Outils pour utilisateurs

Outils du site


pseudoholomorphic_curve_theory

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
pseudoholomorphic_curve_theory [2017/07/05 18:24]
niederkruger
pseudoholomorphic_curve_theory [2017/07/21 14:48] (Version actuelle)
niederkruger
Ligne 1: Ligne 1:
 === Pseudo holomorphic curves === === Pseudo holomorphic curves ===
  
-Since Gromov published his '85 paper, pseudo-holomorphic curves have been one of the main tool in symplectic topology to prove "rigidity".+Ever since Gromov published his '85 paper, pseudo-holomorphic curves have been one of the main tools in symplectic topology to prove "rigidity" results.
  
 +Discussions related to holomorphic curves could be inspired by the following theorem in dimension 3.
 +
 +**Theorem (Novikov Reebless).** Let //M// be a 3-manifold and let //F// be a Reebless foliation.
 +Then
 +  - every leaf λ is π_1-injective; and
 +  - every transverse loop γ is essential in π_1.
 +
 +
 +Could some similar result be proved with holomorphic curves?  Even if it is not possible to state such a result directly using only topological notions like fundamental groups or homology, maybe one could still define some type of Floer type invariants for symplectic foliations to get a generalization of the Novikov statement.
 +
 +Should one consider holomorphic curves in the leaves of the foliation?  Should one do the symplectization of the foliated manifold to study holomorphic curves there like in an SFT-style?
pseudoholomorphic_curve_theory.1499271870.txt.gz · Dernière modification: 2017/07/05 18:24 de niederkruger