Ci-dessous, les différences entre deux révisions de la page.
| Les deux révisions précédentes Révision précédente Prochaine révision | Révision précédente | ||
|
existence_of_symplectic_foliations [2017/07/19 16:26] niederkruger |
existence_of_symplectic_foliations [2017/08/29 17:13] (Version actuelle) alvaro |
||
|---|---|---|---|
| Ligne 1: | Ligne 1: | ||
| - | According to Thurston every manifold with vanishing Euler characteristic admits a codimension 1 foliation. | + | ===== Existence of symplectic foliations ===== |
| - | According to Gromov every open manifold | + | * **(R.L. Fernandes, F. Presas, G. Meigniez)** Conjecture: Let M be a closed, odd-dimensional, |
| + | |||
| + | * **(A. Mori)** Conjecture: Let (M,F) be a codimension-1 oriented foliation on a closed odd dimensional manifold. If the space of leafwise closed non-degenerate 2-forms is non-empty and contains no closed forms, there exists a closed leaf. | ||
| + | |||
| + | * **(M. Bertelson, G. Meigniez)** Is there an analogue of Thurston' | ||
| - | Can these results be combined to produce (at least a weak) symplectic foliation on closed manifolds (with a stable complex structure)? | ||