus
d’'Ornstein-Uhlenbeck a-stable.

Ty :=inf{t > 0: X¢ ¢ U} — premier temps de sortie de U



Fonctions £-harmoniques

On dit qu'une fonction u: RY — R est L£-harmonique sur D si

u(x) =E*u(X-,), xeU,

pour tout ouvert borné U CC D. Si, en plus, u = 0 sur D€, alors u
est dite L-harmonique singuliére sur D.

| A\

Exemple

La fonction

v(x) = {(1 — R k<1,

07 ‘X| Z 17

est a-harmonique (L-harmonique pour b = 0) singuliere sur B.




Noyau de Martin

D — domaine borné de classe C1:1

pg(t,x,y) — densité de transition de X; tué a la sortie de D

Définition

La fonction de Green de L pour D est donnée par

(o]
GE(x,y) = /0 pB(t,x,y)dt.

On définit le noyau de Martin de L pour D par la limite suivante

GL
ME(x,z) = lim M x € D,zedD,
y=z GD(X07y)

ou xp € D est un point fixé.




Noyau de Poisson

Définition

On définit le noyau de Poisson de L pour D par la formule
d’lkeda-Watanabe

G‘:xy —
P5(x,z) = Cda/’ z]‘“‘a y, xe€D,ze (D).

Pour tout A C (D)€ on a

PX(X,, € A) = / P5(x,z)dz, x e D.
A



Cas particuliers

o Le noyau de Poisson de —(—A)*/2 pour B est donné par

1—|x?
> -1

LA _
PB(x,z):Cd,a( > 27 x € B,z € (B)“.

o Le noyau de Martin de —(—A)*/2 pour B est donné par

(1 . |X|2>a/2

MB(X7Z): ’X—Z’d

, X€B,zeS.



Résultats principaux (1 < a < 2)

Théoreme

Pour x € D et z € 0D notons

Ip(x,z) = Mp(x, z) + /D G5(x,y)b(y) - VyMp(y, z)dy.

La fonction Ip(x, z) est strictement positive sur D x 0D. De plus,
le noyau de Martin de L pour D existe et on a

De plus,




Résultats principaux (1 < a < 2)

Théoreme (Représentation de Martin)

Pour toute mesure positive 1 € M(9D) la fonction

o) = MELI) = | MB(x.2)u(e)

est positive et L-harmonique singuliére sur D. Inversement, si u
est positive et L-harmonique singuliére sur D, alors il existe une
seule mesure positive i € M(OD) telle que u = M5[p].




Résultats principaux (1 < a < 2)

Corollaire (Formule de perturbation pour les fonctions

L-harmoniques singuliéres)

Soit u = ME5[u] pour une mesure positive i € M(9D). On définit

_pldz)
u(x) = / Mp(x, z) b0o.2)’ x € D.

Alors, u* est a-harmonique singuliere sur D et on a

u(x) = u*(x) + /D GE(x,y)b(y) - Vr*(y)dy.




Résultats principaux (1 < a < 2)

Théoréeme de Fatou relatif

Soient u, v deux fonctions L-harmoniques singuliéres et positives
sur D et soient 1, v € M(OD) deux mesures telles que u = M5[p]
et v=M5[v]. Soit i = ji, + s la décomposition de Lebesgue de
W par rapport a v, ot du, = fdv et uslv. Alors pour v-presque
tout z € 0D et pour tout f >0 on a

. u(x) z
I'B(zlgranxﬂz V(X) - f( )




Résultats principaux (1 < a < 2)

Soit
N(x) := M5[o](x / M5 (x, z)o(dz).

On a
N(x) =~ dp(x)*/>71.

Définition

|

Pour p > 1 on définit I'espace de Hardy HZ(D) comme ['ensemble
des fonctions u L-harmoniques singuliéres sur D vérifiant

lulle = sup ( /
0<r<n oD

u(mr(x)) |

N(mr(x))

a(dx))l/p < 00.




Résultats principaux (1 < a < 2)

Théoréme (Théoreéme de représentation pour HZ(D))

Soit u singuliere L-harmonique sur D.

Q u € HL(D) si et seulement si u = M&[u] pour une mesure
w € M(0D). De plus, pu est unique et il existe une constante
positive C = C(«, b, D) telle que

CHlull < Mlullm, < Cllnll-

@ Fixons p > 1. Alors u € HE(D) si et seulement si u = M§[f]
pour une fonction f € LP(0OD, o). De plus, f est unique et il
existe une constante positive C = C(a, b, D) telle que

CHfllp < lullig < CIFl




Démonstrations: noyau de Martin

Le point de départ pour |'existence du noyau de Martin est la
formule de perturbation pour la fonction de Green de £

GE(x,y) = Go(x,y) + /D GE(x,2)b(2) - Vo Gp(z, y)dz, J

et la comparaison

A 8p(x)¥/28 a/2

O K. BoaDAN, T. JAKUBOWSKI, Estimates of the Green
function for the fractional Laplacian perturbed by gradient,
Potential Analysis, Volume 36, Number 3 (2012), 455-481.



Démonstrations: noyau de Martin

Le but est de montrer que

G5(x,y) _ Ip(x,2)

M5(x, z) := lim = , xe€D,zedD,
bx.2) y=z G5(x0,y)  Ip(x0,2)
d'oll
In(x,2) = Mp(x.2) + /D GE(x, y)b(y) - Ty Mp(y, 2)dy.
L'idée:

G5(x, ) _ G5(x,y) Gp(xo,y)
G5(x0,y)  Gp(x0,¥) G5(x0,Y)




Démonstrations: noyau de Martin

Pour tout x € D et z € 9D on a

it vaD(X7y)

= VMp(x, z).
y=z Gp(xo,y) b>)

Soit Q € D,z € 9D et soit r > 0 tel que B(Q,r) C D et
B(Q,r)N B(z,r) =0. Alors

V«Gp(x,y) Gp(w,y)
X2 =V, Pg(o.n(x,w dw

Gp(x0, y) B @) ) )GD(XO y)
= / V 'DB(Q r)(X W) GD( ,}/) W

B(Q,r) Gp(x0, )

pour tout x € B(Q,r) ety € B(z,r)ND.



Démonstrations: noyau de Martin

Ensuite on montre l'intégrabilité uniforme:

G5(x, W)b(W)‘VwGD(Wv)/)‘ Gp(x, w)Gp(w, y)|b(w)|
Gp(x0,y) = Gp(x,y)dist(w,0D) A |w — y|

< Clb(w)|(x — w|* 79 4 |y —w|*179).

C'est une consequence des estimés du gradient VGp, de la
propriété de Harnack au bord, et du Théoreme 3G:

Gp(x,w)Gp(w,y) _ ~ (dp(W)Alx—w| dp(w)Aly —w|
Gp(x,y) - |x — wle—t=d ly = wle—t=d




Démonstrations: noyau de Martin

Finalement,

et

Gg(va) _ Gg(xay) GD(X07y) N ID(X7Z)
G5(x0,y)  Gp(xo,¥) G5(x0.y)  Ip(x0,2)’

quand D>y — z € adD.



Démonstrations: représentation de Martin

La £-harmonicité et I'unicité de la représentation de Martin est
une consequence des propriétés suivantes:
o le noyau de Martin M5(-,-) est continu sur D x 9D,

e pour tout z € D, M5(-, z) est une fonction positive et
L-harmonique singuliere sur D,

5D(X)a/2

M5(x,z) = Mp(x, z) ~ x—27°



Démonstrations: représentation de Martin

L'existence: soit u L£-harmonique singuliere et positive sur D. Alors

Notons



Démonstrations: représentation de Martin

D'apres le théoreme de Fubini et de convergence dominée,

u(x) = ui(x)+ /D Ggl/n(x, w)b(w) - Vuy(w)dw. ’

D’apres la formule d’'lkeda-Watanabe,
* Gp n(X>€)
ui(x) = / / u(y) Cgo——gredédy.
Ds,, /Dy, € =yl
On définit

pn(d€) = Cd,aGDl/n(XOaé)/ &dydﬁ-

by, & — yloTe



Démonstrations: représentation de Martin

La suite u, est uniformément bornée et tendue avec supp(u,) C D

et on a
GDl/n(X7 g)

ui(x) =
() Dy, GDy;, (X0, )

tn(dE).

On choisit une sous-suite 1, convergente vers une mesure [ avec
supp(p) C 9D. Alors, la limite

existe pour tout x € D et on a

u*(x) = Mp(x, z)du(z).
oD



Démonstrations: représentation de Martin

Finalement, il faut justifier le passage a la limite sous I'intégrale

/ Ggl/"(x7 w)b(w) - Vu,(w)dw.
D

Pour cela, on utilise |'estimé

u(w)

G, ,(x, w)|b(w) ||V us(w)| < CGp, ,(x, W)Ib(W)Im7
1/n

la représentation de Martin de u* et I'intégrabilite uniforme du

terme
Gp, (X, w)Mp(w, 2)|b(w)|

5D1/n(W)

par rapport a z € 0D et n € N.
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