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The Scottish Book... l

Bob, do you think we will really find
blueprints for a quantum computer in it?
i

)

No one can know for sure,
Alice. But be careful, my
source tells me that once
) we read it, the State will
collapse...




Preface

The quest to build a quantum computer is arguably one of the major<scien-
tific and technological challenges of the 21st century, and quantum information
theory (QIT) provides the mathematical framework for that quest. Over the last
dozen or so years, it has become clear that quantum information theory is closely
linked to geometric functional analysis (Banach space theoryy{operator spaces,
high-dimensional probability), a field also known as asymptotic-geometric analy-
sis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative
properties of convex sets, or other geometric structures, and their approximate
symmetries as the dimension becomes large. This makes it especially relevant to
quantum theory, where systems consisting of just\a few particles naturally lead to
models whose dimension is in the thousands, or evenrin billions.

While the idea for this book materialized-after we independently taught grad-
uate courses directed primarily at students interested in functional analysis (at the
University Lyon 1 and at the University Pierre et Marie Curie-Paris 6 in the spring
of 2010), the final product goes well beyond enhanced lecture notes. The book is
aimed at multiple audiences connected through their interest in the interface of QIT
and AGA: at quantum information researchers who want to learn AGA or to apply
its tools; at mathematicians-interésted in learning QIT, or at least the part of QIT
that is relevant to functional.analysis/convex geometry /random matrix theory and
related areas; and at béginning researchers in either field. We have tried to make
the book as user-friendly as possible, with numerous tables, explicit estimates, and
reasonable constanits 'when possible, so as to make it a useful reference even for
established mathematicians generally familiar with the subject.

The first“four chapters are of introductory nature. Chapter [0] outlines the basic
notation _and>conventions with emphasis on those that are field-specific to AGA or
to physics/and may therefore need to be clarified for readers that were educated in
theother culture. It should be read lightly and used later as a reference. Chapter
introduces basic notions from convexity theory that are used throughout the book,
notably duality of convex bodies or of convex cones and Schatten norms. Chapter
goes over a selection of mathematical concepts and elementary results that are rel-
evant to quantum theory. It is aimed primarily at newcomers to the area, but other
readers may find it useful to read it lightly and selectively to familiarize themselves
with the “spirit” of the book. Chapter [3] may be helpful to mathematicians with
limited background in physics; it shows why various mathematical concepts appear
in quantum theory. It could also help in understanding physicists talking about the
subject and in seeing the motivation behind their enquiries. The choice of topics
largely reflects the aspects of the field that we ourselves found not-immediately-
obvious when encountering them for the first time.

xvii



xviii PREFACE

Chapters [4 through [7] include the background material from the widely under-
stood AGA that is either already established to be, directly or indirectly, relevant to
QIT, or that we consider to be worthwhile making available to the QIT community.
Even though most of this material can be found in existing books or surveys, many
items are difficult to locate in the literature and/or are not readily accessible to
outsiders. Here we have organized our exposition of AGA so that the applications
follow as seamlessly as possible. Our presentation of some aspects of the theory is
nonstandard. For example, we exploit the interplay between polarity and cone dus
ality (outlined in Chapter |l|and with a sample application in Appendix [D)) to give
novel and potentially useful insights. Chapters [4| (More convexity) and (Metric
entropy and concentration of measure) can be read independently of each other,
but Chapters [6] and [7] depend on the preceding ones.

Chapters [§] through [T2] discuss topics from the QIT proper, mostly via applica-
tion of tools from the prior chapters. These chapters can largely be read indepen-
dently of each other. For the most part, they present results previously published
in journal articles, often (but not always) by the authors“and. their collaborators,
most notably Cécilia Lancien, Elisabeth Werner, Deping Y¢, Karol Zyczkowski, and
The Horodecki Group. A few results are byproducts of the work on this book (e.g.,
those in Section . The book also contains several\new proofs. Some of them
could arguably qualify as “proofs from The Book,* for example the first proof of
Stgrmer’s Theorem (Section or the derivation of the sharp upper bound
for the expected value of the norm of the ¢omplex Wishart matrix (Proposition
6.31)).

Some statements are explicitly marked as “not proved here”; in that case the
references (to the original source and/or to a more accessible presentation) are
indicated in the “Notes and Remarks® section at the end of the chapter. Otherwise,
the proof can be found eitherinthe ‘main text or in the exercises. There are over
400 exercises that form an important part of the book. They are diverse and aim
at multiple audiences. Some are simple and elementary complements to the text,
while others allow the reader to explore more advanced topics at their own pace.
Still others explore ‘details of the arguments that we judged to be too technical to
be included imthe main text, but worthwhile to be outlined for those who may need
sharp versions, of the results and/or to “reverse engineer” the proofs. All but the
simplest exercises come with hints, collected in Appendix [E] Appendices [4] to
contain material, generally of reference character, that would disrupt the narrative
if included in the main text.

The back matter of the book contains material designed to simplify the task
of the reader wanting to use the book as a reference: a guide to notation and
a keyword index. The bibliography likewise contains back-references displaying
page(s) where a given item is cited. For additional information and updates on
or corrections to this book, we refer the reader to the associated blog at https:
//aliceandbobmeetbanach.wordpress.com. At the same time, we encourage—or
even beg—the readers to report typos, errors, improvements, solutions to problems
and the like to the blog. (An alternative path to the online post-publication material
is by following the link given on the back cover of the book.)

While the initial impulse for the book was a teaching experience, it has not

been designed, in its ultimate form, with a specific course or courses in mind. For
starters, the quantity of material exceeds by far what can be covered in a single


https://aliceandbobmeetbanach.wordpress.com
https://aliceandbobmeetbanach.wordpress.com

PREFACE xix

semester. However, a graduate course centered on the main theme of the book—
the interface of QIT and AGA—can be easily designed around selected topics from
Chapters @H7] followed by selected applications from Chapters [HI2 While we
assume at least a cursory familiarity with functional analysis (normed and inner
product spaces, and operators on them, duality, Hahn—Banach-type separation the-
orems etc.), real analysis (L,-spaces), and probability, deep results from these fields
appear only occasionally and—when they do—an attempt is made to “soften the
blow” by presenting some background via appropriately chosen exercises. Alterna-
tively, most chapters could serve as a core for an independent study course. Agairy
this would be greatly facilitated by the numerous exercises and—mathematical ma-
turity being more critical than extensive knowledge—the text will be accessible to
sufficiently motivated advanced undergraduates.

Acknowledgements. This book has been written over several years; during this pe-
riod the project benefited greatly from the joint stays of the authors at the Isaac
Newton Institute in Cambridge, Mathematisches Forschungsinstitut Oberwolfach
(within the framework of its Research in Pairs program)y and the Instituto de
Ciencias Matematicas in Madrid. We are grateful to these institutions and their
staff for their support and hospitality. We are indebted“to the many colleagues and
students who helped us bring this book into beingy either by reading and comment-
ing on specific chapters, or by sharing with us theirexpertise and/or providing us
with references. We thank in particular Dominique Bakry, Andrew Blasius, Michat
Horodecki, Cécilia Lancien, Imre Leader; Ben) Li, Harsh Mathur, Mark Meckes,
Emanuel Milman, Ion Nechita, David Reeb:=We also thank the anonymous referees
for many suggestions which helped to improve the quality of the text. We are espe-
cially grateful to Gaélle Jardine for careful proofreading of parts of the manuscript.
We acknowledge Aurélie Garnier, who created the comic strip. Thanks are also
due to Sergei Gelfand of the Anierican Mathematical Society’s Editorial Division,
who guided this project from)the conception to its conclusion and whose advice
and prodding were invaluable. Finally, we would like to thank our families for their
support, care, and patience throughout the years.

While working, on the book the authors benefited from partial support of the
Agence Nationale dela Recherche (France), grants OSQPI (2011-BS01-008-02, GA
and SJS) and StoQ (2014-CE25-0003, GA), and of the National Science Foundation
(U.S.A.), awards DMS-0801275, DMS-1246497, and DMS-1600124 (all SIS).
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CHAPTER 0

Notation and Basic Concepts

0.1. Asymptotic and non-asymptotic notation

The letters C, ¢, c, cg, ... denote absolute numerical constants, independent of
the instance of the problem at hand. However, the actual values corresponding
to the same symbol may change from place to place. Such constants are always
assumed to be positive. Usually C or C’ stands for a large (but.finite) number,
while ¢ or ¢y denotes a small (but nonzero) number. If & constant is allowed to
depend on a parameter (say n, or ), we use expressions suchyas C,, or ¢(g).

When A, B are quantities depending on the dimension (and/or perhaps on
some other parameters), the notation A = O(B) @neans that there exists an abso-
lute constant C' > 0 such that the inequality A <~C'B holds in every dimension.
Similarly, A = Q(B) means that B = O(A), and A = ©(B) means both A = O(B)
and B = O(A). We emphasize that these are\non-asymptotic relations; they are
supposed to hold universally, in every“instance of the problem, independently of
any other parameters that may be involved, and not just in the limit. We also write
A< B, Az B and A ~ B as alternative notation for A = O(B), A = Q(B) and
A = O(B) respectively. However, Sometimes we will want to indicate relations that
have an asymptotic flavor. Forexample, A ~ B will mean that A/B — 1 as the
dimension tends to o (or as'some other relevant parameter tends to its limiting
value), and both A = o(B) and A « B mean that A/B — 0. If we want to indicate
or emphasize that a dependence (of either kind) is not necessarily uniform in some
of the parameters, we may write, for example, c¢(a) or A = O.(B) to identify the
parameter(s) on which the relation in question does or may depend, and similarly
for A ~, B (asymptotic equivalence for fixed p). Note that if there is only one
parameter involved (say, the dimension n), then A ~ B implies A ~ B; however,
A ~, B does’not necessarily entail A ~ B.

0.2. Euclidean and Hilbert spaces

Throughout this book, virtually all the normed spaces we consider will be finite-
dimensional (most concepts do extend to infinite-dimensional spaces, but we do not
dwell on this). In the case of real or complex Hilbert spaces, we denote by (¥, x)
the inner product of two vectors ,x, and by || = 1/{t,¢) the corresponding
Hilbert space norm. For a complex Hilbert space H, we use the convention that
the inner product is conjugate linear in the first argument and linear in the second
argument: if ¥, x € H and A € C, then

</\¢7X> = ;\<’(/)7X> and <¢, /\X> = /\<¢7X>

This convention is common in physics literature, but differs from the one usually
employed in mathematics.



4 0. NOTATION AND BASIC CONCEPTS

When H,H' are (real or complex) finite-dimensional Hilbert spaces, we denote
by B(H',H) the space of operators (= linear maps) from H' to H, and B(H) =
B(H,H). The adjoint of an operator A € B(H',H) is the unique operator A’ e
B(H,H') satisfying the property

(0.1) (W, AY') = (AT, ¢)
for any v € H,¢' € H'. We denote by B**(H) the space of self-adjoint operators
satisfying AT = A; B%(H) is a real (but not complex) vector subspace of B(H).

The dependence A — AT is conjugate linear. A simple but important instance
of this operation is when H' = C: if we identify p € H with an operator z +» 2@
belonging to B(C,H), then the adjoint of that operator is o' = {¢,-> € B(H,;C) =
H*.

The notation B(-,-) will be occasionally used for the corresponding concepts
in the category of normed (or just vector) spaces. Note that while B stands for
“bounded,” in the finite-dimensional setting all linear operators are ‘bounded and
so—if minimal care is exercised—this will not introduce ambiguity. On the other
hand, the notation T will be reserved for operators acting between Hilbert spaces; in
other contexts we will use the usual functional analytic notation 7% for the adjoint
of a linear map 7.

If H is a complex Hilbert space, we denote by’# ‘the Hilbert space which coin-
cides with H as far as the additive structure is.concerned, but with multiplication
defined as (A\,z) — Az. Again, the identity-map H 3 ¢ — ¢ € H is R-linear,
but not C-linear. Still, the Hilbert spaces H and H are isomorphic. Explicit iso-
morphisms can be constructed as follows:.if (e;) is an orthonormal basis in H and
Y = Y Ajej € H, we denote by 1 the vector > \je;; then the map 1 — 1 is a
Hilbert-space isomorphism betweeir# and H. However, this identification between
H and H is not canonical since.it~depends on the choice of a basis. (In general,
a mathematical procedure/construction/morphism is said to be canonical when it
depends only on the underlying structure of the object(s) at hand and does not
involve any additional arbitrary choices. An identification between two spaces is
canonical when there is only one natural candidate for an isomorphism. In the
setting of vector spaces, “canonical” is roughly the same as “can be defined in a
coordinate-free ‘way.”) In our context, it is the dual space H* = B(H,C) which
identifies canonically with % = B(C,H) via the map H* 3 o' < ¢ € H. This
subtlety does'not arise in the real case since the map 1 +— 1T is R-linear and so the
dual space H* = B(H,R) identifies canonically with H.

Here is some more notation: Sy is the sphere of a real or complex Hilbert
spacé H, and S~ ! = Sgn. We denote by vol the Lebesgue measure on a finite-
dimensional Euclidean space, and occasionally by vol,, the Lebesgue measure on
R™ if we want to emphasize the dimension. If H is a linear or affine subspace, we
denote by voly the Lebesgue measure on H. We also denote by o the Lebesgue
measure on S"~ !, normalized so that o(S""!) = 1 (see Appendix .

0.3. Bra-ket notation

When working with objects related to Hilbert spaces, particularly the complex
ones, we use throughout the book Dirac’s bra-ket notation. It resembles the conven-
tion, which may be familiar to some readers and that is commonly used, usually in
the real setting, in linear programming/optimization. In that convention, z € R™
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is a column vector (an m x 1 matrix, which can also be identified with an operator
from R to R™); the transposition 27 is a row vector, or a linear functional on R™;
xy” is the outer product of column vectors x and y, while 7y is their inner (scalar)
product, defined if x and y have the same dimension.

The Dirac notation has a very similar structure, the differences being that it is
(at least a priori) coordinate-free, that the primary operation is T rather than 7
and that the identification of a given object as a vector or as a functional is intrinsic
in the notation. “Standard” vectors in H are written as |¢) (a ket vector). The
same vector, but thought of as an element of H* <« #, is identified with |) and
written as (| (a bra vector). The bra-ket notation works seamlessly with standard
operations on Hilbert spaces. The action of a functional {(¢)| on a vector_|x) is
{(Y|x), an alternative notation for the scalar product (¢, x). If A~e-B(H) and
1 € H, then we have A|y)) = |Av) and (Ay| = (AJy))T = (| AT. Consequently, the
quantity (1’| A|1)) can be read as (1’, Ay or as (AT, 1), the equality of which is
a restatement of the definition .

Let Hi,Ho be real or complex Hilbert spaces, and let“wi,%2 be vectors in
H1, Ho respectively. Then the operator |1 ){(va| : Ha —\Hy acts on x € Hy as
follows

) = ()2 lx) = 2y

or, in the standard notation, x — {12, x)11. This operator has rank one unless one
of the vectors 1,19 is zero.

In some mathematical circles, the operator |11 (12| is sometimes denoted ¥ ®
g or Py ® 11, or even Yy ® 1. However)such notation is inconvenient and often
ambiguous, and it becomes unmanageable when the Hilbert spaces, in which 4
and 15 live, are themselves equipped. with a tensor product structure.

When F < H is a linear subspace, we denote by Pg the orthogonal projection
onto E. When F is 1-dimensional, we have Pr = |z){z| for any unit vector z € E.

We denote the standard basis of C? by (|1),...,|d)). (Note that while (|5))is
just one of many orthenormal bases of C?, it becomes canonical if we take into ac-
count the lattice structure.) However, sometimes we will employ the enumeration
(10),]1),...,|d.— 1)), particularly for d = 2, where we will follow the traditional
convention fromcomputer science and use (]|0),|1)). Either way, we will refer to
this basis as ‘the computational basis. (As explained in Section the designa-
tion “computational basis” may have an operational meaning, but such subtleties
will be ‘normally beyond the scope of our analysis.) Nevertheless, in some cases,
particularly in the real context, we will use the notation ey, es, ..., eq that is more
common in the mathematical literature.

EXERCISE 0.1. Check the following properties, where ¥, x1 € H1, ¥2, X2 € Ho,
X3 € Hs, and A € B(H1,Hs).
(i) product/composition: |11 Xa| o [x2)Xx3| = (a2, x2)|11 X3l
(ii) adjoint: (|31 ){ep2|)T = [2)(¥n|.
(iii) trace: Tr |11 )(xa| = Oxa, ¥1), Tr (Al )X wa|) = (o] Al ).
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0.4. Tensor products

Whenever (H;)1<i<k are real or complex finite-dimensional Hilbert spaces, we
consider the tensor product (over the real or complex field, respectively)

k
(0.2) H=®Hi=H1®H2®"'®/H1€,

i=1
which is often called a multipartite Hilbert space (or bipartite when k = 2). The
space H carries a natural Hilbert space structure given by the inner product defined
for product vectors by

k
G ® - @vrx1 @ @xky = | [Wirxa

i=1
and extended to H by multilinearity. There are canonical identifications

B(é/}'{i> — éB(H¢)7

where the tensor products are over the real or complex field, respectively. In the
complex case only, another canonical identification is

(0.3) B (é”ﬂ> — éBS?‘(’Hi),

where the tensor products are over the complex field on the left-hand side and over
the real field on the right-hand side. Except in the trivial cases, the analogue of
is false in the setting of real Hilbert spaces: e.g., B%*(R?)® B%*(R?) is a proper
subspace of B%(R? ® R?), which.can be easily seen by comparing the dimensions.

While it is occasionally computationally convenient to allow some of the factors
in to be 1-dimensional,(such factors may be just dropped and so, when referring
to a multipartite Hilbert.space, we will normally assume that all the factors are of
dimension at least 2.

We often work ‘with concrete spaces such as (C?)®*, which corresponds to k
qubits. In that case-the computational basis is obtained by the 2¥ vectors of the
form |i1)®- - ~®Jix ), where (i1, ...,4;) € {0,1}*. It is customary to drop the tensor
product sign: (for example the computational basis of C2 ® C? consists of the 4
vectors 100), [01), [10),|11).

We'also point out that tensor products commute with the operation of taking
dual, ive., there is a canonical identification

EXERCISE 0.2. Let Hi,H2 be complex Hilbert spaces, and consider vectors
21,91 € H1 and 29, y2 € Ho. Write explicitly the operator |21 ® z2 + y1 @ y2 ){z1 ®
T2 + Y1 ® y2| € B (H1 ® Ha) as a linear combination of operators of the form
|2 X z| ® |2")(Z'|, with z € H; and 2’ € H,.

0.5. Complexification

Let V' be a real vector space. The complezification of V is the vector space
VC = V®C (the tensor product is over the reals). Elements of VC are of the form
r®1+y®i (for z,y € V), which we write  + iy for short.
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Note that the complexification of B%(C") is canonically isomorphic to B(C").
Note also that for real spaces V,W, (V ®g W)® and VC ®c W are canonically
isomorphic.

Similarly, if f : V' — W is a linear map between real vector spaces, the map
x + iy — f(x) +if(y) defines canonically a C-linear map (the complexification of
f) from VE to W€,

An operation that goes in the opposite direction to complexification is that of
dropping the complex structure, i.e., considering a complex space as a real space, so
that for example C™ is treated as R?". In the abstract setting, if the original complex
space was endowed with a scalar product (-, -), the corresponding real scalar product
is Re (-, -). While this is frequently a useful point of view, particularly in geometric
considerations (see Section , some caution is needed as this operation is not as
sound functorially as complexification. For example, C&¢ C = C identifies this way
with R2, even though R? ®g R? is 4-dimensional.

0.6. Matrices vs. operators

We denote by M, ,, the space of m x n matrices, either real of complex, and by
M,, if m = n. The entries of a matrix M € M,, ,, are denoted by (1m;;)1<i<m,1<j<n-
We denote by MT the Hermitian conjugate of M we., (m;)! = (mj;). We will
denote by M52 := {M € M,,, : M = M}, the subspace of M,,, consisting of Hermit-
ian (or self-adjoint) matrices. For matrices with-real entries, “self-adjoint” simply
means “symmetric.”

As a default, we identify complex m x n matrices with operators from C" to
C™ and write M,,, ,, = B(C",C™), and similarly M,, = B(C"), M$* = B%(C").
The preceding definitions ensure that the above notion of T is consistent with that
introduced in Section [0.2] and-that.the operator composition is consistent with
matrix multiplication. Again \this is fully parallel to the conventions in linear
analysis/optimization in thewreal setting.

More generally, M}, and M,, can (and often will) be identified with operators
on/between any Hilbert)spaces of the appropriate dimensions. However, such iden-
tification requires specifying bases in the spaces in question and, consequently, is
not canonical.

In the real'case, M,, is a vector space of dimension n?, and M$? is a subspace
of dimensionyn(n + 1)/2. In the complex case, M,, is a complex vector space of
complex dimension n?, while M5 is a real vector space of real dimension n?.

Anatural inner product on M,, ,, is given by the trace duality: if M, N € M, ,,
then

(0.4) (M,N)=Tr M'N.

(Recall that we use the “physics” convention for sesquilinear forms, as explained in
Section ) The Euclidean structure on M, , induced by this inner product is
called the Hilbert-Schmidt Euclidean structure, and the corresponding norm is the
Hilbert-Schmidt norm |M|as = VTr MTM. (In linear algebra the more commonly
used name is Frobenius.) Note that in the complex case the inner product will, in
general, not be real. However, if M, N € M52 then (M, N) = Tr M N is real (even
if some of the entries of M, N are complex).
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0.7. Block matrices vs. operators on bipartite spaces

It is convenient to identify operators on C"™®C™ with elements of M,,,,, having a
block structure. More precisely, to each operator A € B(C"™®C™) there corresponds
the block matrix

My - Mim
(0.5) M= : :
My, - Mym
where, for each i, j € {1,...,m}, the matrix M,; € M,, is defined as
@ @ANA(H @ [1)) -+ (G RCNA() ®[n))
0.6) My = : :
@ @<nA(H®@11)) -+ (] @<n])A(]7) @ n))

0.8. Operators vs. tensors

Let H1,H2 be complex Hilbert spaces. The map.u ®v — |v){u| induces a
canonical identification between the spaces Hi ® Ha-and B(Hi,Hz). Recall from
Section that H; identifies canonically with H3

As explained in Section [0.2] the use of the complex conjugacy can be avoided
if we agree to work with specified bases. Fix bases (e;)ier in H1 and (f;);es in
Ho. Define a map vec : B(H1, Ha) — Ha ® Hy as follows: for i € I and j € J, set
vec(|f;Xei|) = f; ® e; and extend the definition by C-linearity. In other words, for
1 € Hi,1e € Ho we have vec [1h2){(1)1| = 12 ® ¥1 where conjugacy is taken with
respect to the basis (e;).

0.9. Operators vs. superoperators

It is convenient to use the terminology superoperator to denote maps acting
between spaces of operators, or between spaces of matrices. The distinction between
operators and superoperators may seem rather arbitrary since, as we noted earlier,
B(#H) and M, ,, carry a natural Hilbert space structure. However, it helps to
organize one’s thinking and is widely used in quantum information theory.

Accordingly, we use two different types of notation to denote the identity map:
the identity, operator on a Hilbert space H is denoted by I3 (or I,, if H = C™ or
R™, or even simply I if there is no ambiguity), while the identity superoperator on
B(#) is denoted by Idp(s) (or simply Id).

0.10. States, classical and quantum

The concept that plays a central role throughout this book is that of a quantum
state.

We start by introducing the classical analogue: given a finite set S, a classical
state on S is simply a probability measure on S (or, equivalently, a probability
mass function indexed by s € S). We denote by A,, the set of classical states on
{0,1,...,n}. Geometrically, A,, is an n-dimensional simplex; we shall return to
this circle of ideas in Chapter [T}

Let H be a complex finite-dimensional Hilbert space. A quantum state (or
simply a state) on H is a positive self-adjoint operator of trace one. We denote by
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D(#) the set of states on H (the letter D stands for density matriz, which is an
alternative terminology for states). If H = C"*!  the subset of D(#) consisting of
diagonal operators identifies naturally with A,, (and similarly for operators diagonal
with respect to any fized basis in any finite-dimensional Hilbert space).

In functional analysis, a state on a C*-algebra is—by definition—a positive
linear functional of norm 1. This is consistent with the definitions of classical
and quantum states introduced above. Indeed, given a finite set .S, states on the
commutative C*-algebra C° correspond to classical states on S. Similarly, given
a finite-dimensional complex Hilbert space H, the states on the C*-algebra B(#)
can be identified with elements of D(H) via trace duality (0.4).






CHAPTER 1

Elementary Convex Analysis

In this chapter we present an overview of basic properties of convex sets and
convex cones. Unless stated explicitly otherwise, we shall assume that thebase field
is R and that all the objects involved are finite-dimensional. Howevery notions for
complex spaces will be important and even indispensable in some settings. They
are typically introduced by repeating mutatis mutandis the definitions of their real
counterparts. At the same time, one can always consider, them-as real spaces by
ignoring the complex structure.

If V is an n-dimensional vector space over R, we will usually assume that V is
identified with R™. This implies in particular that there'is a distinguished Fuclidean
structure (i.e., a scalar product) in V, so that V is.also identified with its dual V*.

1.1. Normed spaces and convex sets

1.1.1. Gauges. We start with a_simple-proposition which characterizes the
subsets of R™ that can be the unit balls for some norm. A subset K < R™ is a
convex body if it is convex, compact, and with non-empty interior. We similarly
define convex bodies in linear (or affine) subspaces of R”. We will call K symmetric
(or O0-symmetric if there is an ambiguity) if it is centrally symmetric with respect
to the origin, i.e., K = — K,

PROPOSITION 1.1 (easy). Let K be a subset of R™. The following are equivalent

(1) K is a symmetric convezx body.
(2) There is.a morm on R™ for which K is the unit ball.

Given K, the corresponding norm can be retrieved by considering the gauge of
K, also called/the Minkowski functional of K, which is defined for = € R™ by

(1.1) ||k =inf{t =0 : zetK},

wheretK = {tz : x € K} (see Figure[L.1)). If X is a normed space (most often,
X-=(R™| - ), we will denote its unit ball {z : ||z < 1} by Bx. (However, to
lighten the notation, we will use specialized symbols for various “common” spaces.)
The correspondence X — By is the inverse of the correspondence K — | - | k.

In the complex case, the analogue of symmetry is circledness. A convex body
K < C" is said to be circled if for every # € R and z € K we have e’z € K. Circled
convex bodies are exactly the unit balls of norms in C™.

Equation will also be used to define the gauge of a non-necessarily-
symmetric convex set K. However, in order for the gauge to take only finite values
and to avoid other degeneracies, we will usually insist that K contain the origin in
its interior and that K be closed. We will still denote by || - | x the gauge of such
convex set, and we will still have the (essentially tautological) relation

(1.2) K ={z : ||lz|x <1}.

11
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K

/]

FIGURE 1.1. Gauge of a convex body.

(Observe that if K is closed, the infimum in is always attained.)\However, if
K is not assumed to be symmetric, we should note that in general ||z|x # | — z| k-

We point out that the correspondence between convex.bodies)and their gauges
is order-reversing: K < L if and only if || - [k = || - |- Inthe same vein, we have
| exc = 1] - | for ¢ > 0.

1.1.2. First examples: /,-balls, simplex, polytopes, and convex hulls.
For 1 < p < 400, we denote by || - |, the £,-norm, defined for z € R™ via

n 1/p
(1.3) o], = (Z mv’) ,
k=1

where the limit case p = 400 should be understood as ||, = max{|z;| : 1<k <
n}. Recall also that || - |2 will be usually denoted by |- |. The ¢,-norms satisfy the
following inequalities: if 1 < p < ¢~<.00 and z € R", then

(1.4) [#le< Izl < P~z ] .

The normed space (R™,[ [,) is denoted by £} and its unit ball by By .

If A c R", we denote by conv A the convex hull of A, i.e., the set of all convex
combinations of elements of A, which is also the smallest convex set containing
A. The following theorem bounds the length of convex combinations needed to
generate the (convex hull.

THEOREM 1.2 (Carathéodory’s theorem, see Exercise . Let A< R™. Then
conv(A).is the set of all convex combinations of at most n+1 elements of A. The
same assertion holds if A < H, where H is an n-dimensional affine subspace of R™
for some m > n.

A convex body is a polytope if it is the convex hull of finitely many points.
The simplest polytope is the simplexr which is the convex hull of n + 1 affinely
independent points in R™. This is the prototypical example of a non-symmetric
convex body (for n = 2). Note that Carathéodory’s theorem implies that when
K = conv A, then K is the union of all simplices with vertices in A (the dimension
of each simplex being equal to dim K).

A simplex is regular if all the pairwise distances between the n + 1 vertices
are equal. A convenient representation of a regular simplex is as follows: consider
the affine hyperplane H — R™*! formed by all vectors whose coordinates add up
to 1, and denote by A,, the convex hull of the vectors from the canonical basis in
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R"™*1. Note that A, is a convex body in H, but only a convex subset of R"*1. The
simplex A,, corresponds to the set of classical states, i.e., probability measures on
{0,...,n}.

EXERCISE 1.1 (Carathéodory’s theorem). Let A  R™, x € conv A and consider
a decomposition x = Zfil Aix; (where ();) is a convex combination and z; € A)
of minimal length N. Show that the points (x;) must be affinely independent, and
conclude that N < n + 1.

EXERCISE 1.2. Let A  R™ be a compact set. Show that conv A is compact.

1.1.3. Extreme points, faces. Let K < R" be a convex set. A point z'€ K¥is
said to be extreme if it cannot be written in a nontrivial way as a convex combination
of points of K, i.e., if the equality z = ty+ (1—1t)z for t € (0,1) and y, 2 K implies
that © = y = z. The following fundamental theorem asserts that, in.a sense, all
information about a convex body is contained in its extreme points.

THEOREM 1.3 (Krein—Milman theorem, see Exercise{1.6). ~Let K < R™ be a
convex body. Then K is the convex hull of its extreme points.

Let F, K be closed convex sets with F < K. Then F is called a face of K
if every segment contained in K whose (relative).interior intersects F' is entirely
contained in F. If F # (§ and F # K, F is said to'be a proper face. Note that a
singleton {z} is a face if and only if x is an extreme point. If F is a face of K with
dim F' = dim K — 1, then F is called a facet.

A frequently encountered setting in convex or functional analysis is that of two
convex sets K, L and a linear or affine map u such that u(L) ¢ K. For example, if
X,Y are normed spaces, and w.: X Y a linear operator, then v is a contraction
iff u(B X) c By. The following elementary observation makes it possible to use the
facial structure of the sets in question to study these kinds of situations.

PROPOSITION 1.4 (Affiie’'maps preserve faces, see Exercise . Let K, L be
closed convex sets, let-dbe a point in the relative interior of L, and let u: L — K
be an affine map. If F_is a face of K such that u(x) € F, then u(L) c F.

Finally, we.introduce some more vocabulary. Let K < R" be a closed convex
set. An affine’hyperplane H < R™ is said to be a supporting hyperplane for K if
H n 0K # & and K is entirely contained in one of the closed half-spaces delimited
by H. Notethat for any x € 0K, there is at least one supporting hyperplane for K
which eontains x. A proper subset F' — K is an exposed face if it is the intersection
of K with a supporting hyperplane. We say then that H isolates F' (as a face of K).
Similarly, a point € K is an exposed point if {x} is an exposed face, i.e., if there
exists a vector y € R™ such that the linear functional (y, -) attains its maximum on
K only at . These notions are studied in Exercise [1.5|

EXERCISE 1.3. Show that the (relative) boundary of a closed convex set is a
union of exposed faces.

EXERCISE 1.4. Prove Proposition [T.4]

EXERCISE 1.5 (Extreme vs. exposed points, faces vs. exposed faces). Let K <
R™ be a closed convex set.
(a) Show that every exposed face F of a closed convex set K is indeed a face of K,
which is necessarily proper (i.e., F' # K, (¥).
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(b) Show that the relation “F is a face of G” is transitive.

(¢) Show that every maximal proper face of a closed convex set K is exposed.
Deduce that every facet of K (i.e., a face of dimension dim K — 1) is exposed.

(d) By (a), any exposed point is extreme. Give an example of a convex body
K < R? with an extreme point which is not exposed. (However, a theorem by
Straszewicz states that any extreme point is a limit of exposed points; see Theorem
18.6 in [Roc70].) Deduce that the relation “F is an exposed face of G” is not
transitive.

(e) More generally, for k < n — 2, give an example of a convex body L < R" with
a k-dimensional face which is not exposed.

(f) Show that F is a face of K if and only if there exists a sequence F' = Fp:c\F}
... C Fy = K such that F;_; is an exposed face of F; fori=1,...,s:

(g) If every point in the (relative) boundary of a convex set K is extreme, K is
called strictly conver. Show that, in that case, every point of the*boundary is an
exposed point.

EXERCISE 1.6. Prove the Krein-Milman Theorem [I.3]by induction with respect
to n. (Start by showing that any convex body has at least one extreme point.)

EXERCISE 1.7. Show that the extreme points ¢f the\set of quantum states D(H)
are operators of the form [¢))(1)|, where ¢ € H is a'norm one vector (i.e., rank one
orthogonal projections).

EXERCISE 1.8. Show that every face of a-polytope is a polytope.
EXERCISE 1.9. Show that every proper face of a polytope is exposed.
EXERCISE 1.10. Find the extreme points of B} for 1 < p < 0.

EXERCISE 1.11 (Hanner’s“inequalities and uniform convexity). The goal of this
exercise is to prove Hanner’s inequalities about the geometry of the p-norm, which
lead to precise quantitative statements about convexity and smoothness of balls in
L,-spaces.

(i) Let p e (1,2]. Forit= 0, set a(t) = (1 +¢)P~ + |1 — [P~ !sign(1 — ). Show that
for a,b € R, we have |a + b|P + |a — b|? = sup{a(t)|a|P + a(1/t)[b|? : t > 0}.
(ii) Let p € (1;2]>Show that for z,y € R",

(1.5) lz+ vl + Iz =yl = (2l + lylp)” + 2l = lylpl” -

Show alse’that, for p € [2, ), (1.5) holds with < instead of >.
(iif)Let p € (1,2]. Prove also that for z,y € R.,

<x +yllb + [z —ylb
2

2/p
(1.6) ) > Jel2 + (0 D)yl

(iv) Fix p € (1,00). Show that for any € > 0 there exists § > 0 such that whenever

r,y € By verify |z —y[, = ¢, then H%”Hp < 1 — 9. (This property of B} is a

quantitative version of strict convexity and is called uniform convezity.)
EXERCISE 1.12 (A Borel selection theorem). Let K < R™ be a convex body.

Show that there is a Borel map © : R™ — K with the property that for every
x € R"™ we have (O(z),z) = max{{z,z) : z€ K}.
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1.1.4. Polarity. This section and the next one will present elements of convex
analysis. Readers not familiar with the subject are encouraged to go over the
suggested exercises, which are generally simple and elementary, but often contain
facts not included in standard texts.

Since norms on R™ are in one-to-one correspondence with symmetric convex
bodies, the notion of duality between normed spaces induces a duality for convex
bodies, which is called polarity. Its explicit definition is as follows: if A < R"”, the
polar of A is

(1.7) A° :={yeR" : (z,y) <1 forall ze A}.
In particular (cf. (1.2]) and Exercise |1.13))
(1.8) lylae = sup (z,y).

ze Au{0}

The key example is A = Bx (the unit ball of X); we have then A° = Bxx, the
unit ball with respect to the dual norm, the duality being induced by the standard
Euclidean structure. For example, duality of ¢,-norms translates into

(1.9) (By)° = By,

where 1/p +1/¢ = 1.

A larger important class of sets is that of convex bodies containing 0 in the
interior; it is stable under the operation of polarity. While most of the properties
of the operation K — K° listed below hold for more general sets, this last class
is sufficient for most applications (with the.notable exception of cones, see Section
12).

Because of the inequality appearing in the definition (L.7]), the concept of polar-
ity a priori makes sense only in thé category of real Euclidean spaces. We exemplify
adjustments needed to make it work in the complex setting in Section [I.3.2] where
that setting is at times indispensable.

Since the notion of polarity appeals to the Euclidean structure on R", it is not
immediately canonical in the category of vector spaces. Equivalently, it depends
on how we identify the vector space R™ with its dual. One useful way to describe
this dependence is as follows: if u € GL(n,R), then

(1.10) (wA)° = (uT)~1(4°).

(The dependence of polarity on translation is somewhat less transparent; one
promising)approach to its description is explored in Appendix @) A way to make
polarity) canonical is to consider the polar K° as a subset of V* the dual of the
ambient space V' containing K. Basically, all the formulas remain the same, except
that if x € V and z* € V*, then {(x*,z) needs to be understood as z*(z). This
approach is occasionally useful, but is normally avoided since it requires considering
twice as many spaces as the other one.

A fundamental result from convex analysis is that if K is closed, convex and
contains the origin, then

(1.11) (K°)° = K

(see also Exercise . This is the bipolar theorem, a baby version of the Hahn—
Banach theorem. When K is a symmetric convex body, this is just saying that
a finite-dimensional normed space is reflexive (i.e., canonically isomorphic to its
double dual, see [Fol99]).
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At the functional-analytic level, the duality exchanges the operations of taking
a subspace and taking a quotient. Geometrically, this translates into the fact that
polarity exchanges the projection and the section operations. Here is a more precise
statement: if K < R", then, for every linear subspace E < R"™,

(1.12) (PEK)° =En K°,

where Pg denotes the orthogonal projection onto E. Moreover, if K is a convex set
containing 0 in the interior, then

(1.13) (K nE)° = Pg(K°).

Note that in the left-hand sides in and , the polars are taken inside F,

equipped with the induced inner product.
Another pair of simple but useful relations involving polars is

(1.14) (KUL)P® =K°AL°
for any K, L < R™ and
(1.15) (K nL)°=conv(K°u L°)

if K, L are closed, convex and contain the origin.

EXERCISE 1.13. Find a gap in the following argument. Since |y|a> < 1 iff
y € A° iff sup,calx,y) <1, it follows by homogeneity that |y ae = sup,e4{z,y).

EXERCISE 1.14 (Stability properties of polarity). Show that K < R™ is bounded
iff K° contains 0 in the interior. Similarly;if K is convex, then it contains 0 in its
interior iff K° is bounded.

EXERCISE 1.15 (The genetal“bipolar theorem). Show that if K < R” is an
arbitrary subset, then (K°)° =conv(K u {0}). (This holds even if K = &, if one
applies reasonable conventions, )»The bipolar theorem is a special case of this
statement.

EXERCISE 1.16 (Polar of a projection). Prove (1.12).

EXERCISE,_1.17(Polar of a section). The following argument seems to prove
that (K n F)° & Pg(K°), whenever K is an arbitrary convex body containing the
origin.

We will represent any point in R™ as (x,z'), where x € E,x’ € E+. The condition
y € (K\NoE)° < E means that {z,y) < 1 for x € K n E. In other words, the
functional x — {x,y) defined on E is dominated by || - |k, and so, by the Hahn—
Banach theorem, it extends to a linear functional on R™ also dominated by || - | -
That extension must be of the form (z,2') — {(z,2'), (y,9')) for somey’ € E*, and
the domination by | - |k means that (y,y') € K°. In particular, y € Pg(K°).

Find an error. Fix it and complete the proof of (under the assumptions
stated there). Give an example of K with 0 on the boundary such that fails.

EXERCISE 1.18 (Polars of unions and intersections). Prove (1.14) and (1.15).
For the latter, show by examples that each of the hypotheses and the closure on
the right-hand side may be needed.

EXERCISE 1.19 (Polars of polytopes). Show that the polar of a polytope K
R™ is a polytope if and only if dim K = n and 0 is an interior point of K.
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1.1.5. Polarity and the facial structure. If K < R" is a closed convex set
containing 0 in the interior and F' is an exposed face of K, let us define

(1.16) v (F) ={ye K° : {y,xy=1forall z € F}.

Then (see Exercise vi (F) is an exposed face of K°. Moreover, F > v (F)
is an injective order-reversing (with respect to inclusion) map between the corre-
sponding sets of exposed faces. If K is a convex body (and so vi- is also defined),
then vge (Vi (F)) = F for any exposed face F of K.

KO

FIGURE 1.2. A polytope and its polar. The reader is encouraged
to visualize the bijection vx between vertices (resp. edges, facets)
of K and facets (resp. edges, vertices) of "W°. The map vg is
vaguely related to the Gauss map from- differential geometry.

If K is a polytope, then the action of v is very regular: every vertex is mapped
to a facet and vice versa, and, more generally, every k-dimensional face is mapped
to an (n — k — 1)-dimensional face (see Figure [L.2).

The situation gets more complicated when dealing with general convex bodies:
if Fis a maximal face (necessarily exposed, see Exercise , then vi(F) is a
minimal exposed face (not necessarily a minimal face, and certainly not necessarily
an extreme point of K)» However, it is still possible to retrieve all maximal faces
of K from extreme pointsof K°. We have

PROPOSITION 1.5, Let K < R™ be a conver body containing 0 in the interior.
For y e 0K° we define

(1.17) F,={reK : {y,z)=1}.
Then Fy,_i5 an exposed face of K. Moreover, the family

{F, : y 1is an extreme point of K°}
contains the family of mazximal faces of K.

The proof of the Proposition is outlined in Exercise [1.21] (see also Exercise
129).

EXERCISE 1.20. Prove the properties of vi listed in the paragraph following

its definition in (1.16]).

EXERCISE 1.21 (Extreme points and maximal faces). Prove Proposition
How does the assertion need to be modified if K is only a closed convex set con-
taining 0 in the interior (i.e., not necessarily bounded)?
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EXERCISE 1.22 (A dual Krein-Milman theorem). Let K < R™ be a closed
convex set containing O in the interior, let F, be defined by , and let F be
the set of extreme points of K°. Show that the formula | J . Iy = 0K is a dual
restatement of the Krein—Milman theorem (Theorem [1.3]).

EXERCISE 1.23. Give an example of a body K = R? (containing 0 in the
interior) with a maximal face F' such that v (F) is not necessarily a minimal face.

EXERCISE 1.24. Give an example of a body K < R? (with 0 in the interior) and
y, an extreme point of K°, such that the face Fy, given by (1.17)) is not maximal.

1.1.6. Ellipsoids. A convex body K < R" is an ellipsoid if it is the“image
of By under an affine transformation. In particular, O-symmetric ellipsoids are
exactly the unit balls of Euclidean norms on R™ (i.e., norms induced“by)jan inner
product). Given a 0-symmetric ellipsoid & < R™, we denote by (¢, )¢ the inner
product associated to &. Note also that given a 0-symmetric ellipsoid &, there is a
unique positive invertible matrix 7" such that & = T'(BY).

As explained in Section[0.4] there is a canonical notion of‘tensor product within
the category of Euclidean spaces. Accordingly, given two 0-symmetric ellipsoids
& < R™ and & < R"™, we denote by & ®2 & < R" QR"™ the resulting ellipsoid,
which satisfies

(@@, y®Y )ew.sr = s y)el@ Y ) s
for z,y € R" and /.y’ € R". An alternative preSentation is to say that if T’ (resp.,
T') is a linear transformation on R” (fesp.,.on R™) such that & = T(Bg) (resp.,
such that & = T’(BY")), then

& @ & = (TRT)(B™),
where we identified R™ ® R™ with'R?"'

EXERCISE 1.25 (Spherical sections of ellipsoids). Show that any (2n — 1)-
dimensional ellipsoid & admits an n-dimensional central section which is a Eu-
clidean ball.

EXERCISE. 1.26 ‘(Polar of an ellipsoid is an ellipsoid). Follow the outline below
to give an elementary proof of the fact that the polar of an ellipsoid & = R”
containing-Q in’"its interior is again an ellipsoid, and that among translates of a
given ellipsoid the volume of the polar is minimized iff the translate is 0-symmetric.
(See Exercise for a computation-free proof.)
(ayShow, by direct calculation, that if 0 < @ < 1 and D, < R? is the disk of

unit) radius and center at (a,0), then Dj is an ellipse with center at (—1%5,0)

. . . 1 1
and principal semi-axes of length -—— and Wit

g In particular the area of Dy, is
minimal iff a = 0.
(b) Infer similar statements for the n-dimensional Euclidean ball, and then deduce

the desired conclusion.

1.2. Cones

A nonempty closed convex subset C of R™ (or of any real vector space) is called
a cone if whenever x € C and t > 0, then tx € C. An equivalent definition: C is a
closed set such that z,z’ € C and t,t' > 0 imply ¢tz + t'z’ € C. Examples of cones
include:
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R
(2) the Lorentz cone L, = {(wo,21,...,@n-1) : o = 0, ZZ: x} < a3} < R™ for
n=2

3) the cone PSD = PSD(C") c M2* of complex positive semi-definite matrices.

1.2.1. Cone duality. The dual cone C* is defined via
(1.18) C*={zeR" : VyeC{z,y) =0}

As was the case with the polarity (see Section , the notion of the dual cone.is
not canonical in the category of vector spaces since it appeals to the scalar produet.
This can be again circumvented by considering C* as a subset of the veetor.space
that is dual to the one containing C. We will present some advantages of this point
of view in Appendix but will otherwise stick to the more familiar Euclidean
setting.

It is readily checked that the cones R}, £, and PSD defined in the preamble
to Section have the remarkable property of being self-duali.e., verify C* = C.
(For C = PSD, extend the definition mutatis mutandis to the setting of
arbitrary real inner product spaces and use trace duality )

Not surprisingly, the notion of cone duality is stroungly related to that of polarity.
First, a simple argument shows that if C is a (closed>convex) cone, then C* = —C°

and, therefore, by ,

(1.19) (CHE=C:
Similarly, for two closed convex cones Cy, Ca,

(1'20) (Cl Q) Cz)* = m

by . However, we also have.another link to polarity of convex bodies, which is
less obvious. To point out that, link, let us first define a base of a closed convex cone
C < R"™ to be a closed convexset K < C such that (1) the affine space generated by
K does not contain the origin and (2) K generates C, i.e., C = Ry K. An alternative
description (which is.equivalent, see Exercise is as follows: fix a distinguished
nonzero vector_e € R” and the corresponding affine hyperplane

(1.21) H,:={xeR" : (xe) = |e|*},

in which _e\is'the point closest to the origin. If C = R™ is a closed convex cone such
that e & C¥\C*, the set C” defined as

(1.22) C®=CnH,

is'then a base of C (that is, C is the smallest closed cone containing CP, see Exercise
. In particular, knowing C® allows to reconstruct C.

As was to be expected, natural set-theoretic and algebraic operations on cones
induce analogous operations on bases of cones. Sometimes this is as trivial as
(C1 N C2)P = CP N Ch, or as simple as (C; + Ca2)P = conv(CP U CY). In fact, if we
want to stay in the class of closed cones, the more appropriate form of the latter
formula would be

(1.23) (C, +Cz)P = conv(CP U CP)

(see Exercise [1.30f however, such adjustments are not needed under some natural
nondegeneracy assumptions, which we will describe later in Section |1.2.2)).
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What is more interesting—and somewhat surprising—is that the duality of
cones likewise carries over to a precise duality of bases in the following sense (see

Figure see also Lemma in Appendix @

LEMMA 1.6. Let C < R™ be a closed convex cone and let e € CNC* be a nonzero
vector. Let C® = C n H, and (C*)® = C* n H, be the corresponding bases of C and
C*. Then
(1.24) (€ ={yeH, : VoeC® (~(y—e),z—e)<le}.

In other words, if we think of H. as a vector space with the origin at e, and.of C®
and (C*)P as subsets of that vector space, then (C*)P = —|e|?(CP)°.

FIGURE 1.3. A cone and its dual cone. Up to a reflection, the
bases C and (C*)P are polar to each other with respect to e.

PROOF. If (z,e) = (y,e) = |e|?, then (—(y —e),x — e) = —(y,z) + |e|* and
so the condition from can be‘restated as “Vo e C° — (y,z) + |e|? < |e|?” or,
more simply, “Vx € C (y,z) =0.” Since C" generates C (see Exercise , the
latter condition is further equivalent to “(y,x) = 0 for all x € C,” i.e., to “y € C*)”
as required. O

Here are two important classical examples where Lemma applies.

(1) The positive orthant R ™" < R™*™. Take e = (737,..., 747), so that H, is

given by the équation xg + --- + x, = 1. Then (Riﬂ)b = A, the set of classical
states. Since R?fl is self-dual, it follows from Lemma that

(1.25) A% = —(n+ 1)A,.

n

Note that’ the prefactor is —(n + 1) and not —n because the n-dimensional ball
cireumscribed around A, is not of unit radius.

(2) The cone PSD(C™) < M2, Take e = I/n (the mazimally mized state), so
that H, is the hyperplane of trace one matrices. Then PSDP = D(C™), the set of
quantum states. Since PSD is self-dual, it follows from Lemma that

(1.26) D(C")° = —nD(C™).

The bases of the Lorentz cones L, relative to the natural choice e = ey are
Euclidean balls, so applying Lemma [T.6] just tells us that the Lorentz cone is self-
dual (a property which is easy to verify directly). However, other choices of e
lead to nontrivial consequences, see Exercise Another simple but important
observation is that since D(C?) is a 3-dimensional Euclidean ball (the Bloch ball),
the cone PSD(C?) is isomorphic (or even isometric in the appropriate sense) to the
Lorentz cone L4 (see Section [2.1.2).
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EXERCISE 1.27. Let K be a base of a closed convex cone C, and H the affine
space generated by K. Show that K =C n H.

EXERCISE 1.28 (Bases generate cones). Show that if e € R” and a closed convex
cone C = R™ are such that e € C*\C*, and if CP is defined by (1.21)) and (1.22),
then R, CP = C. Give an example showing that the closure is needed.

EXERCISE 1.29 (Nontrivial cones admit bases). Let C = R™ be a closed convex
cone. Show that C admits a base iff C is not a linear subspace iff C # —C.

EXERCISE 1.30. Give an example of closed cones Ci,Cy in R? such that.the
cone C1 + Cy is not closed.

EXERCISE 1.31 (Time dilation and the Lorentz cone). Consider the eone C, =
{r e R" : |z| < {(z,y)} where y € R" satisfies [y| > 1. Show that.Ci¥ = C. for

z=y/VIyP -1

1.2.2. Nondegenerate cones and facial structure: We will be mostly
dealing with (closed convex) cones C < R™ verifying (i) €. "W(—C) = {0} and (ii)
C — C = R™; we will call such cones nondegenerate. The properties (i) and (ii) are
often referred to as C being respectively pointed and full. They are dual to each
other, i.e., C verifies (i) iff C* verifies (ii), and vice.versa; the reader may explore
them further in Exercise [[.32] Here we note the following

LEMMA 1.7. Let C < R™ be a closed convexr cone. Then y is an interior point
of C* iff {y,x) > 0 for every x € C\{0}.

PRrROOF. Let z € C. If B(y,e) c«C* for some € > 0, then
(1.27) (y +u,m) >0 for any |u] <e.

Since inf,|.(y + u,z) = {y;@)~— €l|z|, this is only possible if either (y,z) > 0 or
|z| = 0. This proves the “only-if” part (see also Exercise . For the “if” part, we
note that B(y,¢) < C* follows if holds for z in C n S"~! =: A. This could be
ensured by choosing.e=)inf ¢ 4{y, x), which is strictly positive since the continuous
function (y, -).is pointwise positive on the compact set A. O

COROLLARY.".8. If C is a closed convex cone which is pointed, then 0 is an
exposed paoint of C. If, moreover, C # {0}, then C admits a compact base.

PROOF. Since C is pointed, C* has nonempty interior. If y is any interior point
of €*, Lemma [1.7] says that the hyperplane H = {z € R™ : (y,z) = 0} isolates 0 as
an exposed point of C, and it readily follows that the base of C induced by e = y
is compact. In fact, all the three properties stated in the Corollary are equivalent
(see Exercise [1.32). O

We are now ready to state the main observation of this section. Once made, it
is fairly straightforward to show.

PRrROPOSITION 1.9 (Faces of cones and faces of bases, see Exercise [1.35)). Let
C < R" be a closed convex cone with a compact base C°. When we exclude the
exposed point 0 of C, there is a one-to-one correspondence between faces of C° and
those of C given by F — R, F. Moreover, this correspondence preserves the exposed
(or non-exposed) character of each face.
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An important special case is when x is an extreme (or exposed) point of CP; the
corresponding face of C is then the ray R, x, called an extreme ray (or an exposed
ray). The Krein-Milman theorem (see Section implies then that C is the
convex hull of its extreme rays. We also note for future reference the following
consequence of Proposition (for the second part, appeal to Exercise .

COROLLARY 1.10. All extreme rays of PSD(C™) are of the form Ry ||,
where ¢ € Scn. All rays contained in the boundary of the Lorentz cone L, are
extreme.

EXERCISE 1.32 (Full cones and pointed cones). Let C < R™ be a closed.convex
cone, C # {0}. Show that the following conditions are equivalent:
(a) C is pointed (i.e., C n (=C) = {0}),
(b) C* is full (i.e., C* —C* = R"),
(c) 0 is an exposed point of C,
(d
(
(
(

C admits a compact base,
dim C* = n,
g) spanC* = R™.

)
c)

) C does not contain a line,
e)
f)

EXERCISE 1.33 (Structure theorem for a general cone). If C < R™ is a closed

convex cone, then there exists a vector subspace V < R” and a pointed cone
C’' = V4 such that C =V + (' (a direct Minkowski sum).

EXERCISE 1.34. Deduce the “only #2 part-of Lemma[I.7] from Proposition [T.4}

EXERCISE 1.35. Prove Proposition relating faces of cones to those of their
bases.

EXERCISE 1.36. Show that-if'the cones Cf,C3 are pointed with the same iso-
lating hyperplane, then the elosure on the right-hand side of (|1.20) is not needed.

1.3./Majorization and Schatten norms

1.3.1. Majorization. If x € R", we denote by ' € R™ the non-increasing
rearrangement, of z)i.¢., the coordinates of z! are equal to the coordinates of = up
to permutation, and x% > >ah.

DEFINIFION 1.11. If 2,y € R™ with >, | @; = >, | y;, we say that z is ma-
jorized by\y, and write x < y, if
k k
(1:28) ijl < Zy]l for any k € {1,2,...,n}.
j=1 j=1

Note that, by hypothesis, (1.28]) becomes an equality for k = n.

The majorization property will be a crucial tool in Chapter As a warm-up,
we will use it in the next section to prove Davis convexity theorem and various
properties of Schatten norms (non-commutative ¢,-norms).

There are several equivalent reformulations of the majorization property. We
gather some of them in the following proposition.

PROPOSITION 1.12. For z,y € R™ with >, x; = > y;, the following conditions
are equivalent.

(i) © <y.
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(i) = can be written as a conver combination of coordinatewise permutations
of y.

(iii) There is an n x n bistochastic matriz B such that y = Bx (a matriz is
bistochastic if its entries are non-negative, and add up to 1 in each row
and each column,).

(iv) Whenever ¢ is a permutationally invariant convex function on R™, then
b(z) < B(y).

(v) For everyt € R, we have Y, |z; —t| < X0 |yi — t].

(vi) For every t € R, we have >, (x; —t)" < X1 (y; — )1, where 27 =

max(z,0).

SKETCH OF THE PROOF. Fix y € R", and consider the non-empty convex com-

pact set
K,={zeR" : z <y}

It is easily checked that x is an extreme point of K, if and only. if zb = y!, and
it follows from the Krein-Milman theorem that (i) is equivalent to (ii). Similarly,
the classical Birkhoff theorem, which asserts that extreme (points of the set of bis-
tochastic matrices are exactly permutation matrices, gives the equivalence of (ii)
and (iii). The implications (ii) = (iv) = (v) are.obvious. We check that (v) and
(vi) are equivalent since |z| = 22* — x (using thefact that >, z; = > y;). Finally,
for t = y,b we compute

=1 =1 i=1
n n k k k
Diawi—t)F =Y (@ =t E=D @y =) = D@ —t) = Y xf —kt
=1 1=1 =1 1=1 i=1

Therefore, the inequality from *(vi) implies that Zle b < Zle y', hence z <

3 7

Y. (Il

EXERCISE 1.37, ‘Show that, in the statement of Proposition [1.12] we have to
assume the hypothesis > x; = > y; only in (vi); in (ii)—(v) this property follows
formally.

EXERCISE.1.38 (Submajorization). Given z,y € R™, we say that z is subma-
jorized by y and write x <,, y if holds (the difference with majorization is
that we'do not assume >, z; = >,y;). Show that = <,, y if and only if there exists
u € R™such that u < y and zp < uy for every 1 < k < n.

1.3.2. Schatten norms. Recall that the space M,, ,, of (real or complex) m x
n matrices carries a Euclidean structure given by the Hilbert—Schmidt inner product
(see Section . The Hilbert—Schmidt norm is a special case of the Schatten p-
norms, which are the non-commutative analogues of the ¢,-norms. If M € M, ,,
define |M| := (MTM)Y/2, and for 1 < p < o,

1
|M], = (Te|MP)P.
Note that | - [|gs = || - |2. The case p = oo should be interpreted as the limit p — oo
of the above, and corresponds to the usual operator norm
M| = [Mlop := sup |Mz].

z|<1
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The quantity |M|; = Tr|M]| is called the trace norm of M. Occasionally we will
loosely refer to various matrix spaces endowed with Schatten norms as Schatten
spaces or p-Schatten spaces.

There is ambiguity in the notation || - |, in that it has two posible meanings:
the Schatten p-norm on M,, ,, (matrices) and the usual ¢,-norm on R™ or C" (se-
quences). However, it will be always clear from the context which of the two is the
intended one.

If M € M, »,, and if we denote by s(M) = (s1(M),...,s,(M)) the singular
values of M (i.e., the eigenvalues of |M|) arranged in the non-increasing order;
then for any p,

(1.29) | Ml = [[s(M)]p-

The following lemma allows to reduce the study of Schatten norms'to’ the case
of self-adjoint matrices.

LEMMA 1.13. Let M € My, ,,, and M € My, ., be the self-adjoint matriz defined
by
~ 0 M
M= [ o ] .

Then we have |M||, = 2Y/?|M||, for 1 < p < oo. Simularly, if M, N € My, ., then
Tr MN =2ReTr MTN.

PROOF. For the first assertion, it suffices-to notice that the eigenvalues of M
are equal to +s;(M). The second assertion is verified by direct calculation. O

The next lemma shows how the concept of majorization relates to eigenval-
ues/singular values of a matrix.

LEMMA 1.14 (Spectrum majorizes the diagonal). Let M € M,, be a self-adjoint
matriz, let d(M) = (my) € R™ be the vector of diagonal entries of M, and let
spec(M) = (\;) € R™ becthe vector of eigenvalues of M, arranged in non-increasing
order. Then d(M) < spec(M).

PROOF. First, it is known from linear algebra that 27 mi; = 21 A, SO ma-
jorization is in“principle possible. Write M as M = UAUT, where A is a diagonal
matrix whose entries are the eigenvalues of M, and U is a unitary matrix. We then

have
mii = Y uiAitg = ) Juig[* A
J J
Since the matrix with entries |u;;|? is bistochastic, the assertion follows from Propo-

sition [1.12] (iii). O

We now state the Davis convexity theorem, which gives a characterization of
all convex functions f on M;? that are unitarily invariant.

PRrROPOSITION 1.15 (Davis convexity theorem). Let f : M3 — R a function
which is unitarily invariant, i.e., such that f(UAUT) = f(A) for any self-adjoint
matriz A and any unitary matriz U. Then f is convez if and only if the restriction
of f to the subspace of diagonal matrices is conver.
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PROOF. Assume that the restriction of f to diagonal matrices is convex (the
converse implication being obvious). This restriction, when considered as a func-
tion on R™, is permutationally invariant, as can be checked by choosing for U a
permutation matrix. Given 0 < A <1 and A, B € M2, we need to show that
(1.30) FOAA+ (1 —=XNB) < Af(A)+ (1 —=)N)f(B).

Since f is unitarily invariant, we may assume that the matrix AA + (1 — A\)B is
diagonal. Denoting by diag A the matrix obtained from a matrix A by changing all
its off-diagonal elements to 0, the hypothesis on f implies
FAA+ (1 —A)B) < Af(diag A) + (1 — \) f(diag B).

Using Lemma and Proposition [1.12(iv), it follows that f(diag A) <. (4) and
f(diag B) < f(B), showing ([1.30). O

An immediate consequence of the Davis convexity theorem is that the Schatten
p-norms satisfy the triangle inequality.

PROPOSITION 1.16. For 1 < p < o0, if M, N € My, ,,, we have
[M + Nl < [M]p + [N,

PrROOF. By the first assertion of Lemma [1.13] it(is‘eriough to consider the case
of m = n and self-adjoint M, N. We now use Proposition for the unitarily
invariant function f(-) = |- [,. The restriction‘of || - |, to the subspace of diagonal
matrices identifies with the usual (commutative) ¢p,-norm on R", and hence, by

Proposition the function || - |, is convex on M. Since it is also positively
homogeneous, the triangle inequality follows. O

Obviously, the Schatten p-norms of a given matrix satisfy the same inequalities
as the £,-norms: if 1 < p < ¢ <o0yand M is an m x n matrix (with m < n; what
is important is that the rank-of M is at most m), then

(1.31) |Mllg < M, < m =M.
Duality between Sehatten p-norms holds as in the commutative case.

PROPOSITION 1117 (The non-commutative Holder inequality). Let 1 < p,q < o
such that 1/p+1/q =1, and M € My, ,,, N € My, 1,. We have
(1.32) | Tr MNT| < [M]|p|Nlg-

As a consequence, the Schatten p-norm and q-norm are dual to each other. This
holds=in all settings: for rectangular matrices (real or complex), for Hermitian
matrices, and for real symmetric matrices.

As in the case of £})-spaces, the above duality relation can be equivalently ex-
pressed in terms of polars. Denote by S, the unit ball associated to the Schatten
norm | - [, on M, , and S5 := SP»™ n MY (Again, there are two settings, real
and complex, and some care needs to be exercised as minor subtleties occasionally
arise.) We then have

COROLLARY 1.18. If 1 < p,q < o0 with 1/p+ 1/q = 1, then
(1.33) Sy ={Ae My, (X, A <1 for all X € S}

(1.34) ={A €M, :Re(X,A) <1 forall X € S;""}

3 s (s
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where {-,-) and ° are meant in the sense of trace duality (0.4]).

While (1.33) and (1.35) are simply straightforward reformulations of duality
relations from Proposition the equality in (1.34) needs to be justified (only the

inclusion “=” is immediate). Given A € M, , and X € S such that [(X, A)| > 1,

let £ = %. Then, setting X' = £X, we see that X' € Syvm, while Re(X', A) =
(X, A)| > 1, which yields the other inclusion “>” in ([.34). The expression in
(1.34) can be thought of as a definition of the polar (S}T’")o by “dropping the
complex structure”; see Exercise for the general principle. Another potential
complication is that, in the complex setting, the identification with the dual space
is anti-linear, see Section [0.2] Note that no issues of such nature arise in defining
the polar of S7"**, as that set “lives” in a real inner product space irrespectively of
the setting.

PrOOF OF PROPOSITION [[L17 Consider first the Hermitian‘case. By unitary
invariance, we may assume that M is diagonal. We then have

| Tr(MN)| = ’Zmn < [(mio) o (nio) g < §Mp[Nllg,

where we used the commutative Holder inequality, Lemma [T.14] and Proposition
1.12f (iv).

In the general case, Lemma and the Hermitian case of shown above
imply that, for all M, N € My, .,

ReTr MTN < | M|, N,

and the same bound for | Tr(M N)[ (or | Tr(MTN)|) follows by the same trick as
the one used to establish equality.in (1.34) (see the paragraph following Corollary
1.18]).

As in the commutative case, Holder’s inequality constitutes “the hard part”
of the duality assertion, such as the inclusion S;™* < (S;”vsa)o in (1.35)). “The
easy part” involves establishing that for every M, there is N # 0 such that we
have equality in (1.32):" In the Hermitian case, this follows readily by restricting
attention to matrices that diagonalize in the same orthonormal basis as M and by
appealing to thevanalogous statement for the usual £,-norm. In the general case
one considers similarly the singular value decomposition of M. O

EXERCISE 1.39 (Davis convexity theorem, the real case). State and prove a real
version of Proposition [[.15] i.e., for functions defined on the set of real symmetric
matrices.

EXERCISE 1.40 (Klein’s lemma). Show that if the function ¢ : R — R is convex,
then X — Tr¢(X) is convex on the set of self-adjoint matrices, and similarly for
¢ : I — R and the set of self-adjoint matrices with spectrum in I, where I c R is
an interval.

EXERCISE 1.41. Show that the function X — log Trexp(X) is convex on the
set of self-adjoint matrices.

EXERCISE 1.42 (Log-concavity of the determinant). Show that the function
log det is strictly concave on the interior of PSD.
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EXERCISE 1.43. Show that if a function X — ®(X) is convex on M, and
unitarily invariant, then ®(diagX) < ®(X) for any X € M,, (and similarly for
M?2 in place of X € M,,). If ® is strictly convex and X is not diagonal, then the
inequality is strict.

EXERCISE 1.44 (Extreme points of Schatten unit balls). What are the extreme
points of S7""? Of S7**? Of S'"?7 Sy"™? For the latter, how many connected
components does the set of extreme points have?

EXERCISE 1.45 (Spectral theorem and SVD vs. Carathéodory’s theorem). Let
K be one of S%, 57, S, S17**. Show that every element of K can be written as a
convex combination of n + 1 extreme points of K. Compare this fact with what-one
obtains by a direct application of the Carathéodory’s Theorem [I.2]in thexespective
matrix space.

EXERCISE 1.46 (The real Schatten balls). In the real case;<the space M$ is
3-dimensional. Which familiar solids are S7** and S%°*?

EXERCISE 1.47 (Characterization of unitarily invariant morms). Let m < n,
and || - | be a norm on R™ such that

H(Elxa(l)a s 75mx0(m))H = ||(£U1, Nty xm)H

for any x € R™, ¢ € {—1,1}" and ¢ € &,,. (We call such norms permutationally
symmetric.) Show that M — |s(M)| is a(norm on M,, , and that every norm
which is bi-unitarily invariant (i.e., verifying [UMV| = | M| for U € U(m) and
V e U(n)) can be defined in this way.

EXERCISE 1.48 (Polarity in_the complex setting). If H is a complex Hilbert
space and K a closed convex subset, the polar of K can be defined via K° =
{ye H:Relx,y) <1 forall w € K}, i.e., by dropping the complex structure, as
described in Section [0.5] Show that K° := {y € H : [{z,y)| <1 forall z e K} if
and only if K is circled

1.3.3. Von Néumann and Rényi entropies. Let D(C?) be the set of quan-
tum states omC? (see Section [0.10)) and o € D(C%). The von Neumann entropy of
o is defined as

(1.36) S(o) = —Tr(clogo),

where-log is the natural logarithm. (Note that many texts use base 2 logarithm to
define-entropy, see Notes and Remarks.)

PROPOSITION 1.19. The von Neumann entropy S satisfies the following prop-
erties:
(i) it is a concave function from D(C?) onto [0,logd],
(ii) for o € D(C?), we have S(o) = 0 if and only if o is pure (i.e., has rank 1),
(i4i) for o € D(CY), we have S(o) = logd if and only if o = 1/d,
(iv) if o0 € D(C?) and U € U(d), then S(o) = S(UsUT),
(v) if 0 € D(C?) and 7 € D(C"), then S(c @ 1) = S(o) + S(7).

PRrROOF. All these properties are straightforward to show, except perhaps the

concavity which follows from the concavity of x — —xlogx, together with Klein’s
lemma (Exercise [1.40)). O
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The following lemma quantifies the fact that very mixed states have large en-
tropy.

LEMMA 1.20. Let p € D(C?) be a state with spectrum in the interval [%, %]
for some e € [0,1]. Then S(p) = logd — h(e), where

1 1-—
= Jr510g(1+a€)+ 26

h(e) log(1 —¢).

Note that h(e) ~ €2/2 as € goes to 0.

PROOF. Assume that d is even and consider a state o € D(C?) with d/2 eigen-
values equal to (1+¢)/d and d/2 eigenvalues equal to (1 —¢)/d. One checks directly
from the definition of majorization that spec(p) < spec(o). It follows then from
Proposition [1.12](iv) that

S(p) = S(o) = log(d) — he).

If d is odd, a similar argument applies where o has (d — 1)/2 eigenvalues equal to
(1 +¢)/d and one eigenvalue equal to 1/d. One checks by ‘direct-computation that
S(o) > log(d) — h(e). O

REMARK 1.21. Note that while the entropy of (nermalized) quantum states
(i.e., p € D) is of primary physical interest, the definition makes sense for, and most
properties generalize to p € PSD.

Let o be a state on C%, and p € (0,00). The p-Rényi entropy of o is

1
(1.37) Splo) = T
The definition for p = 1 should be understood as the limit as p — 1. We then recover
the von Neumann entropy, so that.S; = S. Other limit cases are p — 0, which gives
So(o) = logranko, and p —“e0,»which gives Sy (o) = —log|o|w. When p > 1,
the Rényi entropy is connected to the Schatten p-norm by the formula S,(0) =
125 1og|lo|. Just like the von Neumann entropy is a generalization of Shannon

entropy, defined for classical states (probability mass functions) p = (pr) € A, by
(1.38) H(p) == = prlogps,
k

log Tr(o?).

the Rényi entropy may be thought of as a generalization of the £,-norm (up to
logarithmicichange of variables and rescaling; it also has a classical variant defined

via Hpy(a) = £ log|dl,).

EXERCISE 1.49 (Properties of Rényi entropies). Verify that, for p € (0, ], S,
satisfies properties (i)—(v) from Proposition Note that (iii) fails for p = 0.

EXERCISE 1.50 (Entropy of the state vs. entropy of the diagonal). Show that,
for any p € D, S(diag p) = S(p), with equality only if p is diagonal.

EXERCISE 1.51 (Monotonicity of Rényi entropies). Show that S,(c) and H,(q)
are non-increasing in p for fixed o, q.

Notes and Remarks

A presentation of convex analysis oriented towards applications (notably to
computer science) can be found in [Bar02]. An older but still valuable reference is
the book [Roc70].
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Section Following the customary usage in functional analysis, we name
Theorem [I.3] after Krein-Milman. However, it should be pointed out that the main
contribution by Krein—Milman is an extension to infinite-dimensional locally convex
spaces; the finite-dimensional case, which is presented here, is due to Minkowski
[Min11].

The inequality proved in Exercise is due to Hanner [Han56]; it
belongs to the family of inequalities (including the earlier Clarkson inequalities
[Cla36]) that degenerate into the parallelogram identity when p = 2. The inequalx
ity is the so-called “2-uniform convexity” of the p-norm for p € (1,2]. For
p = 2, the inequality is reversed (2-uniform smoothness); for p = 1, it degéner-
ates into the triangle inequality. One establishes similarly p-uniform convexity for
p € [2,00) and p-uniform smoothness for p € (1, 2].

It is natural to ask whether these inequalities remain valid for~the Schatten
p-norm, i.e., when x,y are matrices. This is known to be true for“inequality
when 1 < p < 2 (and for its reversed form when p > 2). However, the stronger
Hanner inequality for matrices has been proved only in therange 1 < p < 4/3
(or, for the reversed inequality, in the range p > 4). For proofs and references, see
[BCL94, [CLO06].

Section Lemma [I.6] seems to be a folklore ‘result, but does not appear in
standard references for convexity (the best source werwere pointed to after consult-
ing specialists was Exercise 6, §3.4 of [Grii03]).~However, once stated, the Lemma
is straightforward to prove.

Convex cones play a fundamental role in the theory of convex optimization
and in linear and semi-definite programming, all of which have their own links to
quantum information. We do not.develop any of these areas or connections here.
We refer the interested reader to.the books [BV04] and [BTNO1al, the survey
[NemO07], and, for sample links, to [Rei08), [KL09, BH13, HNW15]|.

Section A comprehensive reference for majorization and for connections
to matrix inequalities is\the book [Bha97]. Klein’s lemma originates from [Kle32].
Davis convexity theorem appears in [Dav57|. Early references for Schatten norms
include [Sch50, [Sch70].

The conceptof von Neumann entropy is crucial in quantum information theory
and quantuni(Shannon theory. A reason for this is that von Neumann entropy
and its variants (quantum relative entropy, quantum mutual information) have
several ‘operational interpretations, i.e., quantify the rate at which basic information
processing tasks (transmission, encoding, decoding) can be performed. This point
of view is hardly mentioned in this book. For an accessible introduction to quantum
Shannon theory we refer to [Will7]. Interestingly, the concept of von Neumann
entropy appears already in [von27, von32] (see [Pet01] for historical background)
and predates the development of its classical counterpart, the Shannon entropy
which—Ilike much of modern information theory—has its roots in the 1948 two-
part article by Claude Shannon [Sha48].

Many texts use base 2 logarithm to define entropy. While using the natural
logarithm simplifies some calculations, the choice of the base is immaterial in our
context; as a rule, the stated identities and estimates typically hold for any base, as
long as one is consistent. The few exceptions to this principle are clearly marked.






CHAPTER 2

The Mathematics of Quantum Information Theory

This chapter puts into mathematical perspective some basic concepts of‘quan-
tum information theory. (For a physically motivated approach, see Chapter ) We
discuss the geometry of the set of quantum states, the entanglement vs. separabil-
ity dichotomy, and introduce completely positive maps and quantum channels. All
these concepts will be extensively used in Chapters

2.1. On the geometry of the set of quantumstates

2.1.1. Pure and mixed states. In this section we take a closer look at the
set D(H) (or simply D) of quantum states on a finite=dimensional complex Hilbert
space H. By definition (see Section [0.10)), we have

(2.1) D(H) ={p€ Bsa(H) : p=0,Trp=1}.

If # = C¢, the definition simply says that D(C?) is the base of the positive
semi-definite cone PSD(C?) defined by the hyperplane H; < M¥ of trace one
Hermitian matrices (cf. (I.22)). The (real) dimension of the set D(C?) equals
d? — 1: it has non-empty interior inside H;. (This follows from PSD(C?) being a
full cone.)

A state p € D(H) is called pure if it has rank 1, i.e., if there is a unit vector
1 € H such that

p = )Xl

Note that |1)(%| is*the orthogonal projection onto the (complex) line spanned by
1. We sometimes use the terminology “consider a pure state ¢” (such language is
prevalent in physics literature). What we mean is that ¢ is a unit vector and we con-
sider the corrésponding pure state [¢))(1)|. We use the terminology of mized states
when we.want to emphasize that we consider the set of all states, not necessarily
pure,

Let1p, x be unit vectors in H. Then the pure states [)){t| and |x){x| coincide
if and only if there is a complex number A with |A| = 1 such that y = \). Therefore
the set of pure states identifies with P(#), the projective space on H. (See Appendix
note that the space P(C?) is more commonly denoted by CP4~1.)

The set D(H) is a compact convex set, and it is easily checked that the extreme
points of D(H) are exactly the pure states (cf. Proposition and Corollary .

It follows from general convexity theory (Krein—Milman and Carathéodory’s
theorems) that any state is a convex combination of at most (dim #)? pure states.
However, using the spectral theorem instead tells us more: any state is a convex
combination of at most dim A pure states |1; }{1;|, where (1;) are pairwise orthog-
onal unit vectors (cf. Exercise . A fundamental consequence is that whenever
we want to maximize a convex function (or minimize a concave function) over the

31
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set D(H), the extremum is achieved on a pure state, which significantly reduces the
dimension of the problem.

As opposed to pure states, which are extremal, the “most central” element in
D(H) is the state I /dim #H, which is called the mazimally mized state, and denoted
by ps when there is no ambiguity. We also note that the set of states on H which
are diagonal with respect to a given orthonormal basis (e;);c; naturally identifies
with the set of classical states on I.

EXERCISE 2.1. Describe states which belong to the boundary of D(H).

EXERCISE 2.2 (Every state is an average of pure states). Show that every State
p € D(C%) can be written as 5 (|1 )] + -+ + [¢a)(¥q]) for some unitrveetors

U1, ..., g in CO.

2.1.2. The Bloch ball D(C?). The situation for d = 2 is very special. Let
p € M$?, with Tr p = 1. Then p has two eigenvalues, which can bewritten as 1/2— A
and 1/2 + A for some A € R. Moreover, p > 0 if and only if. |\ <1/2. On the other
hand, we have

lo = palus = V2IAl.

Therefore, p is a state if and only if |p — ps|ns < 1/v2. What we have proved
is that, inside the space of trace one self-adjoint ‘operators, the set of states is a
Euclidean ball centered at p, and with radius,1/ v/27 This ball is called the Bloch
ball and its boundary is called the Bloch sphere. Once we introduce the Pauli
matrices

(2.2) o = [(1) (1)] Ty = [? Oi]’ 7 [(1) 01]’

a convenient orthonormal basis (with respect to the Hilbert—Schmidt inner product)
in M$* is
( 1 I 1 1 1 )

— 1, —=0y, —=0y, —=0 ).

\/5 I \/5 X \/5 \/i z

A very useful consequence of D(C?) being a ball is the fact—mentioned already

in Section that the cone PSD(C?) is isomorphic (or even isometric in the ap-
propriate sense)\to the Lorentz cone £4. A popular explicit isomorphism, inducing
the so-called “dpinor map (see Appendix |C)), is given by

(2.3)

Oy,

t+2z x—1y

4 = —
(2.4) R*sx = (t,z,y, 2) [sc+iy PR

}—XeMga.

The formula for X can be rewritten in terms of the Pauli matrices (2.2)) as

(2.5) X =tl+zxo, +yo, + 20,

and so a convenient expression for it is X = x-0, where o is a shorthand for
(I,04,04,0;), and “” is a “formal dot product.” Since {I, o, 0y, 0.} is a multiple of
the orthonormal basis (2.3) of M2, it follows that the map given by ([2.4)) is likewise

a multiple of isometry (with respect to the Euclidean metric in the domain and the
Hilbert—Schmidt metric in the range). Next, it is readily verified that

1
(2.6) 3 TrX =t det X =2 — 22 —y? — 2% = ¢(x),

where ¢ is the quadratic form of the Minkowski spacetime, which confirms that
X € PSD(C?) iff x € £4. The isomorphism x + x-0 will be useful in understanding
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automorphisms of the cones £, and PSD(C?), and when proving Stgrmer’s theorem
in Section

When d > 2, the set D(C?) is no longer a ball, but rather the non-commutative
analogue of a simplex. Its symmetrization (see Section

D(C%)g = conv (D(C?) U —D(C?)) = {Ae M$* : ||A|; <1},

is Sf’sa, the unit ball of the self-adjoint part of the 1-Schatten space (see Section
1.3.2).

One way to quantify the fact that the set D(C?) is different from a ball when
d > 2, is to compute the radius of its inscribed and circumscribed Hilbert—Schmidt
balls. The former equals 1/4/d(d — 1) while the latter is 1/(d — 1)/d (the same
values as for the set A;_; of classical states on {1,...,d}, and for the same reasons).
In other words, if we denote by B(ps,r) the ball centered at p, and with/ Hilbert—
Schmidt radius r inside the hyperplane H; = {Tr(-) = 1} < M3?, we have

(27) B <P*, d(;l)) C D(Cd) c B <p*, El;—1>

and these values—differing by the factor of d — 1-—are-the best possible.

EXERCISE 2.3 (The Bloch sphere is a sphere): Show that the matrix X given
by (2.5) has eigenvalues 1 and —1 if and only if ¢t = 0 and 22 + y? + 2% = 1.

EXERCISE 2.4 (Composition rules for Pauli matrices). Verify the composition
rules for Pauli matrices. (i) 02 = I (ii) Tf-asb, ¢ are all different, then 0,0, = ico.,
where ¢ = +1 is the sign of the permutation (x,y,z) — (a,b,c); in particular, if
a # b, then o,0, = —0p0,.

2.1.3. Facial structure.

PROPOSITION 2.1 (Charactérization of faces of D). There is a one-to-one cor-
respondence between nontrivial subspaces of C* and proper faces of D(C?). Given
a subspace {0} € E & €4, the corresponding face D(E) is the set of states whose
range is contained, in. K-

D(E) = {peD(C’) : p(C’) < E}.

In particular, (pure states (extreme points, i.e., minimal, 0-dimensional faces) cor-
respond-tosthe case dimE = 1. In the direction opposed to a pure state |x){x|
lies a face ' which corresponds to all states with a range orthogonal to x; these are
maximal proper faces.

REMARK 2.2. All faces of D(C?) are exposed (as defined in Exercise since
D(E) is the intersection of D(C?) with the hyperplane {X : Tr(XPg) = 1}.

PROOF OF PROPOSITION 2.1l Denote by range(p) = p(C?) the range of a state
p € D(C?). We use the following observation: if p,s € D(C?) and A € (0, 1), then

(2.8) range(Ap + (1 — A)o) = range(p) + range(o).

We first check that, for any nontrivial subspace E < C?, D(E) is a face of
D(C?). For indeed, if p € D(E) can be written as Ap; + (1 — \)ps for p1, po € D(CY)
and A € (0,1), then implies that range(p;) € E and range(ps) c E.

Conversely, let F' = D(C?) be a proper face. Define E = | J{range(p) : pe F}.
It follows—from and from the fact that F' is convex—that E is actually a
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subspace and that F' contains an element p such that range(p) = E. We now claim
that F' = D(FE). The direct inclusion is obvious. Conversely, consider o € D(E). For
A > 0 small enough the operator 7 = 125 (p—Ao) is a state. Since p = Ao+ (1—N)7,
we conclude that the segment joining ¢ and 7 is contained in F'; in particular
oeF. (]

EXERCISE 2.5. Show directly (i.e., without appealing to Proposition that
any ezposed face of D(C?) has the form D(E) for some subspace E < C9.

2.1.4. Symmetries. We now describe the symmetries of D(C?). This is
closely related to the famous theorem of Wigner that characterizes the isometries
of complex projective space as a metric space. Recall (see Appendix that-[¢]
denotes the equivalence class in P(C?) of a unit vector ¢ € Sga.

THEOREM 2.3 (Wigner’s theorem). Denote by P(C?) the projective space over
C?, equipped with the Fubini-Study metric . A map f ¥P(€Y) — P(CY)
is an isometry if and only if there is a map U on C* which Yis-either unitary or
anti-unitary such that, for any unit vector 1,

(2.9) f(]) = [U@)]-

A map U : C? — C? is anti-unitary if it is the composition of a unitary map
with complex conjugation.

PRrROOF. We outline the proof of Wigner/stheorem for d = 2. Since the projec-
tive space over C? identifies with the Bloch sphere, its group of isometries is given
by the orthogonal group O(3), and splits into direct isometries (rotations, or SO(3))
and indirect isometries.

Let f be a direct isometry of'tle-Bloch ball. It has two opposite fixed points [ ]
and [p2], with 1 L @9, and is atotation of angle 6 in the plane {[%(gpl +et%p9)]
a € R}. One checks that is satisfied when U is given by U(p1) = ¢1 and
U(ps) = €?py. Note that U is determined up to a global phase. In particular,
if we insist on having \U e SU(2), we are led to the choice U(py) = e /2,
and U(ps) = €%, involving the half-angle. (We point out the isomorphism
PSU(2) < SO(3), sée Exercise [B.4])

The complex, conjugation with respect to an orthonormal basis (11,2) in C?
induces on-thé.Bloch ball the reflection R in the plane {[cos 811 +sin6v5] : 6 € R}.
Since any. indirect isometry of the Bloch ball is the composition of R with a direct
isometry;-the result follows.

The case d > 2 can be deduced from the d = 2 case; we do not include the
argument here (see Notes and Remarks). O

When P(C?) is identified with the set of pure states on C%, the isometries from
Theorem act as p — UpUT or p > UpTUT for U € U(d). Here p” denotes the
transposition of a state p with respect to a distinguished basis (since p = pf, p7 is
also the complex conjugate of p with respect to that basis).

THEOREM 2.4 (Kadison’s theorem). Affine maps preserving globally D(C?) are
of the form p — UpUT or p v UpTU for U € U(d). In particular, they are
isometries with respect to the Hilbert—Schmidt distance.

PROOF. Let ® be an affine map on M5* such that ®(D(C%)) = D(C?). Then
® preserves the set of faces of D(C?), which are described in Proposition In
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particular, ® preserves the set of minimal faces, which identify with pure states.
Therefore ® induces a bijection on P(C?). We claim that ® is an isometry with
respect to the Fubini-Study distance (B.5]), which is equivalent to

Tr (D(|)W1) - 2(l0XeD) = Ko, o)

for 1, € C4. If [¢)] = [¢], this is clear. Otherwise, let M = C? be the 2-
dimensional subspace generated by ¢ and ¢. By Proposition the set D(M)
canonically identifies with a (3-dimensional) face of D(C?). Consequently, ®(D(M))
is also a face, which identifies with D(M’) for some 2-dimensional subspace M’ <
C4. Since D(M) and D(M’) are Bloch balls, the map ® restricted to D(M) must
be an isometry (affine maps preserving S? are isometries). We may now apply
Wigner’s theorem: there is U € U(d) such that either ®(p) = UpU' whenever p is
a pure state, or ®(p) = UpTUT for all pure states p. Since ® is affine; one of the
two formulas is valid for all p € D(CY). O

Although for d > 2 the set D(C?) is not centrally symmetric; we may argue
that the maximally mixed state p; plays the role of a centerx In.particular, we have

PROPOSITION 2.5. Let p e D(C?) be a state which is fized by all the isometries
of D(C?) (with respect to the Hilbert-Schmidt distanee)>,Then p = ps.

ProOF. We have UpU' = p for every unitary matrix U. Since U(d) spans My
as a vector space, p commutes with any matrix; therefore it equals a1 for some
a € C, and the trace constraint forces o = 1/d. g

One consequence of Proposition is that p is the centroid of D(CY). Kadi-
son’s theorem also implies that D has enough symmetries in the sense of Section
(see Exercise . Another“consequence of Kadison’s Theorem is a char-
acterization of affine automorphisms.of the cone of positive semi-definite matrices,

which will be presented in Proposition [2.29]

EXERCISE 2.6. Show that the affine automorphisms of D(C?) form a group
which is isomorphic {0 O(3).

EXERCISE 2.7-Show that the affine automorphisms of D(C?) form a group
which is isomorphic to the semidirect product of PSU(d) and Zs with respect to
the action of‘Zy on PSU(d) induced by the complex conjugation.

EXERCISE 2.8. State and prove the real version of Wigner’s theorem.

EXERCISE 2.9. Let p be a state which is invariant under transposition with
respect to any basis. Show that p = p.

2.2. States on multipartite Hilbert spaces

2.2.1. Partial trace. A fundamental concept in quantum information theory
is the partial trace (for a physically motivated approach, see Section . Let
H = H1 ® Ho be a bipartite Hilbert space. The partial trace over Hs is the map
(or the superoperator, see Section Try, : B(H1) ® B(Hz2) — B(H1) defined as
Idp(3,)®Tr. Its action on product operators is given by

Try,(A® B) = (Tr B)A

for A e B(H1), B € B(H3). Similarly, the partial trace with respect to #H; is defined
as Try, = Tr®IdB(H2).
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In particular, if p is a state on H1 ® Ha, then Try, p is a state on Ha, and Try,
is a state on H;. Note also the formulas Try, (p1 ® p2) = p2 and Try, (p1 ®p2) = p1
for states p; € D(H1), p2 € D(H2).

We sometimes write Try for Try, and Try for Try,. The definition of partial
trace extends naturally to the multipartite setting: if H = H; ® - - - ® Hy, then for
1 <9 < k we denote by Try, or Tr; the operation

IdB(’Hl) ®--- ®IdB(H7:—1) ®Tr®IdB(H7:+1) ®--- ®IdB(7'[k) :

2.2.2. Schmidt decomposition. We recall the singular value decomposition
(SVD) for matrices: any real or complex matrix A € My 4 can be decomposed. as
A =UXV', when U and V are unitary matrices of sizes k and d respectively; and
Y = (%) € Myg4 is a “rectangular diagonal” (i.e., such that X;; = O-whenever
i # j) nonnegative matrix. Moreover, up to permutation, the “diagonal” elements
of ¥ are uniquely determined by A and are called the singular values of A. We
often denote the singular values of A by 51(A4) = -+ = Spin(k,a)(A). The singular
values of A coincide with the eigenvalues of (AA")Y/? when k. < d, and with the
cigenvalues of (ATA)Y/2 when k > d. Note that, in any case,”AAT and ATA share
the same nonzero eigenvalues.

An equivalent presentation of the SVD is as(follows: there exist orthonormal
sequences (u;) (in R* or C*, depending on the context) and (v;) (in R? or C?), and
a non-increasing sequence of nonnegative scalars (s;) such that

(2.10) A= Zsi|ui><vi\.

When translated into the language of tensors (see Section , the singular value
decomposition becomes the Schimidtdecomposition, which is widely used in quan-
tum information. We note that;-besides the bipartite situation, there is no analogue
of the Schmidt decompositien, in multipartite Hilbert spaces.

PROPOSITION 2.6 (easy). Let ¢ be a vector in a (real or complex) bipartite
Hilbert space Hy1 ® Ha, with dy = dimH; and dy = dimHy. Set d := min(dy, ds).
Then there exist nonnegative scalars (A\;)1<i<d, and orthonormal vectors (Xi)1<i<d
in Hi and (1<i<d in Ha, such that

d
(2.11) Y= 2/\1')(1‘®<Pi-
i=1
The-nambers (A1, ..., q) are uniquely determined if we require that \y = -+ = Ay

and gre called the Schmidt coefficients of 1.

Note that A? + -+ A2 = [4)|2. We may write \;(¢) instead of \; to emphasize
the dependence on 1. The largest r such that \.(¢)) > 0 is called the Schmidt rank
of 9. If ¢ € C* ® C¢ is identified with a matrix M € My, 4 as in Section [0.§] then

(2.12) Trea [W)p| = MMT.

Via this identification, Schmidt coefficients of ¥ coincide with singular values of M,
and the Schmidt rank of ¢ coincides with the rank of M. States of Schmidt rank
1 are exactly product vectors. The largest and the smallest Schmidt coefficients of
1 € H1 ® Ho are also given by the variational formulas

(2.13) A1 () = max{|[(h, x ® )| : x € Hi,0 € Ha,|X| = |¢] = 1},
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often referred to as the maximal overlap with a product vector, and

2.14 A = min ma , X ® .
(2.14) a) = min = max K¢ x®¢)

The above are fully analogous to the (special cases of) Courant—Fischer variational
formulas for singular values of a matrix.

2.2.3. A fundamental dichotomy: separability vs. entanglement. We
now introduce a fundamental concept: the dichotomy between separability and
entanglement for quantum states. Let H be a complex Hilbert space admittinga,
tensor decomposition

(2.15) H=H® - QH.

Recall that since 1-dimensional factors may be dropped, we may—and usually will—
assume that all the factors are of dimension at least 2.

DEFINITION 2.7. A pure state p = |x){(x| on H is said to be pure separable if

the unit vector x is a product vector, i.e., if there exist unit'wectors x1, ..., xx such
that x = x1 ® - - - ® xx. In that case,
(2.16) p=Ixal ®- - @ )l

Extending the definition of separability to mixed states requires to consider
convex combinations (we study in detail the corvex hull operation A — conv(A) in

Section [1.1.2)).

DEFINITION 2.8. A mixed state p = |x){x| on H is said to be separable if it can
be written as a convex combination of pure separable states. We denote by Sep(H)
(or simply by Sep) the set of separable states on H. We have

(2.17)  Sep(H) = conv{|x1 ®. @ x#)X1® - @ xk| : X1 € Hi1,..., Xk € Hi}.

States which are not separable are called entangled. Since pure states are the
extreme points even of the larger set D(H) (Proposition [2.1), it follows that the
pure separable states((i-¢-; those given by ) are exactly the extreme points of
Sep(H). Since there are vectors that are not product vectors, the set Sep(H) is a
proper subset ‘of D(H). A schematic representation of the inclusion Sep ¢ D and
of the corresponding extreme points can be found in Figure

An alternative description of the set Sep(#) is the following: it is the convex
hull of product states.

(2.18) Sep(H) =conv{p1 ®---®pr : p1 € D(H1),...,pr € D(Hi)}.

It is noteworthy that Sep(#) and D(7{) have the same dimension. This can
be seen from the following observation. Let Vi,...,V, be real or complex vector
spaces and, for each i, let F; be a family of linear independent vectors in V;. Then
the family

RFi={/i® - ®fx : ficF}
is linearly independent in (X) V;. We apply the observation with V; = B (H,;) and
with JF; being a basis of B%(H;) consisting of states. This way, we obtain a family
of (dim H)? linearly independent product states which are elements of Sep(#). This
shows that Sep(#) has dimension (dim#)? — 1. Note that this argument uses the
fact that the field is C: in real quantum mechanics, the set of separable states has
empty interior (cf. Section .
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pure states

D = conv{pure states}

p = conv{pure product states}

O
O

pure product states

FIGURE 2.1. The sets of states (D) and of separable states {Sep)
on C?®CHY. Pure product states have measure zero inside the set of
pure states; however both convex hulls have the same dimension.
The picture does not respect convexity of Sep, but.it\is-supposed
to reflect the relative rarity of separability.

A deeper result asserts that, in the bipartite case, not only do Sep and D have
the same dimension, they also have the same inradius. This may look surprising
since Sep is defined as the convex hull of a very.small subset of the set of extreme
points of D. This remarkable fact was discovered by Gurvits and Barnum and will
be proved later (see Theorem .

It is often useful to consider the cone

SEP(H)=A4Xp = A =0, pe Sep(H)}

of separable operators; we will return to this in Section

We emphasize that the notion of separability depends crucially on the tensor
decomposition of H. As a concrete example, consider a tripartite space H =
H1®Ho®Hs. There are several different notions of separability on H: separability
with respect to the\tripartition H; : He : Hs, and separability with respect to
each of the three bipartitions Hi : Ho ® Hs, Ho : H1 ® Hz and Hz : H1 ® Ha or
combinations-thereof. Moreover, some authors introduce the concept of “absolute”
properties.~For example, a state p € D(H; ® -+ ® Hy) is absolutely separable if
UpUT is-separable for any unitary operator U on H; ® - - - ® Hj,. However, in this
book we.will focus primarily on the setting in which all partitions are fixed.

Although the extreme points of Sep are very easy to describe (as noted earlier,
they ‘are precisely the pure product states), there is no simple description of the
facial structure of Sep available (compare with Proposition which describes all
the faces of D). The complexity of the facial structure of Sep can be related to
the fact that deciding whether a state is separable is known to be, in the general
setting, NP-hard. This makes calculating some parameters of Sep highly nontrivial;
we will run into this problem in Chapter |§| (see, e.g., Theorem . Finally, in view
of the dual formulation of the problem of describing faces of a convex body (see
Section and particularly Proposition , characterizing maximal faces of
Sep is essentially equivalent to describing extreme points of the object dual to Sep
(see ), which are well understood only for very small dimensions. (Appendix
discusses closely related issues.)
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EXERCISE 2.10 (The length of separable representations). (i) Using Cara-
théodory’s theorem (see Section , show that any separable state on C? @ C?
can be written as the convex combination of at most d* pure product states. (ii)
Using a dimension-counting argument, prove that there exist separable states on
C? ® C? which cannot be written as a convex combination of less than cd® pure
product states, for some constant ¢ > 0.

EXERCISE 2.11 (Edges of Sep). Let dy,ds > 2. Show that Sep(C% ® C?) has
a face (as defined in Section [1.1.3) which is 1-dimensional.

2.2.4. Some examples of bipartite states. We now present some examples
of states on C% ® C% that are widely used in quantum information theory.

2.2.4.1. Mazimally entangled states. A pure state on C? ® C? is.called mazi-
mally entangled if it has the form p = [1)){3p| with

1 d
(2.19) = %i;ei@ﬁ,

where (e;)1<i<a and (f;)1<i<a are two orthonormal bases inC?. Such a vector v is
called a maximally entangled vector.

In the special case of d = 2, i.e., for systems formed of 2 qubits, the maximally
entangled states are called Bell states. Many quantum information protocols, such
as quantum teleportation, use Bell states as a_fundamental resource.

If we identify vectors and matrices as explained in Section [0.8] the set of all
maximally entangled vectors on C?® C? (or, more precisely, on C¢® C?) identifies
with the unitary group U(d) M.

EXERCISE 2.12 (Maximally\ entangled states and trace duality). Let @ be
the maximally entangled state given by , with (e;) and (f;) both equal to
the canonical basis (|i))1<i<dy and let p = [¢))(¥)|. Show that Tr (p(X ® Y)) =
L Tr(XY7T) for any X,Y.€ B(C?).

EXERCISE 2.13,(Maximal entanglement and the distance to Seg). Let ¢ be a
unit vector in CY®@C%and Seg = Scagca the set of unit product vectors (see (B.6).
Show that |1){%] is maximally entangled if and only if dist(¢), Seg) is maximal. For
extensions to. the multipartite case, see Section

2.24:2 Isotropic states. Isotropic states are states which are a convex (or
affine) combination of the maximally mixed state and a maximally entangled state.
They have the form

(2.20) 05 = BlUXW] + (1 — B)—

ﬁv
where 1 is as in (2.19)) and —ﬁ <pB <1
2.2.4.3. Werner states. Consider the flip operator F € B%*(C? ® C?) defined
on pure tensors by F(z®y) = y ® 2 and extended by linearity. Its eigenspaces are
the symmetric subspace
Sym, = { e C*'®C" : F(¢) = ¢}

and the antisymmetric subspace

Asym, = {¢ € CcteC? . F(y) = —¢}.
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The corresponding projectors are Psym, = 3(I+F) and Pagym, = s(I-F). We
need to know that the symmetric and antisymmetric subspaces are irreducible for
the action U — U ® U of the unitary group.

PROPOSITION 2.9 (see Exercise . Let E < C¢® C? be a nonzero subspace
such that for every U € U(d) and ¥ € E, we have (U U)y € E. Then either
E =Sym, or E = Asym,.

Note that dim Sym,; = d(d+1)/2 while dim Asym; = d(d—1)/2. The symmetric
and antisymmetric states are defined respectively as
2 2
Tg = MPSymd and 7, = mPAsymd'
For A € [0,1], consider the state wy (called the Werner state) obtained{asa convex
combination of these two projectors
(2.21) wy = Ams + (1 — A\)7g.

Another equivalent expression is

1
2.22 =——(I—aF
( ) w)\ d2 7da( « )7
where
1 +d(1-2)N)
(2.23) ~ivdoa ot

When d = 2, the space Asym, has dimension one, and Werner states are then a
special case of isotropic states.

EXERCISE 2.14 (Polarization formulas in Sym, and Asym,). Prove that Sym, =
span{r @ v : x € C?} and Asymy =span{r @y —y®z : x,y € C}.

EXERCISE 2.15 (Irreducibility of Sym, and Asym,).
Denote by &7 = span{U ® U~ U € U(d)}.
(i) Prove that for every\subspace E = C¢, Pp ® Pg € .
(ii) Show that for every nonzero vectors ¢, € Symy, there is V € & such that
(plVIY) #0.
(iii) Show that for every nonzero vectors ¢, 1 € Asym,, there is V' € & such that
{plV[p) # 0.
(iv) Deduce Proposition

EXERCISE 2.16 (The twirling channel and Werner states).
(1):Show that a state p € D(CI®C?) satisfies (VRV)p(VRV)! = p for all V € U(d)
ifiand only if it is a Werner state.
(i) Show that if U is chosen at random with respect to the Haar measure on U(C?),
then for any p € D(C?®CY), E(UQ®U)p(U®U)" = wy with A\ = Tr(pPsym,). (The
map p— E(UQU)p(U®U)' is called the twirling channel.)
(iil) Show that if ¢ € Sga is chosen uniformly at random, then E [ @y} ¢ @| = .
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2.2.5. Entanglement hierarchies.
2.2.5.1. k-extendible states. Consider a bipartite Hilbert space Hi ® Ho and
k=2 Forie{l,..., k}, we denote by

Tran but i - B(H1 @ HE®) — B(H1 ® Ha)
the partial trace with respect to all copies of Hs, except for the ith. A state

p € D(H1 ® Hs) is said to be k-extendible (with respect to Hs) if there exists a
state pr € D(H1; @ HS") with the property that e

Tral but i Px = P

for every i € {1,...,k}. The state pj is called a k-extension of p. The main result
regarding k-extendible states is the following theorem.

THEOREM 2.10 (not proved here). A quantum state on Hq, ® Hais separable if
and only if it is k-extendible for every k = 2.

The “only if” direction is easy (see Exercise , while the“if” direction relies
on the quantum de Finetti theorem and is beyond the scope“of’this book.

EXERCISE 2.17. For k = 2, denote by k-Ext the set of k-extendible states on
Hi1®Ho. Show that k-Ext is convex and check the inclusions Sep < I-Ext ¢ k-Ext
for k <.

EXERCISE 2.18 (2-extendibility of pure states). (i) Let p € D(H; ® Ha) be a
state such that Try, p = || for some ) eH;. Show that p = [){¥| ® o for
some o € D(H2). (ii) Let x € H1 ® Ha be a unit vector. Show that |x)(x| is
2-extendible if and only if x is a product vector.

2.2.5.2. k-entangled states. A _quantum state on H = H; ® Ho is said to be
k-entangled if it can be written as a convex combination

Z i [V i

where each unit vector ip; € Hq ® Hs has Schmidt rank at most k. Note that
separable states are.exactly l-entangled states.

2.2.6. Partial transposition. Let H be a complex Hilbert space, and let (e;)
be an orthonormal basis in H. We can identify B(H) with the set of n x n matrices
by associating a matrix (a;;) with the operator

D aijleie;l.
¥

Once the basis is fixed, it makes sense to consider the transposition T : B(H) —
B(H) with respect to that basis, defined as

T(Zaij|€i><€j|) = Zaij|€j><ei|-

We will sometimes use the alternative notation A7 = T(A). Note that T is not
canonical and depends on the choice of the basis in H. The standard usage in linear
algebra refers to the transposition with respect to the standard basis ()25 *.

We now define the partial transposition: if H = Hi ® Ho is a bipartite Hilbert
space, and if T denotes the transposition on B(H;) (with respect to a specified
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basis) and Id is the identity operation of B(#Hz), then the partial transposition (or
partial transpose) is the operation

I'=T®Id: B(H1 ®Ha) — B(H1 Q@ Ha).

The partial transposition of a state p € D(H; ®Hz) is denoted by pI' = I'(p). What
we have defined is actually the partial transposition with respect to the first factor.
The partial transposition with respect to the second factor is defined by switching
the roles of H; and Hs.

Partial transposition applies nicely to states represented as block matrices (see
Section [0.7): if p € D(H1 ® Hz) corresponds to the block operator (A;;), with
A;; € B(H2), then p' corresponds to the block operator (Aj;;). Similarly, par-
tial transposition of p with respect to the second factor corresponds, te-the block
operator (A;";) We illustrate this by computing the partial transposition of the
(maximally entangled) Bell state: if ¢ = \%(|OO> +|11)), then (assuming transpo-

sition is taken with respect to the canonical basis of C2)

224)  |uxXvl =g X =G

As for the usual transposition, the partial transposition depends on a choice of
basis. However, we have the following result\

PROPOSITION 2.11. The eigenvalues of the partial transposition of an operator
do not depend on a choice of basis.

PROOF. Let (e;) and (¢e}) be two orthonormal bases in H;, and T" and T” denote
the transpositions with respect.to-each basis. Let U be the unitary transformation
such that e} = U(e;). We claim that, for every operator X € B(H1),

(2.25) T'(X) = ViT(X)V,
where V' = UT(U). By linearity, it is enough to check (2.25)) when X = [e})(e’], in
which case T'(X) = |€})(ej|. On the other hand, since X = Ule;){e;|UT, we then
have

T(X) =FU)e;Xe:|T(U) = TUNUT|es X JUT(U) = T(U) Ul Xef | UT(U),

as claimed. This shows that the partial transpositions with respect to the two bases
are conjugated via the unitary transformation V ® I, and the claim follows since
uhitary conjugation preserves the spectrum. (I

Partial transposition naturally extends to the multipartite setting: if H =
H1® - ® Hy, then for any i € {1,...,k} we may define the partial transposition
with respect to the ith factor as

[ i=1dpp)® - ®@ldp,_) T @ldp,,,)® - ®ldp,) -

EXERCISE 2.19 (Eigenvalues of the partial transpose of a pure state). Find
all eigenvalues of the partial transpose of a pure state in terms of the Schmidt
coefficients of that state.
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EXERCISE 2.20 (Partial transpose and the flip operator). Let ¢ = ﬁ Z;jzl e®

e; be a maximally entangled state on CY®@C? and assume that partial transposition
is computed with respect to the basis (e;). Show that [¢))(¢|" = 1F where F :
T ®y — y & x is the flip operator.

EXERCISE 2.21. Find an error in the following argument that purports to mimic

the proof of Proposition 2.11] to show that the partial transpose of any state is
positive.
If X € B®*(H1), then T(X) (with respect to some fized basis) has the same spectrum
as X and so there is a unitary operator V such that T(X) = VIXV. This shows
that the partial transpose with respect to the same basis is given by conjugation
by the unitary transformation V ® 1. Since such conjugation preserves Spectra, it
follows that the partial transpose of any state is positive.

2.2.7. PPT states.

DEFINITION 2.12. A state p € D(H; ® Hz) is said to have a positive partial
transpose (or to be PPT) if the operator p!' is positive. We denoté by PPT(H,®Hs2),
or simply PPT, the set of PPT states (note that this set is convex).

Proposition implies that the definition of\PRT states is basis-independent.
Similarly, we do not need to specify whether we apply the partial transposition to
the first or the second factor; one passes from one to the other by applying the full
transposition, which is a spectrum-preserving operation.

Let p be a state on H1 ®Hs. Since the partial transposition preserves the trace,
we have Tr p!' = 1, and therefore p is PPT if and only if p!" is a state. Geometrically,
the set of PPT states can therefore be.described as an intersection

(2.26) PRT.= D ~ (D).

The map I' is a linear (map which preserves the Hilbert—Schmidt norm, and
therefore behaves as an isometry (see Exercise 2.22). This map is not a canonical
object and depends on the choice of a basis. However, the intersection D n I'(D)
does not depend on the particular basis used.

The next“proposition lies at the root of the relevance of the concept of PPT
states to quantum information theory.

PROPOSITION 2.13 (Peres—Horodecki criterion). Let p be a state on Hi ® Hs.
If p is separable, then p is PPT. In other words, we have the inclusion

(2.27) Sep(H1 ® Ho) € PPT(H1 ® Ha).

PROOF. Since the set PPT is convex, it suffices to show that the extreme points
of Sep(H1 ® Hz) are PPT. The extreme points of Sep(H; ® Hz) are pure product
states, i.e., states of the form

p = |11 @2 )(P1 @ 2| = [Ph1){¥h1| & [1p2){¥2]

for unit vectors ¥; € Hi, 12 € Ha. The partial transpose of such a state is

Pt = || T @ |tha)(wa| = [h1){¥1| @ |1h2)(eba],

where 1); is the vector obtained by applying the complex conjugation to each coor-
dinate of 1. It follows that p' is positive, hence p is PPT. O
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PPT = DNI(D)
Sep

I'(D)

FIGURE 2.2. An illustration of the inclusion Sep < PPT =
D n I'(D). The inclusion is strict if and only if dim H;'dim Hs > 6,
see Theorem [2.15] The set Sep is not a polytope} but the set of
its extreme points is much “thinner” than those of D and of PPT
if the dimension is large.

The Peres—Horodecki criterion (or the PPT ) criterion) is shown in action in
, where it certifies non-separability ‘of\the Bell state: the partial transpose
|3 (9)|F is clearly non-positive. However, positivity of p' is, in general, only a
necessary condition for separability of p as, without additional assumptions, the
inclusion is strict. Still, there are two important cases where PPT states are
guaranteed to be separable: pure.states and states in low dimensions, specifically
in C?®C? and C?® C3.

LEMMA 2.14. A pure state is PPT if and only if it is separable.

PROOF. Let p =(4¢1)| be a pure state, and let ¢ = > \;x; ®1; be a Schmidt
decomposition. If\we.compute the partial transposition with respect to a basis
including (x;), we obtain

(2.28) Pl = Nl ®@ vidx; ® vil.
i

Suppose-there exist two non-zero Schmidt coefficients (say, A; and \; with ¢ # j).
Then one checks from that the restriction of p' to span{y; ® Vi, X; @i} is
not positive. It follows that p is PPT if and only if only one Schmidt coefficient
of 9 is nonzero, which means that v is a product vector and, consequently, p is
separable. (See Exercise for a complete description of the spectrum of pI'.) [

THEOREM 2.15 (Stgrmer—Woronowicz theorem, see Section for the 2®2
case, the 2 ® 3 case is not proved here). If H = C2® C? or H = C3® C? or
H = C2Q®C3, then every PPT state on H is separable.

Examples of entangled PPT states are known for any other (nontrivial) pairs
of dimensions.

Besides pure and low-dimensional states, another family of states for which
separability and the PPT property are equivalent are the Werner states. We have
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PROPOSITION 2.16 (Separability of Werner states). For A € [0,1], let wy be the
Werner state on H = C¢® C? as defined in . The following are equivalent
(i) wy is separable,

(i) wy is PPT,
(iii) TrwyF > 0,
(iv) A= 1/2.

PRrROOF. The equivalence (iii) <= (iv) is a straightforward calculation (we have
TrwyF = 2X—1). To show that (ii) <= (iv), we compute the partial transpose of
Werner states in the form ([2.22)) to obtain (see also Exercise [2.20))

wE = I—ad|x><x|),

d? — dao (
where x is the maximally entangled vector in the canonical basis {|t))7<i<a. It
follows that wl > 0 <= a < 1/d <= X > 1/2 (see for"the second
equivalence). It remains to prove that (iv) implies (i); since Sep.is convex, it is
enough to establish that w; and w;/y are separable. The separability of w, = 7y is
clear from part (iii) of Exercise To show that wy, is separable, we proceed
as follows. For j # k and a complex number ¢ with.hodulus one, denote vt =
|7> £ &|k). Next, think of £ as a random variable uniformly distributed on the unit
circle. The operator E [v™ )}vt|® [v™ v~ | belongs to the separable cone SEP. We
compute

E v o7 ) v v | = [55)<G] + [kk)XkE] +15R)GE] + [ki)Xki] — 1k)kj] = [ki)}<kl,

where we omitted the symbols ® to reduce the clutter. Summing over j # k, we
obtain that

A= 2d Y )G @ [T 2 D) 1) © [k)k| - 2F € SEP.
J j#k
The separability of wy /, follows now from the identity

1 1 A
- V-F) = —— (24 @1 e
Wi = g ) = gy (3 D 3 Wale k).
where the first. equality is just (2.22)) (note that A = 1/2 implies & = 1/d by
223)). 0

EXERCISE 2.22 (Partial transposition as a reflection). Find a subspace E
B (H1®Hs) such that T' = 2Pg —1d, where Pg denotes the orthogonal projection
onto F.” Geometrically, I" identifies with the reflection with respect to E.

EXERCISE 2.23 (Separability of isotropic states). For —ﬁ < B <1, let
ps € D(C? ® CY9) be the isotropic state as defined in (2.20). Show that pg is

separable if and only if 8 < ﬁ.

EXERCISE 2.24 (The realignment criterion). The realignment A% € B(C% ®
Cd2,C% @ C%) of an operator A € B(Ch ® C9) is defined as follows: the map
A A is C-linear, and |ij )} (kIR = |ik){jl|.

(i) Let p € D(C™ ® C?%) be a separable state. Show that ||pf|; < 1. (The trace
norm | - ||; is defined in Section [I.3.2).

(i) Let p € D(C% @ C?%) be a pure entangled state. Show that |p||; > 1.

The condition ||p®[; < 1 is usually called the realignment criterion. Just as for
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the PPT criterion, this is a necessary (but generally not sufficient) condition for
separability.

2.2.8. Local unitaries and symmetries of Sep. Let us state an analogue
of Kadison’s theorem (Theorem [2.4), which characterizes affine maps preserving
the set Sep. This can be seen as a motivation for the study of partial transposition.

THEOREM 2.17 (not proved here). Let H = Ch ® --- @ C% be a multipartite
Hilbert space. An affine map ® : B¥*(H) — B%*(H) satisfies ®(Sep) = Sep if and
only if it can be written as the composition of maps of the following forms:

(i) local unitaries

p=(U1® - @Up)p(U1 @ @Uk)'
fOT‘ Uz € U(dl),
(#) partial transpositions
PO ®pi® ®pp = 1@ ®p; ®: R pw,
for someie{l,...,d},
(iii) swaps
PO Qpi® - Qpi® - Qpg—>p1Q LRP)D - @pi Q& P,

for some i < j such that d; = d;.
All these maps are also isometries with respeet to the Hilbert—Schmidt distance.

Although Sep(#) has a much smaller-group of isometries than D(#), the con-
clusion of Proposition [2.5]still holds for Sep: the only fixed point is ps. This implies
for example that p, is the centroid of Sep.

PROPOSITION 2.18. ConsiderH = H1 ® -+ ® Hy, and let A € B¥*(H) be an
operator which is invariant under local unitaries, i.e., such that

A=H®  QU)AUL®---@Uy)!

for any unitary matricesU; on H;. Then A is a multiple of identity. In particular,
if A is a state, then A= py.

ProoF. We.use the following elementary fact: an operator A; € B(H,;) which
commutes with any unitary operator actually commutes with any operator and is
therefore asmultiple of identity. We can write A as a linear combination of product
operators

A=Y A ® @4y,

where Ag.i) € B®*(H;). Let U = U; ® --- ® Uy, where (U;) are random unitary
matrices, independent and Haar-distributed on the corresponding unitary groups.
By the translation-invariance of the Haar measure (see Appendix , the opera-
tor E UjAg-i)U jT commutes with any unitary operator on H; and therefore (by the
preceding fact) equals «; ; I3, for some a; ; € R. By independence, it follows that

EUAUY = Y GE(U1AYU] @ @AY U))
_ , Dy g ... (@) 7t
= D GERAVT) @ @ (BULAU])

(3
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(el

Since UAUT = A, the conclusion follows. O

However, the group of local unitaries does not act irreducibly: there are non-
trivial invariant subspaces which are described by the following lemma.

LEMMA 2.19 (not proved here). Let H = Ch ® -+ ® C¥* be a multipartite
Hilbert space, and

be the group of local unitaries. For 1 < i < k, write My} = Vi ® V2, where V1
denotes the hyperplane of trace zero Hermitian matrices, and V2 =R I

A subspace E < B%*(H) is invariant under G if and only if it.can. be’decomposed
as a direct sum of subspaces of the form

‘/i?l®.'.®‘/ilsz

for some choice (ay,...,a) € {1,2}F.

2.3. Superoperators and quantum channels

We now turn our attention to maps acting-between spaces of operators, whence
the name superoperators. Other terms-that will be used to describe these objects
are quantum maps and quantum operations. The crucial observation is that with
any such map one can naturally associate usual operators acting on larger Hilbert
spaces.

2.3.1. The Choi and Jamiolkowski isomorphisms. As usual, let H; and
H, denote complex (finite-dimensional) Hilbert spaces. Recall (see Sections[0.4]and
the canonical isomorphisms (H; ® Ha)* < HFf @ HE and

(2.29) HY @ Ha < B(H1,Ha).
It follows that there is a canonical isomorphism
B(H1,H2)* « B(Ha, H1).

This isomorphism can be seen more concretely via trace duality: a map S €
B(Hb5¢H7) is identified with the linear form on B(H1, Hs) defined by T — Tr ST.
By iterating (2.29)), we deduce that there is a canonical isomorphism

J : B(B(Hl),B(HQ)) g B(HQ ®H1)

(both spaces being canonically isomorphic to H; ® Hf @ Ha ® HE), which is called
the Jamiotkowski isomorphism. A concrete representation of the Jamiotkowski
isomorphism is as follows: fix any basis (e;) in H; and denote by E;; the operator
lei)e;j| € B(H1). Then J is described as

(2.30) J: B(B(H1),B(Hs)) —  B(H:®H1)

,J
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It turns out that there is another related isomorphism, called the Choi isomorphism,
which is often more useful. Once a basis in H; is fixed, the Choi isomorphism is
the C-linear bijective map

(2.31) C: B(B(H1),B(H2)) —  B(H2@Hi1)
i,j

We call C(®) the Choi matriz of ®. Note that the Choi isomorphism is basis-
dependent, whereas the Jamiotkowski isomorphism is not. The relation between
the isomorphisms J and C' is given by the partial transposition: if I' denotes the
partial transposition on Ho ® H;1 with respect to Hq, then C =T o J.

Here is a simple lemma which identifies the elements in B(B(H; ), B(H2)) that
correspond to rank 1 operators under the Choi isomorphism.

LEMMA 2.20. Given A, B € B(H1,Hs2), consider the map ®xB(H1) — B(Ha)
defined by
d(X) = AXB!
for X € B(H1). Then C(®) = |a)b|, where a = vec(A) and b = vec(B) are the
vectors in Ha ® Hi associated to the operators A and B (see Section . Note
also that A has rank 1 if and only if a is a product.wector.

ProOF. By C-linearity it is enough to consider A = |¢)){e;| and B = |x){e;|
for some 1, x € H2 and some basis vectors e;,¢; e Hi. A simple computation shows
that then C(®) = [¢)(x| ® E;j;, while a = ®e€; and b = x ® ¢;, and the Lemma
follows. O

Finally, let us mention a connection with the notion of realignment defined in
Exercise If & : B(C%) 5.B(C*®) is a superoperator, the matrix of ® with
respect to the bases (Ej;)1< j<d;, and (Exi)i<k,i<d, 15 given by the realigned Choi
matrix C(®)%.

2.3.2. Positive-and completely positive maps. A map @ : B(H;) —
B(Hs) is called self-adjointness-preserving if ®(B%*(H1)) < B%*(Hz). It is easily
checked that the following are equivalent:

(1
(2

) $.is self—adjomtness -preserving,
) D(XT) = (®(X))T for any X € B(H1),
(3)-J (@) € B*(H2 @ H),
(4) C(2) € B*(H2 ® Ha).
An elegant way to rewrite the definition of Choi’s matrix is as follows.

(2.32) C(®) = (2@ Idpm,)) ()X),

where x = Y}, e; ® ¢; € H1 ® H; is (a multiple of) a maximally entangled vector.
(Recall that we fixed a basis (e;) in H; when defining the Choi isomorphism.) We
also note that there is a one-to-one correspondence between

(a) self-adjointness-preserving C-linear maps ® : B(H1) — B(H2) and

(b) R-linear maps ¥ : B%(H;) — B%(Hz).
The correspondence is straightforward: W is obtained from ® by restriction, whereas
® is obtained from ¥ by complexification (see Section [0.5).
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In the sequel we will occasionally refer to maps of the form ® ® Idp(y,) as
extensions of ® (not to be confused with k-extensions of states defined in Sec-
tion . As an example, the partial transposition I' is an extension of the
transposition 7.

Throughout this section, we consider a self-adjointness-preserving linear map
® : B(H1) — B(H2). The adjoint of ® is the unique map ®* : B(Ha) — B(H1)
such that

Tr(X®(Y)) = Tr(®*(X)Y)
for any X € B(H2) and Y € B(H1). Note that ®* is automatically self-adjointness-
preserving if & is.

The map @ is said to be positivity preserving—shortened to positive when this
does not lead to ambiguity—if the image of every positive operator‘is a positive
operator. The map ® is said to be n-positive if D®1d : B**(H; @ C*) = B**(Ha®
C™) is positive. (Note that n-positivity formally implies k-positivity for any k < n.)
Finally, the map ® is said to be completely positive if it is n-positive for every integer
n. (However, only n = min(dim %, dim #Hz) needs to bechecked, see Exercise
) We denote by CP(H1,H2) the set of completely positive maps from B(H;)
to B(Hz). It is immediate from the definition that CPR(H1,Hs) is a convex cone;
more about this aspect of the theory in Section [2:4]

The transposition is an example of a map whicliyis positive but not 2-positive;

this can be seen, e.g., from (2.24)) in Section or from Exercise Here is an

important structure theorem concerning completely positive maps.

THEOREM 2.21 (Choi’s theorem). Let. @ : B(H1) — B(H2) be self-adjointness-
preserving. The following are equivalent:

(1) the map ® is completely. positive,

(2) the Choi matriz C(®) s positive semi-definite,

(3) there exist finitely(many operators Ay, ..., An € B(H1,Hza) such that, for
any X € B(H1),

N
(2.33) O(X) = > AiXAL
i=1
A decomposition of @ in the form (2.33) is called a Kraus decomposition of ®.
The smallestyinteger N such that a Kraus decomposition is possible is called the
Kraus. rank of ®. As will be clear from the proof, the Kraus rank of ® is the same

as therank of C(®) in the usual (linear algebra) sense. In particular, it will follow
that the Kraus rank of ® : B(H1) — B(H2) is at most dim #H; dim H.

PROOF. It is easily checked that (3) implies (1). The implication (1) = (2)
follows from the representation (2.32) of the Choi matrix. We now prove (2) = (3).
By the spectral theorem, there exist vectors a; € Hi1 ® Ho such that

(2.34) (@) = Y loi)ail.

By Lemma la;)a;] is the Choi matrix of the map X — A; X A!, where A; €
B(H1,H2) is associated to a; via the relation a; = vec(4;). A representation of
type (3) follows now from the linearity of the Choi isomorphism. O
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There is a simple relation between Kraus decompositions of a completely posi-
tive map and of its adjoint: if ® is given by (2.33), then for any Y € B(Ha2),

N
(2.35) o*(V) =) AlY A,
i=1
It is clear from the above analysis that ®* is completely positive if and only if
® is. It is also readily checked that ®* is positivity-preserving if and only if ® is;
this and related properties are explored in Exercises and discussed in a
more general setting in Section [2.4]

EXERCISE 2.25. Let ® : B(H1) — B(H2) be self-adjointness-preserving. “Show
that ®* is positive if and only if ® is positive, and that for any n, ®* is n~positive
if and only if ® is n-positive.

EXERCISE 2.26. Show that if ® and ¥ are completely positive;so are ® @ ¥
and ® o ¥ (the composition, assuming it is defined).

EXERCISE 2.27. Show that any self-adjointness-preserving ‘map ® : B(H;) —
B(H2) is the difference of two completely positive maps.

EXERCISE 2.28. Show that the assertions of Theorem [2:21] are also equivalent
to the fact that ® is n-positive, with n = min(dim Hy, dim Hs).

EXERCISE 2.29. Let k£ < n be integers, Shew that the map ¢ : M,, —» M,
defined by ®(X) = kTr(X)I—X is k-pesitive-but not (k + 1)-positive.

2.3.3. Quantum channels and Stinespring representation. Consider a
self-adjointness-preserving map ® { B(H;) — B(Hz). We say that & is unital
if ®(Iy,) = Iy,. We say that @ is'trace-preserving if Tr®(X) = Tr X for any
X € B(H1). Tt is easily checked that these properties are dual to each other:

(2.36) ® is unital < ®* is trace-preserving.

We now introduce-afundamental concept in quantum information theory:

DEFINITION 2:22v."A quantum channel ® : B(H,) — B(H2) is a completely
positive and trace-preserving map.

The reasons why we require quantum channels to be positivity- and trace-
preservingtare clear: since ® is supposed to represent some physically possible
process;.we want states to be mapped to states. (The motivation behind the
complete positivity condition is more subtle; we attempt to explain it in Section
3.51) “A channel that is additionally unital (i.e., if both ® and ®* are channels)
is called doubly stochastic or bistochastic. Clearly, such channels exist only if
dimH; = dimH,. (However, see Proposition for a notion that makes sense
also when dim H; # dim H;.)

REMARK 2.23. It follows immediately from the relation that the condi-
tion Zivzl AiA;( = Iy, is equivalent to @(IHl) = Iy,, i.e., to ® being unital. It
is less obvious, but easily checked, that Zf\il AIAZ- = Iy, is equivalent to ® being
trace-preserving. Indeed, if the condition holds, then, for any £ € H;,

N

Tleel) - 1 (Y Alalexel) 1 (3 Adexelal).

i=1
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In other words, Tr ®(X) = Tr X if X = |£)(¢| and hence, by linearity, for any X €
B%2(H1). Furthermore, the argument is clearly reversible, so we have equivalence.

We now state the Stinespring representation theorem, which plays a fundamen-
tal role in understanding the structure of quantum maps.

THEOREM 2.24 (Stinespring theorem). Let ® : B(H1) — B(Hs2) be a com-
pletely positive map. Then there exist a finite-dimensional Hilbert space Hs and an
embedding V : H1 — Ho @ Hs such that, for any X € B(H1),

(2.37) O(X) = Try, VXV

Moreover, ® is a quantum channel if and only if V' is an isometry. Conversély; for
any isometric embedding V , the map ® defined via (2.37) is a quantum channel.

The proof shows that the smallest possible dimension for H3 equals.the Kraus
rank of ®; in particular we can require that dim(H3) < dim(H;) dim(Hz).

PROOF. Start from a Kraus decomposition (2.33) for.®. Set H3 := CV, and
let (|2))1<i<n be its canonical basis. Define V' by the formula

N
(2.38) Vigy = > AilY) ®|iy for. € Hy.

i=1
We claim that, for any X € B(H;),

N
VXV = YA XA ®1ixl.
ij=1
As in Remark this follows by linearity from the special case X = |¢){¢|. This
implies the identity . We also see from that VIV = Zf\il A;YAi. By
Remark it follows that & is a.quantum channel if and only if V1V = I, which
is equivalent to V being an(isometry. Finally, the last assertion is straightforward:
complete positivity follows from (the easy direction of) Choi’s Theorem and
the trace preserving property is immediate. ([l

When Hy1 = Hs, the Stinespring theorem can be reformulated as follows: any
quantum channel can be lifted to a unitary transformation using some ancillary
Hilbert space.

THEOREM 2.25. Let ® : B(H) — B(H) be a quantum channel. Then there
exist o finite-dimensional Hilbert space H', a unit vector v» € H' and a unitary

transformation U on H® H' such that, for any X in B(H),
(2:39) O(X) = Tra U(X @ [¥)¢))U".

PrOOF. Let V : H — H ® H' be given by Theorem (with H' = Hg).
Choose any vector ¢ € H'. The map ¢ ® ¢ — V(¢) (defined on the subspace

H®y < H®H') is an isometry, and therefore can be extended to a unitary U on
H®H'. One checks easily that (2.39) holds. O

We mention in passing that a popular way to quantify how different two quan-
tum channels are is the diamond norm. For a self-adjointness-preserving map
® : B(H1) — B(Hz), define

|®]s = sup sup [(®®Ipck))(p)]1-
keN peD(C*)
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EXERCISE 2.30. Show that any positive unital map ® : M}3 — M;? is a con-
traction with respect to the operator norm | - ||g.

EXERCISE 2.31. Show that any positive trace-preserving map ® : M2 — M2
is a contraction with respect to the trace norm || - |1 (cf. Proposition [8.4).

EXERCISE 2.32. (i) Let @ : M3 — M? be a trace preserving map. Show that
® is k-positive if and only if P®Id : B%*(C"®C*) — B%2(C"®C¥) is a contraction
with respect to the trace norm | - |;. (ii) Let 7" : M,, — M,, be the transposition
map. Calculate the norm of 7' ®Id considered as a map on (B**(C™ ®C?),] - 1)
and give an example of an operator on which that norm is attained. (iii) Samne
question for the operator norm | - | 4.

EXERCISE 2.33. Show that any positive, unital, and trace-preservingymap ® :
M$2 — MS? is rank non-decreasing, i.e., rank ®(p) = rank p for any,p e D(C™).

2.3.4. Some examples of channels. In this section we list\some important
classes and examples of quantum channels or, more generally, -of superoperators.
(Sometimes it is convenient to drop the trace-preserving constraint.)

2.3.4.1. Unitary channels. Unitary channels are the completely positive isome-
tries of the set of states identified in Theorem [2(4] i.e.,>the maps that are of the
form p > UpUT for some U € U(d).

2.3.4.2. Mized-unitary channels. A mized-unitary channel ® : B(C%) — B(C?)
is a channel which is a convex combinatien of unitary channels, i.e., is of the form

N
=1

where ();) is a convex combination and U; € U(C?). Such channels are automati-
cally unital. A remarkable faet is,that the converse is true when d = 2.

PROPOSITION 2.26 (se¢-Exercise [2.34)). Let ® : B(C?) — B(C?) be a unital
quantum channel. Then @, is mized-unitary.

EXERCISE 2.34 (Proof of Proposition[2.26). (i) Argue that it is enough to prove
Proposition for channels which are diagonal with respect to the basis of Pauli
matrices (2.2
(ii) Given real-numbers a, b, ¢, check that the superoperator

%(I DXL + alow Xow| + bloyXoy| + clo=)Xo-])

is completely positive if and only if (a + b)? < (1 + ¢)? and (a — b)? < (1 — ¢)?.
(iif) Rewrite the conditions from part (ii) as a system of four linear inequalities and
conclude the proof.

EXERCISE 2.35. Show that any mixed-unitary channel ® : B(C?) — B(C%) can
be expressed as in (2.40) with N < d* — 2d? + 2. Note that the argument from
Exercise gives N < 4 (which is optimal) for d = 2.

2.3.4.3. Depolarizing and dephasing channels. The completely depolarizing (or
completely randomizing) channel is the channel R : B(C?) — B(CY) defined as
R(X)=TrX é. It maps every state to the maximally mixed state. The completely
dephasing channel is the channel D : B(C¢) — B(CY) that maps any operator to
its diagonal part (with respect to a fixed basis).
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EXERCISE 2.36 (Depolarizing channels and isotropic states). The family of
depolarizing channels is defined as Ry = AI+(1 — AR for — 5 < A < 1. Check
that the Choi matrix of @, is dpy, where p, is the isotropic state defined in (2.20]).

EXERCISE 2.37. Show that the completely depolarizing and completely dephas-
ing channels are mixed-unitaries (see also Exercise .

2.3.44. POVMs, quantum-classical channels. A POVM (Positive Operator-
Valued Measure) on H is a finite family of positive operators (M;)i1<;<n with the
property that >’ M; = 1. Given a POVM, we can associate to it a quantum channel
(called sometimes a quantum-classical or q-c channel) ® : B(H) — B(C") defined
as

(2.41) ®(p) = Z |0)<i| Te(Mip).

The dual concept is the notion of a classical-quantum._ er—c-q channel ¥ :
B(CN) — B(H). This is a channel of the form

N
U(p) = . pidilpliy,
i=1

where (p;) are states on H.

EXERCISE 2.38 (Duality between c-q and‘g-c channels). Let ® be a g-c channel
of the form (2.41). Under what condition-on (M;) is ® unital? When this condition
is satisfied, show that the dual map ®* is a c-q channel.

2.3.4.5. Entanglement-breaking maps. A map ® € CP(H™ H) is said to
be entanglement-breaking if, for~any integer d and for any positive operator X €
Bs*(H"™ @ C4), the operator (@ ® Idu,)(X) belongs to the cone SEP(H ™ @ C?)
of separable operators. Here are equivalent descriptions of entanglement-breaking
maps:

LEMMA 2.27 (Characterization of entanglement-breaking maps, see Exercise
. Let @ : B(H™) — B(H°“) be completely positive. The following are equiv-
alent:

(i) ® is entanglement-breaking,

(ii) the\Choi matriz C(®) lies in the separable cone SEP(H ™ @ H™),

(i) there is a Kraus decomposition of ® where all the Kraus operators A;
haverank 1.

Entanglement-breaking quantum channels are sometimes called g-c-q channels.
This reflects the fact that a quantum channel ® is entanglement-breaking if and
only if it can be written as the composition of a g-c channel with a c-q channel.

EXERCISE 2.39. Prove Lemma 2.27

EXERCISE 2.40 (Once broken, always broken). Let ®, ¥ be two completely
positive maps, with one of them being entanglement-breaking. Show that (¢ ®
U)(X) e SEP for any positive operator X.



54 2. THE MATHEMATICS OF QUANTUM INFORMATION THEORY

2.3.4.6. PPT-inducing maps. A map ® € CP(H™, H°") is said to be PPT-
inducing if for any integer d and any positive operator X € B*(H™ ® C%), the
operator (® ® Idwm,)(X) has positive partial transpose.

LEMMA 2.28 (Characterization of PPT-inducing maps, see Exercise [2.41). A
completely positive map ® is PPT-inducing if and only if J(®) = C(®)! is positive
semi-definite.

EXERCISE 2.41. Prove Lemma [2.28)

2.3.4.7. Schur channels. Given matrices A, B € My, their Schur product A®.B
is defined as the entrywise product: (A® B);; = A;;B;;. Given A € My, the map
O4 : Mg — My defined as ©4(X) = A® X is called a Schur multiplier.“When A
is positive with A;; = 1 for all 4, the map © 4 is a quantum channel: called a Schur
channel.

EXERCISE 2.42 (Positivity of Schur multipliers). Let A € Mq>~Show that the
following are equivalent:
(i) A is positive semi-definite,
(ii) © 4 is positive,
(iii) © 4 is completely positive.
EXERCISE 2.43 (Kraus decompositions of\Schur’channels). Let ® : Mg — My

be a quantum channel. Show that ® is a Schur channel if and only if it admits a
Kraus decomposition (2.33]) where A; are diagenal operators.

2.3.4.8. Separable and LOCC superoperators. We now assume that H" and
Hu are bipartite spaces, say H'™ = Hi" @ Hy* and H" = H{M @ HS™. A
map ® € CP(H™, H°u) is called 8eparable if it admits a Kraus decomposition
involving product operators, ite.,-if there exist operators Al(-l) s H — HU and
A§2) : HI — HGW such that.for any X € B(H™"),
N
&(X) = ), (A" @ A7) x (4 @ AP,
i=1
A widely used class is the class of LOCC channels (LOCC standing for “Local
Operations-aiid Classical Communication”). Without defining this class, we simply
note that any LOCC channel is separable, and that any convex combination of
product.channels (of the form ®; ® @) is an LOCC channel. (Note that these
notions are not all equivalent, see Exercise ) More properties of this class will
be presented in Section [12.2

EXERCISE 2.44. Consider the following operators on C? ® C2
Ap = [0X0[®10)0], A2 = [0)X0] @ |0)(1], Az = [1)}{1] @ [1)(1], As = [LX1] ®[1)}0].

Show that the channel on B(C?®C?) defined as ®(X) = Z?zl AiXA;r is a separable
channel which cannot be written as a convex combination of product channels.

2.3.4.9. Direct sums. Let @1 : B(Hi") — B(HS$"') and @5 : B(HY") — B(H3Y)
be two quantum channels. Their direct sum

D, @y : B(H" ®HY") — B(H{" @ HS™)
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is the quantum channel defined by its action on block operators as

(1 ® D) ([?; éj]) _ [@1(3(11) @2(2(22)].

EXERCISE 2.45. Describe the Kraus operators of ®; @ ®» in terms of the Kraus
operators of ®; and Ps.

(2.42)

2.4. Cones of QIT

In this section we will review some of the cones used commonly in quantum
information theory. We will distinguish between cones of operators and cones of.su-=
peroperators, and emphasize the distinction by using two different fonts: C-denotes
a generic cone of operators and C' a generic cone of superoperators.

2.4.1. Cones of operators. We start by describing some cones of operators
and by identifying their bases and their dual cones (Table . We work in a
Hilbert space H and the corresponding space B (H) of self-adjoint operators. The
vector e chosen to define the base in is the maximally mixed state. Here
and in what follows, we assume that separability and the PPT property are defined
with respect to a fixed bipartition H = H; ® Ho. However, most considerations
extend to multipartite variants and settings allowing\flexibility in the choice of the
partition. In order lighten the notation, we often write PSD and SEP instead of
PSD(H) and SEP(H1 ® Hs) unless this may cause ambiguity.

TABLE 2.1. List of cones of operators. All cones live in B (H),
the space of self-adjoint operators on a bipartite Hilbert space H =
H1 ® Ho with dimension n = dim#H. The base is taken with
respect to the distinguished vector e = I /n. The cones C are listed
in the decreasing order(with respect to inclusion) from top to
bottom and, consequently, the dual cones C* are in the increasing
order from top to bottom. Most inclusions/duality relations are
straightforward and /or were pointed out earlier in this chapter;
the remaining few are clarified in this subsection.

Gore of operators C base CP dual cone C*
Block-pesitive BP BP SEP
Decomposable co-PSD + PSD | conv(D uI'(D)) PPT

Positive PSD D PSD
Pos. partial transpose PPT PPT co-PSD + PSD
Separable SEP Sep BP

In the same way that PSD is associated with its base D, the set of separable
states Sep gives rise to the separable cone SEP, and the set PPT of states with
positive partial transpose leads to the PPT cone. Another example is the cone
of k-entangled matrices (cf. Section . In general, whenever a definition of a
set of matrices involves linear matrix inequalities and a trace constraint, dropping
that constraint gives us a cone. When the original set of matrices is compact, the
resulting cone is pointed, with the hyperplane of trace zero matrices isolating 0 as
an exposed point (cf. Corollary . All the cones cataloged in this section have
this property and are in fact nondegenerate.
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One more convenient concept is that of co-PSD matrices
(2.43) co-PSD :=T(PSD) = {pe M* : pl' € PSD}

where I' is the partial transpose defined in Section [2.2.6] It allows a compact
description of the cone dual to PPT: since PPT = co-PSD n PSD, it follows

from (1.20) (see also Exercise (1.36))) that
(2.44) PPT* = co-PSD + PSD,

the cone of decomposable matrices. Note that, except in trivial cases, this cone is
strictly larger than PSD and so its base contains matrices that are not states.

To conclude the review of the standard cones, we will identify the cone SEP*.
To that end, it is convenient to think of operators on a composite Hilbert\space
C™ ®C" as block matrices M = (Mjy)},_;, where My, € M, (see Section .
Since the extreme rays of SEP are generated by pure separable states [€®n)}{E®n|
(see Section [2.2.3), we have

(245) MeSEP* «— VEeC™, VneC, Tr (M[EQuXE®n]|) =0

(2.46) — VeeC™, > &&GMj e PSD(CM).

Gok=1
The condition in is usually referred to as M= (M) being block-positive.
(We note that the definition treats m and n $ymmetrically, even though this not
apparent in (2.46)).) In other words, the“dual to the cone of separable matrices is
that of block-positive matrices, denoted by-BP. As a consequence, the polar of Sep
can be identified: we obtain from Lemma that

(2.47) Sep® = —d*BP,

where BP denotes the set of block-positive matrices with unit trace and the minus
sign stands for the point reflection with respect to the appropriately normalized
identity matrix.

2.4.2. Cones of superoperators. We next turn our attention to the classes
of superoperators «considered in Section [2.3.2] We consider superoperators acting
from B%*(H) to.B%*(K) and denote the corresponding cones as C(H, K), or as C(H)
when H = K ersimply as C' when there is no ambiguity. The cones we consider
most frequently are gathered in Table (See Exercise for a discussion of
identification and duality relations for k-positive superoperators and k-entangled
states.)

In the language of cones, a positivity-preserving superoperator ® : B (H) —
B*2(K) may be defined via the condition ®(PSD(H)) < PSD(K). It is readily
seen that the set of positivity-preserving maps is itself a cone (which we will denote
by P(H,K)) in the space B(B*(H), B**(K)).

As was noted in Section ® e P(H,K) iff * € P(K,H). As we shall
see, it would be erroneous to take this to mean that P is self-dual. Instead, this
is a special case of a very general elementary fact: If Vi, V5 are vector spaces, if
Ci < Vi, Co < V5 are closed convex cones, and if ® : Vi — V5 is linear, then
®(Cy) < Cy iff *(C¥) < Cf.

The most important cone of superoperators is arguably that of completely
positive maps, denoted by CP. By Choi’s Theorem ® ¢ CP iff the Choi
matrix C'(®) is positive semi-definite. In other words, CP(C™,C") is isomorphic to
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TABLE 2.2. Cones of superoperators. To each cone C from the
first (double) column we associate a cone C which consists of Choi
matrices of elements from C. They are connected by the rela-
tion ® e C < C(®) € C. We note that C is a subset of
B(B**(H), B¥(K)) while C is a subset of B¥*(K ® H). The cones
C and C are in decreasing order from top to bottom and the dual
cones C* and C* are in increasing order from top to bottom.
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Cone of superoperators C C c* C*
Positivity-preserving P BP SEP EB
Decomposable DEC | co-PSD + PSD PPT PPT
Completely positive CcP PSD PSD CcP
PPT-inducing PPT PPT co-PSD + PSD.| DEC
Entanglement-breaking | EB SEP BP P

PSD(C*®C™). This means that—with proper identifications, see Exercise W
the cone CP is self-dual. Choi’s correspondence & — C(®) relates similarly the
cone EB(C™,C") of entanglement-breaking maps from Ms? to Ms* to SEP(C" ®
C™), as well as the cone PPT(C™,C") of PPT-inducing maps to PPT (C"®@C™).

A map @ : M? — M3? is said to be co-completely positive if C(®) € co-PSD.
Similarly, one says that ® is decomposable \if it can be represented as a sum of
a completely positive map and a co-completely positive map. It follows that the
correspondence ® — C(®) relates the coné DEC(C™,C™) of decomposable maps
to the cone of decomposable matrices.

Interestingly, SEP(C" ® C")* identifies with P(C™,C™). This last identi-
fication is in fact easy to see directly from (2.45)—(2.46). Indeed, C(®) = (Mjy)
means that M;, = ®(|e;){ex]) and hence if £ = (§;)7L; € C™, then ®(|{){¢]) =
=1 &€k Mjy.. Consequently,

C(P) e SEP(CERC™)* <« P(|€)€]) e PSD(C") for £eC™

— deP,

which is the elaimed identification. The first equivalence is simply (2.45)—(2.46]) for
the choice\ Vi = C(®), whereas the second one reflects the fact that the property
of “preserving positivity” needs to be checked only on the extreme rays of the
PSD-cone, i.e., on operators of the form |£){£]. (See Section and particularly

Corollary )

EXERCISE 2.46 (Composition rules for maps). Show that a composition of
two co-completely positive maps is completely positive. Similarly, show that a
composition of a co-completely positive map and a completely positive map is co-
completely positive.

EXERCISE 2.47 (The completely positive cone is self-dual). Show that

CP(C",C") ={V e B(M*, M) : Tr(Vod) >0 VPe CP(C™ C")},
where Tr denotes the trace on B(MS?).

EXERCISE 2.48 (k-positive superoperators and k-entangled states). Let 1 <
k < min(m,n) and ® : M,, - M,, be self-adjointness-preserving. Show that the
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following are equivalent

(1) @ is k-positive,

(2) for every x € C"™ ® C™ with Schmidt rank at most k, we have (z|C(®)|z) = 0,
(3) for every A € My, ,,, and B € My, ,,, the operator (A® B)TC(®)(A® B) is positive.
In words, the cone of Choi matrices of k-positive superoperators is dual to the cone
generated by the set of k-entangled states (as defined in Section [2.2.5)).

2.4.3. Symmetries of the PSD cone. The results of Sections [2.1.4] allow us
to deduce a description of the groups of affine automorphisms of some of the cones
cataloged in the present section. The argument is based on the following two simple
observations: first, since affine automorphisms preserve facial structure, and ’since 0
is the only extreme point of all the cones considered above, any affine automorphism
must be linear. Next, if ® : M52 — M$? is such that A = ®(I) is pesitive) definite,
then U defined by W(p) = A~Y/2®(p)A~1/? is unital, and its adjoint, W*, is trace-
preserving (see ) This often allows to reduce the analysis of general maps to
that of unital or trace-preserving maps. As an example of such reduction we will
prove the following statement.

PROPOSITION 2.29 (Characterization of automorphisms of the PSD cone). Let
O : M52 — M2 be an affine map which satisfies ®(PSD(C™)) = PSD(C™). Then ®
is a linear automorphism of PSD(C™) and is of one of two possible forms: ®(p) =
VoVt or ®(p) = VpTVT, for some V e GL(n,€). In the first case ® is completely
positive, whereas in the second case ® is“co-completely positive.

PRrROOF. Since rank® > dimPSD(C") = dim M$?, it follows that @ is sur-
jective and hence injective, so it is indeed an automorphism of PSD(C") (and,
consequently, so is ®~!). By~the_ earlier remark, ® must be linear. Since the
adjoint of a positive map is positive (see Section , it follows that ®* and
(®*)~1 = (®@71)* are positive."Hénce they are both automorphisms of PSD(C").
Let A = &*(I) e PSD(C™)\We claim that A belongs to the interior of PSD(C")
and, consequently, is positive definite (and invertible). This follows from topologi-
cal considerations, but“can also be deduced from Proposition if A=®*(I) lay
on the boundary 6f PSD(C™), we would have A € F for some face of PSD(C"),
which would imply ®*(PSD(C")) < F, contradicting injectivity of ®*. Having
established the'claim, we set ¥(0) = A~1/20*(0)A~1/2, so that U is a unital auto-
morphismi ofyPSD(C™). Consequently, U* is a trace-preserving automorphism of
PSD(C™)) which is only possible if ¥*(D) = D. It now follows from Kadison’s The-
orem 2.4 that, for some U € U(n), either (i) ¥*(7) = UrU" or (ii) ¥*(7) = UrTUT
(for all 7 € M?2). The rest of the argument is just bookkeeping. First, the defi-
nition of ¥—and that of an adjoint map—imply that U* is given by the formula
T* (1) = B(A~Y27A1/2). In case (i), this shows that ®(A~1/274-12) = UrUT or,
substituting p = A=Y27A7Y2 ®(p) = UAY2pAY2UT = VpVT, where V = UAY?,
as needed. The fact that ® is then completely positive is the easy implication of
Choi’s Theorem Case (ii) is handled in the same way. O

We have an immediate

COROLLARY 2.30. Completely positive automorphisms of the cone PSD(C™),
all of which are of the form ®y(p) = VpVT for some V € GL(n,C), act transitively
on the interior of that cone.
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For future reference, we state here a slightly more general form of the principle
that is implicit in the proof of Proposition [2:29

LEMMA 2.31. If @ : M2 — MS? is a positivity-preserving linear map such
that A = ®(1) is positive definite, then ® defined by ®(p) = A~V2®(p)A~? is
unital and positivity-preserving. Similarly, if U is a positivity-preserving linear
map such that ¥(p) # 0 for p € PSD(C™)\{0}, then W(p) = U(B~2pB~1/2) is
trace-preserving and positivity-preserving, where B = U*(I) (necessarily positive
definite).

We emphasize that the map ® in Lemma [2.31]is not assumed to be an auto-
morphism of the PSD cone (as was the case in Proposition , only positivity-
preserving. Moreover, we also allow the dimensions in the domain and in-the range
to be different. Finally, recall that, by Lemma the properties “®(I)\is positive
definite” and “¥(p) # 0 for p € PSD(C™)\{0}” are dual to each other.

In view of the above result, it is natural to wonder when a positivity-preserving
map is equivalent, in the sense of Lemma to a map which+is both unital and
trace-preserving. (Of course if the dimensions in the domain’jand in the range are
different, this is only possible if we use the normalized.trace or, alternatively, if we
ask that the maximally mixed state be mapped t6 the\maximally mixed state.) It
turns out that this can be ensured if just a little more regularity is assumed. (See
Exercise for examples exploring the necessity of the stronger hypothesis.) We
have

PROPOSITION 2.32 (Sinkhorn’s normal form for positive maps). Let ® : M? —
M?2 be a linear map which belongs to the interior of P, the cone of positivity-
preserving maps. Then there~exist, positive operators A € PSD(C™) and B €
PSD(C™) such that the map ®(p)= A®(BpB)A is trace-preserving and maps the
mazimally mized state to the.maZimally mized state (and is necessarily positivity-
preserving).

_ PrOOF. Let us first-focus on the case m = n. Given positive definite A, B, let
® be given by the.formula from the Proposition. Then

(2.48) ® is unital < AP(B)A=1< &(B?) = A2 < ®(BY) ! = A2

We next netel that, in the notation of Corollary = Pyuododg and so
O* = Opo®*od 4 (this uses the identity @3, = Py, valid when M is self-adjoint).
Accordingly, by (2.36]),

(2.49) )

@ is trace-preserving < ®* is unital < B®*(A?)B =1« ®*(A?) = B2,
Solving the last equation in (2.49) for B? and substituting it in (2.48) we are led
to a system of equations
1

(2.50) B? = 0*(A*)™" and ®(®*(A%*)7) =A%
The second equation in (2.50]) says that S = A? is a fixed point of the function
(2.51) S f(S) = (D*(S)1)

Conversely, if S is a positive definite fixed point of f, then A = S'/2 and B =
®*(A?)7!/2 (i.e., B defined so that the first equation in (2.50) holds) satisfy (2.48)
and (2.49) and yield ® that is unital and trace-preserving. (The hypothesis “®
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belongs to the interior of P” guarantees that all the inverses and negative powers
above make sense, and that f is well-defined and continuous on PSD\{0}, see
Exercises and [2.51] )

To find a fixed point of f we want to use Brouwer’s fixed-point theorem, which
requires a (continuous) function that is a self-map of a compact convex set. One
way to arrive at such setting is to consider f; : D(C™) — D(C") defined by

flo)
2.52 =
( ) fl (U) Tr f(O')
It then follows that there is og € D(C™) such that f;(0g) = 0o and hence f(op)'=
tog, where t = Tr f(op) > 0. The final step is to note that if we choose, as before,

A= 03/2 and B = <I>*(A2)_1/2, then the corresponding P is trace-preserving and
satisfies ®(I) = t~' L. If m = n, this is only possible if t = 1. In otherwords, o is a
fixed point of f that we needed in order to conclude the argument™ In’the general
case, the same argument yields ¢ = n/m, which translates to ®(I /m) = I /n, again
as needed.

EXERCISE 2.49. Show that ® € P(C") is an automorphism of PSD(C") if an
only if it is rank-preserving.

EXERCISE 2.50 (Descriptions of the interior of\the positive cone). Show that
® belongs to the interior of P(C") iff ® maps PSD(C")\{0} to the interior of
PSD(C") iff there exists § > 0 such that“®(p) = d(Trp)I for all p e PSD.

EXERCISE 2.51 (Interior of the positive cone is self-dual). Show that ® verifies
D(p) = 6(Trp)I (for all p e PSD) iff &* does.

EXERCISE 2.52 (Discussion “of the necessity of the hypothesis of Proposition
. Give examples of ®, W.e P(C?) such that (a) ®(I) and ®*(I) are positive
definite, but ® is not equivalent (in the sense of Proposition to a unital,
trace-preserving map, and (b) ¥ is unital and trace-preserving, but ¥ € ¢P.

EXERCISE 2.53 (Rank nondecreasing and Sinkhorn’s normal form). Give an ex-
ample of map ® € P (€2, C?) which is rank nondecreasing (i.e., verifies rank ®(p) >
rank p for any p.e D(C?)), but which does not satisfy the conclusion of Proposition

2.52

2.4.4, “Entanglement witnesses. The formalism of cones and their duality
allows us-to conveniently discuss the concept of entanglement witnesses. We start
with the following simple observation, which is a direct consequence of the identi-
fications of the dual cone SEP* as BP (see Table in Section , and of the
corresponding cone of superoperators as P (Table [2.2).

PROPOSITION 2.33 (Entanglement witnesses, take #1). Let H = C"®C" and
let p be a state on H. Then the following conditions are equivalent:
(i) p is entangled,
(i1) there exists 0 € SEP(H)* = BP such that (o, pyus = Tr(op) <0,
(#ii) there exists a positwity-preserving linear map ¥ : M$® — M such that
Tr(C(¥)p) < 0.

The next result is a simple corollary of the above observation, but it goes well
beyond a straightforward reformulation.
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THEOREM 2.34 (Horodecki’s entanglement witness theorem). Let H = C™QC™
and let p be a state on H. Then p is entangled iff there exists a positivity-preserving
map ® : M55 — M such that the operator (P®Idmsa)p is not positive semi-definite.

In the setting of Proposition [2:33]and Theorem [2.34] the operator o or the map
® are said to witness the entanglement present in p, hence the term “entanglement
witnesses.”

Proor or THEOREM [2.34l The sufficiency is obvious: if p = 7 ® 7’ is a prod-
uct state and ® is positivity-preserving, then (P ®1Id)p = ®(7)®7’, which is clearly
positive; the case of convex combinations of product states easily follows. To show
necessity, let ¥ : M>* — M?>> be the positivity-preserving map given by Proposition
If x e C* ® C™ is the maximally entangled vector as in , then

0 > Tr(C(¥)p) =<(C(¥), ppus = (¥ @ Idms) )Xx|, pins
= Do (¥ @ Idms ) pyms = x| (P* @ Idmea) p[X0;

which implies that (\II* ® Idmsa ) p is not positive. Given.that-U* is positivity-
preserving if and only if ¥ is (see Section , the choice of & = U* works as
needed. (]

REMARK 2.35. It follows from general considerations that the entanglement
witnesses o, ® may be required to satisfy various additional properties. First, one
may include a normalizing condition such as Tr.o~= 1 or Tr ®(I) = 1, which reduces
the search for a witness to a convex .compact set. Next, since linear functions
(restricted to compact sets) attain extreme values on extreme points, one may
insist that o or ® belong to an extreme ray of the respective cone (or even, by a
density argument, to an exposed ray; cf. Exercise . Finally, another acceptable
normalizing condition is to require:that ® be unital or trace-preserving. To see that
® can be assumed unital, we note first that by a density argument the operator
®(I) may be assumed to be.positive definite, in which case Lemma applies.
The case of the trace-preserving restriction is slightly more involved and requires
increasing the dimensien of the range of ®. We relegate the details of the arguments

to Exercises 2.54] and'2.55

EXERCISE, 2:54 (Unital witnesses suffice). Show that in Theorem one can
require that. ®_be unital.

EXERCISE 2.55 (Trace-preserving witnesses suffice). Show that in Theorem [2.34]

one-can)require that ® be trace-preserving, at the cost of allowing the range of ®
to be M52

m+n-*

EXERCISE 2.56 (Optimal entanglement witnesses). We work in the Hilbert
space H = C™ ® C". For o € BP, we denote by E(o) = {pe D : Tr(po) < 0}
the set of states detected to be entangled by o. We say that o is an optimal
entanglement witness if E(o) is maximal (i.e., whenever E(c) < E(r) for 7 € BP,
then E(c) = E(7)). Use the S-lemma (Lemma to show that if o lies on an
extreme ray of BP and o ¢ PSD, then o is an optimal entanglement witness.

2.4.5. Proofs of Stgrmer’s theorem. In this section we will present two
rather different proofs of the C? ® C? case of Theorem which we state here in
a slightly more general form. (See Notes and Remarks for comments regarding the
C?® C? case.)
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THEOREM 2.36 (Stgrmer’s theorem). If H = C2® C2, then the separable cone
SEP(H) and the cone PPT(H) coincide. Equivalently, P(C?) = DEC(C?).

The equivalence of the two assertions of the Theorem follows from Choi’s cor-
respondence and duality (see Section and particularly Table . We will focus
on the second assertion. Since the inclusion DEC(H) < P(H) always holds, we
only need to establish that every positivity-preserving map on M$5* is decomposable.

In a nutshell, the first proof depends on noticing that Proposition effec-
tively reduces the general case to that of unital, trace-preserving maps, which in
turn follows easily from very classical facts. The second proof handles first the'maps
generating extreme rays of P(C?), and concludes via the Krein—Milman theorem.
Here are the details.

PROOF # 1 OoF THEOREM [2.36] The crucial observation is that,_it. suffices to
show that the interior of P(C?) is contained in DEC(C?). The needed inclusion
P(C?) <« DEC(C?) follows then from both cones being closed, and being the
closures of their interiors.

To that end, suppose that ® belongs to the interior (of\/P(C?). Proposition
2.32 implies then that there exist positive operators A; B € M$* and a positivity-
preserving, unital and trace-preserving map @ i M3 > M3* such that ®(p) =
A*1§>(B*1pB’1)A*1 for all p € M3*. In other words, ® = & 4-1 0 ® o Py, where
®rr(p) := MpMT. Since every @, is completely positive, the composition rules for
completely positive and co-completely pesitive\maps (see Exercises and
show that the problem reduces to establishing decomposability of ®.

Up to now, the argument worked in any dimension; presently, we will exploit
the special features of dimension 2.Since ® is an affine self-map of the Bloch ball
that preserves the center, it may._be thought of as a linear map R € B(R?) with

R|lo < 1. Such maps are convex ¢ombinations of elements of O(3) (cf. Exercises
and , which in turn correspond to maps of the form (i) p — UpUT or (ii)
p — UpTUT for some U.€ U(2) (depending on whether the said element of O(3)
belongs to SO(3) or not). This is a very special and elementary case of Kadison’s
Theorem and, was. explained in the proof of Wigner’s Theorem (see also
Exercise for the-isomorphism PSU(2) < SO(3)). It remains to recall that the
maps of form-(i) are completely positive and those of form (ii) are co-completely
positive. (Il

REMARK 2.37. The above argument, when combined with the result from Ex-
ercise l1.45L shows that every ® € P(C?) can be represented as ® = 2 P4, +
Y P, oT so that the total number of terms does not exceed 4.

PROOF # 2 OF THEOREM [2.36] Again, we will prove the inclusion P(C?) ¢
DEC(C?). Since P(C?) is convex and nondegenerate, it is enough to verify that its
extreme rays consist of decomposable maps (see the comment following Proposition
. The following characterization of such extreme rays comes in handy.

PROPOSITION 2.38 (see Appendix[C). Let ® : M5 — M$* be a map which gen-
erates an extreme ray of P(C?). Then either ® is an automorphism of PSD(C?),
in which case it is described by Proposition[2.29, or ® is of rank one, in which case

it is of the form ®(p) = Tr(ple)(p)[W)W] = ) plple)(W| for some 1 € C*\{0}.

Proposition 2:38] is a special case of the characterization of the extreme rays
of the maps preserving the Lorentz cone £, (remember that the cone PSD(C?)
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is isomorphic to the Lorentz cone £4) that will be proved in Appendix The
proof is based on the so-called S-lemma, a well-known fact from control theory and
quadratic/semi-definite programming.

Once we assume the above Proposition, concluding the proof is easy. Indeed, if
® is an automorphism of PSD(C?), then, by Propositionm it is either completely
positive or co-completely positive, so a fortiori decomposable. On the other had,
if @ is of rank one and ®(p) = |1){v|p|le )|, then P is clearly completely positive
with Kraus rank one and the single Kraus operator A = |1)){¢p| (see Choi’s Theorem
2:21} actually, since A is itself of rank one, it follows that C(®) is in fact separable
and hence that ® entanglement-breaking, see Lemmas and . [

Notes and Remarks

Classical references for the mathematical aspects of quantum information the-
ory are [NCO00), [Hol12], (Wil17]. We also recommend [Wat].

Section A general reference for the geometry of quantum states is the
book [BZ06|. Wigner’s theorem appears in [Wig59] and Kadison’s theorem in
[Kad65] in a broader context. Elementary proofs can be found in [Hun72, [Sim76|
and recent generalizations in [SCM16), [Sts16].

Section The definition of separability for mixed states was introduced in
[Wer89|. The NP-hardness of deciding whether a state is separable was shown in
[Gur03|. The argument sketched in Exercise about the number of product
vectors needed to represent any separable state is from [CD13].

Werner states were introduced in [VWO1], where the question of their separa-
bility (Proposition is also.discussed.

Theorem was proved in. [DPS04]. For more information about k-ex-
tendibility and the symmetric‘subspace (also in the multipartite setting) we refer to
the survey [Har13|. An early veference for k-entangled states is [THOQ|. See Notes
and Remarks on Chapter{d] for quantitative results about the hierarchies defined in
Section [2.2.51

The observation that non-PPT states are entangled (Peres—Horodecki criterion,
Proposition goes back to [Per96], see also [HHH96].

It was observed in [HHH96]| that Theorem is a consequence of results by
Stgrmer [St@63] and Woronowicz [Wor76|. See Notes and Remarks on Section
for more information.

For-examples of PPT entangled states in C*> ® C3 or C2® C*, see [Hor97]; an
eatly result going in the same direction can be found in [Cho75b|. Less ad hoc
examples (in higher dimensions) are presented, e.g., in [BDM7'99|. A geometric
(non-constructive) argument is given in Chapter |§| (see Propositions and
this approach works if the dimension is sufficiently large).

The realignment criterion to detect entanglement (also called cross-norm cri-
terion) presented in Exercise is from [CWO03|, Rud05|. It is neither weaker
nor stronger than the PPT criterion. For more separability criteria, see the survey
[HHHHO09].

Theorem was proved in [AS10] in the bipartite case and in [FLPS11] in
the general case.

The geometry of the set of absolutely separable states is poorly understood. By
definition, whether a state p is absolutely separable depends only on its spectrum.
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An explicit description is known for C? ® C2: a state p with eigenvalues \; > Ay >
A3 = A4 is absolutely separable if and only if A; < A3z + 2/ 224 [VADMOI].

Similarly to absolute separability, one may say that a state p € H; ® Hs is
absolutely PPT if UpU' is PPT for any unitary U on H; @ Hs. An intriguing
open problem is whether every absolutely PPT state is absolutely separable; see
[AJR15].

Lemma [2.19] can be proved via elementary representation theory; see, e.g.,
Appendix C in [ASY14].

Section The Jamiotkowski isomorphism can be traced to [Jam72|. Choi’s
and Jamioltkowski’s isomorphisms are seldom distinguished in the literature; a dis-
cussion of the difference between the two appears in [LS13].

Choi’s Theorem as stated was proved in [Cho75a], which also)contains
a description of extreme completely positive unital maps. Closely related state-
ments (including variants of Stinespring’s Theorem varying by the level of
abstractness were arrived at (largely) independently by various authors, see, e.g.,
[Sti55], Kra7ll, Kra83].

Proposition 2.26]is from [LS93] and the argument from Exercise[2.34]is based on
more general results from [RSW02] which give various descriptions of all quantum
channels between qubits and of extreme points of'the set of such channels.

For elementary properties of the diamond normi, see Section 3.3.4 in [Wat]
(where it is studied under the name completely-bounded trace norm). Entanglement-
breaking channels were studied in detail in. [HSRO03].

The example from Exercise is from [Tom85|. Exercise is from [Wat],
to which we also refer for a discussion of the class of LOCC channels.

Section Proposition [2:229] s a folklore result which appears explicitly in
[Sch65]. Many similar results«involve classification of “linear preservers”, i.e., linear
maps on My which preserve some property of matrices. Here is a typical statement
due to Frobenius: a linear map ® : My — M, satisfies the equation det ®(X) =
det X if and only if it has the from X +— AXB or A— AX"B for A, B € My with
det(AB) = 1. For a'survey on linear preserver problems, see [LT92].

The result.from Proposition 2:32) and its derivation from Brouwer’s fixed-point
theorem appear in [Idel3l, Idel6), [AS15|. A similar statement (proved via an
iterative comstruction) appeared in [Gur03| for positive maps ® which are “rank
non-decreasing” (however, not all such maps satisfy the conclusion of Proposition
m see-Exercise . The validity of Proposition for completely positive
maps is simpler and well known, see for example [GGHEOS| and its references.
The original Sinkhorn’s theorem (for matrices, or for maps preserving the positive
orthant in R™) goes back to [Sin64]; see [Idel6] for an extensive survey of related
topics.

Theorem [2.34is from [HHH96|. The concept of optimal entanglement witness
which appears in Exercise was investigated in [LKCHOO].

Stgrmer’s Theorem s initially proved in [St@63]; the original formulation
involved the second of the two statements. The first proof presented here seems
to be new and was a byproduct of the work on this book [AS15]. The scheme
behind the second proof was apparently folklore for some time; it was documented
in [MO15]. The novelty of its current presentation, if any, consists in streamlining
of the proof of Proposition m (For more background information on Proposition
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2.38] see Appendix[C]) Other proofs (of either of the two versions given in Theorem
2.36) appeared in [KCKLO0O0, VDDO01, LMOO06, KVSW09, [Sts13]. A recent

study of positivity-preserving maps on Mz can be found in [MO16]. While [MO186]
is focused on the unital trace-preserving case, it is likely that (particularly when
combined with our Proposition it may provide a clear picture of the more
general setting. In particular, it may lead to a simple and transparent proof of the
C? ® C? case of Theorem (Woronowicz’s Theorem).






CHAPTER 3

Quantum Mechanics for Mathematicians

This section is addressed primarily to mathematicians who are new to quantum
information theory. Its purpose is to indicate why various mathematical.concepts
enter the theory, and to give an idea of their physical meaning or.interpretation.
We make no attempt at being comprehensive; our attention is restricted to the
constructs that play a central role in this book and that we ourselves have found
(and still find) puzzling, such as mixed states and completely-positive maps. In
any case, neither of the authors being a physicist, the scope (and the depth) of the
presentation will necessarily be limited.

This section is designed to be essentially independent of the rest of the book.
The only “non-mainstream” technical device that.is\indispensable for following it
is the Dirac bra-ket notation (see Section . The discussion will be occasionally
informal in order for the readers to acquaint_themselves with concepts that are
presented more rigorously elsewhere in the book.

3.1. Simple-minded quantum mechanics

The state of a physical system-(say, a particle) is described by a wave function
b € Ly(IR?), which is generally time-dependent and complex-valued. Its dependence
on time is governed by some evolution equation (for example, the Schréodinger equa-
tion) and is necessarily unitary: given ¢ > 0, there is a unitary operator U; such
that if the state of the(particle at time 0 is described by 1o (a priori unknown),
its state at time ¢ will'be U;4yg. The probability of finding the particle at = € R?
(assuming the appropriate measurement is performed) is given by the probability
density function |¢(x)|?, according to the Copenhagen interpretation. This forces
wave functiong'to be normalized in Lo and justifies the postulate of unitary evolu-
tion. Other physical properties of the particle are exhibited similarly. In particular,
if a given physical quantity is discrete, then there is an orthonormal sequence (or
basis)(u;), indexed by possible values of the quantity in question, such that the
probability of obtaining the jth value during measurement is |1, u;)|>. This is the
simplest case of the so-called Born rule. In a way, the actual values of the physical
quantity are of secondary importance and one simply says that “a measurement was
performed in the basis (u;)” or that “(u;) is the computational basis” for this par-
ticular measuring/experimental setup. (We will briefly discuss other, more general
measurement schemes in Section )

It should be emphasized that it is possible for measurement results to be de-
terministic. If the basis (u;) is such that ¢ = w, for some jy, then measuring v
in the basis (u;) will yield joth outcome with probability 1. For the same reason,
two states ¢ and ¢ are in principle perfectly distinguishable if (and only if) they
are orthogonal; one then “merely” needs to arrange a measurement in a basis that
contains both 1 and .

67
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3.2. Finite vs. infinite dimension, projective spaces and matrices

In the previous section the “state space” is the infinite-dimensional Hilbert space
H = Ly(R®). However, if the number of possible values of a physical quantity is
finite (and it may be argued that this is always the case, the “infinite” being just
a useful abstraction of “large”), the interesting part of the Hilbert space is finite-
dimensional and, consequently, may be identified with C?% for some d € N (a d-level
system). A state is then simply a unit vector ¢» € C%. A priori d may be very
large, but even the simple case of d = 2 (a qubit) is of interest: it may describe for
example the spin of an electron or the polarization of a photon.

Next, it is apparent from the discussion in Section that no measurement
can distinguish between the wave functions ¢ and w, where w € C with, |w| = 1,
and so the “true” state space is the complex projective space P(C?).(ox CP¢~1) for
d-level systems. Another mathematical scheme that conveniently disregards scalar
factors is to consider not a unit vector 1 € C%, but the orthogonal projection onto
Ct or, in the language of matrices, the outer product p ="|1)}¢w| € My. In that
language, when a measurement is performed in some basis (u;)s the probability of
the jth outcome is

(3.1) [, upl? = Cugy ) b, uy) = Cuglplug) =T plug ) uyl).
3.3. Composite systems and quantum marginals; mixed states

This section gives motivation to the definition of (mixed) quantum states which
appeared in Section [2.1.1}

For classical systems, the state space of a system consisting of components is
the Cartesian product of the corresponding state spaces. In the quantum setting, if
the state spaces of the components (subsystems, particles, ...) are Hilbert spaces
Hi, ..., Hm, the state space of thé composite system is the tensor product K =
H1® - ®H,,. However, the Cartesian product of orthonormal bases of Hj'’s is an
orthonormal basis of K.-This is as far as the similarities to the classical case go.

Consider now a bipartite system K = H ® £ and assume that we have access
only to the H part.(This may be the case when H describes the state inside an
apparatus in a.Jaboratory and £ the environment, or if we decide to focus only on
the first subsystem.) Suppose that our system is in the state described by ¢ € K
and let us try to figure out the H-marginal of ¢, i.e., the state on H, measurements
of which“within H” are consistent with hypothetical measurements of the complete
state .

If 7y = £®n (a product vector), the result is as expected: the H-marginal of 1 is
& To check this, we note that if we measure & in some basis (u;) of H, we obtain the
jth outcome with probability p; = |1, u;)|?. For a different point of view, suppose
that we have access to the entire system and that we perform a measurement in the
basis (u; ® vg); .k, where (vg) is some basis of £. The probability of obtaining the
(j, k)th outcome is then gj; = [(€ ®n,u; @ ve)|* = [(&, uj)|* - [0, vky[?. Summing
over k, we again find that the probability of the jth outcome on the first component
is [(¢,u;)[* = p;. This is simply a verification that the probability distribution (p;)
is the (first) marginal of (¢;) and that, moreover, product vectors lead to product
distributions, or to independent random variables. Another way to express this
marginal probability is p; = Tr pP,;, where p = [¢)){(¢|, and where P, = [u){(u|®I¢
is the orthogonal projection onto the subspace u ® £ of H ® £. This calculation



3.3. COMPOSITE SYSTEMS AND QUANTUM MARGINALS; MIXED STATES 69

perfectly makes sense even if £ is not a product vector, and it makes clear that p;
does not depend on, say, the choice of the basis of £.
Consider now 1 € H ® £, which is not a product vector. Let

(32) b= a;&@mn;
im1

be its Schmidt decomposition (see Section , necessarily with » > 2. Since
the H-marginal of & ® n; is &;, it is tempting to guess that the H-marginal of ¥ is
>i_y ai&. However, one should immediately become suspicious: for any choice of
(complex) signs w;, the vector Y,!_, a;w;&; is an equally valid candidate, and while
the state remains unchanged if you multiply a vector by a complex number.w with
|w| = 1, it may change radically if you multiply different (non-zero). components
by different numbers. A more careful analysis is needed, and it turns out’'that the
proper language to describe marginals is that of matrices. In the notation of the
preceding paragraph we have
-
pi = Te (l0XWIP,) = Te[ (Y ealéx@l @ indil ) (u;)u| @ 1) |

il=1

= > i Te [ (16N (fug Cus )] Tr (Inam)

il=1

= e (a2 o |

(3.3) = (D las Pl us).
=1

In other words, the probability that a measurement performed in a basis (u;) yields
the jth outcome is (u;|py|ty) )= Tr (pp|u;){u;]), where

(3.4) pH = Z |ail*[€i)<Eil.

So the mized state py fits the role of the H-marginal of the “global” state p = pye =
|to)(1p|. Thetefore, while in principle the state of a quantum system is described
by a vector (or a rank one projection, or an element of a projective space, or a
wave function), i.e., by a pure state, we seldom, if ever, will be able to perform a
measurement in a global basis, and we therefore have to rely on mixed states for
modeling such systems. To use the Platonic analogy, a mixed state is “the shadow
on-the wall” of our cave, comprising all the features of the “idea” (or “form”) ¢ that
are accessible to our perception.

A more heuristic explanation of the formula for the marginal is that from the
perspective of H the state of our system is &; with probability p; = |a;|?, and so we
need to compute the weighted average of probabilities corresponding to p = |&; )&
Since the expression Tr p(\u><u|) is linear in p, the average can be performed inside
the trace, whence the formula for py;. We encourage readers who are not used to
the bra-ket formalism to work out the details of several variants of this calculation
outlined in Exercise 3.1}

The key features of the marginal py are that it is canonical (for example, it
does not depend on the basis (u;) of # in which the measurement is performed)
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and that it encodes all the information that can be obtained about the global state
by measurements inside H. In particular, if py is truly mixed (i.e., not pure, with
r = 2 in or in ), then there are no measurements inside H that are
deterministic.

A simple but spectacular demonstration of this phenomenon are the Bell states
on C? ® C2: p = |¢)(3p| with 9 being (for example) one of the four Bell vectors

L1 L1

@ \/5(\00>i|11>)7 7

where |0),|1) is the canonical basis of C? (recall that |00) stands for |0) ® |0)). It

is easily seen that in each case the marginal of p on either C? factor is (|0%(0]+

[1)(1])/2 = I/2. Consequently, when measuring in any basis (u1,us) (ofysay, the

first factor), each of the two outcomes occurs with probability 1/2Nand so the

results of such measurements, in and of themselves, tell us nothing: In particular,

they cannot help us distinguish between ¢™, ™, ¥, 1™, even‘though a global

measurement performed in the basis consisting of these.four-vectors would tell
them apart perfectly.

(101) £ [107),

EXERCISE 3.1. Perform alternative calculations of.the probabilities from
according to the following outline. Consider a product basis (u; @ vi);r of H®E.
If p = [Y)| with ¢ = X7 a; & @ n;, the probability of the (j, k)th outcome will
be, by (3.1,

r 2
aik = [ a1 & @i, u; @ W= T plfuy Xt | @ [ ).
=1

Finally, retrieve p; = >}, ¢ji by expanding either the second or the third expression
in the above.

3.4. The partial trace; purification of mixed states

The discussion in the,previous section shows that, in some cases, a natural way
of modeling the state of a-subsystem of a quantum system is to consider operators
rather than unit vectors. An elegant way to describe quantum marginals is via the
concept of partial trace, which is defined as follows (see also Section . First,
for any operator (self-adjoint or not) on a composite Hilbert space H ® £ which is
a tensor product of operators, we define its partial trace with respect to £ as

Tre(c® 1) = Tr(1)o.

Next, we extend this operation to all operators by linearity (which is possible be-
dause of the universal property of the tensor product). Clearly, if £ € H,n € £ are
unit vectors, then

Tre([§ @nXE @) = Tre (I€XEI @ [n)Xnl) = [€)XE]-
Similarly, if ¢ = >/, a; & ®m; is a Schmidt decomposition, then

Tre([Y)]) = D lail?[€)&].
=1

In other words, Trg(p) = py, the H-marginal of p defined by . The notation
may be a little confusing since in order to find the H-marginal we need to cal-
culate the partial trace with respect to &£, but it is generally accepted. It simply
corresponds to the following fact from elementary probability: given two random
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variables XY with joint density f(z,y), the marginal density of X is obtained by
integrating f with respect to y.

Another point which needs to be clarified is that the set of mixed states on H
that may be obtained as H-marginals of pure states on composite systems H ® &
(for some auxiliary space &) is exactly the set D(H) of positive semi-definite trace
one operators (usually referred to as density matrices, particularly if H = C¢). This
is the consequence of the following computation: if p € D(H), and p = >}, \i|&){&i]
is its spectral decomposition, then choosing & = H and ¢ = Y, v/A; & ® &; ensures
that Tre (| )Xy|) = p. We say that |¢)(¢p| (or simply @) is a purification. of p:
Clearly, the Schmidt rank of ¢ (always) equals rank p =: r. Moreover, the minimal
dimension of £ for which a purification of p exists in H® € is also equal tor. Even
though this construction is abstract, it is canonical in the following sense: if p is
a physical state on H that is the H-marginal of a physical pure state /e H® &
(where £ is the environment relative to ), then we must have =3 1 v/A; &®n;
for some basis (7;) of £. (The only catch is that (;) may not be the most natural
basis of £.)

3.5. Unitary evolution and quantum operations; the completely
positive maps

As mentioned earlier, the evolution of a quantum system is unitary, i.e., if
to < t1, then there is a unitary operator U such that if the state of the system at
time ¢( (the initial state) is described by a vector ¢ (which is a priori general and /or
unknown), then its state at time t; (the terminal state) will be Ut. (U depends
on the physical laws governing the evolution, and we may be able to control some
of its parameters, but it is independent of ¢.) If we switch to the language of
density matrices, the formula 1 = U becomes |1){1)| = p — UpUT. (These are
the unitary channels defined in Section [2.3.4])

We now want to understand how the formalism needs to be adapted to describe
subsystems, i.e., when we,pass to the more general context of mixed states. Assume
that our evolution operator U acts on a composite space H ® £ and—to begin
with— takes the form~V ® W, where V' and W are unitary operators on H and
& respectivelys If ¢y "= £ ® n is also a product vector, then the evolution of the
subsystem H-is elearly given by & — V¢, or by o — VoV in the language of
density matrices. The latter formula remains valid if ¥ € H ® £ is an arbitrary
(unit) vector, and o = Trg(]1){v)|) is the corresponding H-marginal. (This follows
from(the-identity V Tre(p)VT = Trg(UpUT), valid for U = V ® W and for any
matrix p.)

The situation becomes more complicated in a case where the evolution of the
subsystem H and the environment &£ are not decoupled, i.e., where U is not a
product of two unitaries. Even if the initial state of the system is a product vector
1 = £ ®n, there is no reason why the terminal state Ui, which can a priori be
arbitrary, should be of that form. In other words, even if the initial H-marginal
o = |£X¢| is pure, the terminal marginal may be mixed. In particular, the evolution
of the marginal is not necessarily unitary. Moreover, for fixed &, different values
of the initial £-marginal 7 may result in radically different values of the terminal
‘H-marginal.

However, this is neither surprising nor fatal. First, if there is interaction be-
tween our subsystem H and the environment &, it is to be expected that the terminal
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state of H possibly depends on the state of £. Second, while we may not know what
the initial state of £ is, we can simply think of it as an external parameter affecting
the evolution of our subsystem #, which is the only one we can manipulate, control
and measure.

We now want to come up with a formula that generalizes the unitary evolution
p — UpUT or, more precisely, that is the “shadow on the wall of our cave” of the
unitary evolution. Let us start again with the global initial state being a product
vector ¢ = £ ® n; the terminal state is then represented by the vector U(§ ® 7).
Since 7 is assumed to be fixed, we can omit the dependence on 7 in the description
and simply talk about an (a priori arbitrary) isometry £ — V& € HRE. (Of course,
since by definition V& = U(£®n), V does implicitly depend on 7.) In the language
of density matrices, the evolution of the H-marginal is then given by

(3.5) o Tre VoV,

where o = [¢)(¢| is the initial marginal (cf. Theorem [2.24).

If we want to give a description of the evolution that is intrinsic to H, we may
proceed as follows. Let (v;) be an orthonormal basis of £. (The’isometry V' can be
represented as V& = . (A;€) ® v; for some operators A; € B(H). Consequently,

VoV! = DTIAEXAEI ® 0i)os| = X, (ALDXEIAD) ® 0o
and further, ’ .
Tre VoVt = 37 (Al AD T toidu;| = 3 A€l Al
Accordingly, an alternative’;escription of the evolution is

(3.6) 7 Y AioAl.

This is a description intrinsic to H, since A; € B(H). Moreover, according to
Choi’s Theorem (Theorem, the evolution described by 7 is given by
a completely positiveanap on B(H). The operators A; aren’t completely arbitrary,
since the resultingsmap & — V& = 3. (A4;£) ® v; needs to be an isometry. For this
to happen we must have, for every £ € H,

(€6 = WEVE) = DA, AjE)(vi,vj) = D (A, 4i) = (€1 Y ALAE).

Given that for self-adjoint operators A, B € B(#) the condition ({|A|&) = (£|B|&)
for*all*¢ € H implies A = B, it follows that V being an isometry is equivalent to

(3:7) MAlA; =1y,

which in turn (see Remark is equivalent to the map given by being
trace-preserving. This should not come as surprise, since we want the evolution
equation to map density matrices to density matrices, which for linear evolutions
is equivalent to preserving the trace.

To summarize, under the hypothesis of unitary evolution of the global system
H ® &, the relationship o — ®(o) between the initial state o of subsystem H
(the initial H-marginal) and its terminal state ®(o) is described by a completely
positive trace-preserving map (CPTP) & acting on B(#H). CPTP maps are also
called quantum channels.
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We derived the above characterization of quantum evolution maps ® under the
assumption that the initial global state was given by a product vector ¢ = £®n, with
® € B(H) depending on the (a priori unknown, but specific) £-marginal described
by n. One could ask whether a similar (or some other) characterization can be
derived in a more general case where the initial state, while still a vector, is no
longer separable. However, there appears to be no straightforward way to produce
a canonical map in that setting. One natural approach would be to try to associate
an evolution map ® : B(H) — B(H), acting in a consistent manner on H-marginals,
to a given global unitary evolution induced by U and a given £-marginal 7 € B(£):
However, while knowing H- and £-marginals of a pure state tells us a lot_about
the structure of that state, it still leaves a lot of uncertainty. For examplesH=-and
E-marginals of all four Bell states o+, o=, 9%, 9%~ on C2QC? are idensical: théy are
maximally mixed states %Icz. On the other hand, in the absence of seme strong
restrictions on the form of the global unitary evolution U, there“is no reason to
expect the H-marginals of Up™, Up~, U™, Ut~ to be the same. (In fact, various
quantum algorithms exploit the fact that those marginals“may be quite different.)
In other words, such a map ® cannot be consistently defined.

In physics texts this characterization, and specifically the postulate of complete
positivity, is usually arrived at in a somewhat different, way. First, it is noted that
a quantum evolution map (or a quantum operation)® : B(H) — B(H) should
map density matrices to density matrices. Under the assumption of linearity, this
is equivalent to ® being positive and trace-preserving (see Section [2.3.2)). Second,
when @ is coupled with an identity map-en.the environment &, then the resulting
map ¢ ® Idp(g) should also be an allowed quantum operation and in particular,
it should be positive. If dim€& is at least as large as dimH, this is equivalent
to complete positivity of ®. "The-argument presented earlier in this section is
substantially more involved, but seems to us more physically natural (and less
formal).

3.6., Other measurement schemes

Throughout ourdiscussion we assumed that a measurement is performed in
some basis (u;) of the entire space, or of the space corresponding to the accessi-
ble subsystem, with the probability of the jth outcome being either [(3,u;)? or
(ujlplu;y = Te(plu;){u;|) (depending on whether the state of the system is pure
or mixed), YA slightly more general scheme is that of a projective measurement,
where _the’ measuring apparatus is modeled by a sequence of mutually orthogonal
projections (P;) and the probability of the ith outcome is

(3:8) |Pip|* = (| Pilpy = Tr pP;.

However, this is barely more general: we can think of the instrument as being
related to a basis (u;), but as providing only a coarse-grained view, where some of
the basis elements u; are merged into one projection P;.

A more substantive generalization is derived from basis/projective measure-
ments in a similar way that CPTP maps were derived from unitary operations.
Suppose that a projective measurement (FP;) on H ® £ (rank one or not) is per-
formed and consider the effects of applying it to a product state ¥ = £ ® . The
probability of the ith outcome is then

(3.9) pi = WIPY) = Tr (|¥)W|P) = Tr ((|€)XE] @ Inynl) Pr) =
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Tr (|€)¢€] Tre (T@[n)nl) ;).
In the last equality we used the identity

(3.10) Tr ((r®DX) = Tr (7 Tre X),

which is easily verified if X is a product operator and follows by linearity for
arbitrary X. In other words, there are operators (M;) on H such that

(3.11) pi = Tr(|§)XE|M).
Varying ¢ and using the fact that )}, P, = Iygs we deduce that
(3.12) DM, =1y

and that M; is positive for each i. Even though Born’s rule (3.11)) was derived for
a pure state p = |£)(£], it extends by linearity to a general (possibly mixed) mixed
state p on H via the formula

(3.13) pi = Tr(pM;).

A system (M,;) verifying the condition is called a\positive operator-valued
measure (POVM) and the associated measurement scheme a POVM measurement.
The reason for invoking the term “measure” is that there are also continuous vari-
ants, namely operator-valued measures integrating to identity.

3.7. Local.operations

This short section aims at explaining the meaning of the word “local,” which is
often used in quantum information theory.”Up to now we have focused on a Hilbert
space denoted H. Moreover, the standard framework of quantum information the-
ory assumes that H is endowed with'a tensor decomposition H = Hy ® Hp (or a
multipartite variant), where H,4 is the Hilbert space of Alice’s system and Hp is
the Hilbert space of Bob’s system. The usual assumption is that Alice and Bob are
surrogates for two distant experimentalists who share a quantum system .

In this context, operations that can be performed “privately” by Alice and Bob
are called local operations. For example, local unitaries on H are unitary operators
of the form U = Uo®Up, where Uy (resp., Ug) is a unitary operator on H 4 (resp.,
on Hp). Similarly, local POVMs on H are of the form (M; ® N;), where (M;) is
a POVM.onn#4 and (V) is a POVM on Hp. A local channel ® : B(H) — B(H)
is of formn®4 ® ®p, where &4 : B(Ha) — B(Ha) and &p : B(Hp) — B(Hp) are
quantum channels.

A Trelated concept is the class of LOCC operations, which are obtained by
combining Local Operations with Classical Communication between Alice and Bob.
The precise mathematical definition of LOCC operations is actually quite intricate
(see Section XI in [HHHHO09]). We consider some aspects of LOCC operations in
Section [2.2.71

3.8. Spooky action at a distance

We conclude this chapter by presenting a baby version of Einstein’s “spooky
action at a distance” consequence of a quantum description of the physical reality.
Suppose that each of two distant experimentalists, Alice and Bob, has in their
lab a particle that they can locally measure, and that each particle can be in one
of two possible states, |0) or |1). Suppose further that, as a system, the two
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particles are in a Bell quantum state ¢+ = %(|01> +[10)) (on the Hilbert space

H=HsQHp = C*® (CZ). As described in Section independently of the
choice of measurement bases in H 4 and H g, both outcomes of Alice’s (resp., Bob’s)
measurement will be equally likely. However, some combinations of the outcomes
are more likely than others. For example, suppose that each of them performs
the measurement in their computational basis (|0, |1)), which, in the terminology
of Section corresponds to a local POVM with (M;) = (N;) = (|00}, [1)(1]).
Table shows the resulting joint probability distribution. Note that Alice’s and

TABLE 3.1. Joint probability distribution of Alice’s and Bob’s
measurement outcomes.

Bob
Alice 10> 11

0)
1%

[«>R NI

= O

Bob’s outcomes are always different. This is not immediately fatal as it may just be
the case that—perhaps because of some conservationaw in their interaction in the
past—the two particles are in opposite states, we just don’t know which. However,
on further reflection, this indicates that either the description of the reality given
by ¢ is incomplete, with some other hidden variable controlling the outcomes of
measurements, or that the fact of Alice’s performing her experiment instantaneously
affects the particle that is in Bob’s possession.

Moreover, this phenomenon is_just a harbinger of more involved schemes, but
based on very similar principles, which lead to effects that cannot be explained by
a hidden variable model, and to phenomena such as pseudotelepathy or quantum
teleportation. We will briefly Jexplore some of these examples later on, mostly in

Chapter [T1}
EXERCISE 3.2. Aerify the details of the calculation of probabilities in Table

Notes and Remarks

There are'many books which present quantum mechanics for specific audiences.
In additiento the references given at the end of Chapter [2] we point out [Mer07|
(mostly directed at computer scientists) and [RP11]. Other references targeting
mathematicians are [Tak08] and [Sha08].
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CHAPTER 4

More Convexity

The focus of this chapter are concepts, invariants and operations related to
finite-dimensional convex bodies. The primary objectives are to be able to-describe,
tell apart, and measure the size of such bodies. While some of thel results are
relatively new, they all have roots in classical convex geometry and; most notably,
in the work of Hermann Minkowski in the late 19th and early 20th century. Other,
more modern aspects of the theory of convex bodies will be ‘addressed in Chapters

Bl and [

4.1. Basic notions and operations

4.1.1. Distances between convex sets. A natural way to quantify how
different two subsets of a metric space are is_the Hausdorff distance. When we
consider convex bodies K,L < R™ containing the origin in their interiors, and
identified when related by a homothetie-transfermations, a more relevant notion is
often their geometric distance, defined as

(4.1) dg(K,L) = inf{af « a,8 >0, K caL, L cBK}.

Equivalently,
(EIS |||z
ceRr 220 [Z]L  zerrwzo [TK
This “distance” satisfies the multiplicative version of the triangle inequality

dy(K, M) < dg(K, L)dy(L, M).

If we want.to consider the family of n-dimensional convex bodies up to affine
transformations, the proper tool is the Banach-Mazur distance

(4.2) dpm (K, L) = inf{d,(K +a,TL+b) : T € GL(n,R), a,be R"}.

In the case where K and L are symmetric (i.e., O-symmetric), which is the setting
most frequently encountered in the literature, we can restrict the infimum in (4.2)
to'a’= b = 0. In either case, we are led to a compact set (see Exercise
usually called the Banach-Mazur compactum (or Minkowski compactum). As a
consequence of the compactness, whenever a (reasonable) functional f(K) defined
on convex bodies in R™ (or on symmetric convex bodies) has the property that
it is affine-invariant, it attains its extreme values on specific equivalence classes of
convex bodies. It is sometimes challenging to identify those extremal bodies.

dg(K,L)=

EXERCISE 4.1 (Two hyperplane sections are close). Let H < R™ be a hyper-
plane, and K, L two symmetric convex bodies such that K n H = L n H. Show
that dpy (K, L) < C for some absolute constant C. Deduce that if Hy, Hs are two
linear hyperplanes, then dpy (K n Hy, K n Hy) < C. (We tacitly identify H; and
Hy with R"~1))

79
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EXERCISE 4.2 (Boundedness of the space of convex bodies). Let K < R™ be a
convex body and let A be the simplex of largest volume contained in K. Show that
if 0 is the centroid of A, then K ¢ —nA < n?A and K < (n + 1)A. In particular,
if A, is the regular n-dimensional simplex, then dppy (K, A,) <n + 1.

EXERCISE 4.3 (Compactness of the space of convex bodies). Deduce from the
previous exercise that the set of convex bodies in R™ (up to identification via in-
vertible affine transformation), equipped with the distance logdgys, is a compact
metric space.

4.1.2. Symmetrization. If K < R" is a non-symmetric convex body "con-
taining 0, there are several symmetric convex bodies that can be associated with
K (see Figure . Such symmetrization operations are useful because. Symmet-
ric convex bodies are often easier to deal with, whereas the symmetrized set still
“remembers” many features of K.

Ky

(K —K)/2

FIGURE 4.1. A convex body K < R? (top left) and its four kinds
of symmetrizations K, (top right), K~ (middle left), (K — K)/2
(middle right) and Ky (bottom).

We may define the following convex bodies

(4.3) K, = conv(K u (—K)).
If K also contains 0 in its interior, we may also consider
(4.4) K~ =K n (-K).

These operations are dual to each other since we have, by the bipolar theorem

(L.11),

(4.5) K n (—K) = conv(K°, —K°)°.
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Still another possible symmetrization is (K — K)/2 = {(x —y)/2 : z,y € K}
(cf. the definitions below). This choice is appealing since it is invariant under
translations of K and makes sense even if 0 ¢ K. However, the description of
the polar of (K — K)/2 is somewhat awkward. The set K — K is often called
in the literature the difference body. Obviously if K is already O-symmetric then
K.=K,=(K-K)2=K.

Several examples of n-dimensional convex bodies naturally lie inside an affine
hyperplane in R"*!. This is the case for the regular simplex (the set of classical
states) and for the set of quantum states (see Section [0.10). In this situation
still another symmetrization is useful. If H < R"*! is an affine hyperplané not
containing 0, and K is a convex body in H (so that K is n-dimensional), oné-mnay
consider

(4.6) Ko = conv(K v (—K)).

The symbol & depicts a cylinder. This is motivated by the observation that
when K is a Euclidean disk, the resulting body Ky is a cylinder. It coincides with
what is commonly called a generalized cylinder if K is centrally symmetric.

The set Ky is an (n + 1)-dimensional convex body, so while formula (4.6) is
identical to , we distinguish the two operations-since they will be applied in
different contexts (for a description of (Kg)°, see Exercise . For example, if
K = A, is the regular simplex defined as the convex hull of the canonical basis in
R™*+!, the convex body obtained after symmetzization is (A, ) = Bt

All these symmetrizations turn a nen-symmetric convex body into a centrally
symmetric convex body. The word “symmetrization” is also used to describe op-
erations for which the output has some other symmetry properties. One example
of such an operation is the Steiner.symmetrization as described in Exercise
One of its important features is that for any convex body there is a sequence of
successive Steiner symmetrizations converging to a Euclidean ball, which is very
handy for proving geometric-inequalities. For other examples of similar nature, see
Notes and Remarks on (Section

EXERCISE 4.4.(Origin shifting and symmetrization). Show that for any convex
body K < R™and a;be K,
dBM((K — a)u, (K - b)u) < 4.
EXERCISE 4.5 (The polar of cylindrical symmetrization). Let H,. be defined as

1.21), K-be a convex body inside H. and Ky its symmetrization defined as in
4.6). Denote by C = R K the cone generated by K, and show that

o - 3-0) o ().

If we write z < y when y — z € C*, this is the “interval” {z e R" : —¢/le|> <z <
e/le|?} in the order induced by C*.

4.1.3. Zonotopes and zonoids. A crucial notion in convex geometry is that
of Minkowski operations on sets. If A, B c R™ and t € R, we set

(4.7 A+B:={r+y : ze A ye B}, tA=={tz : teR, ze A}

The definition of the Minkowski sum extends to the case of finitely many convex
bodies.
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A convex body K < R"™ is called a zonotope if it is the sum of finitely many
segments. For example the cube [—1,1]™ is a zonotope since

[—1,1]" = [—e1,e1] + -+ [—en, €n]s

where [—e;, e;] denotes the segment joining the ith canonical basis vector and its
opposite.

A convex body K < R" is called a zonoid if it can be written as a limit
of zonotopes (in the Hausdorff distance). Note that the class of zonotopes (or
zonoids) is invariant under affine transformations, so we could alternatively use the
Banach—Mazur distance instead of the Hausdorff distance.

Observe that zonotopes and zonoids are automatically centrally symmetrie. \We
will usually assume that the center of symmetry is at the origin. Here is\a juseful
characterization of zonoids as polars of unit balls of subspaces of L.

PROPOSITION 4.1 (not proved here). Let K < R™ be a symmetric. convez body.
The following are equivalent.
(i) K is a zonoid.
(ii) There is a positive Borel measure g on S™~' such that, for any x € R",

(1) fele = | o0 dux(0):

We emphasize that pg is not assumed to be ayprobability measure.

It follows in particular that every ellipsoid is_a)zonoid (use px = o in , then
affine equivalence). Note also that, for a given zonoid K < R"™, the Borel measure
pg on S™1 satisfying is unique if we additionally require it to be even (i.e.,
to verify pux (—B) = uk(B) for,every Borel set B < S™71).

EXERCISE 4.6 (A formula for'ug). Let K = [—uj,u1] + -+ + [—up, up] be a
zonotope, where uq, ..., u, are vectors in R”. What is the measure ug appearing

in ?

EXERCISE 4.7 (Planar'zonotopes and zonoids). Show that every centrally sym-
metric polygon is.a\zonotope, and that any centrally symmetric convex body
K < R? is a zonoid.

EXERCISE 4.8 (Octahedron is not a zonotope). Show that B} is not a zonotope.

EXERCISE 4.9. Let K1, K be convex bodies in R" such that K; + Ky = BY.
Doeglit-follow that K, Ko are Euclidean balls?

4.1.4. Projective tensor product. If K and K’ are closed convex sets in
R™ and R™ respectively, their projective temsor product is the closed convex set
K® K in R" @ R" « R" defined as follows

(4.9) KQK =conv{zr®a' : ze K, 2’ e K'}.

This terminology is motivated by the fact that when K and K’ are unit balls
with respect to some norms, the set K@K is the unit ball of the corresponding pro-
jective tensor product norm on R” @ R™ . Recall that given two finite-dimensional
normed spaces (V,| - |) and (V’,| - |), their projective tensor product (denoted by
V ® V') is the space V ® V' equipped with the norm

2ln = inf {3 il Iyl + 2= Y2 @i}
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It is easily checked that B* ® B} identifies with BY*™ when the space R™ @ R
is identified with R™" (see also Exercise , and that B}* ® BY identifies with
ST when R™ @ R™ is identified with M, ,,.

There is a dual notion to the projective tensor product, which is called the
injective tensor product. It can be defined via polarity: if K < R"™ and K’ R™
are convex bodies containing 0 in the interior, their injective tensor product is the
convex body K & K'in R" @ R" «> R™ defined as follows
(4.10) KQK = (K°®(K')°).

This definition does not depend on the particular choice of Euclidean structurés on
R™ and R”l, provided one considers the Euclidean structure on R™ ® R™ obtained
as their Hilbertian tensor product.

The relevance of the above notions to information theoretical context<—quantum
or classical—is evident. The set of separable states is the projective tensor product
of the sets of states on factor spaces. More precisely, if H = H1*&QHs, then

(4.11) Sep(H) = D(H1) ® D(Hz).

(These objects were defined in Section 2.2}) Similarly, for classical states, the
projective tensor product A,,_1 ® A,,_1 identifies with D n_1.

The definition of K ® K’ (similarly to other defimitions and comments of this
section) immediately generalizes to tensor products of any finite number of factors.
However, for the sake of transparency we shall eoncentrate in this section on the
case of two convex bodies. We also point_out that the definition makes sense
when K, K’ are subsets of complex spaces.

It is easy to see that the operation ® commutes with some of the symmetriza-
tions we introduced earlier, e.g%

(4.12) KS@K, = (K®K'),
and
(4.13) KoQKL = (K®K').

To check that makes sense, we note that if K (resp., K’) is a convex body in
the affine hyperplane H, c R" (resp., Ho © R™) defined as in (L:21)), then K K’
is a convex body in the affine hyperplane H g < R" QR (cf. Exercises and
4.15().
K specific situation where holds, which will be fundamental in Chapter
is-when K is the set of quantum states on a Hilbert space. Since D(C%)gp = S’f’sa,
it follows that

(4.14) Sep(C? @ CY)p = 1 ® 57

To put it in words, the symmetrization of the set of separable states is canonically
identified with the projective tensor product of two copies of the self-adjoint part of
the unit ball for the trace norm and, consequently, is the unit ball in the projective
tensor product norm of (the self-adjoint parts of) two 1-Schatten spaces.

EXERCISE 4.10 (Projective tensor product and compactness). Show that if
K, K’ are compact convex sets, then conv{z® 2’ : x € K,z € K'} is compact and
hence equal to K ® K’. Give an example of closed convex sets K, K’ such that the
set conv{z ®2’ : x e K,2’ € K'} is not closed.



84 4. MORE CONVEXITY

EXERCISE 4.11 (Linear invariance of projective tensor product). Let K; c R™
and let T; : R™ — R™: be linear maps, i = 1,2. Show that (73 ®T2)(K1 @Kg) =
(T1 K1) ® (T2 K3).

EXERCISE 4.12 (Projective tensor product with a linear subspace). Let K < R™

be a closed convex set, let V = span K, and let V' R™ be a vector subspace.
Show that KQV' = VRV =VeV'"

EXERCISE 4.13 (Projective tensor product of affine subspaces). Let V; < R™
be affine subspaces for i = 1,2. Show that Vi ®V5 is an affine subspace of R"* @ R™
and find its dimension.

EXERCISE 4.14 (Projective tensor product of cones). Show that if C and\C" are
closed convex cones, then the set conv{z ® 2’ : x € C,2’ € C'} is a closed convex
cone and in particular equals C ® C’.

EXERCISE 4.15 (Projective tensor product of bodies are bodies). Show that if
K; < R™ are convex bodies, then K1 ® K> is a convex body\inR™"@R"2. Similarly,
if each Kj; is a convex body in an affine subspace V; ¢ R™ then Ky ® K is a convex
body in Vi ® Va.

EXERCISE 4.16 (Projective tensor product with, B}"). Let K be a symmetric
convex body in R™. (i) What is then Bf ® K? (ii) Show that

5 (mh* k
vol(B¥® K) = vol(K)".

EXERCISE 4.17 (Extreme points of projective tensor products). If K and K’ are
symmetric convex bodies, show that the set of extreme points of K ® K’ is exactly
the set of elements x ® x’, where\z is an extreme point of K and 2’ is an extreme
point of K’. Show that this may\be false if either K or K’ is not symmetric.

EXERCISE 4.18 (Injective tensor products and bilinear forms). If K = Bx and
K’ = By, show that K&K’ identifies with the set of bilinear maps F : X x X’ — R
such that |F(z,2")|[.&Az] - |2/|| for all z, 2’ (i.e., with the unit ball in the space of
bilinear maps).

4.2. John and Léwner ellipsoids

4.2.1."Definition and characterization. We start with the following propo-
sition:

PROPOSITION 4.2. For every convezr body K < R"
(i)-there is a unique ellipsoid & < R™ with mazimal volume under the constraint
& < K and
(ii) there is a unique ellipsoid F < R™ with minimal volume under the constraint
F oK.

The ellipsoid & appearing in (i) is called the John ellipsoid of K and denoted
by John(K). The ellipsoid .% appearing in (ii) is called the Lowner ellipsoid of K
and denoted by Léw(K). By a compactness argument, the existence of an ellipsoid
of maximal/minimal volume is clear in (i) and (ii). Note also that these ellipsoids
are affine invariants: for any affine map T', we have John(TK) = T John(K) and
Low(TK) = TLow(K). We say that K is in John position if John(K) = B, and
that K is in Lowner position if Low(K) = BY.
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Uniqueness deserves an argument (the proof will be elementary, but to show
part (ii) in full generality we will need a trick implicit in Proposition . For
(i) this is fairly straightforward: assume that & # &’ are two distinct ellipsoids of
maximal volume contained in K, then write & = S(BY) + z and &' = S'(BY) + 2’
for S,5" € PSD and z,z’ € R™. Since & # &’, we necessarily have (S, z) # (5, 2').
By linear invariance, we may assume that S = I, which implies that det(S") = 1. If
S’ =1, then & and &' are two distinct balls of radius 1, and it is easy to see that
conv(&, ") (and hence K) contains an ellipsoid centered at 22 of volume larger
than vol(&), a contradiction. If §" I, then K contains the ellipsoid T(B%) + o
with T' = # and y = x‘gzl. Since det T > 1 (see Exercise , this ellipsoid is
of a volume greater than vol(&), also a contradiction.

The uniqueness in (ii) follows by duality when K is centrally symntetrie. ‘Indeed,
the minimization problem in (ii) can be restricted in that case to\0-symmetric
ellipsoids (by essentially the same argument as in the case of S" = I above). Since
for a O0-symmetric ellipsoid .# we have vol(.#) vol(.#°) = vol(B%)% by (1.10] -, and
since K ¢ .% <= .%° c K°, the uniqueness follows, together with the relation
Low(K) = John(K°)°.

FIGURE 4.2. An equilateral triangle K in Lowner position. The
polar body K° is in John position. The contact points x, y, z satisfy
the relations @ + y + z = 0 and Z|2)(x| + 2|y)(y| + 2[2)(z| =T as
in Definition .5l

The uniqueness in (ii) in the general case is not obvious at this point; we
postpone its justification until after Proposition [£.4]

We will now present a general trick that makes it possible to reduce the search
for the Lowner ellipsoid of the not-necessarily-symmetric bodies to the symmetric
case. To that end, fix h > 0 and consider the affine hyperplane

H:={(h,z) : zeR"} cR"
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To each ellipsoid & — H we associate the symmetrization & = conv(—& u &),
which is an ellipsoidal cylinder in R™*!. The following lemma describes the Lowner
ellipsoid of &.

LEMMA 4.3. Let S € GL(n,R) and a € R™, and consider the ellipsoid
&={h,Sc+a) : x € By} c H.
Then Léw(&g) = T(By™), where

Vn+1h 0
r= l\/mha 1+}LS]'
In particular,
(4.15) vol(Léw(&p)) = cnhvol(&)
for some constant c,, depending only on n.

PROOF. Consider first the special case (denoted by &p) where S =1, h = 1,
and a = 0. It follows from the uniqueness—which has already been fully proved
in the symmetric case—that Léw((&p)e) inherits all the symmetries of (&p)e and
therefore has the form Tp(By ™), where Ty is a diagonal matrix with coefficients
(o, B,..., ), with o, 8 > 0 to be determined. Since\(&y)p < To(BYT1) if and only
if é + ,6% < 1 and VO](To(Bngl)) = af" vol(B;”rl)7 the minimization problem
yields the values a = v/n + 1, 8 = \/1 + 1/n;-as needed.

For the general case, note that & = A(&p), where

h 0
A: [a S:| € Mn+1.

Since Low(&p) = Low(A(&p) )= ALoéw((&)e) by invariance, it follows that T' =
ATy as claimed. The relation (4.15) follows by expressing det T in terms of det .S.
]

PROPOSITION 44 Let K < H be a conver body and & < H an ellipsoid. The
following are ‘equivalent:
(i) & is a minimal volume ellipsoid containing K .
(i1) Low(&p) = Low(Ky).

Since ¥ = Low(&y) n H, Proposition implies in particular uniqueness of
the Li6wner ellipsoid for not-necessarily-symmetric convex bodies, completing the
proof-of Proposition [4.2]

PROOF OF PROPOSITION [4.4] Assuming (i), let .# = Léw(Kg) n H. Since .Z
is an ellipsoid containing K, we have vol(.:#) = vol(&’), which by implies
vol(Low(Fp)) = vol(Low(&y)). Next, since Ky < Fp < Low(Kyp), it follows that
Low(Kg) = Low(Z). Given that Low(&y) is an ellipsoid containing Ky with
volume not exceeding the minimum possible, it must coincide with Léw(Ky).

Assume now (ii), and let .# be an ellipsoid containing K. Since Léw(Zp)
contains Ky, it follows that vol(Léw(Zy)) = vol(Loéw(Kg)) = vol(Loéw(&y)). By
(415), this means that vol(.#) > vol(&), as needed. O

The following concept will be useful for our purposes.
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DEFINITION 4.5. A resolution of identity in R™ is a finite family (z;, ¢;)ser,
where (z;);er belong to S"~! and (c;);c; are positive numbers, such that

(4.16) PRI AR o
i
A resolution is called unbiased if, additionally,

(4.17) e =0.

If K is a convex body in R™ and all points x; belong to 0K, we will say that
(24, ¢i)ier is associated to K. Note that if, additionally, K < B or BY < K (which
will be usually the case), then all points x; are contact points of K and the“unit
sphere, i.e., such that ||z;|x = || Ko = |2

Taking trace of both sides in condition (4.16]), we see that necessarily >’ ¢; = n.
More generally, if T e B(R™), then

(4.18) Tr T =) i (T, wi)

(see Exercise . Note also that condition is_redundant for symmetric
convex bodies, since one can always enforce it by'replacing every couple (¢;, x;) in
the decomposition by two couples (3¢;, ;) and (5c¢;3—a;).

The following pair of propositions characterizes John and Léwner positions via
resolutions of identity. The presentations of these results that are easily available in
the literature focus on the class of symmetric bodies and we will assume henceforth
that they are both known to be true in that setting (for a reference, see Theorem
2.1.15 in [AAGM15| or Theorem 3.1 in [Bal97]). It is also easy to see that in
the symmetric case the two statéments are formally equivalent by duality (i.e., by
passing to polars).

PROPOSITION 4.6. Let K~be a convex body in R™. The following are equivalent.
(i) K is in Léwner position.
(i) K < By and there_exists an unbiased resolution of identity associated to K.

PROPOSITION 4.7. Let K be a convex body in R™. The following are equivalent.
(i) K is in John position.
(i) K o B~and there exists an unbiased resolution of identity associated to K.

PROOF OF PROPOSITION (ASSUMING THE SYMMETRIC CASE). To a con-
vex.body K we associate

~ 1 n
K= s re Ky c RV
{(«/n+17 \/n—l—lx) * }

It follows from Lemma 4.3 that By ™' = Low ((Eg)&) In view of Proposition
we have the equivalence

K is in Lowner position < f(& is in Lowner position.
Consequently, our task is reduced to showing that K has an unbiased resolution of
identity (in R™) if and only if Ko has a resolution of identity (in R™™!). To that
end, let eg = (1,0,...,0) € R""! and let (z;,¢;) be a resolution of identity for K.
The points x; are extreme points of K, and since we have freedom to replace x;
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by —x;, we may assume that each z; has the form z; = (ﬁ, T yz) with
yi € K n S"~ 1. Setting 2 = Y. ¢;y;, we have

Liyw = Y cilziXail
i

1 n 1 n
= ;Ci \/ﬁeo+”n7+1(O’yi)><\/ni+1€0+“n7+1(0’yi)

= Jeoxeol + L (eoX(0,2)] + 100, 2)Xeol) + o 3 erl(0,u) X0,y

where in the last equality we used the fact that >, ¢; = n + 1. By applying this
operator equality to the vector ey, we obtain z = 0. Thus the middle term in the last
line above vanishes, which easily implies that (y;, z%¢;) is an unbiased resolution
of identity for K. The reverse argument simply retraces the)above calculation
backwards; the reader is encouraged to verify the details. (Note that z = 0 then
follows from the hypothesis.) O

PRroor oF PROPOSITION [l Assume that K is in John position. We claim
that K° is in Lowner position. To check this, det(& be an ellipsoid containing
K°. We then have &° < K. We know from Exercise [I.26] (or from Exercise
which outlines a simpler but less elementary proof) that &° is an ellipsoid
and that vol(&)vol(€°) > vol(B%)?, with equality iff & is 0-symmetric. Since
vol(&°) < vol(BY) by definition of the-John ellipsoid, it follows that vol(&) =
vol(B%), showing that K° is in Léwner position. By Proposition [4.6] K° admits an
unbiased resolution of identity, and-so does K.

Conversely, suppose that Bf ‘=K and that (z;,¢;) is an unbiased resolution
of identity for K. We note thatKis contained in [, {(-,z;) < 1} (indeed, since
x; € 0K n S"1, the supportshyperplane for K at z; is necessarily orthogonal to
x;). Let & < K be an ellipsoid. Write & = S(BY) + a for S € PSD and a € R™.
Since Sz; + a € & < Kywe have (Sz; + a,z;y < 1 for all 4. Since > ¢;x; = 0, this
shows that

n.= Zci > Zq(Sxi +a,z;) = Zci<5xi,xi> =Tr S,

7

the last equality following from (4.18]). The AM/GM inequality now implies that
det S < 1y and hence that vol(&) < vol(BY). Since & ¢ K was arbitrary, this
shows-that K is in John position. O

John’s theorem implies estimates on the diameter of the Banach—Mazur com-
pactum which are essentially sharp in the symmetric case only (see Exercises m
and Notes and Remarks for further comments).

EXERCISE 4.19. Prove identity (4.18).

EXERCISE 4.20 (The diameter of Banach-Mazur compactum). Let K < BY
(resp., K D BY) be a symmetric convex body and assume that there exists a

resolution of identity associated to K. Show that K o ﬁBg (resp., K < y/nBY)

and so, in particular, d,(B7, K) < 4/n. Conclude that any pair K, L of symmetric
convex bodies in R™ satisfies dpp (K, L) < n.
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EXERCISE 4.21 (Bounds on the diameter of Banach-Mazur compactum, the
non-symmetric case). Let K < B} (resp., K © BY) be a convex body and assume
that there exists an unbiased resolution of identity associated to K. Show that
K o %BS (resp., K < nB%). Conclude that any pair K, L of convex bodies in R™
satisfies dpar (K, L) < n?.

EXERCISE 4.22 (The length of resolutions of identity). Show that in Propo-
sitions [£.6] and [£.7] the length of the resolution of identity associated to K can
be assumed to be at most w in the general case, and at most % if K-s

symmetric.

EXERCISE 4.23 (The radius of Banach-Mazur compactum). Show that the first
estimates from Exercise is optimal by verifying that dpp (BY, B%) = v/n.

4.2.2. Convex bodies with enough symmetries. In this\section we de-
scribe a class of convex bodies “with enough symmetries,” which in‘particular admit
a unique Euclidean structure compatible with those symmnietries. These properties
force the John and Lowner ellipsoids (or any other ellipsdids.“functorially associ-
ated” with such bodies) to be balls with respect to that Euclidean structure.

Let K < R™ be a convex body. We considercsymmetries of K, i.e., invertible
affine maps T : R™ — R" such that T(K) = K. We start by making two observa-
tions. First, such maps necessarily fix the centroid of K. If the centroid is at the
origin (which may be assumed by translating“K"), the set of symmetries becomes
a subgroup of GL(n,R). Second, since this subgroup is compact, it must preserve
a scalar product (consider any scalar product and average it with respect to the
Haar measure on the group of symmetries). Equivalently, by replacing K with a
linear image we may ensure that ‘all\symmetries of K are (Euclidean) isometries;
in virtually all applications this. property will be automatically satisfied. This is
tacitly assumed in what followsy although the definitions and the proposition can
be easily rephrased to make'sense and/or hold without that assumption.

We therefore consider K < R™ a convex body with centroid at the origin. An
isometry of K is an orthogonal transformation O € O(n) such that O(K) = K.
The isometries of K form a subgroup of O(n), which will be called the isometry
group of K and denoted by Iso(K). This definition extends mutatis mutandis to
convex bodies X < C"; in that case Iso(K) is a subgroup of U(n).

We say. that K has enough symmetries if Iso(K)' = RI (or CI in the complex
case).~Here G’ denotes the commutant of G, i.e., the set of linear maps S such that
SO=0S for every O € G.

There is a closely related notion (and possibly a source of confusion): one says
that Iso(K) acts irreducibly if any Iso(K )-invariant subspace is either {0} or R™ (or
C™ in the complex case; a subspace E is G-invariant if O(E) = E for any O € G).
One checks that Iso(K) acts irreducibly if and only if Iso(K)’ contains no nontrivial
orthogonal projection, and also if and only if Iso(K)" n M$? = RT; this idea is also
used in Proposition [4.8]

It is immediate that when K has enough symmetries, Iso(K) acts irreducibly.
In the complex case, the reverse implication also holds (this is the content of Schur’s
lemma) and both notions are equivalent. In the real case, the notions are different

(see Exercise [4.26]).
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The following proposition shows that ellipsoids associated to a convex body
in a “functorial” way (such as the John and Lowner ellipsoids, or the ¢-ellipsoid
introduced in Section [7.1) inherit its symmetries.

PROPOSITION 4.8. Let K < R™ be a convex body and let & be an ellipsoid such
that O(&) = & for any O € Iso(K). Then there exist pairwise orthogonal subspaces
E, ..., Ey, which are invariant under Iso(K), and positive numbers A1, ..., A such
that

& =TBY, where T =MPg, +--++ \Pp,.

In particular, when Iso(K) acts irreducibly, & is a Euclidean ball.

PROOF. Let T be the unique positive matrix such that & = T(BY). For.every
O € Iso(K), we have & = O(&) = OTOY(Bg), thus OTO" = T. Write T =Y, \; P,
where \; > 0 are distinct positive numbers and P; pairwise orthogonal projectors.
From the relation OTO' = T we deduce that, for every i, we have OP;0" = P; for
all O € Iso(K), and therefore that the range of P; is invariant under Iso(K). O

We conclude this section with two examples of groups of symmetries of R” (or
C™) which play an important role in geometric functional analysis

(4.19) Gune = {(x1,...,2n) = (e121,...,8x@n) ) |gj] =1}
(4.20) Goym = {(@1,--Tn) = (125 )- - EnTrm)) ¢ lg5] = 1},
where €1, ...,e, are scalars and m € &, the)group of permutations. A convex

body K (resp., the norm or the space, for which K is the unit ball) is called
unconditional (with respect to the standard basis) if Iso(K) D Gune and, similarly,
permutationally symmetric if Iso(K) D Ggym. Bodies of the second kind have
enough symmetries, but bodies of the first kind not necessarily; see Exercise [£.24]
(In functional analysis, the standard terminology for the latter is “symmetric,” but
we prefer to avoid the confusion with the notion of being centrally symmetric.)
More generally, one may-consider bodies (or norms) that are unconditional (resp.,
permutationally symmietric) with respect to some other basis (u;), i.e., invariant
under maps of the.foxm u; — eju;, j = 1,...,n (resp., uj = gjur), j=1,...,n).
The basis (u;). is then called unconditional (resp., permutationally symmetric),
and the propertysof having a basis of either kind is a linear invariant.

EXERGISE 4.24 (Permutationally symmetric or unconditional vs. enough sym-
metries). Show that every permutationally symmetric convex body has enough
symnietries. Give an example of an unconditional body which does not have enough
symmetries.

EXERCISE 4.25 (Examples of bodies with enough symmetries). Let 1 < p < oo,
p # 2. For each convex body in the following list, determine if it has enough
symmetries.
(i) The ¢, ball B},
(i) its non-commutative analogues S;-™,
(iii) the self-adjoint version S}"**, and its intersection with the hyperplane of trace
0 matrices,
(iv) the regular simplex,
(v) the set D(C™) of quantum states.
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EXERCISE 4.26 (Enough symmetries vs. irreducible action). (i) Let R € SO(2)
be the rotation of angle 27 /p for an integer p > 3. Construct a convex body K < R?
whose isometry group is exactly {R* : 0 < k < p— 1}. Show that K does not
have enough symmetries although Iso(K) acts irreducibly.
(ii) For any n, give an example of a convex body L < R?" without enough symme-
tries although Iso(L) acts irreducibly.

EXERCISE 4.27 (Projective tensor product and enough symmetries). Let K
R™ and L < R™ be convex bodies with enough symmetries. Show that K ® L ha$
enough symmetries.

4.2.3. Ellipsoids and tensor products. It turns out that Lowner ellipsoids
behave well with respect to the projective tensor product, as the folowing lemma
shows. Note that the analogous statement does not hold for the John.ellipsoid (see

Exercise 4.28)).

LEMMA 4.9. Let K < R" and K’ < R™ be two convex bodies and assume that
the ellipsoids Low(K) and Low(K') are 0-symmetric. Then. the Lowner ellipsoid
of their projective tensor product is the Hilbertian tensor product of the respective
Loéwner ellipsoids.

In terms of scalar products, for every x,y in R™and z’,1y’ in R™, we have

(r® o y® y/>L6w(K®K’) = (z, y>Law(K)<l‘/7 y/>L6w(K’)

PROOF. First suppose that Low(K)-= Bi-and Low(K’) = BY . By Proposition
there exist unbiased resolutions of identity for K and K’, respectively (z;,¢;)
and (27,c;). We easily check that K Q® K' c By = BY ®, By . We may verify
that (z; ® 2, ¢;¢}) is an unbiased Tesolution of identity for K @ K’ by writing

j
ZZcic}mi ) = (Z cixi) ® (Zc;x;) =0,
j i j

i

i g i J

It follows from Propositionthat Low(K®K') = By . For the general case, let T
and T" be linear maps such that 7 Low(K) = BY and T Low(K') = By . Using the
elementary identities Low(TK) = T Low(K) and (T®T")(KRK') = (TK)®(T'K"),
the result\follows from the previous special case. O

EXERCISE 4.28 (Projective tensor product and the John ellipsoid). Compare
John(K®L) and John(K)®John(L) when K = L = BY and when K = L = \/n B}.

4.3. Classical inequalities for convex bodies

In this section we review classical inequalities involving various geometric in-
variants of convex bodies, most notably the volume and the mean width. We use
the Minkowski operations defined in (4.7]).

4.3.1. The Brunn—Minkowski inequality. The Brunn—Minkowski inequal-
ity is a fundamental inequality which governs the behavior of the volume of sets
under operations related to convexity. It asserts that the volume (the Lebesgue
measure on R") is log-concave with respect to Minkowski operations, in the follow-
ing sense.
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THEOREM 4.10 (Brunn—-Minkowski, not proved here). Let K, L < R™ be Borel
sets and A € [0,1]. Then

(4.21) vol(AK + (1 — A\)L) = vol(K)* vol (L)'=,

Another formulation of the Brunn—Minkowski inequality can be given (see Ex-
ercise |4.30)) as follows: under the same assumptions,

(4.22) vol(K + L)Y™ = vol(K)Y™ + vol(L)'/™.

The Brunn—Minkowski inequality implies the famous isoperimetric inequality
in R™: among sets of given volume, the balls have the smallest surface area. \If
K < R” is sufficiently regular, the surface area can be defined as the first~order
variation of the volume of the “enlarged” set K + ¢B§ when € goes to 0
vol(K + eB%) — vol(K)

€
Note that for a general subset K < R", some care is needed in-defining area since
the limit in may not exist or may not coincide with“ether-notions of surface
area. However, such problems do not arise for convex sets.

A convenient formulation of the isoperimetric inequality uses the concept of
volume radius. Given a bounded measurable K < R™ its volume radius vrad(K)
is defined as

(4.23) area(K) = lin(1)

vol(K) B
V01(B%)> '

In words, the volume radius of K is the radius of the Euclidean ball which has the
same volume of K. A standard computation shows that

n/2

(4.24) vrad(K) = (

T
TG+D

Notice that, as a function of n, vol(B%) decreases super-exponentially fast to 0 as
n — 0. In particular, vol(B5)'/" is equivalent to 1/2me/n as n tends to infinity.

When K < R" is a convex body containing 0 in the interior, another useful formula
for the volume radiusrof K (proved via integrating in spherical coordinates) is

(4.26) vrad(K) = <JS 0] I}"do(é))) "

Here is the statement of the isoperimetric inequality in R employing the notion
of velume radius.

(4.25) vol (BY) =

PROPOSITION 4.11 (Isoperimetric inequality). Let K < R™ be bounded and
denote r = vrad(K). Then, for every e > 0,

(4.27) vol(K + eBy) = vol(rBy + €By)

or, equivalently, vrad(K + eBY) = vrad(K) + €. Consequently, whenever the limit
in (4.23) exists, we have area(K) > area(rBY).

Proor. It follows from the Brunn-Minkowski inequality that
vol(K + eBY)Y™ = vol(K)Y/™ + vol(e By)Y/™
= (r + &) vol(By)'/™
= vol(rBy + eBy)Y/. 0
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EXERCISE 4.29 (Superadditivity of the volume radius). Show that the Brunn—
Minkowski inequality can be restated as vrad(K + L) = vrad(K) + vrad(K).

EXERCISE 4.30 (Superadditivity and log-concavity). Show that the inequalities
(4.21)) and (4.22)) are formally globally equivalent.

EXERCISE 4.31 (Steiner-like symmetrizations). Show that the following state-
ment is equivalent to the Brunn—Minkowski inequality for convex bodies. Let
K < R"™ a convex body and E < R”™ a k-dimensional subspace with 0 < k < n.
Define a set L ¢ E x E* by the following (where z € E,y € EL)

(,y) e L < |z| <vrad(K n (E +y))

where the volume radius is measured in £ +y. Then L is convex. (When F is a
hyperplane, the map K +— L defined above is called Steiner symmetrization.)

EXERCISE 4.32. Let & < R™ and .% < R"™ be two 0-symmetric ellipsoids. Show
the formula vrad(& ®q %) = vrad(&) vrad(.F).

4.3.2. log-concave measures. Closely related to the Brunn—Minkowski in-
equality is the concept of a log-concave measure. In our setting, log-concave mea-
sures appear as (limits of) marginals of uniform measures on convex sets.

Let  be a measure on R™ with density f with respect to the Lebesgue measure.
We say that p is log-concave if log f is a concave function. Similarly, given o > 0,
we say that u is a-concave if the function f< is concave when restricted to the
support of u. We now state basic facts.about log- and a-concave measures and
relegate the proofs to exercises.

LEMMA 4.12 (see Exercise [4.34), Let p be a finite log-concave measure on R™.
Then there is a sequence (us)sen~of measures on R™ converging weakly to u, and
such that ps is 1/s-concave.

LEMMA 4.13 (see Exercise [4.35)). Let u be a measure on R™, and s € N. The
following are equivalent.

(1) The measure-y is 1/s-concave.

(2) There is aclosed convex set K — R™ x R® such that p is the marginal over
R?® of the Lebesgue measure restricted to K, i.e., such that, for any Borel
set B < R",

w(B) =vol,1s ((BxR*)nK).

As a corollary to Lemmas [£.12) and [£.13] we obtain the following characteriza-
tion of log-concave measures.

PROPOSITION 4.14 (Characterization of log-concave measures, see Exercise
4.36)). Let p be a finite and absolutely continuous measure on R™. The following
are equivalent

(1) The measure p is log-concave.
(2) The measure p satisfies the following analogue of (4.21)): for any Borel
sets K, L e R™ and X € [0,1],

(4.28) K 4+ (1 = N)L) = p(K) (L)

To summarize, log-concave measures on R™ are uniform measures on convex
bodies, marginals of uniform measures on convex bodies in RV for N > n (see
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Exercise [4.33)), and their limits. Archetypical examples of log-concave measures
include the standard Gaussian measure 7, or any Gaussian measure (see Appendix

and Notes and Remarks on Section .

EXERCISE 4.33 (a-concavity and log-concavity). Check that an a-concave mea-
sure is log-concave, and also S-concave for any f € (0, «].

EXERCISE 4.34 (More on a-concavity vs. log-concavity). Prove Lemma

EXERCISE 4.35 (a-concavity and marginals). Deduce Lemma from the
Brunn—Minkowski inequality (4.22)) applied in R*.

EXERCISE 4.36 (Characterization of log-concave measures). Deduce. Proposi-

tion .14l from Lemmas [4.12] and [4.13]

4.3.3. Mean width and the Urysohn inequality. Given a.nonempty and
bounded set K < R™ and a vector u € R™, we define the quantity
(4.29) w(K,u) = sup (u, ).

zeK

In the particular case when K is a convex body containing 0 in the interior, we have
w(K,u) = |ul g (see (L.8)). If |u| = 1, then w(K\u).is)called the support function
of K in direction u. (An alternative notation for theysupport function, widely used
in convex geometry, is hi(u).) Geometrically, w(K,u) is then the distance from
the origin to the hyperplane tangent to K'in.the direction u (that is, with u being
normal to the hyperplane, and outer to K In particular w(K,u) + w(K, —u) is
the width of the smallest strip in directionr orthogonal to u which contains K (see

Figure .

w(K,u) +w(K,—u)

FIGURE 4.3. If |u| = 1, then w(K,u) + w(K, —u) is the width of
K in the direction of u.
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For a nonempty bounded subset K < R", we may define the mean width of K
as the average of w(K,-) over the unit sphere

(4.30) w(K) = fan w(K,u)do(u),

where o is the Lebesgue measure on the sphere, normalized so that o(S"~1) = 1.
Although the definition makes sense for every bounded set K, we mostly consider
the case where K is also closed and convex. This is not really a restriction since
w(K, ) = w(conv K, -).

From the geometric point of view, it might have been more accurate to.call
w(K) the mean half-width (or, as some authors do, to include an additional fac-
tor 2 in the definition; observe that w(K) is half of the average of w(Kyu) +
w(K, —u)). However, we opted for simplicity. Note that, under our eonvention, one
has w(BY) = 1, and that if K is a convex body which contains thie origin in the
interior, then

w(K) = an_l |u xo do(u).

It is often convenient to consider the Gaussian variant’ of the mean width.
Let G be a standard Gaussian vector in R™, i.e., a-R"-valued random variable
whose coordinates in any orthonormal basis are independent and follow the N (0, 1)
distribution (see Appendix . For any nonempty bounded set K < R", we define
the Gaussian mean width of K as

(4.31) we(K) =Ew(K,G) = —1——2f sup{u, zy exp(—|ul?/2) du.
(27T)n/ R? zeK

Using (A.7)), one checks that

(4.32) we(K) = K, w(K),

where k,, depends only on n-and’is of order 4/n (more precise estimates appear in
Proposition [A.T)). We take the'convention that whenever we write w(K) or wg(K)
for a set K < R™, it is tacitly assumed that K is nonempty.

Given bounded subsets K, L in R™ and a vector u, one checks that w(K+L,u) =
w(K,u) + w(L,u) Nntegration yields

(4.33) w(K + L) = w(K) + w(L),

and similarly for wg. In the special case when L is a singleton, this shows that the
mean width”(Gaussian or not) is translation-invariant.

An-advantage of the Gaussian mean width is that it does not depend on the
ambient dimension. Indeed, suppose that K is a bounded subset in a subspace
B-c R"™. Then the value of wg(K) does not depend on whether it is computed in
E or in R"™, while the value of w(K) does depend.

The following result, known as the Urysohn inequality, asserts that among sets
of given volume, the mean width is minimized for Euclidean balls.

PROPOSITION 4.15 (Urysohn’s inequality, see Exercise [4.49). Let K < R™ be a
bounded Borel set. Then

(4.34) vrad(K) < w(K).
The Urysohn inequality can be seen a consequence of the Brunn—Minkowski

inequality, see Exercise [£:49] Among closed sets, the Urysohn inequality is an
equality if and only if K is a Euclidean ball.
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Define the outradius of a bounded set K < R™ as the smallest radius (denoted
outrad(K)) of a Euclidean ball that contains K (such a ball is unique, see Exercise
, and the inradius of a convex body K — R"™ as the largest radius (denoted
inrad(K)) of a Euclidean ball contained in K. (Such a ball is not necessarily unique;
however, when K is symmetric, the inradius is witnessed by Euclidean balls centered
at the origin.) We have the chain of inequalities

(4.35) inrad(K) < vrad(K) < w(K) < outrad(K).

For a longer chain of inequalities which includes also dual quantities, see Exercise
It is instructive to compare in Table the values of these quantities. for
the most standard examples of convex bodies. For a derivation, see Exercises
and (we postpone the nontrivial mean width computations to Chapter @ where
they fit more naturally).

TABLE 4.1. Radii for standard convex bodies in R™. Quantities
in each row are non-decreasing from left to right, see and
Exercise[£.51] The simplex K is normalized to be a regular simplex
inscribed in the Euclidean ball of radius 4/n cantered -at the origin.
This normalization is appealing since it has the property that K° =
—K. When compared to the simplex A,, as.defined in Section[I.1.2
K is congruent to v/n + 1A,.

K inrad(K) w(K°)~ T vrad(K) w(K) outrad(K)

By 1 1 1 1 1

By | Uy |~y 2ejmn | ~ valognjyn | 1

Br | 1|~ Ju/PRmn | ~ vonire | ~<Puin | v
simplex | 1/y/n | ~1/y2logn | ~+/e/2m |~ /2logn Vn

~
~

We check in Table [£.1] that for all these basic examples of convex bodies, the
volume radius and the mean width are of comparable order of magnitude, at least
up to a logarithmie factor. This cannot be true for general convex bodies (see
Exercise , but a convex body such that vrad(K) is much smaller than w(K)
has to be strongly “non-isotropic,” cf. Corollary

The Urysohn inequality has a “dual” version, which is actually easier to prove
since it\depends only on the Holder inequality.

PROPOSITION 4.16. For every convex body K < R™ containing the origin it its
interior, we have

(4.36) vrad(K) = w(K°)~!.

Proor. This follows from Hélder’s inequality

= [ IO 101 o)

) <L HQHKdG(G))nL ' (L 61" da(e))"il

— (w(K?) vrad(K)) 7T,
where we used formula (4.26)) to compute the volume radius. O
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EXERCISE 4.37 (The mean width of the polar). Let K < R™ be a convex body.
Show that w(K)w(K°) = 1.

EXERCISE 4.38. Derive the estimates about inradius, volume radius and out-
radius in Table {1l For the mean width, see Exercise [6.6

EXERCISE 4.39 (Rough bounds on volume radius of B))). Use the inequalities
(1.4) between ¢,-norms and the information on volume radii from Table (or
direct calculations) to conclude that vrad(BY) ~ n'/2=1/? for 1 < p < oo.

EXERCISE 4.40 (Volume of B}). Let 1 < p < o0. By calculating ., e~ 1213 e
in two different ways, show that Vol(B;}) — (QF(l i %))n/F(l N %) Deduce-that,
for large n, vrad(B)) ~ 2I'(1 + %)(pe)l/pnl/%up'

EXERCISE 4.41 (Uniqueness of outradius witness). Show that there is a unique
Euclidean ball of minimal radius containing a given set K < R™!

EXERCISE 4.42 (The gap in Urysohn’s inequality). Give‘examples of convex
bodies K < R? such that the ratio w(K)/vrad(K) is arbitrary large.

EXERCISE 4.43 (The mean width and the diameter). Show that for a convex
body K < R™, w(K) > %:—i diam K.

EXERCISE 4.44 (The mean width and the perimeter). For a convex body K —
R?, show that w(K) is equal to (27) ! times the perimeter of K. For convex planar
sets, the Urysohn inequality is therefore equivalent to the isoperimetric inequality.

EXERCISE 4.45 (The mean width of a projection). Let K < R™ be bounded and
Pg be the orthogonal projection onto a subspace E < R™. Show that wg(PgK) <

EXERCISE 4.46 (The mean width of an affine contraction). Let A : R” — R"
be an affine contraction-(i.e., such that |Ax — Ay| < |z — y| for every z,y € R™).
Show that for every bounded set K < R™, we have wg(AK) < wg(K).

EXERCISE 4.47(The mean width of a union). If K, L are convex bodies in R"
with K n L # &, then w(K u L) < w(K)+w(L). For an improvement on this, see
Exercise [5.28

EXERCISE 4.48 (Geometric mean width). Prove the following strengthening
of the ihequality from Proposition exp (§gn-1 10g |0]|x do(8)) = vrad(K)~!.
In ‘other words, the “geometric mean” of | - |5 is at least as large as vrad(K)~!,
while inequality asserts the same only about the “arithmetic mean” w(K°) =
§su-1 16 x do ().

EXERCISE 4.49 (A proof of Urysohn’s inequality). (i) Explain in which sense
the following generalization of the Brunn—Minkowski holds and prove it: if (Q, F, u)
is a measure space and K; < R™ a convex body depending in a measurable way in
a parameter t € €2, then

(4.37) L vol(K;) Y™ du(t) < (vol (L K, d,ut> > . .

(ii) Fix a convex body K < R". By choosing (9, 1) to be the orthogonal group
O(n) equipped with the Haar measure, and K; = t(K) for t € O(n), prove (4.34)).
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4.3.4. The Santal6é and the reverse Santal6é inequalities. When dealing
with convex bodies, it is often convenient to consider the dual picture, involving the
polar bodies. It turns out that the volume is especially well behaved with respect
to the polar operation. This is the content of the Santal6 and reverse Santald
inequalities.

THEOREM 4.17 (Santalé and reverse Santal6 inequalities, not proved here, but
see Exercise [7.33)). There is a constant ¢ > 0 such that the following holds: for any
n € N and for any symmetric conver body K < R™, we have

(4.38) ¢ < vrad(K) vrad(K°) < 1.

For a non-symmetric convex body K < R", the product vrad(K) vrad(J€) may
be arbitrary large (and even infinite, if 0 belongs to the boundary of K)xThe correct
version of the Theorem in that context is as follows: any convex body~ )K" R™ can
be translated so that holds. Moreover, it is known (see Rropesition in
Appendix @ that among the translates of K, the minimum of-the volume of the
polar (and hence of the product of the volume radii) occurs when the polar has
centroid at 0. Such a point is unique and called the Santalé.-point of K.

The upper bound in is also known as the Blaschke-Santal6 inequality
and can be proved through a symmetrization proecedure. Note that a 0-symmetric
ellipsoid & < R™ satisfies vrad(&’) vrad(6°) = 1 and-no other bodies saturate the
upper bound. Concerning the lower bound, the-best constants to date are ¢ = 1/2
in the symmetric case and ¢ = 1/4 in the general case (cf. Exercise .

EXERCISE 4.50 (Santalé implies Urysohn). Using the Santal6 inequality, deduce
the Urysohn inequality (4.34)) from its dual version (Proposition |4.16)).

EXERCISE 4.51 (Inequalities between various radii). Show that if K < R™ is a
symmetric convex body, then

inrad(K) < w(K°) ! '<vrad(K) < vrad(K°) ™ < w(K) < outrad(K).

Show that these inequalities also hold if K is a convex body such that the only
fixed point of Iso(K)\is-0.

EXERCISE 4.52 (Minimizers in the reverse Santal6 inequality). Show that we
have vrad(K) rad(K°) = vrad(BS)vrad(BS) when K = B} x B} < RS. This
exemplifies non-uniqueness of the conjectured extremal case in reverse Santalo in-
equality, or (the symmetric version of) the Mahler conjecture (see Notes and Re-
marks).

4.3.5. Symmetrization inequalities. We described in Section [4.1.2] several
natural ways to construct a symmetric convex body associated to a given (non-
symmetric) convex body. In each case, it is possible to control the volume of the
symmetric body in terms of the volume of the initial body.

4.3.5.1. Milman—Pajor inequality.

PROPOSITION 4.18. Let K, L be two convex bodies in R™ with the same centroid.
We have
vol(K) vol(L) < vol(K n L) vol(K — L).

In particular, if K < R™ is a conver body with centroid at the origin, then

(4.39) vol(K) = 27" vol(K)
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Recall that K~ = (—K)n K. The factor 27" may appear small, but remember
that it is the n-th root of the volume that is the relevant quantity. In particular, in
terms of volume radii, the conclusion of the second part of Proposition [{.1§] simply
becomes vrad(K,.) = %VI’&d(K ). In is natural to conjecture that among convex
bodies of fixed volume with centroid at the origin, the volume of K is minimized
when K is a simplex. This would lead to a constant ((2/e + o(1))™ instead of 27"

in ({39).
To prove Proposition we use the following lemma (which is much simpler
to prove for symmetric convex bodies, see Exercise |4.53)).

LEMMA 4.19 (Spingarn inequality). Let K < R™ be a convex body with céntroid
at the origin. If E < R™ is a (vector) subspace and F' = E*, we have the inequality

vol(K) < volg(K n E)volp(PrK).
Recall that voly refers to the Lebesgue measure on an affine subspace H < R".

ProoOF OF LEMMA [4.19l Define a function ¢ : Pr K R} by
®(z) = volpyo (K n (E + )Y,

where k = dim E. The Brunn—Minkowski inequality (4.22)) implies that the function
® is concave (see Exercise [4.31)). Since concave functions can be realized as minima
of affine functions, there exists a y € F' such that for any x € Pr K,

(4.40) O (z) < {xyyy+ D(0).
By the Fubini—Tonelli theorem and the Holder inequality, we have

) k/(k+1)
(4.41)  vol(K) = f ®(z)* da"< volp (Pp K ) &1 (J P(z)k ! d:c) .
PrK P

K
Next, by (.40),
(4.42) J P(z)F 1 de < J () ((x,y) + ©(0)) da.
Pp K PrK
Since 0 is the centroid of K, we have SPFbe(x)k<:z:,y> dx = 0. Consequently,
combining (4.41)) and (4.42) we are led to
vol(K) < volp(PpK) 1 ®(0) 41 vol (K) 71,

Sintce ®(0)F = volg(K n E), the inequality follows. O

PRroor oF PRoOPOSITION [£.18 We may assume, by translating them if nec-
essary, that K and L have centroid at the origin. We apply Lemma [£.19] to the
convex body K x L « R" x R™ ~ R?>" and to the subspaces E = {(z,z) : =€ R"}
and F = {(z,—z) : x € R"}. We note that vols, (K x L) = vol,(K)vol,(L),

vol, (K n E) = 2™2vol,,(K n L) and vol,(PrK) = 2="/?vol,(K — L). The con-
clusion follows. O

EXERCISE 4.53 (Spingarn inequality for symmetric bodies). Why is Lemma
[4.19] very simple to prove when K is centrally symmetric?
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4.3.5.2. Rogers—Shephard inequalities. There is a converse to Lemma[4.19|which
is simpler since it does not require any hypothesis on the centroid.

LEMMA 4.20. Let K < R"™ be a convex body. If E < R™ is an affine subspace
of dimension k and F = E*, we have the inequality

vol(K) = <Z>  volu(K n E) volu (PrK).

PROOF. Let ® : PpK — R, as in the proof of Lemma [£.19] The function ® is

concave and vanishes on the boundary of PpK, therefore, for any x € Pp K
O(z) = ©(0)(1 — ||z| prr)-
It follows that
vol(K) = J ®(z)k dz = volg(K n E)J (1 — || pp i) da
PrK PrK

and the last integral reduces to a Beta integral and equals volp(PrK) (2)71. ([

Lemma implies a series of inequalities, all due to Rogers and Shephard,

stating that the simplex is the convex body for which, the volume increase is the
largest after symmetrization. Their proofs are relegated to exercises.

THEOREM 4.21 (see Exercise 4.54). If K ©R" is a convex body,
2
(4.43) vol(K) < vol((K — KY/2)< 2‘”( ”) vol(K).
n

As a consequence
(4.44) vrad(K) <vyrad((K — K)/2) < 2vrad(K).

THEOREM 4.22 (see Exetcise [4.55). Let H be an affine hyperplane in R™H1,
not containing the origin, and h > 0 be the distance between H and the origin. Let
K be a convex body in-H. We have the following inequalities

277,
n+
If 0 € K{then K, c K — K and so, by (£43), vol(K,) < (*") vol(K) <

n
4™ vol(K)."However, the constant 4 can be improved to the optimal value of 2.

THEOREM 4.23 (see Exercise |4.56). If K < R™ is a convex body with 0 € K,
then

(4.45) 2hwoly (K) < voly,41(Kp) < 2h . voly (K).

vol(K) < 2" vol(K).
EXERCISE 4.54. Deduce Theorem [.2]] from Lemma
EXERCISE 4.55. Deduce Theorem [£.22] from Lemma [4.20]
EXERCISE 4.56. Deduce Theorem 23] from Theorem [£22] and Lemma [4.201

EXERCISE 4.57 (Symmetric vs. non-symmetric reverse Santalo inequality).
Show that whenever the reverse Santalé inequality (the lower bound in Theorem
holds with a constant ¢ > 0 for symmetric convex bodies, it holds with
constant ¢/2 for all convex bodies.
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4.3.6. Functional inequalities. Most classical inequalities for convex bodies
described in this section admit functional variants. As an example, we will state
the Prékopa—Leindler inequality, which is a generalization of the Brunn—Minkowski
inequality.

THEOREM 4.24 (Prékopa—Leindler inequality, not proved here, but see Exercise
4.58)). Let A € (0,1) and let f,g,h be nonnegative integrable functions on R™ such
that
(4.46) h(Az + (1= N)y) = f(2) g(y)'
for all z,y € R™. Then

(4.47) f h(z) de > ( @ dgc>A <J o(2) d:g)H.

The Brunn—Minkowski inequality in the form follows . immediately from
Theorem applied with f = 1x, g = 11, and h = 1 x4 (1=)\) (the indicator
functions of K, L, and AK + (1 — A)L). See Notes and Refnarks for pointers to
other functional inequalities.

EXERCISE 4.58. Using induction on the dimension, derive the general Prékopa—
Leindler inequality from the case n = 1.

4.4. Volume of central sections and the isotropic position

Let K < R™ be a convex body with centroid at the origin. The inertia matriz

of K is defined as )
I = —— .
K= L{ 1o )z| dz

Note that Iy is invertible (because it is positive definite). One says that K is
isotropic (or is in the isotropic\position) if Ik is a multiple of identity.

If T € GL(n,R), one checks that Iz = TIgTT. Tt follows that any convex
body with centroid at the origin has a linear image which is isotropic. Moreover,
this position is unique-ini the following sense: if both K and T K are isotropic for
some T € GL(n,R);.then T is a multiple of an orthogonal matrix. In particular, we
have the following.

PROPOSITION 4.25 (easy). Convez bodies with enough symmetric are isotropic.

Isotropic convex bodies have the remarkable property that all their central
hyperplane sections have comparable volumes.

PROPOSITION 4.26 (see Exercise 4.59). Let K < R™ be a convex body with
centroid at the origin, and assume that Ix = X21 for some A > 0. Then, for any
linear hyperplane H < R"™,

vol, (K)

T
_ 1 _ 1
wherec—ﬁ andC—ﬁ.

vol, (K)

(4.48) PR

<vol, 1(KnH)<C

A very important open problem is how the two parameters A and vol, (K)
appearing in are related. The hyperplane conjecture postulates that, for every
convex body K with vol,,(K) = 1 and I = A1, we have A < Cj for an absolute
constant Cjy; see Notes and Remarks for more background on this conjecture.

For some special bodies much more precise estimates are available.
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PROPOSITION 4.27 (Sections of the cube, not proved here). Let H be a k-
codimensional vector subspace of R™. Then

(4.49) 1< vol,_y (B2 n H) <22,

We conclude the section by presenting a statement in the spirit of Proposition
[4:26] for the volume radius. Since the volume radius is a more robust parameter
than the volume itself, it allows to infer in many situations (including non-isotropic
convex bodies) that the volume radius of a convex set is comparable to the vol
ume radius of sections through its centroid. (The reader who wonders why. such
relationships may be relevant in the context of this book may check Section )

PROPOSITION 4.28. Let K be an n-dimensional convex body with_centroid at a,
and let H be a k-codimensional affine subspace passing through a. Denoté 0 = k/n
and let v and R be the inradius and outradius of K with respect to.a. Then

1

1-6
_o - vrad(K n H) - Yy
(4.50) R77 b(n, k) < vrad(K) <777 b(n,k) 5l

where

n % K n—k 1/n
(451)  b(n, k) = ( vol, (BY) ) 3 (F(g + )T (25 + 1)> |

voly (BE) vol,_n(B5 %) ).~ T(5 +1)

PROOF. We may assume that a = 0 (otherwise consider K —a). By hypothesis,
we have then
(4.52) rBY « K c RBY,

where Bj is the n-dimensional unit Euclidean ball. For a subspace E, denote by
Pg; the orthogonal projection-onto E. Then, by Lemma [£.19]

(4.53) vol, (K)'< vols (K n H) volg(PyLK),
where H' is the k-dimensional space orthogonal to H and s = n — k. Therefore

vol,, (K) 2 voly(K n H) vol(Py1K) voly(B3) voli,(BY)
vol,(By) —  voly(B3) vol, (B%) vol,, (BY)

Hence, using (4.52)),

vrad(K)" < vrad(K ~ H)* BF Y2

B3) VOlk(B§ )

vol, (BY) ’

which is the first inequality in (4.50). For the second inequality, we note that by
Lemma [£.20] which does not even require that H passes through the centroid of K,

-1
(4.54) vol, (K) = <Z> voly (K n H) voly (P K).
As earlier, this can be rewritten in terms of volume radii as

n n s r vols(B3) voly(B%)
> )
(k) vrad(K) vrad(K n H)® r vol, (BE)

which is the second inequality in (4.50). O
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REMARK 4.29. Although the argument that led to bounds (4.50)) looks rough,
we note that we always have (see Exercise [4.60))

1
(4.55) % <bln,k) <1< b(n,k) (Z) V)

EXERCISE 4.59 (Isotropic position and central sections). (i) Let f: R — Ry
an even function such that log f is concave and { f(z) dz = 1. Show that W <
(22 f(z)dz < ﬁ. (This conclusion also holds if the assumption “f is even” is
replaced by “{ 2 f(z) dz = 0,” but the proof is more involved, see [Fra99].)

(ii) Use (i) to prove Proposition [4.26]

EXERCISE 4.60. Prove the bounds (4.55)).

Notes and Remarks

A comprehensive reference for geometry and for convex bodiesfocusing on the
issues related to the Brunn—Minkowski inequality is the book [Schi4].

Section The Banach—Mazur distance is most frequently defined in the
category of normed spaces with

d(X,Y) = inf{|T||- [T7*| : T:X — ¥ an isomorphism}.

This corresponds to definition with K, D being 0-symmetric (and, conse-
quently, a = b = 0).

It is shown in [GLMPO4] that dpar (K, A,) < n for every convex body K <
R™. This was known to Griinbaum for n = 2. It would be nice to have a simple
proof for n > 2 (cf. Exercise [4.2).

The question of computing. the diameter of (various versions of) the Banach—
Mazur compactum has attracted”a lot of attention. It follows from Exercise
that the diameter is at most.n! In an important and short paper [GIu81], Gluskin
showed that this estimate is asymptotically sharp via the probabilistic method.
A variant of his argument shows that if we denote by K, , K] two randomly and
independently chosenn-dimensional sections of the 3n-dimensional cube, then with
large probability dpa (K, K]) 2 n. Remarkably, no explicit example of a pair
of convex bodies’more than C4/n apart is known. It is proved in [Sza90| that
dpy (KnBl) = 4/nlogn for some randomly constructed K.

In theynon-symmetric case, the order of growth of the diameter of the Banach—
Magzur-compactum is not known, and determining it is an important open problem.
Itis'¢clearly Q(n), and we do not know whether this inequality is strict. Conversely,
an-upper bound of Cn*/3 logcn was shown in [Rud00], which improves on the
trivial bound O(n?) (see also [BLPS99]).

For more information and references on the Banach-Mazur distance and the
Banach—Mazur compactum see the website [[@Q3]|

For more information on zonotopes and zonoids, we refer to the surveys [SW83|,
GW93].

We also point out that while the definition of the projective tensor product
appears to be well-adapted to O-symmetric sets and cones, with linear maps as
morphisms, the projective tensor product is not invariant under affine maps. We
refer to [Sve81], Chapter 2, for a discussion of related categorical issues and to
[DF93| for exhaustive treatment of tensor products of normed spaces.
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The result from Exercise appears in [Cel76].

Note that, in general, the Minkowski sum of Borel sets does not need to be
Borel [ES70]. However, it is always measurable [Kec95|. The Minkowski sum also
behaves strangely with respect to smoothness: for example the Minkowski sum of
two planar convex bodies with real-analytic boundary is always of class C® but
possibly not of class C7 [Kis87]. (See also [Bom90bl, Bom90al].)

Section John’s theorem was first proved (in a slightly different form) in
[Joh48|. We refer to [Bal97] for a modern proof (arguments already appeared
in [Bal92al) and to [Hen12| for historical aspects. The reduction of the general
setting to the symmetric case presented here (Proposition and the proofs of
Propositions and appears to be new.

The concept of convex bodies with “enough symmetries” was defined\in [GG71];
see also Chapter 16 in [TJ89].

The affinity between projective tensor products and Lowner. ellipsoids (Lemma
was noted in [Sza05], [AS06].

Section The Brunn—Minkowski inequality was first proved in di-
mensions 2 and 3 by Brunn and extended by Minkowski.to higher dimensions. The
equality case is known: when K, L are convex bodies.and 0 < A < 1, the inequality
is an equality if and only if K and L are homothetic. The equality case was
extended by Lusternik to general case and is essentially the same up to null sets; for
precise statements, and for a panorama, of inequalities connected to the isoperimet-
ric inequalities, we refer to the survey [Gar02|. Far-reaching generalizations of the
Brunn—Minkowski inequality are the Alexandrov—Fenchel inequalities, for which we
refer to [Sch14].

The two sides of the inequality can be very different; for example, if
K and L are perpendicular ségments in R? (hence of volume 0), K + L is a rec-
tangle, and this behavior can)be approximated in the category of convex bodies
by replacing segments with narrow rectangles. It is therefore surprising that the
Brunn—Minkowski inequality admits—after some tweaking—a reverse: any two n-
dimensional convex bodies have affine images (of the same dimension), for which

) can be reversed up to a universal constant (see (7 in Notes and Remarks
on Sectlon 7.2)). A vaguely similar reverse of Urysohn 1nequality can be found
in Chapter l Corollary

Another variant of that has information-theoretic links is the restricted
Brunn—Minkowski inequality [SV96,[SV00]. It asserts that when K, L < R™ satisfy
some minimal non-degeneracy assumptions and © ¢ K x L < R?" is not too small
(&g, volan, (0) = cvol,(K)vol, (L) for appropriate universal constant ¢ € (0,1)),
then vol(K 4+e L)%™ = vol(K)¥™ +vol(L)?", where K +o L == {z+y : (z,y) € O}
is the restricted (to ©) Minkowski sum.

The characterization of log-concave measures (Proposition holds without
the absolute continuity assumption: by a result of Borell [Bor75al, any Radon
measure on R”™ which satisfies part (2) of Proposition necessarily has a density
with respect to the Lebesgue measure on some affine subspace, and this density is
a log-concave function.

The upper bound (known as the Blaschke—Santalé inequality) in Theorem m
was proved by Blaschke in dimensions 2 and 3 and by Santal6 in any dimension. The



NOTES AND REMARKS 105

first proof of the lower bound is due to Bourgain and Milman [BM87]. Other—
quite different—proofs were given later by Kuperberg [Kup08| (which gives the
values of ¢ quoted in the text) and Nazarov [Nazl2] (we recommend the notes
[RZ14] for a detailed presentation of Nazarov’s argument). However, no elementary
proof is known (a simple argument giving a lower bound vrad(K)vrad(K°) =2
1/logn appears in [Kup92]).

It is conjectured that the product vrad(K) vrad(K°) in is minimized for
the pair (BT, BY) (and for the family of Hanner polytopes, defined as the smallest
class of polytopes containing [—1, 1] and stable under the operations K — K° and
(K,L) — K x L; cf. Exercise [4.52)) and, in the non-symmetric case, for K _= Ay
(the minimum being then conjectured to be unique). This is the content of the
so-called Mahler conjecture.

Several inequalities, for which the Euclidean ball is the extremal case, such that
the isoperimetric inequality, the Urysohn inequality and the Santalé\inequality (the
upper bound in )7 can be proved using symmetrizations. For example one may
consider the Steiner symmetrizations as defined in Exercise A useful result
is then the fact that, given any convex body K < R", there is choice of successive
Steiner symmetrizations that converge to a Euclidean ball of radius vrad(K) (see,
e.g., Theorem 1.1.16 in [AAGM15] for a sketch of proof).

Proposition [£.18 appears in [MP00] and Lemmaf£.19)in [Spi93|. Lemma [4.20]
is from [RS58]; a simpler proof can be found in [Cha67].

Theorem was shown in [Lei72] and\|Pré71l, Pré73|, see also [BL75),
BL76|]. A complete compact proof can-be found in [AAGM15| or [Gar02], the
latter of which also sketches historical background and contains many further ref-
erences.

Other functional versions of\inequalities presented in this section include ana-
logues of the Santalé inequality that can be traced to K. Ball’s Ph.D. thesis [Bal86]
(see also [AAKMO04]), and ofitsteverse [KMO5]; see also [AAS15] and |[CFGT16|
for more recent contributions-and references.

Functional versionsvof Rogers—Shephard inequalities were considered starting
from [Col06], see also JAGMJIV16].

Section A very complete reference about the geometry of convex bodies in
isotropic positien’(including the most recent developments) is the book [BGVV14].
Proposition was proved by Hensley [Hen80] for symmetric convex bodies and
the symmetty assumption was removed in [Fra99].

The hyperplane conjecture (also known as the “slicing problem”) asserts that
any ‘convex body of volume 1 in R™ admits a hyperplane section of volume larger
than ¢y, for some absolute constant ¢y > 0. This is equivalent to the statement
mentioned in the text: if an isotropic convex body K satisfies vol(K) = 1 and
Ix = A?1, does \ < Cj for some absolute constant Cy? (It is even conceivable that
the above are true with ¢y = Cy = 1.) The answer is known to be positive for many
natural classes of bodies; of those that are particularly relevant to the subject of
this book we mention unit balls in Schatten p-norms, see [KMP98|. However, the
best known estimate in the general case is only A = O(n'/*) [KIa06]; we refer to
[BGVV14] for more references and an extensive discussion of related questions.

The hyperplane conjecture can be seen as an isomorphic version of the classical
(now fully solved) Busemann—Petty problem, which asks the following: if two sym-
metric convex bodies K, L < R™ satisfy vol,_1(K n H) < vol,_1(L n H) for every
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hyperplane H containing the origin, can we conclude that vol,(K) < vol,(L)? Tt
is known that the answer is affirmative when n < 4 and negative when n > 5 (see
[Kol05] for references).

Proposition[4.27]is due to Vaaler ([Vaa79], the lower bound) and Ball ([Bal89],
the upper bound).

Proposition is from [SWZ0S8|. It is instructive to compare Propositions
[4:26) and [4:28] The first one gives very precise estimates for volumes of hyperplane
sections in the isotropic position, while the second one deals with sections of pro-
portional (or subproportional) codimension, but only at the level of the volume
radius, that is, after raising the volumes to the power of 1 over the dimension.



CHAPTER 5

Metric Entropy and Concentration of Measure in
Classical Spaces

This chapter presents two fundamental concepts which will be applied-in later
chapters: the metric entropy (a.k.a. packing and covering) and the concentration of
measure. Their conjunction leads to the Dvoretzky theorem, which will be presented
in Chapter

5.1. Nets and packings

We will introduce now the complementary concepts of covering numbers (also
called metric entropy) and packing numbers, which| quantify the complexity of a
given compact metric set. It will turn out that these parameters are closely related
to the volume and the mean width considered’in the preceding chapter.

We first analyze the special but fundamental cases of the sphere and the discrete
cube. We subsequently discuss classical groups and manifolds, and general convex
bodies.

5.1.1. Definitions. If K is.a‘compact subset of a metric space (M, d), a finite
subset ' ¢ K is called an e-netofyK-if, for every x € K, dist(z, ') < €. Since this
is equivalent to the union of-the corresponding balls containing K, an alternative
terminology is that of a covering, see Figure We denote by N(K,e) (or by
N(K,d,¢e), if there is.an ambiguity as to the choice of the metric) the minimal
cardinality of an e-net’in K.

A subset.P < K"is called e-separated if any pair (x,y) of distinct elements
from P satisfies.d(z,y) > e. This property implies that the balls of radius /2
centered at elements of P are disjoint (a configuration usually referred to as packing,
whence the usage of the letter P; see Figure , and in most contexts the two
properties)are essentially equivalent. We denote by P(K, ¢) or P(K,d,¢) the largest
cardinality of an e-separated set in K. The quantities N(K,¢) and P(K,¢) are
called;, respectively, covering numbers and packing numbers. The function £ —
N(K,d,¢e), and its various generalizations, is also often referred to as the metric
entropy of (K, d).

For any compact metric space K, the following two relations between nets and
packings are fundamental. First, if P is a 2e-separated set and N is an e-net, then
the open balls of radius e centered at elements from N cover K, and each ball
contains at most one element of P. Second, an e-separated set which is maximal
(with respect to inclusion) is an e-net (the reader not familiar with this circle of
ideas is encouraged to check these elementary facts). It follows that we have the
inequalities

(5.1) P(K,2¢) < N(K,e) < P(K,¢).

107
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FIGURE 5.1. A net (left) and a packing (right) for an equilateral
triangle (with the Euclidean metric in R?). For optimal‘packings
or covering with few “classical” convex bodies in the plane (squares,
circles or triangles), see the website

Packings and coverings have been extensively studied, particularly for “stan-
dard” metric spaces. In various applications it is*useful to know that there exist
“large” packings and/or “small” nets, and often.to be’able to exhibit them in a con-
structive manner. By , both notions areequivalent whenever the resolution
parameter ¢ is specified only up to a multiplicative constant. On the other hand, for
some applications, such as coding theory, very precise results are in high demand.

In many situations the isometry group of K acts transitively and preserves a
natural probability measure p\In-particular, all balls of radius € have then the
same measure, denoted by V' (g)y and.we have the simple inequalities

1 1
@ < N(K,E) < P(K,E) < 7‘/(6/2)

EXERCISE 5.1. Here, we introduce variations on the definitions and check their
equivalence. Let M be'a metric space and K a compact subset. Denote by N'(K, ¢)
the smallest cardinality of a family of closed balls of radius ¢ in M whose union
contains K (the difference with the definition of N (K, ¢) is that the centers are not
required t0 bein K). It is sometimes more convenient to allow sets of diameter
< 2¢ in(place of balls of radius ¢; call the resulting the quantity N”(K,¢). Let also
P'(K,€) be the largest cardinality of a family of disjoint open balls of radius £/2
with.centers in K. Check the inequalities

N"(K,e) < N'(K,e) < N(K,e) < P(K,e) < N"(K,¢/2)

(5.2)

and
P(K,e) < P'(K,e) < N(K,g/2).
Give examples showing that inequalities may be strict (see also Exercise [5.16)).

5.1.2. Nets and packings on the Euclidean sphere. We first consider the
specific case of the sphere S"~! for n > 2; denote by ¢ the geodesic distance and by
o the normalized Haar measure. In some cases, it is more appropriate to consider
the extrinsic distance inherited from R™. However, any result about one distance
transfers automatically to the other distance (see Appendix for details). We
give a brief overview of known estimates for packing and covering numbers for the
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sphere. The first point of business will be a discussion of volumes of spherical caps,
which enter the subject via .
5.1.2.1. Estimates on volumes of spherical caps. Given xg € S" 1 let C(xy,¢)
be the cap of center zy and geodesic radius &, and denote V(e) = o(C(xq,¢))
(e € [0, 7] is tacitly assumed). We have

§osin" 2 6.do
 fosin"20do’
The denominator at the right-hand side of (5.3) (Wallis integral) equals /27 /i, L1
Note that V(r —e) = 1 —V(¢), in particular V(7/2) = 1/2. For fixed 0 < e\< /2,
V(¢) tends to 0 exponentially fast in the dimension: one has V' (¢)'/™ ~ sin(s).~The
following proposition gives elementary but reasonably precise bounds:The first one

is sharp when the radius is small, and the second one for a radius slightly smaller
than /2.

(5.3) V(e)

on—1

PROPOSITION 5.1. If 0 <t < 7/2, then V(t) < 5 sin" 7 (t)~More precisely

1
2
(5.4) (V2mry,) " Hsint)" ™! < V() < (V27k, cost) T (sint)"
where Kk, ~ +/n is given by (A.8)). Moreover, if n > 2,"then

(5.5) Vir/2—t) < %exp(—nt2/2).

FIGURE 5.2. Proof that V(t) < 3sin™ '(¢). The surface area of
C(z,t) (bold) does not exceed the surface area of a half-sphere of
radius sint (dashed).

A proof of is sketched in Exercise It is based on the fact that, for
convex sets, surface area is monotone with respect to inclusion (Exercise . The
inequality is from [Jenl13] (see also [JS|); a version with n — 1 instead of n
in the exponent is proved in Exercise [5.3]

The following fact is only marginally used in what follows, but we include it
since we did not encounter it in the convexity /functional analysis literature.

PROPOSITION 5.2 (Convavity properties of V(+), see Exercise|5.5)). If V(r) is the
measure of a spherical cap of radius r, then the function t — log V(e!) is concave.
A fortiori, the function r — log V(r) is strictly concave on [0, 7].
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A consequence of Proposition [5.2]is that, for 0 < s <t <,

(5.6) V() < (t)n_lws).

s
Inequality (|5.6) is a well-known fact in differential geometry; for example, it consti-

tutes the trivial case of the Gromov—Bishop comparison theorem. It is very likely
that Proposition [5.2) also follows from similar general results.

EXERCISE 5.2 (Surface area is monotone with respect to inclusion). Show that
if K < L are convex bodies, then area(K) < area(L).

EXERCISE 5.3. Using Exercise show that for ¢ € [0,7/2], we have Vi(t) <

1 sin""!(¢). Conclude that

V(r/2—1) < %(cost)"_1 < %exp(—(n — 1)t%/2).

This is only slightly weaker than the bound (5.5) and sharper_than the estimates
typically cited in the literature.

EXERCISE 5.4 (Sharp bounds for volumes of caps). Using Exercise show the
inequalities (5.4). Then strengthen the lower bound to (/27 £, cos(/2)) " sin™ ' ¢.

EXERCISE 5.5 (Convavity properties of V(:)). Prove Proposition [5.2|and derive
the inequality (5.6).

5.1.2.2. Nets in the sphere. If ¢ € [m/2,7), we clearly have N(S"~! g,¢) = 2.
The interesting case is when € € (0, 7/2). In that range, the proportion V(¢) of the
sphere covered by a cap of geodesic radius € decays exponentially with n. It follows
that the cardinality of e-nets grews-also exponentially fast. For example, the first
estimate from Proposition implies’ that, for € € (0,7/2),

2

sin” e

(5.7) NSt g,e) = V()™ =

A basic and extremely useful bound for e-nets (formulated in the extrinsic distance)
is the following

LEMMA 5.3v For every dimension n and every € < 1, there is an -net in
(S™71,|-]) with'less than (2/e)™ elements. In other words, N(S™~1,|-|,e) < (2/e)™.

The standard and often quoted volumetric argument (which is a special case
of Lemmnia[5.8 below) gives a slightly worse bound (14 2/¢)". The improved bound
(2/£)" can be achieved by a finer analysis combining a version (based on [Dum07])
of Proposition 5.4 below with the use of explicit nets in lower dimensions, see [Swe].
We also note that there exist simple explicit e-nets in S»~! with cardinality at most
(C/e)™ (see Exercise [5.22).

To discuss finer results it is more convenient to switch to the geodesic distance.
We know from the volume argument that N(S™"~1 g,e) = V(e)~!. It turns out
that this trivial estimate is remarkably sharp: an almost-matching upper estimate
is provided by an elegant random covering argument due to Rogers.

PROPOSITION 5.4 (Random covering bound). For every 0 <n < 0, we have

N(S" 9,0 +1n) < L/ze)log ng;ﬂ + %.
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PROOF. Let N =[5y log (V(8)/V (n))]. Choose (2)1<i<n randomly, inde-
pendently according to o, and denote A = | J{C(x;,0) : 1 < i< N}. The expected
proportion of the sphere missed by A can be computed using the Fubini—Tonelli
theorem

n—1 _ N V(U)
(5.8) Eo(S""N\A)=(1-V(0))" <exp(—NV(0)) < )
In particular, there exist (z;) such that o(S""'\A) < V(n)/V (). Let {C(y;,n)
1 < j < M} be a maximal family of disjoint balls of radius 7 contained in ™1\ 4,
It follows from (5.8)) that M < 1/V(#). By construction, S"~! is covered by the

family

<

{B(zi,0+n) : 1<i<N}U{B(y;,2n) : 1<j<M}. O

COROLLARY 5.5 (Neat random covering bound, see Exercise |5.8).~For every
0 <e < m/2, we have

(5.9) N(S" !, g,e) < CnlognV(e)™*
for some absolute constant C'.

It follows from (5.7)), (5.9) and (5.4)) that, for a fixed € € (0,7/2), we have
1
(5.10) lirrgO - log N(S"™ ! g,e) = —log(sine).
We note for future reference the following-fact.

PROPOSITION 5.6. Let P < R™ be a-polytope such that dpps (P, By) < A. Then
P has at least 2exp((n — 1)/2)?) vertices and at least 2exp((n — 1)/2)?) facets.

PRrROOF. Consider first the statement about vertices. Without loss of generality
we may assume that A" Bl « P'< BY, and that the vertices of P are unit vectors.
Let V be the set of vertices of. P: The hypothesis is equivalent to saying that V'
is a f-net in (S"1,g) for eosl = 1/)\ (see Exercise . Using (5.7), it follows
that card V' = 2(sin@) 7™~ > 2exp((n — 1)/2)?), where we used the inequality
sinarccost < exp(—t2/2) for 0 < t < 1. Since dppy (P, BY) = dpn(P°, BY), and
since vertices of P< are in bijection with facets of P, the statement about facets
follows. (]

We alse.péint out that it is possible to approximate the sphere by polytopes with
at most-exponentially many vertices and, simultaneously, at most exponentially

many facets (see Exercise [7.22)).

EXERCISE 5.6. Check that the constant 2 cannot be replaced by a smaller
number in the statement of Lemma [5.3

EXERCISE 5.7 (Nets and convex hulls). Let A’ < S"~! and 0 € (0,7/2). Prove
that N is a f-net in (S"71, g) if and only if (cos§)BY < conv .

EXERCISE 5.8 (Proof of the neat random covering bound). Deduce Corollary
[5.5] from Proposition [5.4]

EXERCISE 5.9 (On the optimality of Corollary . Let C), be the smallest
number such that the inequality N(S""1,g,¢) < C,,V(¢)~! holds for any £ > 0.
By considering ¢ slightly smaller than 7/2, show that C,, > "TH A less trivial fact
is that C,, = Q(n) is also witnessed by taking e very close to 0, see [CFR59| and
Notes and Remarks.



112 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

EXERCISE 5.10 (Nets in the projective space). Prove the following result, which
will be useful in Sections and Let € € (0,7/2). If A is an e-net in
the projective space P(C?) (equipped with the Fubini-Study metric ), then
card N = (c/£)?4=2 for some absolute positive constant c. In the opposite direction,
there exists an e-net of cardinality not exceeding (C/e)29-2.

EXERCISE 5.11 (Volume of balls in P(C%)). Consider the projective space
P(C?) equipped with the Fubini-Study metric (B.5) and the invariant probabil-
ity measure. If ¢ € (0,7/2], then the measure of any ball of radius e in P(C?) i§

- 2d—2
sin €.

5.1.2.3. Packing on the sphere. Recall that P(S"~!, g, ¢) is the maxinral num-
ber of disjoint caps of geodesic radius /2. The exact value is known for 7/2'<e < 7
(we have P(S™"~ ! g, 7/2) = 2n, see Exercise [5.12)) and so we restrict eur-discussion
to the range 0 < ¢ < /2.

Packing problems are usually harder than covering probhlems. For example, as
opposed to , the exponential rate at which packing numbers increase, i.e., the
value of

1
p(e) = limsup — log P(S" !, gye)
n—soo N

is not known for ¢ € (0,7/2). We know from (5.2 "that V(e)~! < P(S"71,g,¢) <
V(g/2)71, and therefore

(5.11) —logsin(e) < p(¢).<.—logsin(g/2).

In this context the lower bound is known as the Chabauty—Shannon-Wyner bound
and actually corresponds to using the trivial algorithm to produce packings: pick
separated points, no matter how,<as long as you can. It is an amazing fact that
the lower bound p(e) = — log sin e has never been improved: nobody knows how to
substantially beat the worst possible choices!

On the other hand, thé.upper bound in has received various improve-
ments. It has been shown by Rankin that for € € (0, 7/2)

p(e) < —log(v2sin(e/2))

which matches.the lower bound from (5.11) as € increases to 7/2. For small e,
further improyentents due to Kabatjanskii-Levenstein are based on the so-called
linear prograniming bound (see Notes and Remarks).

EXERCISE 5.12 (Packing large caps on the sphere). Suppose that (z;) are N
pointsin S"~! such that (z;,x;) <t for i # j.
(i) Show that N <1—-1/tift <0,
(i) Show that N <2n ift =0
If t > 0 is fixed, we know from that exponentially many points in the sphere
may have pairwise inner products at most ¢. The situation when ¢ tends to zero
with n is investigated in the following exercise.

EXERCISE 5.13 (Coarse approximation of BY by polytopes with few vertices).
Suppose that (z;) are N points in S”! such that |[(z;,z;)| < ¢ whenever i # j, for
some ¢ > 0.

(i) If t < 1/4/n, show that N < n/(1 — nt?).
(ii) By considering the family (z®*);<;<y for a suitable large k, show that if ¢ < 1/2,
then N < (C/t)CF™ for some absolute constant C.
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(iii) Deduce that, for 7 > 2, there is a polytope P with at most (C7)C™"" vertices
such that d,(P, BY) <.

5.1.3. Nets and packings in the discrete cube. Although the discussion
from the previous sections dealt specifically with spheres, some ideas carry over
directly to other settings. As an illustration we consider the case of the discrete
cube {0,1}" (a.k.a. Boolean cube) equipped with the normalized Hamming distance

1
(5.12) dy(x,y) = - card{i : m; # y;}.

We denote by V (t) the volume (i.e., the cardinality) of a ball of radius ¢ &40,1).
We have

Ltn]
V(t) =card{y € {0,1}" : dp(z,y) <t} = Z <Z>
k=0
The quantity V (¢) is governed by the binary entropy function .H defined for x € (0, 1)
by H(z) = —zlog,x — (1 — z)log,(1 — ). For ¢t < 1/2 such that ¢tn is an integer,
we have (see Exercise [5.15))

_L onH@ )
(5.13) T 2 <V() <2 .
Related estimates will be used when discussingconcentration of measure, see ((5.59)).
As in the case of the sphere, the covering problem is simpler than the packing
problem (at least in some asymptotic regimes): In particular (see Exercise [5.14), a
random covering argument similar to Proposition|[5.4}—in combination with (5.13)—
implies that, for 0 < e < 1/2,

1
(5.14) lirrgoﬁlog2 N({0,1}",dp,e) =1 — He).

On the other hand, the corresponding limit for packing is unknown; we only
get from ([5.2)) the asymptotic bounds

(5.15) 1 — H(&).< limsup % log, P({0,1}",dp,e) <1— H(g/2)
n—aoo
for 0 < & < 1/2. 'As in the case of the sphere, the lower bound from (known
in this context-as the Gilbert—Varshamov bound) has not been improved, while the
upper bound has been subject to various enhancements.
For-the g-ary version of the cube, i.e., the space {0,...,q — 1}" (also equipped
with.normalized Hamming distance), the entropy function has to be replaced by

Hy(z) == —zlog,z — (1 — x)log,(1 — x) + zlog,(q — 1).

Indeed, if V,(¢) denotes the cardinality of a ball of radius ¢ in {1,...,q — 1}, for
t € (0,1 —1/q) such that tn is an integer, then

Ll
- q < V.
n+1 1 a
Estimates about the g-ary cube are useful when one wants to construct nets or

separated sets in products of metric spaces. The following specific fact, which is an

easy consequence of (5.16)) and (5.1)), will be used later.

(5.16) (1) < ¢"Ha(®),
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PROPOSITION 5.7. Let (K, d) be a metric space such that P(K,d,e) = q. Given
integer n € N, equip K™ with the distance

dn((xlv cee ,l’n), (yla e 7yn)) = d(xlayl) + -+ d(xn,yn)
Then, forte (0,1 —1/q),

> 1=Ho),

(5.17) P(K™,d" ten) = P({0,...,q — 1}", dg, t) > —
Vq(t)

EXERCISE 5.14 (Efficient random nets of the Boolean cube). Show ([5.14) by
adapting the random covering argument from Proposition

EXERCISE 5.15 (Volume of balls in the g-ary discrete cube). Show (5.16)(which
specified to ¢ = 2 gives (5.13))).

5.1.4. Metric entropy for convex bodies. If the metric-space (M,d) is
actually a normed space with a unit ball B, we write N(K,Bje) or N(K,eB)
instead of N(K,d,¢). It is possible to come up with an alternative definition which
does not refer to the norm, by saying that N(K, B, ¢) is the\minimum number N

such that there exist z1,...,zy in K with
N

(5.18) K c U(ml + eB):
i=1

This alternative definition does not require the set B to be symmetric, or even
convex, or to have nonempty interior; even though that is usually the case. In
our context, the minimal reasonable hypothesis appears to be asking that B be
star-shaped with respect to the origin, i.e., that tB < B for ¢t € [0, 1].

The technology for estimating covering/packing numbers of subsets (particu-
larly convex subsets) of normed spaces is quite well-developed and frequently rather
sophisticated. We quote herezarsimple well-known result that expresses N(-,-) in
terms of a “volume ratio.”

LEMMA 5.8. Let'Lnbe a symmetric convex body in R™ and let K < R™ be a
Borel set. Then, for any e > 0,

L) e (2) )

PROOF! If (x;) is an e-net in K with respect to ||- |1, then the union of the sets
x; +-5L contains K, and the left-hand side inequality in (5.19)) follows from volume
comparison. Consider now a family (x;) of N elements of K which is e-separated

for-| - |r. This means that the sets x; + 5L have disjoint interiors. Since they are
all included in K + L, we have Nvol(5L) < vol(K + §L). Together with (5.1)),
this implies the right-hand side inequality in (5.19) O

When K is convex and the “regularizing” trick implicit in Exercise [5.17] below is
applied, the lower and upper bounds are often as close as one can expect provided
K and L are is the M-position (see Notes and Remarks). The case K = L in
Lemma [5.8] is related to the approximation of convex bodies by polytopes.

LEMMA 5.9. Let 0 <e <1, K c R" be a symmetric convex body and N be an
e-net in K with respect to | - |k. Then conv N o (1 —¢)K.
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PROOF. Let P = conv N and denote A = sup{|y|lp : y € K}. One checks
that P contains 0 in the interior, so that A < oo. Given x € K, there is 2’ € N
such that |z — 2’|k < e, and therefore |z|p < |2/|p + |z — 2/||p < 1+ eA. Taking
supremum over x gives A < 1 + €A, so that A < (1 —¢)~!, which is equivalent to
the inclusion P o (1 —¢)K. O

The following is an immediate consequence of Lemmas 5.8 and

COROLLARY 5.10. Lete € (0,1). Any symmetric convex body in R™ is (1—g)~ 12
close, in the Banach—Mazur distance, to a polytope with at most (14 2/e)™ vertices.

For an extension of Lemma [5.9] and to not-necessarily-symmetrie. convex
bodies, see Exercises Note that the dependence on ¢ in Corollary [5.10]is
not sharp (see Notes and Remarks). For the special case K = BY, the.conclusion
of Lemma can be easily improved to conv N o (1 — £2/2) K, see Exercise

EXERCISE 5.16 (Covering with balls whose centers lie,outside of the set). For
convex bodies K, L in R™, let N'(K, L) be the smallest nunmiber- N such that there
exist z1,...,ry in R" with K < (J,,cy(zi + L) (the difference with N(K, L) is
that z; are not required to belong to K). Give an example with L symmetric for
which N'(K,L) < N(K,L). Can we have such an ‘example with also K symmetric?

EXERCISE 5.17 (A regularizing trick). Let<X, L be convex bodies in R", with
0€ L. Show that N(K,eL) = N(K, (K <K) NeL).

EXERCISE 5.18 (Approximating by polytopes with few vertices). Let K < R™
be a convex body with centroid at the origin (K is not assumed to be symmetric).
Using Lemma and Proposition show that for every £ € (0,1) we have
N(K,eK) < (24 4/e)", where-N(K,£K) = N(K, K,¢) is defined as in . By
arguing as in the proof of Lemma[5.9] conclude that there exists a polytope P with
at most (2 + 4/¢)™ vertices such that (1 —e)K < P c K.

EXERCISE 5.19 (Approximating by polytopes with few facets). Let ¢ € (0,1)
and K < R"™ be a.convex body with centroid at the origin. Show that there exists
a polytope Q with at most (2 + 4/¢)" facets such that (1 —¢)Q < K < Q.

EXERCISE 5:20 (Approximating by polytopes and the Santal6 inequality). Let
K be a_convex body in R™ and let k = vrad(K) vrad(K°) < o« (i.e., K satisfies
approximately the Santalo inequality, see Theorem[4.17and the comments following
it)ATf.e'e (0,1), then K can be approximated up to £ (in the sense of Exercises

and [5.19) by a polytope P with at most (Ck/e)™ vertices (resp., facets).

EXERCISE 5.21 (Duality of metric entropy for ellipsoids). Let & and # be 0-
symmetric ellipsoids in R™. Check that for every ¢ > 0, N(&, %#,¢) = N(F°,£°,¢).

EXERCISE 5.22 (Explicit nets in S"~'). Here is an explicit construction of an
e-net in S”~! with at most (C/e)™ elements, for some (suboptimal) constant C'.
(i) Show that, if M is an e-net in BY (with 0 < & < 1), then the set {z/|z| : = € N}
is an p-net in (™71, ] |) for n = /2 — 24/1 — 2.

(ii) Let N = By n 77 Z". Show that N is an e-net in BY and that card N < (C/e)™.
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5.1.5. Nets in Grassmann manifolds, orthogonal and unitary group.
We now extend the results given for the sphere to other classical manifolds, includ-
ing unitary and orthogonal groups and Grassmann manifolds (which are introduced
in Appendix . Metric structures on such manifolds are induced by unitarily in-
variant norms on the corresponding matrix spaces, with Schatten p-norms being the
most popular choices. While there are several natural ways (also discussed in detail
in Appendix to define a metric on a manifold starting from a given Schatten
norm, all such metrics—for a fixed p—differ by at most by a multiplicative factor
of m/2. Accordingly, the behavior of covering numbers in all such situations can be
subsumed in the following single statement.

THEOREM 5.11 (not proved here, but see Exercise[5.23|). Let M be either SO(n),
U(n), SU(n), Gr(k,R™) or Gr(k,C"™), equipped with a metric generated by the Schat-
ten norm | - |, for some 1 <p < 0. Then for any € € (0, diam M],

) dim M . A
<cdlamM> < N(M.2) < <CdlamM> ,

(5.20) - -

where C, ¢ > 0 are universal constants (independent of n, kyp-and €), dim M is the
real dimension of M, and diam M the diameter of NI with respect to the corre-
sponding metric.

For easy reference, we list in Table [5.1] some of the values of the parameters
(dimensions, diameters) that appear in (5.20])-

TABLE 5.1. Real dimensions and diameters from the bounds
for covering numbers of a selection of classical manifolds. The dis-
tances used on SO(n) and-U(n) are the extrinsic metrics obtained
from the Schatten p-norm'on.M,,, and the distances on Grassmann
manifolds are the corresponding quotient metrics. The restriction
k < m/2 is imposed-to reduce clutter (note that Gr(k,R™) and
Gr(n — k,R™) are isometric).

M dim M diam M | comments
SO(n) |n(n—1)/2 2nt/P
U(n) n? 2n /P
Gr(k,R™) | k(n—k) |2Y202k)Y? | k<n/2
Gr(k,C") | 2k(n —k) | 22(2K)Y? | k <n/2

EXERCISE 5.23 (Metric entropy of classical groups and manifolds). Prove The-
orem for M = U(n), M = SU(n) or M = SO(n) and for p = o, by appealing to
Lipschitz properties of the exponential map with matrix argument (Exercise [B.8g]).

EXERCISE 5.24. Derive the formula for diameter of Gr(k,R™) in Table

EXERCISE 5.25 (Volume of balls in classical groups and manifolds). Let M
be either SO(n), U(n) or Gr(k,R™), equipped with a metric as in Theorem
Denoting by o the Haar probability measure on M, deduce from Theorem [5.11] a
two-sided estimate for o(B(z,¢)), where B(z, €) denotes the ball of radius € centered
at x e M.
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5.2. Concentration of measure

The classical isoperimetric inequality in R™ (Eq. , also known as Dido’s
problem) states that among all sets of given volume, the Euclidean balls have the
smallest surface area. As we already noticed in the setting of R™ in Section
an alternative methodology is to consider, instead of the surface area, the family of
e-enlargements of a given set. The latter approach makes sense in any metric space
X equipped with a measure p (a metric measure space, or a metric probability space
if p(X) = 1, which will be assumed as a default): for a subset A ¢ X and ¢ > 0]
we define

Ac ={zxe X : dist(z, A) <&}

The two viewpoints are roughly equivalent since the “surface area” relativéstoru can
be retrieved (when that makes sense) as the first-order variation of p(4.) when ¢
goes to 0, cf. and, conversely, the growth of the function e =5 p(A.) on the
macroscopic scale can be recovered from the knowledge of its detivative. However,
the enlargement-based approach seems simpler (a more flexible definition) and is
often more fruitful since some otherwise useful bounds on p(Ax) may be meaningless
for small e, and /or may be available in absence of any clue with regard to the nature
of extremal sets.

Lower bounds for u(A:) can be rephrased as<deviation inequalities for Lips-
chitz functions. This leads, in some settings, to a remarkable phenomenon: every
Lipschitz function concentrates strongly around-some “central value.” Statements
to such and similar effect will be the focus of‘eur presentation. Specifically, we will
look for estimates of the form

(5.21) w(f > My +1t) < Ce
and
(5.22) WS Ef+1) < Ce ™,

to be valid for any real-valued 1-Lipschitz function on X and all ¢ > 0, where M}
and Ef are the median<and the expected value of f calculated with respect to u.
(A number M is said to’'be a median for a random variable X if P(X > M) > 1/2
and P(X < M) > 1/2.) Clearly, and formally imply then similar two-
sided estimates for pu(|f — My| > t) and p(|f — Ef| > t) with C replaced by 2C.
Concentratioil of this type is referred to as subgaussian (more on this terminology
in Section . For the convenience of a casual reader—and for easy reference—
we list in Table the constants and the exponents that appear in subgaussian
concentration inequalities for a selection of classical objects.

REMARK 5.12. We point out that if a function f is such that one of the in-
equalities or holds (for all ¢ > 0) with constants C, \, then the other
inequality similarly holds (for the same function) with some other constants. For
example, if holds with C' > % and A, then holds with 2C? and \/2; if
holds with C' > e~/ ~ 0.717 and ), then holds with eC? and \/2 (see
Proposition and Remarks ) Sharper results of this nature (i.e., with
better dependence on C, \) can sometimes be obtained if we assume that (or
(5.22))) holds for all real-valued 1-Lipschitz functions on X; some questions in that
spirit are considered in [Led01] (see, e.g., Exercise [5.48)).
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In the next two subsections we will exemplify the concentration phenomenon
and related techniques in the case of the Euclidean sphere and the Gaussian space.
In subsequent subsections we will survey some general methods for proving isoperi-
metric/concentration results and present a selection of examples, in particular those
listed in Table[5.2] We will concentrate on the objects that exhibit subgaussian con-
centration; more general settings will be addressed briefly in exercises and in Notes
and Remarks (an exception is Sectionwhich treats sums of independent subex-
ponential random variables). A comprehensive presentation of diverse aspects and
manifestations of the concentration phenomenon is beyond the scope of this work;
we refer the interested reader to the monographs [Led01}, BLM13| and/or to other
sources listed in Notes and Remarks. Here we restrict our attention to highlighting
several central techniques and, subsequently, to going over examples that.appear
to be of relevance to the quantum theory.

5.2.1. A prime example: concentration on the sphere. The settings of
the Euclidean sphere and of the projective space are directly.relevant to quantum
information theory since the latter identifies canonically with the set of pure states.
In the language of enlargements, the isoperimetric inequality on the sphere can be
stated as follows.

THEOREM 5.13 (Spherical isoperimetric inequality, not proved here). FEquip
the unit sphere "~ < R™ with the geodesic distance g and the uniform probability
measure o. If A < S"! and if C = S"~Yis @ spherical cap such that o(A) = o(C),
then, for any e > 0,

(5.23) o(Aes) = o(C).

Recall that the spherical cap with center z € S"~! and radius ¢ is the set
Clz,e)<Aye S"" + gla,y) <e}.

Note that the class of spherical caps is stable under enlargements and that we have

(5.24) Cl#,e)s = C(x,e+0) forany 6,e>0.

In view of the simple relationship between g and the extrinsic (or chordal) dis-
tance inherited from the ambient Euclidean space (see Appendix , Theorem
[-13] is valid “also for the latter. However, it is traditionally stated for the geo-
desic distance. Also, the formula for C(x,e)s stated above would be more
complicated if we used | - | to define caps.

The' usefulness of Theorem [5.13] comes from the fact that there are explicit
integral formulas and sharp bounds for the measure of spherical caps, which were
explored in Section [5.1.2] However, while in the study of packing and covering
small caps seemed most interesting, in the present context of concentration the radii
close to 7/2 are most relevant. This is because arguably the most useful instance
of Theorem E is 0(A) = %, in which case the radius of the corresponding cap C
is /2 and the radius of its e-enlargement, C., is /2 + . Taking into account the
bound leads then to

COROLLARY 5.14. Ifn > 2 and if A< S"~! with o(A) > § and € > 0, then
™ 1 2
n = —ne“/2
(5.25) o(As) =0 (C (:z:, 5+ 5)) >1 5¢ .
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There is no simple proof of the isoperimetric inequality on the sphere (Theorem
5.13)) that we know of. However, a result just slightly weaker than Corollary
follows easily from the Brunn—Minkowski inequality (4.21)). We have the following

PROPOSITION 5.15. Ife € (0,7/2] and K, L = S"~1 are such that dist(K, L) >
e (in the geodesic distance), then o(K)o(L) < e /4. In particular, if o(K) > 1/2,
then o(K.) =1 — 2e"<"/4,

ProoF. The second statement follows by applying the first one with L = K¢.
It thus remains to prove the first statement.

Define K’ < BY via K’ := {tz : z € K,t € [0,1]} and similarly for L, Then
vol(K') = o(K)vol(BY) and vol(L') = o(L)vol(BY). Consequently, by the*Brunn—
Minkowski inequality in the form ,

K+ 1
vol( ; ) VOl (KWvol(L) = A/o (K)o (L) vol(BY).

On the other hand, if z,y € S"~! and the angle between_z.and y is at least ¢,
then |(x + y)/2| < cos(g/2). If ¢ < m/2 (and so (z,y) > 0))a simple calculation
shows that the same is true if we replace x and y by #/ = sz and y' = ty, where
s,t € [0,1] (in fact this is even true if € < 27/3). This'means that we have then
M c cos(e/2)BY and so /o (K)o (L) (cos(s/Q)) It remains to appeal to the

(subtle but elementary) inequality cosu < e X(2 (see Exercise . (]

<
<

REMARK 5.16. (1) Proposition holds actually for the entire nontrivial
range of e, which is [0,7]; this follows ‘@ posteriori from the estimate in Lévy’s
lemma (see Exercise. The above proof fails for large £; however, only the range
[0,7/2] is relevant to the second statement and to Corollary if p(K) > 1/2,
then no point = can verify dist(z, %) > 7/2.

(2) The estimate in the Proposition is pretty tight: if K, L are opposite (i.e., K =
—L) caps with dist(K, L) =_2¢, we conclude from the Proposition that u(K) <
e~"<*/2, This compares|fairly well with the bound %e*”‘fg/Q implicit in .

Corollary readily implies a concentration result for Lipschitz functions,
which is oftenreferred to in quantum information circles as Lévy’s lemma.

COROLLARY '5.17 (Lévy’s lemma). Let n > 2. If f : (8" 1,9) > R is a
L-Lipschitz function and if My is a median for f, then, for any t > 0,

1
(5.26) o(f>M;+1t) < 3 exp(—nt?/2L%),
and)therefore
(5.27) o(|f — My| > t) < exp(—nt?/2L?).

PROOF. Let A= {x e S" ! : f(z) < My} and set ¢ = ¢/L. Since f < My on A
and since f is L-Lipschitz (i.e., |f(z) — f(y)| < Lg(z,y) for x,y € S"~1), it follows
that for any y € S"~! we have f(y) < My + Lg(y, A). In particular, if y € A, then
9(y,A) < e and so f(y) < My + Le = My +t. In other words, we proved that
Ac c{f < My +t} = {f > My +t}°. The first inequality in Corollary follows

now by observing that, by the definition of the median, o(A) > % and by appealing
to Corollary

The second inequality follows from the first one combined with an identical
bound on o(f < My —t), which is shown either by the same argument applied to
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A={xeS" 1 f(x) = My}, or by appealing to the first inequality with f replaced
by —f. 0

REMARK 5.18. Both parts of the above proof are quite general. First, any
lower bounds on measures of enlargements of sets of measure % imply (in fact are
equivalent to, see Exercise bounds for deviation of Lipschitz function from
their medians. Second, any one-sided bound for deviation from the median (or the
expected value, or any other “symmetric” parameter) implies a two-sided bound, at

the cost of a factor of 2.

REMARK 5.19. In Corollaries B.14] and we have to assume that. n“>"2
because the bound is not valid in the entire nontrivial range 0 < t<Sum/2.
If n = 2, one needs to replace the function ie —nt*/2 by max{f - = 0} However,
no modifications are needed if the enlargements or the Llpschltz constants are
calculated with respect to the ambient space metric, or if only small values of € or
t are of interest, say, e <1lort < L.

Concentration around the median follows naturally from the isoperimetric in-
equality. As we mentioned in Remark this implies formally concentration
around the expectation with altered constants. In some situations, it is possible to
obtain good constants with extra work.

PROPOSITION 5.20 (Lévy’s lemma for theymean, not proved here). Let n > 2.
If f: (8", g) — R is a 1-Lipschitz function,then for any t > 0,
(5.28) o(f > Ef + ) <exp(—nt?/2).

As mentioned in Remark [5 - 8| the inequality o(|f — Ef| > t) < 2exp(—nt?/2)

follows formally, but is probably net optimal. See Problem [5.26] for questions about
possible better bounds in this and.similar settings.

EXERCISE 5.26 (Proposition [5.15| holds for the full range of £). Show that 1t
follows a posteriori from Theorem [5.13] and the bound 1-) that, for n > 2,

the notation and under\the hypotheses of Proposition [5.15] we have o( O'(L) <
Le=ne*/4 For n = 2;.the optimal inequality is o/(K) o(L) - ;) (cf. Remark

p19).

EXERCISE*5.27 (Concentration implies isoperimetry). Show that, for a metric
probability space (X, ), concentration implies isoperimetry in the following sense:
if u(f » MF +t) < a for any 1-Lipschitz function f, then pu(A;) > 1 — a for any
A X with p(A) = 1.

EXERCISE 5.28 (A finer bound tor the mean width of a union). Let K, L be two
bounded sets in R™, and R the outradius of K u L. Show that w(conv(K u L)) <

max(w(K),w(L)) + 1/ 2= R.

5.2.2. Gaussian concentration. Another classical setting where isoperime-
try and concentration have been widely studied is the Gaussian space (R", |- |,'yn),
where 7, is the standard Gaussian measure on R™ (see Appendix for the no-
tation, basic properties and relevant facts). It turns out that the extremal sets
for the isoperimetric problem are then half-spaces, and since their enlargements
are also half-spaces, the solution to the problem can be expressed simply in terms
of the cumulative distribution function of an N(0,1) variable, i.e., in terms of
®(x) == y1((—0,z]). We have
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THEOREM 5.21 (Gaussian isoperimetric inequality, see Exercise [5.30). Let A
R™, and let a € R be defined by 'yl((foo, a]) = v, (A). Then, for any e > 0,

(5.29) Yn(Ae) =M ((_007 a+ E])
or, equivalently,
(5'30) éil(')’n(As)) = ®71(7n(A)) +e.

inally derived from the spherical isoperimetric inequality (Theorem [5.13]) via the
following classical fact.

THEOREM 5.22 (Poincaré’s lemma, see Exercise . For n, N "N with
N > n, we consider R" to be a subspace of RY. Next, fix n and’let un—be the
pushforward to R™, via the orthogonal projection, of the normalized uniform mea-
sure on VNSN=1. Then, as N — o, (vN) converges to vy, the standard Gaussian
measure on R™.

The solution to the Gaussian isoperimetric problem (Theorem [5.21)) was orig-

The convergence in Theorem [5.22] holds in a very stroug Sense, e.g., in total
variation, or in uniform convergence of densities.

Another derivation of the Gaussian isoperimetrie, inequality is based on the
following analogue of the Brunn—Minkowski inequality in the Gaussian setting.

THEOREM 5.23 (Ehrhard’s inequality, not proved here). Let A, B be Borel sub-
sets of R™ and let X € [0,1]. Then

(5.31) O (1 (1 = M)A+ AB)) = (1 = N2 (7a(4)) + A0~ (1 (B).

Ehrhard’s inequality is stronger than log-concavity of the Gaussian measure
(Section [4.3.2)), see Exercise Assuming Ehrhard’s inequality, the derivation of
the Gaussian isoperimetric inéquality goes as follows. Fix A,e and let A € (0,1).
Since A, = A+eBy = (1 < )Y —\)"tA + XeA"1 B, we have, by (5.31)),

(5.32) 27 ((A))Z> (1= N2 (1((1 = A) 71 A)) + AT (3 (AT BY)).
We now let A — 0% The first term on the right-hand side of ((5.32)) converges

clearly to ®%(v,(A)); while the second term converges to ¢ (this is a little harder,
but elementary, see Exercise [5.32)), and so we proved the Gaussian isoperimetric

inequality inthe form .

The next-theorem follows from Theorem [5.21] according to the general scheme
indicated in Remark with the explicit exponential bound being a consequence
of Exercise [A 1l

THEOREM 5.24. If f : R™ — R is L-Lipschitz and M denotes its median (with
respect to 7, ), then for anyt >0

1 2972
(5-33) Ynl(f > My +1) <y ((t/L,0)) < e 2H,

Yollf = My > t) < e t/2F.

As we already noted in the setting of the sphere, concentration around the
median formally implies similar concentration around the mean (see Remark [5.12)).
However, this approach leads to suboptimal constants. A more precise technique
relies on the log-Sobolev inequality from Section [5.2.4.2] which specified to the
Gaussian setting yields the following.
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THEOREM 5.25 (see Theorem and Proposition [5.42)). If f : R™ — R is
L-Lipschitz and Ef is the mean of f (with respect to 7y, ), then for any t > 0
(5.34) max {7, (f > Bf + 1), (f <Ef —t)} < e t/2L°,

There is some numerical evidence that the assertion of Theorem [5.25] can be

further strengthened. We pose

PRrROBLEM 5.26. If f : R® — R is 1-Lipschitz and Ef denotes its average with
respect to yn, is it true that v, (|f — Ef] > t) < e=t/2% The case n = 1 implies
the general case and is probably not that hard to settle. Similarly, is it true,that
o(|f —Ef] > t) < exp(—nt?/2) if f: (S"!,g) — R is a 1-Lipschitz function_(and
n > 2; see Rema'rkfor comments on peculiarities of the case n = 2)2

An example of a function for which Theorem [5.24]is meaningful is the Euclidean
norm, which is trivially 1-Lipschitz. This gives the following (see also.Exercise([5.37]).

COROLLARY 5.27. Let G be a standard Gaussian vector in R™ Then, for any

t>0,
1 —2)2 2 1 —t2/2
P(|G\>\/ﬁ+t)<§e and P(\G|< n—g—t)<§e .

The distribution of |G|? is commonly known as 2(n), the chi-squared distribu-
tion with n degrees of freedom. Denoting by mJ;. the median of |G|, what is required

to deduce Corollary |5.27| from Theorem [5:24} are the inequalities 4/n — % <m, <

4/n. The lower bound is proved in Exercise [5.34] and the upper bound follows from
Proposition |5.34)): we have m,, < k, < +/n.

EXERCISE 5.29 (Weak convergence in Poincaré’s lemma). In the context of
Poincaré’s lemma (Theorem [5.22}), show without any computation that the sequence
(vn) converges weakly towards 7,,.

EXERCISE 5.30 (Gaussian isoperimetric inequality via Poincaré lemma). Derive
the Gaussian isoperimetric inequality (5.29) from the Poincaré lemma (Theorem

5.22)) and the spherical isoperimetric inequality (Theorem [5.13)).

EXERCISE_5.31 (Ehrhard’s inequality implies log-concavity). Show that The-
orem (Ehrhard’s inequality) formally implies that the Gaussian measure 7,
satisfies the log-concavity inequality (4.28)).

EXERCISE 5.32 (Gaussian measure of large balls). Show that
&1 (v, (rBy
lim (v (rB3))

77— 400 T

EXERCISE 5.33 (Ehrhard-like (a-)symmetrization). Show that the following
statement is equivalent to the validity of Ehrhard’s inequality for convex bodies.
Let K < R™ be a convex body and let E < R™ be a k-dimensional subspace with
0 < k < n. Identify E and E* with, respectively, R* and R"* and define a set
L < RFHL by

(r,5)e L == s <& (yo_({ye B : (z,y) € K})),

where x € E,s € R. Then L is convex.
In the case when £ = u' is a hyperplane (i.e., & = n — 1) the transformation
K — L is called Ehrhard (a-)symmetrization in direction w.

=1.
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EXERCISE 5.34 (Median of the chi-squared distribution, based on [CR86]).
X

1/3
Let X be a random variable with distribution x?(n), and V = (m . Show

that the density h of V satisfies the inequality h(1 —t) < h(1 + ¢) for ¢t € [0,1],
and conclude that the median of V' is greater than 1, therefore the median of X is
larger than n — 2/3. Higher order two-sided bounds for the median can be found in

IBS].

5.2.3. Concentration tricks and treats. This section contains a selection
of largely elementary facts related to the concentration phenomenon. It supplies
a set of tools allowing for flexible applications of concentration results. As)a rule,
the facts are well known to experts in the area and are included here for future
reference. Proofs are relegated to exercises.

5.2.3.1. Laplace transform. We mostly restrict ourselves to settings where con-
centration exhibits a subgaussian behaviour as in or . Such behaviour
can be proved via estimating the bilateral Laplace transform, using-the exponential
Markov inequality P(X > t) < e *'Eexp(sX) for s > 0.

LEMMA 5.28 (Laplace transform method). Let X be a random variable such
that Eexp(sX) < Aexp(Bs?) for every s € R. Then, for.every t > 0,

max(P(X > t),P(—X > t)) < Aexp(—t2/43).
EXERCISE 5.35. Prove Lemma [5.28 about-the Laplace transform method.

EXERCISE 5.36. Prove Hoeffding’s Temma: if X is a mean zero random variable
taking values in an interval [a, b], then E exp(sX) < exp(3s*(b—a)?) for any s € R.

EXERCISE 5.37 (A large deviation bound for chi-squared variable, based on
[VemO04]). Let X be a random-variable with distribution x?(n), for example X =
|G|? where G is a standard Gaussian vector in R™. Show that Eexp(sX) = (1 —

2s)~™/2 for any s < 1/2. Coniclude that P(X > (1+¢)n) < ((1+¢) exp(fs))n/2 for

any € > 0 and that P(X'< (1—¢)n) < ((1—¢) exp(s))n/2 for € € (0,1]. (We known
from Cramér’s large deviations theorem that this bounds are sharp.) Conclude that

ne?

(5.35) P(|X —n| = en) <2exp< 4+8€/3> .

5.2,3:2.vCentral values. Once we know that a function is concentrated around
some value, we can a posteriori infer that it also concentrates around the mean or
the'median, or any other particular quantile. This can be formalized by the concept
of & central value. If Y is a real random variable, we will say that M is a central
value of Y if M is either the mean of Y, or any number between the 1st and the 3rd
quartile of Y (i.e., if min{P(Y > M),P(Y < M)} > %; this happens in particular
if M is the median of Y'). The numbers % and % play no special role and can be
changed to other numbers from (0, 1) at the cost of deteriorating (or improving)
the constants in the statements that follow (see, e.g., Remark .

PROPOSITION 5.29 (see Exercises 5.40). Let Y be a real random variable
and let M be any central value for Y. Let a € R and let constants A = 2, X\ > 0 be

2
such that, for anyt > 0,
(5.36) max{P(Y > a+1),P(Y < a—t)} < Aexp(—\t?).
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Then |M — a| < +/log(4A) \='/2. Consequently, for any t = +/log(4A) A\=1/2,
(5.37) max{P(Y > M +1),P(Y < M —t)} < 4A% exp(—\t?/2).

REMARK 5.30 (Improvements to Proposition . The expressions 4/log(4A)
and 4A? in the assertion of Proposition can be replaced by 4/log(kA) and kA2,
where k = 2 when M is the median of Y and k = e when M is the expectation of

Y; see Exercises [5.39], [5.59] and [5.40]

REMARK 5.31 (On the necessity of restrictions on ¢ in Proposition [5.29). Wé
point out that the bound on the first (resp., the second) probability appéaring
in is valid under the formally weaker restriction ¢ > (M — a)™ Xresp.,
t > (M — a)~). The restriction ¢ > +/log(4A4) A~'/2, while annoying, cannot be
completely avoided if we want to keep full generality because the hypothesis (5.36)
does not necessarily supply any information about the probabilities appearing in
the assertion if ¢ is small. However, this is only a minor inconvenience since for
such t the upper bound in is never small and often holds-for trivial reasons.
In particular, holds for all ¢ > 0 if M is the mean orany quantile between
the 27th and 73rd percentile, or if A > 3%/3/4 ~ 0.52, and always if we replace the
factor 442 by 3v/2A2. If M is the median, we can go.even further: no restrictions
on t are needed even if we replace 442 by 242 onthe right hand side of ; if
M is the mean, similar improvement (i.e., eA% on the right hand side) is possible
when A > e~ /% ~ 0.717 (these last observations.were used in Remark .

COROLLARY 5.32 (Lévy’s lemma for-eentral values). Let f: (S""1 g) = R be
an L-Lipschitz function and let M be any.central value for f. Then |M — My| <

V2log2n~Y? and, for any e > 0,
(5.38) P(f>M+s)<exp(fn—€2>.
4L2

We sketch proofs and give more precise bounds and/or variations on the above
results in Exercises W Note that while follows from Proposition
[-29) and Corollary [5-37] for n > 2 and for £ not-too-small, a separate argument
is needed to cover“the remaining cases (cf. Remark . We also point out that
while Proposition [5.29]is meant to give reasonably good estimates valid in the most
general setting ' when concentration is present, better bounds are available in specific
instances~For example, Corollary can be improved when M is the mean (see
Table 5.2 anid Exercise [5.44), and similarly in the Gaussian case.

The heuristics behind Corollary [5.32] is as follows: if we know that all sets of
measure at least % have large enlargements, then approzimately the same is true for
all sets of measure at least %. Actually, almost the same is true for much smaller
sets; here is a sample result.

PROPOSITION 5.33 (see Exercise [5.49). Let (X,d, ) be a metric probability
space and let € > 0. Suppose that any set A < X with p(A) > 3 verifies pu(A.) =
1—Ce > Then pu(Bae) =1 — Ce><" for any set B < X with w(B) = Ce=>e",

A common feature of concentration inequalities presented up to now is that
in order to translate them to concrete bounds for concrete functions, we need to
calculate—or at least reasonably estimate—the medians or expected values, or sim-
ilar parameters of the functions under consideration. A selection of tools, some of
them quite sharp, to handle expected values will be described in Section [6.1] The
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preceding three results tell us that it doesn’t really matter which central value we
employ, as long as we are willing to pay a small penalty in the form of an addi-
tional multiplicative constant in the exponent and in front of the exponential. The
following observation shows that, in the Gaussian context, sometimes no penalty is
needed at all.

PROPOSITION 5.34 (see Exercise [5.50). Let f : R™ — R be a convex function.
Denote by My (resp., Ef ) the median (resp., the expectation) of f with respect to
the standard Gaussian measure v,. Then My < Ef.

EXERCISE 5.38. Show that a random variable Y such that P(Yy > #)'<
Aexp(—t?) for t > 0 must verify EYy < EY;" < min{A4,/7/2,4/1 + log"™ A}: De-
duce the first assertion of Proposition [5.29 and the corresponding.imprevement
from Remark £.301if M is the mean of Y.

EXERCISE 5.39. Show that if Yj is a random variable such\that P(Yy > t) <
Aexp(—t?) for t > 0 and if M3,y is its 3rd quartile, then Mg < A/logt (4A).
Deduce the first assertion of Proposition [5.29]if M is between the 1st or the 3rd
quartile of Y, and the strengthening from Remark |5.30} M —a| < 4/log™ (24) \~1/2
if M is the median of Y.

EXERCISE 5.40. Prove the inequality e~ < 9% (5+9)°/2 for s,0 € R. Use it
and the last two exercises to show the second-assertion of Proposition [5.29] and its
strengthenings stated in Remark when M is the median or the mean of Y.

EXERCISE 5.41. Verify the assertions in the last two sentences of Remark [5.31}

EXERCISE 5.42. Given « €,(0,1), prove a version of (5.37)) with the right-hand
side of the form Bexp(—a\t?), where B depends only on A and « (and on & from

Remark if applicable).

EXERCISE 5.43 (Lévy’silemma for central values). Let n > 2. Use Exercise
[5:26] to derive Corollary[5.32] for any quantile between the 1st and the 3rd quartile.

EXERCISE 5.44"(The median and the mean on the sphere). Let f be a 1-
Lipschitz funetion on (S"~1, g) with n > 2. Show that the median and the mean
of f differ at-most by 1/7/8n and describe the extremal function.

EXERCISE 5.45 (Variance of a Lipschitz function on the sphere). Let f be a
1-Lipschitz function on (S"~!, g) with n > 1. Show that Var(f) < 2 and give an
example with Var(f) > -. What function gives the maximal variance?

EXERCISE 5.46 (Concentration around Ly average). Let f be a 1-Lipschitz and
positive function on ("1, g) with n > 1. Set ¢ = (Ef?)"/2. Show that for any
t>0,P(f>q+t) <exp(—nt?/2) and P(f < q—t) < eexp(—nt?/2).

EXERCISE 5.47 (The case of S'). Using directly the solution to the isoperimetric
problem on S!, show that Corollary holds also for n = 2.

EXERCISE 5.48. Let (X, d, 1) be a metric probability space and let « : [0, 00) —
[0,00) be such that u(f = Ef +t) < a(t) for any bounded 1-Lipschitz function
f X — R and for all ¢ > 0. Then, for any such function f and for any ¢ > 0,
u(f = My +t) < at/2). Equivalently, p(A:) = 1 — a(e/2) for any A < X with
#(A) = 1/2 and any € > 0. The preceding argument can be iterated, see (1.18) in
[LedO1].
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EXERCISE 5.49. Prove Proposition[5.33]about enlargements of fairly small sets.

EXERCISE 5.50 (Median vs. mean for convex functions of Gaussian variables).
Prove Proposition by showing first that the function g : t — ®~ (v, ({f < t}))
is concave.

EXERCISE 5.51. Show that the following statement is a consequence of Propo-
sition If (X1,..., Xx) are jointly Gaussian random variables and f : RY — R
is a convex function, then the median of the random variable f(X,..., Xy) does
not exceed its expectation.

5.2.3.3. Local versions. It sometimes happens that a function defined)on ‘the
sphere S"~! has a poor global Lipschitz behaviour, while its restriction to_a stibset
of large measure is much more regular. To take advantage of such situation, we
formulate a “local” version of Lévy’s lemma.

COROLLARY 5.35 (Lévy’s lemma, local version). Let Q < S™ ! be a subset
of measure larger than 3/4. Let f : (S""1,g) — R be a_function such that the
restriction of f to Q is L-Lipschitz. Then, for every € > 0

P({|f(z) — My| > &}) < P(S" N\Q) + 2exp(—ne?/4L?),
where My is the median of f.

One scenario under which the hypotheses of Corollary may be satisfied is
when we have an upper bound on some Sobolev-norm of f (a “global” parameter,
which suggests that “restricted version-ef Lévy’s lemma’ could have been better
terminology). However, our applications of the Corollary will be rather straightfor-
ward and will not require any advanced notions.

EXERCISE 5.52. Prove Corollary the local version of Lévy’s lemma.

5.2.3.4. Pushforward. Thefollowing elementary result is very useful for estab-
lishing concentration phenomenon for many classical spaces. In a nutshell, it says
that concentration results can be “pushed forward” by surjective contractions.

PROPOSITION, 5:36-(Contraction principle). Let (X,u) and (Y,v) be metric
probability spaces. Assume that there exists a surjective contraction ¢ : X — Y
which pushesforward p to v (i.e., v(B) = p(¢~1(B)) and let a € (0,1) and £ > 0.
Then

5.39 inf B.) = inf AL).
(5.39) syt s (B = nf  wlAe)

Siilarly, for any t > 0,
(540) sup vig—Eg>t) < sup p(f —Ef >1t).
g:Y >R, g 1-Lipschitz f:X—>R, f 1-Lipschitz

Moreover, (5.40)) holds if expectation is replaced by median on both sides.

EXERCISE 5.53. Prove Proposition the contraction principle. State a
more general version with ¢ : X — Y assumed to be L-Lipschitz rather than a
contraction.

EXERCISE 5.54 (Concentration on the solid cube via Gaussian pusforward). Let
Y be the solid cube [0,1]™ endowed with the Lebesgue measure and the Euclidean
metric inherited from R™. Use Proposition to show that Y verifies (5.21)) with

(C,\) = (3,7) and with (C,\) = (1, 7).
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5.2.3.5. Direct products. It is easy to see that the concentration phenomenon
passes to direct products of metric probability spaces. Indeed, let X and Y be two
such spaces that exhibit the concentration phenomenon and let X x Y be endowed
with the product measure and some reasonable product metric, such as the ¢,
product metric defined for (z1,y1) and (22,y2) in X x Y as

(5.41) d((z1, 1), (22,2)) = (dx (21, 22)" + dy (x1,22)7) "7 |

the limit case p = o0 being interpreted as a maximum. If f is a 1-Lipschitz function
on X x Y, then ¢(x) = My(, .y is 1-Lipschitz on X and hence concentrated around
its median M. Since, for each x € X, f(z, -) is concentrated around ¢(z), it follows
that f is concentrated around M. (See Exercise for precise statements.). The
above argument can be clearly iterated. Here is another elementary result_involving
product measures.

PROPOSITION 5.37 (Concentration on product spaces, see Exercise . Let
(Xi,dispi), 1 < i < n, be bounded metric probability spaces-and denote D; =
diam X;. Let X = X7 x ... x X, be endowed with the product,measure 1 and the
£y product metric d. Then, for every 1-Lipschitz function 2 X — R and for any
t>=0,

(5.42) u(f = Bf +1) < e 2D
where D = (Y, D?)l/z.

Both approaches to products of metric probability spaces that are sketched
above share an unsatisfactory feature: the constants deteriorate as the number of
factors increases. In complete generality, this feature is unavoidable (see Section
5.2.5). However, in some natural settings (e.g., the Gaussian space) dimension-free
results are possible.

EXERCISE 5.55 (Concentration on product spaces, a naive approach). For the
purpose of this exercise the median of a random variable F' is defined as Mp =
L(sup{t : P(F > t) = 1/2} + inf{t : P(F < t) > 1/2}), but most other definitions
would work if applied consistently and with sufficient care. Let (X,dy,u) and
(Y, ds,v) be metric probability spaces. Consider the space (X x Y,d, ), where
7 = @ v and~d is any metric verifying

d(($1,y)7 (.’lﬁg,y)) = d1($17m2) and d((x’yl)? (xva)) = d2(y17y2>

for allxya1,20 € X and y,y1,y2 € Y and let f : X x Y — R be a 1-Lipschitz
funtetion with respect to d.

(i) Show that the function ¢(x) = Mj(, .y is 1-Lipschitz on X.

(ii) If X and Y exhibit the concentration phenomenon in the sense of for
some C and A, then n(f > My +t) < 2Ce=M/4 for all t > 0, and similarly for
7T(f < M¢ — t).

(iii) Show that M, is a central value in the sense of Section

(iv) Same as (ii) with replaced by and M, by Ef.

EXERCISE 5.56 (Concentration on product spaces, Laplace transform method).
The Laplace functional of a probability metric space (X, d, ) is defined for A € R
as Eix,q,.)(A) = sup § e dyu, where the supremum is taken over all 1-Lipschitz
functions f : X — R with mean 0.

(i) Show that if X has diameter D, then E(x 4,)(\) < exp(A2D?/8) (use Exercise
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[

3
(ii
d

o)) -
Show that if (X1, d;, 1) and (Xo,da, u2) are two metric probability spaces, if
enotes the ¢; product metric on X; x X5 as defined in (5.41), then

o ~—

E(x,x Xa,d 1 @12) (V) S Exs s, n) N E (X, 112) (V-
(iii) Show that in the context of Proposition we have
E(x,a,)(A) < exp(A>D?/8).
(iv) Prove Proposition using Lemma
EXERCISE 5.57 (Hoeffding’s inequality). Show that Proposition implies

Hoeffding’s inequality: if Xi,...,X,, are independent random variables such that
X; takes values in an interval of length l;, then for any t > 0,
(5.43) P(S>ES+1) <e /L7,

where S = X1 + -+ X, and L> =13 + -+ + [2.

5.2.4. Geometric and analytic methods. Classical examples. In Sec-
tions and we sketched isoperimetric/concentration results on the Eu-
clidean sphere and for the Gaussian measure. While)these are admittedly very
special situations, the fact of the matter is that, in high-dimensional settings, some
form of concentration phenomenon is the rule rather than the exception.

5.2.4.1. Gromov’s comparison theorem. The first result asserts that isoperimet-
ric and concentration inequalities hold under geometric assumptions which signifi-
cantly generalize the spherical case. The invariant that can be related to sphere-like
behavior is the Ricci curvature,, which describes the rate of growth of volume under
geodesic flow on the manifold with the similar rate in the Euclidean space. For
example (see Figure [5.3)), the“cireumference of a circle of geodesic radius § (< )
on the sphere S? is 2rsin#, and hence the length of the arc of the circle corre-
sponding to an angle «a (measured on the plane tangent at the center of the circle)
is asinf ~ a(& — %) > a@(l — %) compared to af for the Euclidean plane. (Here
and in the next paragraph ~ means equality up to higher order terms.)

Repeating this calculation mutatis mutandis for an m-dimensional sphere (in
R™+1) of radius’R and a solid m-dimensional angle a we get a(Rsin £)™~! ~

a(G — %)m_l ~ afm ! (1 — "}”{21 %) compared to a#™ ! in the Euclidean setting

(i.e., in\R"). This is subsumed by saying that the Ricci curvature of RS™, the
m-~dimensional sphere of radius R, at every point and in each direction is ngl.
The mnotion is generalized to an arbitrary point p on a Riemannian manifold X
of dimension greater than or equal to 2 and to an arbitrary unit vector u in the

tangent space at p by considering infinitesimal (solid) angles in the direction of u

and finding the coefficient of % in the corresponding expression for the volume on
the geodesic sphere or radius 6 centered at p; this coefficient is denoted by Ric, (u).
The minimum of Ric,(u) over p € X and over directions u is denoted by ¢(X).
Such straightforward calculation may be difficult to perform for more compli-
cated manifolds. On a less elementary level, the Ricci curvature can be computed
using the following formula expressed in the language of Riemannian geometry:
whenever (ug,...,u,) is an orthonormal basis in the tangent space at p (thought
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the radius in
the ambient space
is sin 6

angle «

the resulting
arc of length

asinf =~ af (17 %)

a circle of
geodesic
radius 6

FIGURE 5.3. Volume growth on the sphere $2 as a function of
geodesic distance.

of as a real inner product space), we have
(5.44) Ricp(uq) = Z sec(u1,u;),
i=2

where sec denotes the sectional.curvature. This leads to an alternative explanation
of the value of the Ricci curvature for the sphere, for other manifolds of constant
sectional curvature such as thé\Euclidean space or the hyperbolic space, or for their
quotients by discrete groups_of symmetries (e.g., for tori or for the real projective
space). In the case of Tie groups, sectional curvature can be expressed via Lie
brackets. For examples-of computations, see Exercises [5.58] and [5.59}

We are now réady-to state the main result of this section. By RS™ we denote
the sphere of radius R in R™*+1!,

THEOREM.5.38 (Gromov’s comparison theorem, not proved here). Let m >
and let X be an m-dimensional connected Riemannian manifold such that ¢(X)
mt =%¢(RS™). Let A = X and let C < RS™ be a cap such that px(A)
wrsem (C), where px and prsm are normalized Riemannian volumes on, respec-
twely, X and RS™. Then, for every e > 0, ux(A:) = prsn (C:).

It follows then (same proof as Corollary [5.17)) that any 1-Lipschitz function
f+ X — R with median M} satisfies, for any ¢ > 0,

WV o

px ((F > My +1)) < 3 exp(—(m + 1)?/2R?).

As it turns out, the hypotheses of Theorem are verified for many (but not
all) manifolds that naturally appear in mathematics and that play a role in physics,
notably for most classical Lie groups and their homogeneous spaces, see Table [5.3]

EXERCISE 5.58 (Ricci curvature of Grassmannians). For Gr(k, R™) or Gr(k, C"),
the tangent space at any point can be identified with My ,,_;. If X, Y € My, ,,_, are
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TABLE 5.3. Optimal bounds on Ricci curvature for a selection
of classical manifolds. We restrict our attention to manifolds for
which that curvature is nonnegative, which in particular excludes
the hyperbolic space and its quotients. All the bounds concerning
specific objects can be derived via formula involving the
(more standard) sectional curvatures. This is straightforward for
spaces, for which the sectional curvatures are constant (R™, S"~ 1,
and P(R™)); the remaining cases are covered by Exercises
and Note that the values for the projective spaces P(V')
and the corresponding Gr(1,V) do not coincide due to different
normalization of the metric (an additional v/2 factor in when

compared to (B.5)).

X metric o(X) comments
R™ Euclidean 0
gt geodesic n—2 n=2
SO(n) standard n2 n=2
SU(n) standard 2
U(n) standard 0
Gr(k,R™) | quotient from O(n) (B.10)) "T_Q 1<k<n-1
Gr(k,C™) | quotient from U(n) (B.10) 1<k<n-1
P(R"™) Fubini-Study n—2 n=2
P(C") Fubini-Study 2n n=2
X1 x Xo | ¥5 product metrie (5.41) | min{e(X1), c(X2)}
orthogonal, one can show (see Section 8.2.1 in [Pet06]) that
(5.45) sec(X,Y) = i (IxYT -y XT|fs + XY — YTX ) .

Use this formula,and (5.44) to compute the corresponding values from Table
In some references we find the coefficient % instead of i because of a different
normalization of the metric.

EXERCISE 5.59 (Ricci curvature of classical groups). For G = SO(n), SU(n)
or-U(n), the tangent space at I (or at any point) can be identified with the corre-
sponding Lie algebra g (= so,, su, or u,). If X,Y € g are orthonormal, one can
show (see Exercise 2.19 in [Pet06]) that sec(X,Y) = 3|XY — Y X|#s. Use this
formula and to compute the corresponding values from Table

5.2.4.2. Log-Sobolev inequalities (LSI). The next technique that we present is
of analytic nature. It is based on a class of inequalities which at the first sight seem
irrelevant to the subject at hand. Let (X, u) be a measure space and let f be a
non-negative function on X. The (continuous Shannon) entropy is defined by

(5.46) Ent,(f) == f Flog fdp
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if §{fdu = 1, where we used the convention 0log0 = 0, and then extended to
non-negative integrable functions by 1-homogeneity. An explicit formula that im-
plements the extension is

(5.47) EMAﬁ:fﬂ%fw—fﬁngUfw)

By Jensen’s inequality, Ent, (f) > 0, with 400 being a possibility.

We now assume that X is a Riemannian manifold and that p is a Borel measure
on X. We say that (X, ) verifies a logarithmic Sobolev inequality with parameter
a if for every (sufficiently smooth) function f : X — R we have

(5.48) Ent,(f?) < 2af\Vf|2du.

The smallest constant « that works in is called the log-Sobolev. constant of
(X, u) and denoted by LS(X, u).

The relevance of this circle of ideas to the concentration(phenomenon is ex-
plained by the following result.

THEOREM 5.39 (Herbst’s argument). Let X be arRiemannian manifold and
let p be a Borel probability measure on X such that"LS(X,u) < a. Then every
1-Lipschitz function F : X — R is integrable and satisfies, for everyt > 0,

(5.49) ,u(F > Jqu + t) Lot/

REMARK 5.40. The above Theorem can be extended to the setting of general
metric spaces, with essentially the same proof, once |V f| is properly defined. For
example, we may use |V f|(z) =limsup,_,, % if X has no isolated points;
discrete spaces may also be handled-with some care. However, for clarity of the
exposition, we will assume forthe rest of this subsection that the underlying spaces

are (connected) Riemannian-manifolds.

Proor or THEOREM[5.39 First, we may assume that F' is smooth and that
§ F dp = 0; this may be achieved by replacing F' by an appropriate approximation
and subtracting a constant. The strategy is to show that the (bilateral) Laplace
transform of (P verifies

(5.50) Je’\F dp < e®/2 forall AeR,

which by Lemma implies that u(F > t) < e’t2/2a, as needed. To establish
(5-50)), we introduce an auxiliQary function f = fy > 0 defined via f2 = eM'—oA/2,
In other words, f = e*"/2=%2"/4 and it is readily checked that Vf = %fVF. Since
|[VF| < 1 (because F is 1-Lipschitz), it follows that |V f]? < %zf? Consequently,
by (548) (cf. (547),

2 2 a)? 2 2 a)? 2
(5.51) Ent,(f2) = [ f </\Ff 7) du— | F2du log( f du) <2 | fdn
We now set ¢(A) = { f2dp and note that differentiating under the integral sign
gives

WM:fF@>aMw-
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This allows to rewrite (5.51]) as
AP (X) = d(X) log (6(N)) <0,
which, for A # 0, is equivalent to

(5.52) %(M) <0.

On the other hand, given that ¢(0) = 1, 'Hopital’s rule yields

log (V) _ (V) _ ¢/(0) _ [Fdp
(5:53) I = =y ~ %0 -1
Combining (5.52) and (5.53) we conclude that log (¢(\))/A < 0 for A > 0-and
log (¢(N))/A = 0 for A\ < 0, which just means that ¢(\) < 1 for all X\é R. In

other words, Se’\F_O‘)‘Z/Q dp < 1 for A € R, which is just a restatement of ([5.50]) and
concludes the argument. O

0.

Apart from the median being replaced by the expected. value’/(which is largely
a matter of convenience or elegance, see Proposition in Section [5.2.3)), the
assertion of Theorem closely resembles and , which quantified the
concentration phenomenon for Lipschitz functions in~the spherical and Gaussian
settings. However, its usefulness depends on availability of spaces (X, u) verifying
logarithmic Sobolev inequalities. The next few results ensure that the supply is
indeed quite ample. For easy references the spaces and estimates on their log-
Sobolev constants are cataloged in Table 5.4l

PROPOSITION 5.41 (not proved here). Let X be an m-dimensional Riemannian
manifold such that ¢(X) > 0 and let u be the normalized Riemannian volume. Then

LS(X, ) < 7ty

PROPOSITION 5.42 (not proved here). Let u be a measure on R™ whose density
with respect to the Lebesque measure is of the form e~V , where U verifies Hess(U) =
B1 for some B > 0. Then LS(R™, u) < B~L. In particular, LS(R™,v,) < 1 and
LS(C™, %) < 3.

PROPOSITION 5.43 (not proved here, but see Exercise [5.61)). We have
LS(S',0) =1 and LS([0,1],vol;) = 72

PROPOSITION 5.44 (Tensorization property of LSI, not proved here). Given
(Xipp)y @ = 1,...0k, let X = X1 x -+ x Xi be endowed with the ly product
melric as defined in and the product measure p = p1 Q --- @ pui. Then
LS(X, p) = maxy<i<k LS(X;, ).

REMARK 5.45 (Poincaré’s inequality). Another related famous functional in-
equality is the Poincaré inequality, which reads as follows: for every smooth function
f X—->R

(5.54) Var, f < aJ\VﬂQdu,

where Var, f denotes the quantity { f>du — (X f dp)z. The smallest « is called
the Poincaré constant of (X, u) and denoted P(X, ). Inequality is implied
by the LSI (with the same constant «); it implies sub-exponential instead of
subgaussian concentration. A list of Poincaré constants for common spaces can be
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found in Table [5.4] An example of a probability measure satisfying the Poincaré
inequality but not the LSI is the (symmetric) exponential distribution on R.

REMARK 5.46 (Contraction principle for LSI and Poincaré’s inequality). If
¢ (X, u) — (Y,v) is a surjective contraction which pushes forward p onto v, then
LS(Y,v) < LS(X, 1) and P(Y,v) < P(X, p). This can be proved as in Exercise[5.53
and is especially transparent if we define |V f| as in Remark

TABLE 5.4. Bounds on log-Sobolev and Poincaré constants for a
selection of classical manifolds. We use the same metrics as in
Table [5.3] Except as indicated, the estimates on log-Sobolev con-
stants follow from estimates on the Ricci curvature (see Proposi
tion. Most of the time we use the bound LS(X, u) < (X )1}
the more precise expressions involving the dimension of X.lead to
slightly better but often cumbersome formulas. The upper bounds
on the Poincaré constants of Grassmann manifolds-follow from Re-
mark For more comments and references about Poincaré
constants, see Notes and Remarks.

X or (X, p) LS(X, ) P(X,w) Comments
([a, b], Zil;) (b;g)z (b;3)2 Prop. [5.43
gn—t ﬁ n£1 Prop. |5.43| for St
P(R") < P
P(C™) < 5 i
(R™, vy,) 1 1 Exercise |5.60|
1 2
SO(n) <9 71
SU(n) <2 T
U(n) <$ 1 [MM13]
Gr(k,R™) <2 <% 1<k<n-—1
Gr(k,C™ <1 <1 1<k<n-—1
(X x Y, ux @ py) | max{LS(X),LS(Y)} | max{P(X),P(Y)} | {2 product metric

EXERCISE 5.60 (Log-Sobolev constant for the Gaussian space). Show that
LS(R™ v,) = 1 (we have actually equality, see Proposition [5.42)).

EXERCISE 5.61 (Log-Sobolev constants for segments and circles). (i) Use the
contraction principle from Remark[5.46]to show that LS([0, 1], vol;) < 72LS(S?, o)
and P([0,1],vol;) < 7 2P(S',0). (ii) Verify that P(S',0) = 1. (iii) Verify that
P([0,1],vol;) = 72 (see Notes and Remarks for the reasons why there is actually
an equality).

5.2.4.3. Hypercontractivity, Gaussian polynomials. We give a brief introduc-
tion to the concept of hypercontractivity and illustrate it to give an example of a
concentration inequality for Gaussian polynomials.

We work on the probability space (R™,~,,). We define the Ornstein—Uhlenbeck
semigroup of operators (P;);>o as follows. For f: R™ — R a bounded measurable
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function, and x € R", let
(5.55) (P.f)(z) = E f(e_tm +4/1— e—2tG),

where G is a standard Gaussian vector in R™. These operators satisfy the semigroup
property P;P, = Psi;. Moreover it is easily checked (Exercise that for every
p=landt =0,

1PNz, vy < UFlz,vm)s
and therefore P, extends to a bounded (contractive) operator on Ly (7). Remark=
ably, a stronger statement is true: provided p > 1 and ¢ > 0, P; is a contraction

from Ly(vn) to Ly(yy,) for some g = ¢(t) > p. This phenomenon is called. hyper-
contractivity.

PROPOSITION 5.47 (not proved here, but see Exercise[5.63)). Let1 < p < g < o
and t > 0 such that ¢ < 1+ e*(p—1). Then

1P f 2y < WFIlLp(vm)-

The eigenvectors of P; are the Hermite polynomials. In the one-dimensional
case, denote by (hx)ken the sequence of polynomials ebtained by orthonormalizing
the sequence (1,z,22,...) in the space 4 = Eo(R/v;). (In this context, we

exceptionally mean N = {0,1,2,3,...}.) Given a multi-index o = (aq,...,q,) €
N, let h, be the multivariate polynomial
(5.56) ha(Zi,...,Tn) =hay{z1) - - ha, ().

The family (hg)aene is an orthonormal basis in .77, = La(R",7,), and we have
(5.57) Rohy = e tlalp,,

where |a| = >} | a; is the weight of the multi-index «, or the total degree of the
polynomial h,. Note that formula (5.57)) allows to define P,Q for any polynomial
Q@ even when t is negative,

PROPOSITION*5.48. Let @ be a polynomial in n variables of (total) degree at
most k. Then, for every q = 2,

1Ql Ly < (@ = D*21Q L5,

PROOF. For any ¢ = 0, we have P,P_;(QQ = @ (see the remark following (5.57)).
Choosing ¢ > 0 such that ¢ — 1 = e, we may apply Proposition to conclude
that Q| L, (v,) < |P-tQ|Ls(y,)- We may write the decomposition of () in the basis
of Hermite polynomials

Q = 2 cala

la|<k

for some coefficients (c,). It follows that ||QH2L2(%) =Y ¢c?, while

HP*tQH%Q(’yn) = Z th‘a‘ci < 62”‘7”@“%2(’}/”)7

|| <k

whence the result follows. O
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COROLLARY 5.49 (Concentration inequality for Gaussian polynomials). Let
Zi,...,Zy be independent N(0,1) variables and let X = Q(Z1,...,Z,), where Q

is a polynomial of (total) degree at most k. Then, for any t > (2e)k/2,
k
P (|X —EX| >tV Var X) < exp (—2t2/k> .
e
PrROOF. There is no loss of generality in assuming that Z1,...,Z, are defined

as the coordinate functions on (R",~, ), so that Proposition applies. We may
assume EX = 0, Var X = 1 and write by Markov’s inequality, for any ¢ > 2,

P(X|>t) <t 9E|X|? <t (g —1)*? < (¢"?/t)

where we used Proposition m The choice ¢ = t%/ k /e (which is larger _than 2
provided ¢ > (2¢)¥/?) yields the result. O

REMARK 5.50. The phenomenon of hypercontractivity is not specific to the
Gaussian case and is essentially equivalent to a log-Sobolev inequality (see Theorem
5.2.3 in [BGL14]). Similar concentration results are true forpolynomials in binary
random variables (see Theorem 9.21 in [O’D14]) and for polynomials on the sphere
(cf. [Mon12]). Here is a precise statement of the latter. If Q be a polynomial with
total degree at most k in ny + -+ + ng variablessand X = (Xy,...,Xq) with X;
independent and uniformly distributed on S™ ", thew for every ¢ = 2, |Q(X)]z, <
(¢ — 1)*2|Q(X)|r,. (This is slightly more general than Corollary 12 in [Mon12]
which assumes that ny = --- = ng and that the/partial degrees in each variable are
equal.) The argument is similar to the Gaussian case, using spherical harmonics
instead of Hermite polynomials. Concentration estimates similar to Corollary [5.49]
follow.

EXERCISE 5.62 (Ornstein<Uhlenbeck semigroup is contractive). Show that P;
is a contraction on Ly (v, ) forany ¢ > 0 and p > 1.

EXERCISE 5.63 (Sharpness of the hypercontractive inequality). When n = 1,
compute P;fy when fx(x) = e**. Conclude that Proposition is sharp in the
following sense: when 'q > 1 + e*(p — 1), there is no constant C' such that the
inequality || P f{z,(v,) < ClflL, () holds.

5.2.5.~Some discrete settings. All the specific instances of concentration
we identified ‘thus far involved manifolds. However, the phenomenon also occurs
in the discrete case. We will exemplify it (and the issues that may arise) on the
fundamental example of the Boolean cube {0,1}", or {—1,1}", endowed with the
normalized counting measure p and the normalized Hamming distance dg(x,y) =
%card{i : x; # yi}, which up to normalization coincides with the ¢; metric in the
ambient space R™. (This setting was already studied in Section other product
measures, or metrics induced by £,-norms for other p are also frequently considered,
more about that later.)

A nearly optimal concentration result for the Boolean cube follows already from
Proposition|5.37 However, we can do better: the exact solution to the isoperimetric
problem on the cube is known. To describe it, we introduce a total order < on {0, 1}"
(called the simplicial order) as follows: for x = (x;) and y = (y;) in {0, 1}, declare
that z <y ifeitherz; +-- +z, <y1+---+yporaxy+- - +x, =y + -+ +y, and
x precedes y in the lexicographic order. Then the initial segments for this order are
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isoperimetric sets. As opposed to the Gaussian and spherical case, the extremal
sets are not unique in any reasonable sense (see Exercise [5.66))

THEOREM 5.51 (Harper’s isoperimetric inequality, not proved here). For any
integer N with 1 < N < 2", let A < {0,1}"™ be the set of N smallest elements
with respect to the simplicial order. Then A has the smallest e-enlargements (for
all e > 0) among all sets of the same cardinality. The set A verifies

(5.58) B(z,k/2") c A c B(z,(k+1)/2")
for some ke {0,...,n—1}.

If we define the boundary of A as 0A = {y € {0,1}" : dist(y, A) = 1/n}, the
sets from Theorem also have the “smallest boundary” among subsets_of {0, 1}"
of the same measure. In this language, the condition (5.58|) says that A4 consists
of a ball and a part of its boundary. If N = Z?=1 (?) for some %, the situation
becomes simple: the optimal sets are balls, and so are their enlargements.

For example, if n = 2m + 1 is odd, an example of an optimal'set of measure %
is

A={ye{0,1}":Y <m},
where Y = Z?:l yj. The enlargements of A are‘then clearly of the form A/, =
{Y <m+ s} and, consequently,

(5.59) :U’(As/n) _ ijln (J) 1 Zj>w2L:L—s (])

where the inequality follows from Hoefldinlg’s inequality (5.43)). A similar analysis
can be performed when n is even (see Exercise for details). To summarize, we
have

COROLLARY 5.52. If A= Y{0,1}" with pu(A) > 3, s € N and € = s/n, then
(A =1-— e~2me* | Consequently, if f : {0,1}™ — R is a 1-Lipschitz function and

M 1is its median, then y{f > M +¢) < e—2ne’

_9g2
>1—c¢ s/n7

REMARK -5.53. S6me authors assert that the bound p(A.) > 1—e~2"" (for A
satisfying 11(4)"= 3) holds for all ¢ > 0. However, this may be false, but only if
n =1 or 2 and only for certain values of € € (0,1/n), see Exercise

The setting of Corollary [5.52] is a special case of that of Proposition [5.37]
(The'differences include the mean being replaced by the median, and the numeri-
cal, constants being better in the former, which is not surprising since it is a more
specialized result.) The Corollary is an elegant and sharp result, but it exhibits
the following unsatisfactory feature: if we use the standard Euclidean metric to
define the 1-Lipschitz property of f or the expansions Ay, the exponential term
in the estimates becomes e~2"/. This should be compared to the dimension-free
(and differently scaled) term %e_tz/ 2 in Theorem the Gaussian isoperimet-
ric inequality. However, there is a fix to this difficulty due to Talagrand: if the
function f is convex, its restriction to {0,1}" exhibits dimension-free subgaussian
concentration. We have

THEOREM 5.54 (Talagrand’s convex concentration inequality for the Boolean
cube, not proved here). Let A be a non-empty subset of {0,1}" < R™ and set
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da(x) = dist(x,conv A), where the distance is calculated with respect to the Eu-
clidean metric. Then

(5.60) Ee?%t < 1/u(A)

and so p(pa > t) < e t/2/u(A) for t > 0. Consequently, if f : [0,1]" — R is
a convezx (or concave) 1-Lipschitz function and M is its median with respect to p,
then u(f > M +t) < 2e=1°/2 for t > 0.

In the statement of Theorem we tacitly assume that p is a measure on R"
supported on {0,1}™. The second assertion of the Theorem follows from by
Markov’s inequality. Some finer issues related to the derivation of the last assertion
are addressed in Exercise See also Exercise

Theorem turned out to be very useful (for example in the context of
random matrices) and has been generalized in various ways. Here is\o1ne possible
statement.

THEOREM 5.55 (not proved here). Let Vi, Va, ...,V “be” finite-dimensional
normed spaces and let V = @;il V; be their sum in the {,isense (for some g = 2).
For j =1,2,...,N, let u; be a measure on V; supported on a set of diameter at
most 1 and let p = ®§-V=1uj. Further, assume that F~+V — R is 1-Lipschitz and
quasiconvez (i.e., F~1 ((foo,a]) is convex for all a°€ R) or quasiconcave. Then

(5.61) W(F > M +t) < 2e 3"~ for all t >0,
where M is the median of F with respéct-to.p.

We conclude this section with a result that is the counterpart of Theorem [5.54]
with the median replaced by the mean, whose degree of generality is intermediate
between those of Theorem [5.54] and Theorem [£.55

THEOREM 5.56 (Convex~concentration inequality for the mean, not proved
here). Let p = p1 ® -+ - ® g be a product measure on [0,1]" < R™ and let f :
[0,1]™ — R be a function which is 1-Lipschitz with respect to the Euclidean distance
and conver with respect to each variable. Then, for any t = 0,

(5.62) p(f >Bf +1) <e 2

While, by Remark (which was based on the very general results from
Section , statements about concentration around the median formally im-
ply similar statements about the mean, we state Theorem [5.50] separately since it
conibines good constants with a different set of hypotheses.

EXERCISE 5.64 (Concentration on even-dimensional Boolean cube). If n = 2m
is even, an example of a set A < {0,1}" with pu(A4) = % that is optimal in the sense

of Theorem is A= {Z;;l y; <m}u {Z;Ll y; =m and y; = 1}. Show that
also in this case p(Ay/,) =1 — e=25°/n for s € N.

EXERCISE 5.65. Show that the bound p(A4.) > 1— e=2n¢* from Corollary [5.52
may fail for some ¢ > 0 if n = 1 or 2, but that it always holds if n > 2 or if £ = 1/n.

EXERCISE 5.66 (Non uniqueness in Harper’s theorem). Give an example of a
value N and two sets of N elements in {0, 1}* with smallest e-enlargements (for all
values of €) among sets with N elements, which are distinct up to symmetries of the
hypercube. Note: it appears to be unknown whether uniqueness can be assured
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by insisting that both A and its complement are isoperimetric sets for all sizes of
enlargement.

EXERCISE 5.67 (Talagrand’s concentration inequality for concave functions).
Derive the bound u(f > M +t) < 2e~"/2 for concave f in Theorem m (or,
equivalently, u(f < M —t) < 2¢=t*/2 for convex f) from the inequalities preceding
it.

EXERCISE 5.68 (Existence of convex Lipschitz extensions). Let K < R™ be a
convex set and let f : K — R be a convex 1-Lipschitz function. Then f admits

a convex 1-Lipschitz extension to R™. Consequently, in Theorem [5.54] it doesn’t
matter whether we assume f to be convex and 1-Lipschitz on R™ or just on[0,1]™.

EXERCISE 5.69 (No dimension-free subgaussian bound in absence.of‘convexity).
Here is an example showing that convexity is crucial in Theorem Define f :
{-=1,1}" > Rby f(x1,...,2,) = max(0,z1 + - - - + z,,) /2. Show that f has median
0 and is %—Lipschitz with respect to the Euclidean metric;while z ( f>ent/ 4) =c
for some absolute constant ¢ > 0.

5.2.6. Deviation inequalities for sums of independent random vari-
ables. In this section we gather some simple butiuseful facts about deviation in-
equalities for sum of independent mean zero random wariables. We mostly focus on
two families of random variables: subgaussian.and subexponential variables.

In a probabilistic setting, the L,-norm (for p > 1) of a random variable X is
I X, = (E|X |p)1/ P As a preliminary step, consider two prototypical examples: let
Z be an N(0,1) random variable and T be a symmetric exponential variable with
parameter 1 (i.e., P(T >t) = P(<L'>'t) = fe~' for t > 0). A simple computation

(cf. (A.1)) shows that

V2 (p+ I\ p
(5:63) 2= Yo (B5) ~y%
(5.64) Tl = T(p+ 1) ~ 2

as p tends to-infinity.
The growth of the L,-norms motivates the following definitions: a random
variableXissaid to be subgaussian (or 13) when

(5.65) | X [, = sup p~?| X[, < 0.
p=1

This terminology is consistent with that introduced in the preamble to Section [5.2]

and based on the tail behavior (cf. (5.21]), ; see Exercise and Lemma

below). Similarly, X is said to be subexponential (or 11) when

X
(5.66) | Xy, = sup X1y < .
p=2 |Tlp

The reader may be familiar with the arguably less ad hoc forms of ¥, conditions,
based on either the rate of growth of the (bilateral) Laplace transform or the ap-
propriate Orlicz norms, or on the tail behavior of the type

P(|X|>t)<Ce™ for t>0
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(cf. and ) There is no need to be alarmed, though: while not identical,
all these approaches lead to quantities that are equivalent up to universal constants.
The definitions 7 were chosen out of convenience in view of the sample
applications we present. See Notes and Remarks for more details and references.

If follows from and (5.64) that |T|y, = 1, |Z|ly, = +/2/7 and that
|-, < [“]l, (see Exercise[5.75). We have obviously || |y, < |- and [-[ly, < []lco,
so the present discussion also applies to bounded variables. Another important
example of subgaussian variables is obtained by taking the inner product with
a fixed vector of a randomly chosen unit vector in R? or C?. This has to be
compared with Poincaré’s lemma (Theorem which says that the Gaussian
measure appears at the limit d — oo.

LEMMA 5.57. If X is uniformly distributed on ST (resp., Sca ), then\for every
ue R (resp., ue C%), we have |[{X,u)|y, < |u|/v/d.

PrROOF. We may assume by homogeneity that |u| = 1. Let G be a standard
Gaussian vector in R%. The variable uniformly distributéd on-S%~! can be then
represented as X = G/|G|. Moreover, |G| is independent of X )and hence, for p > 1,

KG wlp = G I<X, wlly:
We have [|G]|, = [|G|lli = ka (see Section . Since (G, u) has distribution
N(0,1), we know from that [(X,u)|yy = /2/7 = k1. Therefore, using
Proposition ii), we obtain [[{X, w)y, < 1< ﬁ. The complex case is similar.
(]

We also note that the square of a subgaussian variable is subexponential, as
follows easily from the definitions. 'We now consider the case of a sum of either
subgaussian or subexponential niean\zero random variables. If the random vari-
ables are bounded, we can apply»Hoeffding’s inequality . It turns our that
essentially the same result holds for subgaussian variables.

PROPOSITION 5.58 (see Exercise[5.73)). Let X1,..., X, be independent subgaus-
sian real random variables with mean zero, and S = X1 + ---+ X,,. Define K >0
by K? = | X1|3, + "+ [ Xul3,. Then for everyt >0,

2
P(|S| >t) < 2exp ( 8€K2> .

The proof actually yields a better bound 2 exp(—%) when (X;) are symmet-
ric’random variables (i.e., such that X; and —X; have the same distribution for any
fixed 7).

In the case of 1, variables, the situation is slightly more complicated since
two tails enter the picture: subgaussian tails for moderate deviations (which are
reminiscent of the central limit phenomenon) and subexponential tails for large
deviations (which come from the tails of individual variables)

PROPOSITION 5.59 (Bernstein’s inequalities, see Exercise|5.76)). Let X1,..., X,
be independent real random variables with mean zero, and assume that | X; |y, < K
for every index i. Then, for every vector a = (ai,...,a,) € R™ and every t = 0,

P > ) < 2exp (- min ( R ))
< 2exp | —min , .
: 8K2|al3” 4K lafx

n
2, ki
1=1
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REMARK 5.60. Propositions [5.58 and [5.59] readily generalize to the complex
case (with possibly different numerical constants).

EXERCISE 5.70 (Lipschitz function on a Gaussian space is subgaussian). Let
G be a standard Gaussian vector on R™ and f : R™ — R a 1-Lipschitz function
such that f(G) has mean zero. Deduce from the results of Section that
| f(G)|y, < C for some absolute constant C. (Except for the value of the constant
C, this is a generalization of Lemma[5.57)

EXERCISE 5.71 (Khintchine inequalities). Let X = }"" | €;a;, where ay, ... @
are real numbers and (g;) is a sequence of independent random variables with
P(e; =1) =P(g; = —1) = 1/2. Show that, for any p > 1,

Ap| XL, < Xz, < BplX]L,

where A, > 0 and B, are constants depending only on p. Show that B, = O(,/p)
as p — 0.

EXERCISE 5.72 (Khintchine-Kahane inequalities). Khintchire inequalities have
a vector-valued generalization which is due to Kahane: If x4, .., z, belong to some
normed space Y and X' denotes the random variable |31 e;xi|y, then

ANX' |z, < X'z, < Bl X!z,
where A}, > 0 and B,, are constants depending)only on p. Prove this. Moreover, we
have A; = A} = 1/4/2 and B, = O(y/p) as p.— 0.

EXERCISE 5.73. Prove Proposition [5.58 by following the outline given below.
(i) If X is symmetric, show that Eexp(AX) < exp(§]X|?7,A?) for any A > 0.
(ii) Let Y be an independent copy-of a mean zero random variable X. Show that
Eexp(AX) < Eexp(A(X —Y)). Using this symmetrization trick, deduce from (i)
that the inequality Eexp(AX) < exp(2¢] X |[7,A%) holds for any mean zero random
variable X.

(iii) Deduce Proposition using Lemma

EXERCISE 5.74 (Linear combinations of subgaussian random variables are sub-
gaussian). Shew the-following variant of Proposition if X1,...,X, are inde-
pendent and mean zero, then | Xy + - + Xy [y, < C([X0]3, +--- + | Xa]3,) for
some absolute.constant C.

EXERCISE 5.75. Verify that ||Z|y, = +/2/7 and that, for any variable X,
[ X < 1 X s -

EXERCISE 5.76 (Bernstein’s inequalities). (i) Show that if EX = 0 and | X ||y, <
1, then Eexp(AX) < 1+ 2)% < exp(2A?) for |A| < 1/2 (cf. Lemma[5.28).
(ii) Under the hypotheses of Proposition assuming K = 1 and denoting S =
a1 Xy + -+ + a, X, prove that Eexp(AS) < exp(2A? Y] a?) for |A| < 1/(2]al ).
(iii) Prove Proposition [5.59]

Notes and Remarks

Section An encyclopedic reference for sphere packings is the book [CS99].
Other valuable and historically significant references are [Rog64), [B6r04), [EF'T97].

Packing and covering on the Euclidean sphere and the discrete cube.
To complement Proposition it has been proved in [BGK™01] that for 0 < ¢ <
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arccos /2/n, we have V(t) > (64/ncost) (sint)"~! (similar estimates appear in
[B6r04], Lemma 6.8.6). For some values of n,t (roughly for ¢ > 1.14 and for large
n), this is better than the lower bound from , and similarly superior to the
improved bound from Exercise if t > 1.221.

The random covering argument from Propositionis due to Rogers [Rog57,
Rog63|. The factor Cnlogn from Corollaryis usually referred to as the density
of the covering, even though calling it “the overlap” or “the redundancy” would seem
more logical. Both the original Rogers’s argument, and the one presented here,
allow achieving C' = 1 at the expense of additional lower order terms (see Exercise
and its hint). Recent advances by Dumer [Dum07| improve the bound on“the
density to (3 + o(1))nlogn. The paper [Dum07] establishes also a density. beund
%n logn + 2nloglogn + 5n, valid for all € € (0,1) and all n > 4. It should-be noted,
however, that the latter result deals with a slightly easier problems covering the
sphere S"~1 = R" by balls whose centers are not required to belonig td S"~* (i.e.,
with the parameter N’ from Exercise . Finally, at the price of increasing the
constant C, the result from Corollary [5.5] can be strengthienéd as follows: for any
dimension n and angle ¢, there is a covering of S™~! by caps of radius ¢ such that
any point belongs to at most 400n logn caps [BWO03].

Since the sphere looks locally like a Euclidean space; as the radii of the caps
tend to 0, the packing/covering problems for S™~*.converge to the corresponding
problems for R?~!. (The original random covering argument of Rogers [Rog57|
considered an even more general questions economical coverings of R™ by translates
of an arbitrary convex body—the spherical variant being an afterthought—and
led to an upper bound of nlogn + nloglogn + 5n for the appropriately defined
asymptotic density.) In that settings a lower bound on density of optimal coverings
by Euclidean balls is Q(n) [CFR59]and this estimate can be transferred back to
S™~1 if the radius is small enough; see Example 6.3 in [BW03| for an argument
that works if € < arcsin(1/y/n).

References for the results mentioned about packing are [Ran55| (Rankin) and
IKL78] (Kabatjanskii~Levenstein), we refer to [CS99| for more information (see
also [BNO6al). Again; when the radius of the cap tends to 0, the problem becomes
the classical sphere packing problem in R™. In this context, a classical result due to
Minkowski-Hlawka shows the existence of lattice packings of Euclidean balls (or ac-
tually, of any symmetric convex body) in R™ which cover a proportion 1/2"~! of the
space (a-k.a, packing density). Remarkably, this result has been only marginally im-
proved in the past century [Rog47), [DR47, Bal92b] and is exponentially far from
Kabatjanskii-Levenstein upper bound—which is approximately of order 0.66"—for
the proportion covered by a (non-necessarily) lattice packing (see [Gru07] for more
on this topic).

Covering and particularly packing in the Hamming cube is of fundamental
importance in coding theory, see, e.g., [Rot06), [CHLL97|. The case of (very
small) balls of radius 1/n in {0,...,q — 1}" is treated in [KP88§.

The Gilbert—Varshamov bound has been improved in the g-ary cube for certain
large values of ¢ in [TVZ82], using a link with modular curves.

Packing and covering for convex bodies. For early references on metric
entropy of convex bodies see [CS90], [Pis89b].

The arguments from [Barl4] imply the following improvement on the volu-
metric bound from Corollary for € € (0,1), any symmetric convex body in
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R™ is (1 + ¢)-close in Banach—-Mazur distance to a polytope with (C'/4/e)™ vertices.
(This is sharp: consider the case of the sphere.) To the best of our knowledge, it is
not known whether analogous statement holds for not-necessarily symmetric bodies
and the affine version of the Banach—Mazur distance. Similar questions can
be considered for large €, or even ¢ growing with the dimension. In the case of the
sphere, this is essentially the problem considered in Exercise Again, [Bar14]
contains good estimates in the general case. However, the bounds from [Barl4]
deteriorate as the asymmetry of the body (defined, for example, as the minimal dis»
tance dpps to a symmetric body) increases. Estimates that are superior for,some
ranges of parameters can be found in [Szal.

Let us also mention an important open problem, known as the duality~conjec-
ture: do there exist absolute constants c¢,C' > 0 such that for every two-symmetric
convex bodies K, L < R™ we have

(5.67) log N(L°, K°) < Cllog N (K, cL)?

This was proved when K or L is the Euclidean ball [AMS04] and extended to
the case when a bound on the K-convexity constant (as defined in Section [7.1.2)
is present in [AMSTJ04|. Another possible generalization to the setting of non-
symmetric convex bodies is more tricky; in that case;-even the proper formulation
of is not entirely clear.

A deep fact about covering numbers is the following (|[Mil86], see also the dis-
cussion in [Pis89b]): there is an absolute constant' C such that, for every symmetric
convex body K < R" there is an 0-symmetric-¢llipsoid & such that

(5.68) max (N (K, &), N(&,K)) < C".

Note that since metric entropy. duality is known to hold when one of the
bodies is an ellipsoid, it follows then)that similar bounds automatically hold also
for N(K°,&°) and N(&°, K°)\(In the original definitions, all four quantities were
included explicitly or implicitly.) Such an ellipsoid & is called an M -ellipsoid for
K, and K is said to be(in the M -position when B% is an M-ellipsoid for K. The
M-ellipsoids are discussed in detail in [AAGM15].

Metric entropy of classical manifolds. Theorem is from [Sza82],
which covers-the case of all metrics induced by unitarily invariant norms (see
also [Sza83), [Sza98| and [Paj99]). Examples of packings in some Grassmannians
(mostly low-dimensional), some of them optimal, can be found in [CHS96), [SS98|.
More recent references, motivated by information transmission issues and concen-
trated~on different asymptotics (k fixed and n tending to infinity), are [BNO2|
BNO5l, BNO6b]. It appears that the theoretical computer science community is
not aware that questions of that nature were considered in AGA already in 1980s.

Section Classical general references about concentration of measure are
[Led01] and [Sch03]. We particularly recommend the recent monograph [BLM13|.
For a presentation directed towards applications to data science, see [Ver].

Isoperimetry and concentration. A geometry-oriented reference about
isoperimetric inequalities is [BZ88|. The paternity of the isoperimetric inequal-
ity on the sphere (Theorem [5.13) is usually attributed to Lévy [Lév22, Lév51]
although the arguments he presented were not fully rigorous; [Sch48] is usually
cited as the first rigorous proof. Remarkably, the functional version (Lévy’s lemma,
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in the language of our Corollary appears explicitly in [Lév22] (see p. 279)
and is therefore almost one century old!

A self-contained proof of the isoperimetric inequality on S™~!, based on the
concept of spherical symmetrization, appears in [FLMT7|. Another symmetriza-
tion procedure (the two-point symmetrization) is applied in [Ben84]. The simple
proof of the non-sharp inequality from Proposition is based on [AdRBV98|.
Proposition is from [JS].

The Gaussian isoperimetric inequality was proved independently by Borell
[Bor75b| and Sudakov—Tsireslon [SCT4]. For a proof of Poincaré’s lemma (Theo=
rem going beyond the weak convergence version from Exercise we Tefer
to [DF87] (which also advocates that the statement was first formulated by Borel
and not by Poincaré). See also [Led96| and references therein. For a direéet proof
of concentration of measure on Gauss space, see [Pis86].

Ehrhard’s inequality was proved in [Ehr83| for convex sets, then ex-
tended in [Lat96] to the case where only one of the sets set is convex, with the
general case being treated in [Bor03|. A priori, deriving an isoperimetric inequal-
ity such as requires validity of for an arbitrary ‘Borel set and a ball;
the paper [Ehr83|, however, contains a direct application of the technique to prove
(5:29). A general reference for this circle of ideasis [Lat02].

The concept of central values was formalized and applied in the context of QIT
in [ASW11], which also contains versions of Corollaries and However,
instances of the arguments can be found in [Has09] and in AGA literature dating
to (at least) 1980s.

Proposition appears in [Dmi90, Kwa94, [Fer97|. Exercise appears
as Proposition 1.7 in [Led01]. Proposition is Corollary 1.17 from [Led01].

There are various generalizations.of Hoeffding’s inequality appearing in Exercise
notably due to Azuma [Azu67] and McDiarmid [McD89] in the context of

martingales.

Geometric and analytical methods. General references for Section
are [MS86, [Sch03, [DS01), (GMO00, BLM13), BGL14, [GZ03|.

Gromov’s, comparison theorem (Theorem appeared first in the preprint
[Gro80]. A proof can be found in an appendix in [MS86]. A new proof and
an extension ‘tornon-Riemannian spaces was proposed recently in [CM15]. While
the theorem ‘is sharp as stated, there is a reason to suspect that a more precise
result-should be available: the proof proceeds via a local/variational argument
andthe’globally normalized volume appears only a posteriori. A more satisfactory
variant appears in [Mil15]. In addition to the curvature, it takes into account the
actual diameter of the manifold in question, which may be strictly smaller than
the bound following indirectly from the curvature. However, since the results in
[Mil15] necessarily involve model manifolds more complicated than spheres, their
statements are somewhat technical.

The case of manifolds of dimension 1 is a little special. First, while the definition
of Ricci curvature in dimension 1 needs to be properly construed, the only sensi-
ble value is 0 since every such manifold looks locally like a segment. Accordingly,
Proposition [5.41] is then vacuously true. Next, the solution to the isoperimetric
problem in S! (resp., in R) is very simple: among sets of any (positive, but not
full) measure, the boundary is the smallest if it consists of exactly two points.
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Consequently, the solutions, both for the “smallest boundary” and the “smallest en-
largement” problems, are arcs (resp., segments). However, finer analytic statements
(including but not limited to LSI) are interesting and highly nontrivial already in
dimension 1. For example, in view of Proposition the validity of for
the 1-dimensional Gaussian measure implies the same inequality in any dimension
(with the same constant a, which, in view of Proposition can be taken to be
1, which is optimal). Indeed, even statements about spaces consisting of only two
points can be deep as for example in the elementary proof of the Gaussian isoperis
metric inequality presented in [Bob97|. We will return to the same theme further
when reporting on developments directly related to LSI and hypercontractivity:

Log-Sobolev inequalities (LSI) were introduced in a seminal paper by Gross
[Gro75|]. Again, the case of manifolds of dimension 1 (segments, cireles).is.a little
special; see [GMW14] for an elementary overview of this aspect of the subject and
for references. The link with concentration of measure (the Herbst ‘argument) orig-
inates in an unpublished letter from Herbst to Gross. The connection between LSI,
Ricci curvature, and the Hessian of the density was put forward in [BES5, Bak94].
For a comprehensive treatment of functional inequalities (including complete refer-
ences), see [BGL14]|. Another fruitful approach is the connection between LSI and
the quadratic transportation cost inequalities; see* Chapter 6 in [Led01].

As exemplified in Table the values of the Poincaré constants can often
be computed exactly. Indeed, the Poincaré inéquality can be rewritten as
Var, f < af(—Af)fdu, where A is theLaplace-Beltrami operator on Lo (X, p1).
It follows that the optimal « is equal to-the reciprocal of the “spectral gap,” i.e.,
the smallest nonzero eigenvalue of —A. In some examples the eigenfunctions of the
Laplace—Beltrami operator can be explicitly described: for the Gauss space they
are the Hermite polynomials, for, the sphere they are the spherical harmonics (see
the elementary [See66|, or [BGMT71]| which covers also the case of the projective
spaces). On S"1 equality in is achieved for functions of the form x — {z,y)
with y € R™. For Lie groups there is a connection with the spectrum of the Casimir
operator and representations of the associated Lie algebra (see Proposition 10.6 in
|[Hal15]), which allows to derive the entire spectrum of —A. The case of SO(n) and
SU(n) appears in [SC94] (for U(n), see [Voi91]). Note that in these examples there
is equality in when f is a function of the form M — Tr(AM) for A € M,,. For
a complete list of semisimple Lie algebras, see [Rot86]. The spectrum of Grassmann
manifolds is considered in [Tsu81), EC04, [TKO04, [Hal07|, which allows in principle
to retrieve the value of the Poincaré constant for specific dimensions if needed.

Hypercontractivity for the Ornstein—Uhlenbeck semigroup (Proposition
has \been first established by Nelson [Nel73|. The connection with log-Sobolev
inequalities was put forward by Gross [Gro75|.

In many situations, the Gaussian case can be treated as a limit case from
the case of the hypercube via the central limit theorem. By the tensorization
property (Proposition, this amounts ultimately to verifying statements about
the two-point space {—1,1} (see [Gro75| for a proof of the Gaussian LSI along
these lines). The hypercontractivity inequality on the discrete cube is known as the
Bonami-Beckner inequality [Bon70, [Bec75|. Some variants of Proposition
appear in [Jan97]. For a more sophisticated technology giving sharp estimations
on the moments of Gaussian polynomials (or Gaussian chaoses) see [Lat06]. The
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statement about concentration on polynomials on products of spheres appearing in
Remark follows from the proof of Corollary 12 in [Mon12].

Discrete settings. A reference focusing on the case of the hypercube is
[O’D14] (it contains in particular the versions of Proposition and Corollary
for the hypercube alluded to in Remark @ . In addition to [O’D14], general
references for Section[5.2.5are [Mat02, McD98]. The main statement of Theorem
5.51| was proved in [Har66| and rediscovered in [Kat75|. A short proof may be
found in [FF81]; we also recommend the reference [Lea91]. Theorem deals
with vertex-isoperimetry. If we consider instead edge-isoperimetry (minimizing the
number of edges joining A to A€), the optimal sets are no longer Hamming balls
but subcubes.

Theorem [5.54]is taken from [Tal88] (Note that [Tal88] states the result for the
cube {—1,1}" and so the coeflicient in the exponent in the estimate-corresponding
to is there §.) Theorem appears in [JS91] and [Mec04]. The latter
paper addresses general unconditional direct sums and not -only-f,-sums; see also
[Mec03]. Similar results, but with quite different proofs were.presented in [Mau91]|
and [Dem97|. The most abstract (and most flexible) statements are arguably in
[Tal95), [Tal96b, [Tal96al. The arguments addressing settings more general than
that of Theorem @l usually led to a coefficient % in)the exponent as in ,
except for [Tal95], which includes a statement, (Theorem 4.2.4) featuring coefficient
%, but at the cost of introducing additional factors of lower order and restricting
the range of t. A clean proof of Theorem (which also has coefficient % in the
exponent) can be found in [BLM13]; the argument is attributed to [Led97] and
the result itself to [Tal96b].

Deviation inequalities. “Some references for Section are [Verl2| and
[CGLP12| (the latter treats alsoythe case of intermediate growth between sub-
gaussian and subexponential), “AS pointed out in the main text, there are several
possible forms of 1, conditiens and of definitions of the ,.-norms. The original
ones were (presumably) in terms of Orlicz/Young functions: given an increasing
convex function ¢ «»R7)— Ry with ¢(0) = 0 and ¢(x) — o0 as & — 00, we may
define a the t-norm of a random variable X as (for example)

[ Xy = inffe >0 : Ey(|X|/c) < (1)}

If one considers ¢, (z) = exp(a”) — 1 (r = 1), then, for r = 1,2, one gets norms
which dre‘equivalent (although not equal) to the ones defined in and .
For -precise statements and proofs, see Theorem 1.1.5 in [CGLP12|, which also
covers the link to (the rate of growth of) the Laplace transforms mentioned in the
niain text; cf. Lemma [5.28 and Exercise Overall, Section 1.1 of [CGLP12]
is an excellent reference for 1, conditions/norms, which are otherwise difficult to
extract from books/surveys on the more general Orlicz spaces.

For a historical account of Bernstein’s contributions, we refer to pp. 126-128
in [AAGM15|. For more precise results about moments of sums of independent
variables, see [Lat97|. For non-commutative analogues of these inequalities (i.e.,
for sums of random matrices), see [Trol12].

Finally, among other techniques to prove concentration of measure, we men-
tion the so-called martingale method which implies for example concentration on
permutation groups (see [Sch82, Mau79, [MS86]): If we equip the symmet-
ric group &, with the uniform probability measure and the distance d(c,T) =
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Leard{i : o(i) # (i)}, then any 1-Lipschitz function f on (&,,d) satisfies
P(f = Ef +t) < exp(—nt?/8) for any t > 0.

The best constants in Khintchine inequalities (see Exercise have been
found in [Sza76] (who proved A; = 1/4/2) and in [Haa81] (for p > 1). The
Khintchine-Kahane inequalities from Exercise were first proved in [Kah85].
The correct asymptotic order of the constants as p — o0 was found in [Kwa76],
while the value A} = 1/4/2 is from [LO94]. A complete proof of the Khintchine—
Kahane inequalities can be found by consulting Theorem 3.5.2 of [AAGM15].






CHAPTER 6

Gaussian Processes and Random Matrices

This chapter is devoted to the development of probabilistic techniques’which,
along the concentration of measure from Chapter [B] constitute our most~powerful
tools. Specifically, we will consider stochastic processes (mostly, but notlexclusively,
Gaussian) and present deep results permitting their quantitative study. The key
insights are the link between suprema of Gaussian processes and the mean width of
convex bodies, and the use of comparison theorems for Gaussian, processes to the
analysis of spectral behavior of random matrices.

6.1. Gaussian processes

This section deals with Gaussian processes (widelyused in mathematical mod-
eling and in statistics) and presents several tools for estimating various parameters
related to such processes. A Gaussian process\ X = (X;)iwer is simply a family of
jointly Gaussian variables, normally with_mean zero, defined on some probability
space 2, which may or may not be specified. See Appendix [A] for more on the
terminology and for basic and not-so-basic facts about Gaussian variables.

We especially focus on studying the supremum of Gaussian processes, e.g.,
computing (or estimating) Esup{X; « t € T}. In our context, suprema of Gaussian
processes appear when considering the Gaussian mean width of a convex body (and
this is essentially the general case, see Section and therefore can be used to
estimate other geometric parameters such as volume. There are essentially three
levels of sophisticatien.when investigating the supremum of a Gaussian process.

(i) Discretize ‘the problem by using an e-net and appealing to the union bound.

(ii) Use a recursive version of (i) by considering a whole hierarchy of e-nets (for
example s =.2=% for every integer k). This is called a “chaining argument.”

(iii) Use a‘further sophistication of (ii), where instead of using nets whose resolution
parameter is uniform across the index set, we allow more general partition schemes.
Thisis called the “generic chaining” or the “majorizing measure” approach.

A deep result due to Talagrand asserts that (iii) provides an estimate on the
supremum of any Gaussian process which is always sharp up to a multiplicative
constant. However, we mostly consider the situations (i) and (ii) since they are
much simpler and sufficient for our purposes.

We note for the record that without any assumptions on regularity of X, which
will be implicitly made in what follows, measurability issues and other complications
may in principle arise, particularly when T is uncountable. For the benefit of a
non-specialist reader we sketch examples of possible pathologies in Exercise [6.1]
However, such potential difficulties are not relevant in our context and we will
henceforth largely ignore them. For example, in all the settings we are interested

149
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in we will have enough regularity so that

(6.1) Esup{X; : teT} = sup Emax{X; : te F},

FcT, F finite
and other questions can similarly be reduced to considering instances of the problem
with finite index sets. As usual, the crucial point will be that the constants that

may appear in the statements do not depend on X and, in particular, on the size
of T.

EXERCISE 6.1. Give examples of processes (X;)ter such that, for every t € T
X: =0a.s., but (a) Esup{X; : teT} =0 (b) sup{X; : t e T} is not measurable.

6.1.1. Key example and basic estimates. We start with a simple—but
crucial—observation that if G : 2 — R™ is a standard Gaussian ‘wector, then
((G, 7)) zern is a Gaussian process. Recalling the definition of the Gaussian mean
width of a (bounded nonempty) set K < R", as introduced in Section m

(6.2) we(K) = Esup{{G,z) : ze€ K},

we see that calculating wg (K) is equivalent to finding the expectation of the supre-
mum of a certain Gaussian process, a subprocess of ({(&, x))zern -

This instance is actually, more or less, the general\case. This follows by com-
bining two facts:
(i) the map x — (G, z) is an isometry from (RZ, |-]) to L2(9)
(ii) the joint distribution of X = (X¢)ser 48 uniquely determined by the covariances
(EXSXt)& o and so all the stochastically-relevant information about the process
is encoded in the geometry of X, considered as a subset of Ly ().
Consequently, if F is a Euclidean space and vectors x; € E (for t € T') are such that
(rg,xty = EX X, for all s,t € T and if Gg is a standard Gaussian vector on E,
then the Gaussian process ((Gg,2¢))ier is a faithful copy of X.

For a finite process X( =) (Xj)1<r<n this is easily realized: we can choose
E = span{X;} c Ly()-and z;, = Xj. We then have in particular
. E X = X) = K
(6.3) (max X = we(X) = we(Kx),

where Kx :="conv{Xy : 1<k < N} is a convex set in E. (This effectively covers
any situation where applies.)

The aboveconstruction shows that the two (classes of) problems, namely calcu-
lating (1) ‘tlre mean width of a convex set and (2) the expectation of the supremum
of a.Gaussian process, are essentially equivalent. This equivalence will turn out to
be.very fruitful. Recall that if 0 € K, then sup{{y,z) : z € K} = |y|x- and so
we(K) = E |G| k-. It may happen that the set Kx does not contain 0, but this can
be remedied by considering instead X’ = (X — Xo)1<r<n for some Xy € conv{Xy}.
We have then

Emax{X; : 1<k<N}=Emax{X;—Xo : 1<k <N},

which is reminiscent of the fact that the mean width does not depend on the
choice of the origin. Note that if we select Xy belonging to the relative interior of
conv{ Xy}, we will even be able to stay in the category of convex bodies with the
origin in the interior.

We next state a simple upper bound on the expectation of the supremum of a
Gaussian process.
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LEMMA 6.1. Let (Xi)1<k<n be Gaussian random variables with mean zero and
variance bounded by 1. Then

(6.4) E max X <+/2logN.

1<kSN

Moreover, if (X)1<k<n are independent N(0,1) random variables, then
(6.5) Elg}~ca<XNXk > (1—o0(1))y/2log N.

PROOF. We use the following elementary computation: if X has distribution
N(0,0?%) with 02 < 1, then Ee!™ = exp(t?0?/2) < exp(t?/2) for any real t.~For
B > 0 to be determined, we have (the second inequality being Jensen’s inequality)

N N
1 1 1
E X, <E=1 BXe < “log B Xk < “log(N 29
 max X, 3 ogk§:16 5log 1;:16 5 og(N exp(°/2)),

and the optimal choice 8 = /2log N yields (6.4]).

This completes the proof of the first inequality. A slightlyweaker, but more
general estimate, based on the simple (and not-so-optimal, see Appendix|A.1)) upper
bound

(6.6) P(Z>1t)< L2 s

for the tail of a standard normal variable Z (see Exercise is given in Lemma
We relegate the proof of the second inequality (based on a lower bound for
the tail of Z) to Exercise which also gives an explicit expression for the o(1)
quantity. (I

We note that the estimate from-(6.4)) also holds for the expected maximum of
the absolute values of Gaussian variables.

LEMMA 6.2 (see Exercise[6.3)). Let N =2 and let (Xy)1<k<n be jointly Gauss-
ian random variables with variance bounded by 1. Then

E max |Xj| <+/2logN.

1<kSN

When N > 4, the inequality holds for any Gaussian random variables (that is, not
necessarily jointly Gaussian).

Asan, application, we have a bound on the volume of a polytope, given its
number-of vertices.

PROPOSITION 6.3. Let K < R™ be a polytope with (no more than) N wvertices
and whose outradius is at most 1. Then

2log N
vrad K <k, '4/2log N ~ o8

n )
where Ky, is defined by (A.8)).

PROOF. Let x1,...,xn be the vertices of K. Without loss of generality we
may assume that K < BY. We can now apply the first part of Lemma with
Xy = (G, zp) to obtain

E max (G,x;) < +/2logN.

1<k<N
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Since, for any y € R”, sup{{y,z) : = € K} = maxj<kr<n{¥y,x), the above
bound is (cf. (6.2))) equivalent to wa(K) < +/2log N. It remains to appeal to the
relation (4.32) between the Gaussian mean width and the usual mean width, and

to Urysohn’s inequality (4.34)). |
REMARK 6.4 (Sharp bound on volume of polytopes with few vertices). The

bound in Proposition can be improved to O(\/ M) This improvement
is meaningful only when N is not much larger than n. For example, if K = B}
(the unit ball of £7), then K = conv{tey,...,*e,}, where (ex)}_, is the standard
unit vector basis in R™. Consequently, Proposition used with N = 2n leads
to the bound vrad Bf = O(+4/log(n)/n), while the correct value (cf. Table is
O(1/4/n). Some of these issues are explored in Exercise

REMARK 6.5 (Conjectured extremal property of the regular~simplex). It is
conjectured that the polytope with N vertices and outradius 1 that has the largest
Gaussian mean width is the regular simplex inscribed in the unit ball. This is
known (and easy) for N < 3. By the argument used in the\proof of Proposition
this is equivalent to characterizing the instances giving the extremal value of
E max;<p<ny Xk in the context of Lemma (with (Xg)1<k<n jointly Gaussian).

EXERCISE 6.2. Show that, in the context of the'second part of Lemma [6.1] we

have
loglog N
E X =/ 2log N =0 | —=—
max Xy og < logN>

1<kSN

by using the lower bound from (A.4)).

EXERCISE 6.3. Prove Lemma for N > 4 as follows: if Z is an N(0,1)
random variable, then

00
E max |Xi|<T+ 2Nf P(Z>t)dt=T+ 2N ONTP(Z >T)
1<k<N T A2
and check numerically~that the choice T' = 4/2log N — 3/2 gives the needed in-
equality. Note that this proof does not use the hypothesis that the variables are
jointly Gaussiany, For 2 or 3 jointly Gaussian variables, use Proposition [6.9] to
identify extremal configurations.

EXERCISE 6.4 (Volume of polytopes with very few vertices). Show that if, in
the motation of Proposition N = O(n), then vrad K = O(1/4/n), which yields
the better bound stated in Remark [6.4] for that range of N.

EXERCISE 6.5 (Volume of symmetric polytopes with few vertices). Show that
if K < BY is a symmetric polytope with N vertices, the conclusion of Proposition

can be slightly improved to the inequality vrad(K) < +/2log N//n.

EXERCISE 6.6 (Mean widths of standard sets). Prove the estimates involving
mean width from Table 11

6.1.2. Comparison inequalities for Gaussian processes. The following
fundamental inequality is known as Slepian’s lemma. It expresses the fact that
strengthening correlations of a Gaussian process decreases the supremum.
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PROPOSITION 6.6 (Slepian’s lemma, not proved here). Let (Xj)i<k<n and
(Yi)1<k<n be Gaussian processes, and assume that

B[(X - X;)°] <E[(Yi - Y))*]
for every 1 < j,k < N. Then,

(6.7) E sup Xy, <E sup Y.

1<k<N 1<k<N
Moreover, if also E X? = EY}? for all k and, then for any \1,..., Ay € R
(6.8) P (Xj = A for some k) < P (Y = \; for some k).

Slepian’s lemma can be re-formulated in geometric language: contractions de-
crease the mean width. More precisely, if T' < R™ and if ¢ : T'— R™ is a/contraction
(with respect to the Euclidean distance, not necessarily linear), then

(6.9) we (conv(¢(T))) = wa(d(T)) < wa(T) = we(conv(T)).

If m = n, we can immediately deduce from that alsow(e(T)) < w(T). This
property seems intuitively obvious, but we know a simple proof only if ¢ is linear
(or affine, see Exercise [4.46).

Slepian’s lemma admits a number of variants_and\generalizations, the follow-
ing one has been quite useful. In particular, it leads to elegant proofs of various
statements about random matrices (see Section and versions of Dvoretzky’s
theorem (Section |7.2]).

PROPOSITION 6.7 (Gordon’s lemma, not proved here). Let (Xy)ier and (Y3)ter
be Gaussian processes. Assume further that T = |, g Ts and that
(i) | Xt — Xy 2 < |Y: — Yol ift € Ts,t' € T with s # ¢,
(i) | Xt — Xy2 = |Y: —Yo|27ift, t' € Ts for some s.
Then

Emaxmin X; < EmaxminY; .
seS teTs seS teTs

Moreover, if also EX? = EY?2 for all t € T, then for any choice of real numbers

(At)teT;
P(U ﬂ{Xt>)\t}> < P(U ﬂ{YtZAt}>-

seS teTy seS teTy

REMARK 6.8. (1) When all T, are singletons, Gordon’s lemma reduces to
the Slepian version. Accordingly, Proposition is sometimes referred to as the
Slepian—Gordon lemma. (2) Replacing X;, Y; with — X, —Y; we get analogous state-
ments for min max in place of max min, and similarly for the Slepian’s lemma and
for the statements about probabilities. (3) Further generalizations to min and max
applied alternatively more than twice are possible.

Another fundamental comparison inequality is the Khatri-Sidék lemma.

PROPOSITION 6.9 (Khatri-Siddk, see Exercise . Consider two Gaussian
processes (Xi)1<k<n and (Yi)i1<k<n, and assume that

(1) for every 1 <k < N, EX}? =EY}?,
(2) the random variables (Y )1<k<n are independent.
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Then,
(6.10) E sup |Xi| <E sup |Yi|
1<k<N 1<k<N
Moreover, for any t1,...,ty =0,
(6.11) P (| X%| = ti for some k) < P (|Yy| = i for some k)

or equivalently
N

(6.12) P(|X]g‘ < tg, for all k}) > P (lYkl < tg, for all kj) = H P(|Yk| < tk).
k=1

Similarly to Slepian’s lemma, both and have nice geometric.inter-
pretations. Consider n bands in R™ of the form B; = {x € R™ : . [z, up)| < a;}
where u1, ..., u, € S*~! are unit vectors and a1, . . ., a, are positive numbers. Then,
the mean width of B n---n By is minimal when the directions’of the bands (i.e.,
the normal vectors u;) are pairwise orthogonal. Similarly, .the (Gaussian) measure
of the intersection of the bands is minimal if the bands are orthogonal.

An remarkable statement that generalizes and ‘that has been a long-
standing open problem is the Gaussian correlation conjecture. It was answered
affirmatively very recently by Royen, who proved<the following inequality: given
0-symmetric convex sets K, L < R™ and a centered”Gaussian measure P on R",
then

(6.13) P(K n Ly>P(K)P(L).

EXERCISE 6.7 (Comparison of tails implies comparison of expectations). De-
duce the first part (6.7)) of Slepian’s lemma from the second part (6.8)). To get rid of
the “equal variance” assumption, approximate the space by a sphere of large radius.

EXERCISE 6.8. Show that\it-is enough to verify (6.13) when P is the standard

Gaussian measure.

EXERCISE 6.9 (Proof of the Khatri-Sidédk inequality). Prove the correlation
conjecture in the special case where L is a band by using the fact that the
Gaussian measure is log-concave and therefore satisfies (4.28)). Then deduce the
Khatri-Sidak inequality (Proposition .

6.1.3. Sudakov and dual Sudakov inequalities. Given a Gaussian process
X = (X¢)ter we may identify X with a subset of the Hilbert space Lo(£2) (cf.
and. the’ comments in the paragraph containing it). Since the joint distribution of
(X¢)ier is uniquely determined by the covariances (EX th)S w7 it follows that all
the stochastically relevant information about the process is encoded in the geometry
of X. As it turns out, the value of the expected supremum of X is intimately related
to the behavior of covering numbers N(X,¢). The first result in this direction is

the Sudakov inequality.

PROPOSITION 6.10 (Sudakov minoration). Let X = (Xy)ier be a Gaussian
process. Then,

(6.14) csupey/log N(X,e) < Esup X,
e>0 teT

for some absolute constant ¢ > 0.
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ProoOF. By , we may equivalently work with the packing number P(X, ¢).
Let € > 0 and let S < T be a subset which is e-separated in the Lo-norm, that is,
verifying | Xs — X2 = € whenever s,t € S and s # t. Let (Y;)ses be a Gaussian
process such that Y are independent N (0,£2?/2) random variables. By construction,
we have

Y, = Yill2 = & < | X, — Xz
for any s,t € S with s # ¢t. Accordingly, by Slepian’s lemma and Lemma we
can conclude that
ey/log(card S) ~ EsupY; < Esup X, < Esup Xy,
seS seS tel

as needed. a

In view of the comments in Section (cf. (6.2), (6.3))), Sudakov’s inequality
(6.14]) is really a statement about Gaussian mean widths of subsets of a Hilbert

space. Since wg(K) ~ y/nw(K) for K < R™ (see Section , the inequality
(6.14) may be restated as follows: for every bounded set (or, equivalently, for every
convez body) K < R™ we have

(6.15) log N(K,eBY) < wg(K)?/e? ~ nw(K)?/e%.

In general, Sudakov’s inequality is not tight«(see Exercise [6.11]). However,
in combination with the equally simple-minded bound (applied at the ap-
propriate “level of resolution”), it often leads-to.surprisingly precise estimates for
Esup,.r X:. We will elaborate on this point in the next section, in which we prove
the companion bound, Dudley’s inequality (Proposition .

When information about the mean width of K is available, can be
used to upper-bound covering/packing numbers of K. As a rule of thumb, this
yields a reasonable estimate when log N(K,e) = O(n). For smaller ¢, i.e., when
log N(K, €) » n, the volumetric.approach from Lemmais generally more precise.
We exemplify these phenomena in Exercise [6.12]

A dual version of the Sudakov inequality also holds.

PROPOSITION,6:11+(Dual Sudakov minoration). For any bounded set K < R™,
we have

(6.16) log N(BY, K°,e) = log N(BY,eK°) < wa(K)?/e* ~ nw(K)? /2.

Moduloe minor issues related primarily to possible lack of symmetry, Proposition
follows from Proposition and vice versa, by the (known) Euclidean case
of the-duality conjecture of covering numbers (5.67)). However, there is a simple
self-contained argument.

PROOF OF PROPOSITION [6. 11l First, we may assume that K is a convex body
since replacing K with its closed convex hull and passing to a subspace (if K wasn’t
of full dimension) doesn’t change any of the quantities involved. Next, we may
assume that 0 is an interior point of K since otherwise K° contains a half-space
and the left-hand side is 0. Further, we may assume that K is symmetric since while
replacing K by K — K increases both sides, the right-hand side changes precisely
by a factor of 4. The last “trivial” reduction is a rescaling. Since log N(B§,eK°) =
log N(rB%,reK®), using r = 41”%(}{) we reduce the problem to the following: If
L = R™ is a symmetric convex body with wg(L) = 1, then log(N (rBY,4L°)) < r?
forr>0.



156 6. GAUSSIAN PROCESSES AND RANDOM MATRICES

As in the previous argument, it is more handy to argue via packings. Let
x1,%2,...,xN € 7B be such that z; + 2L° are disjoint and let v, be the standard
Gaussian measure on R™. The remainder of the proof depends on two simple ob-
servations.

(a) Since 1 = wg(L) = (|z]re dyy, it follows by Markov’s inequality that
m(2L°%) = 3.

(b) Since |z;| < r for all i < N, the measure of each translation x; +2L° cannot
be “too small” and since the translations are disjoint, there cannot be too many of
them.

Here are details of the calculation behind the second observation. First, by sym-
metry of L°,
V(@i + 2L°) + v (—x; + 2L°) o + z;) +.¢le=1z7)

n i+2LO = = d7
Y (@ ) 5 e 5 x

where ¢(x) = (27r)_"/2e_"’|2/2 is the density of ~y,. Next, by convexity of the

exponential function and by the parallelogram identity

oz + x;) + oz — x;)
2

e—letail?/2 | Ma—ail?/2

2
> (2m) 2R3 Py foail)/a

= (27r)7”/2

= (Qﬂ)*n/%*(\ﬂﬂ\r"ﬂwif)/?
= 6_‘wi|2/2¢($)
> e_rz/Q(b(x).
Inserting this estimate into the.preceding formula we get
1
Ynlwi + 20%.2 67T2/27n(2Lo) > 56*T2/2

and so N < 2¢7°/2. This is exactly what we needed, except in the case when 7 is
small, which can be handled separately by an elementary argument showing that
the left-hand side of\([6.16)) is then 0; see Exercise m O

REMARK 6:12. In the setting of observation (a) in the proof above, a stronger
statement is @ctually true: if we(L) = 1, then ~,,(L°) = 4, see Exercise

EXERCISE 6.10 (Optimal constant in Sudakov’s inequality). Show that the
optimal.constant in (6.14) is ¢ = (27 log2)~'/2 > 0.479.

EXERCISE 6.11 (The gap in Sudakov’s inequality). Show that the gap in Su-
dakov’s inequality, i.e., the ratio between wg(K) and sup,.,e+/log N(K,¢), can
be arbitrarily large. For example, let (dj);l:l be a “sufficiently fast” increasing se-

quence of positive integers and consider K = K; x Ky x ... x K,,, where Kj is a
Euclidean sphere of dimension d; and radius 1/4/d;.

EXERCISE 6.12 (Metric entropy of B}). Let K = n'/2B}. It is known (see
Theorem 1 in [Sch84]) that then

nlogeﬁ if léséénl/g,
nlog(2/e) if O<e<1.

Compare the performance/facility of application of (6.15) to that of Lemma
when estimating log N (K, ¢).

(6.17) log N (K, ¢) ~ {
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EXERCISE 6.13 (Gaussian measure and the inradius). Let =, be the stan-
dard Gaussian measure on R™. Show that if a symmetric convex body K < R"
satisfies v, (K) = v ([-r,r]), then K > rBf. In particular, if v,(K) > .683,
then N(B%,K) = 1. Conclude that the left-hand side of is 0 whenever
w(K)/e < .317.

EXERCISE 6.14 (Gaussian measure and the mean width). Show that if a sym-
metric convex body L < R" satisfies wg (L) < 1, then 7,(L°) > 3.

EXERCISE 6.15 (Metric entropy of BZ). Use one of the Sudakov inequalities to
show that, for every 0 < ¢ < 1, N(B%, B%, ) grows (at most) polynomially ‘with
the dimension n.

It is actually known (see Theorem 1 in [Sch84]) that

{1%(622"52) if n12<e<1/2

nlog -2 if 0<e<n Y&

(6.18) log N(B%, By &) ~

The similarity of the estimates (6.17) and (6.18) is not a eoincidence; see (5.67]).
(Note that (6.17) could have been equivalently stated with log(2¢2) and log(2/¢%)

instead of log(2¢) and log(2/¢), making the similarity even more apparent.)

6.1.4. Dudley’s inequality and the generic chaining. The preceding sec-
tion presented lower bounds for expected suprema of ‘a Gaussian process in terms of
the related covering/packing numbers. In this-seéction we will present similar upper
bounds in a slightly more general setting.

Let (S, p) be a compact metric space and let (X;)ses be a family of random
variables (a stochastic process indexed by S). We say that (X;) is centered if
E X, =0 for all s €S, and that_it.is subgaussian if, for all s;t € S with s # ¢ and
for all A > 0,

)\2
6.19 PX;=X;>)A) <A —a—— |,
(019 06 x> ) < dep (o)
where A, a are positive parameters (independent of A, s,t). The motivation for the

terminology is that ifthe process is Gaussian, then (6.19) holds with A = o = % and
with respect to_the metric p(s,t) = | X5 — X¢|2, and the bound is then essentially

tight (see Exercise [A.1)).
ProPosITION 6.13 (Dudley’s inequality). If (Xg)ses is centered and satisfies

(6.19)- with A > %, then

R/2
(6:20) Esup X, < 6a_1/2J \/1 + 2log (A1/2N(S, n)) dn,
seS 0

where R is the radius of S.
COROLLARY 6.14. If (X,)ses satisfies (6.19) with A > L, but is not-necessarily-

centered, then
(6.21) EsupX; <supEX;+ B and Esup|X,| <supE|X,|+ B
seS seS

seS seS

where B is the quantity on the right-hand side of (6.20)).

The first bound in the Corollary follows immediately by considering X! =
Xs — E X;, and the second by noticing that if (X) verifies (6.19), then so does
(IXs))-
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REMARK 6.15. (1) Most formulations of Dudley’s inequality involve the ex-
pression {/log N(S,n)dn. In that case, the integrand is 0 if 7 is larger than the
radius of S, and so one may as well integrate over [0,00). In our formulation, the
integrand is never 0; this is the price we are paying for having good dependence
of the bound on A and, to a lesser extent, for Lemma being stated for not-
necessarily-centered variables.

(2) Some applications require majorizing the expected value of sup, , |X; — X¢| =
sup (X5 — X¢); the proof below yields then (in the notation of Corollary the
bound 2B, without having to assume that (X;) is centered.

(3) When comparing Dudley’s inequality to Sudakov’s inequality , we, notice
that the former involves the Li-norm of the function ¢(n) = 4/log N(S,7), while
the latter the weak L;-quasinorm (see [Grald]| for the definition). “This, explains
why the two bounds are often of the same order and even if they are net,their ratio
depends rather weakly on the dimension and other parameters.

PROOF OF DUDLEY’S INEQUALITY. Observe first that both) sides of the in-
equality change in the same way if we rescale the process @ndfor the metric (i.e.,
replace (X;) by (aX;) and/or p by bp for some a,b > 0) and appropriately adjust
the parameter a. Accordingly, we may assume that both a and the radius of S are
equal to 1. For every integer k > 0, let .4}, be a 2% net of minimal cardinality for
(S, p). By hypothesis, the net .45 consists of a singlé element sy. For every k and
for every s € S, denote by 71 (s) an element of =% satisfying p(s, T (s)) < 27%. The
chaining equation reads for every s € S

(6.22) Xo=Xeo+ O, (Xtss(e) = Xrn(s))-
k=0

It follows that
(6.23) sup X, < X, + Z sup (X,rkﬂ(s) — Xﬂk(s)) < X + Z sup (X, — Xu),

SES k>0\5€ k>0 w,u’
where the last supremum is taken over couples (u,u’) € Agi1 X A% satisfying
plu,u’) < 27F 4 27(k+1) = 3. 9=(k+1) " Since E X,, = 0, it remains to bound the
expectation of each term in the sum, using the following fact

LEMMA 616> If A > %, B >0 andifYy,...,YN are random variables satisfying
P(Y; > t).<Aexp(—t2/B?) for all t > 0, then

(6.24) E max Y; < 81/1 + log(AN).

1<i<N

To bound Esup(X, — X./), we apply the above Lemma with 3 = 3.2~ (k+1)
and N = card(47) - card( A 11) < N(S,27F+1)2. This gives

(6.25) Esup X, <3 ) 27 /1 + 2log (412N (S,27)) .
seS k>1
The result follows now by majorizing the last series with an integral. [

ProOOF oF LEMMA [6.16l1 We may assume that 8 = 1 by working with Y;/3
and that the variables Y; are non-negative by working with the positive parts Y;.
If N > 2 then AN > 1 and so

00
EmaxY; = J P(maxY; > ¢)dt
2 0 2
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o0

< +/log(AN) + AN exp(—t?) dt
4/log(AN)
< +/log(AN) 1 1.

The first inequality is the union bound; the second one is the upper bound in
Komatu’s inequality which can be rewritten as § e~ dt < (Vu? + 1—u)e "’
(valid for u = —0.3893 and applied with v = 4/log(AN)).

If N =1, the inequality is trivial if the variable has mean 0 and can be checked

directly otherwise; see Exercise [6.17] which also treats in detail the case of .small
A. ]

Although Dudley’s inequality is not sharp in general (see Exercises and
which exhibit two different reasons for a possible gap), it does become sharp
when sufficiently many symmetries are present; such situation is referred to as the
stationary case in probability literature. Here is a statement demonstrating this
principle expressed in the language of convex sets and their Gaussian mean widths.

PROPOSITION 6.17 (not proved here). Let K < R™ be @ nonempty compact
convez set and let F be the set of extreme points of K «(If the isometry group of K
acts transitively on F', then
outrad(F')

\/1 + log (N(F,n)) dn.

In the most general situation, the chaining argument used in the proof of Propo-
sition (which is based on a decomposition along consecutive “levels of resolu-
tions”) can be improved by using a generic version of the chaining.

we() = wa(F) ~ |

THEOREM 6.18 (Generic chaining, not proved here). Let (Xi)wer be a centered
subgaussian process and let p be the distance on T defined by p(s,t) = | Xs — Xt|L,-
Let (Tx)ken be an increasing family of subsets of T such that card(Tp) = 1 and
card(Ty,) < 22" for k > Then

oe]

(6.26) Esup X; < Csup 2 212 (s, Ty )

teT seT E—0
for some absolute constant C. Conversely, if the process (Xi)ier is Gaussian, this
bound is ‘always sharp in the following sense: if vo(T) denotes the infimum of
SUP e Yl 282 (s, Ty;) over all such families (T},), then we have

Esup X; = ¢y (T)
teT

for some absolute constant c.

To grasp the difference between Dudley’s integral and the generic chaining
bound, it is useful to rephrase the former in the language of Theorem One
checks (see Exercise [6.22)) that, for any compact metric space (T, p),

diam T

0
(6.27) Vd1og N(T,n)dn ~ inf Z 2%/2 sup p(s, Ti),
(Tr) 1= seT

0

where the infimum is taken over families (7)) as in Theorem Note that the
right-hand sides of (6.26)) and (6.27) differ in the relative position of the summation
and the supremum.
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EXERCISE 6.16 (The constant in Dudley’s inequality). Show that the constant
6 in Dudley’s inequality (6.20]) can be improved to 3 + 21/2 ~ 5.83 if we repeat the
proof with Ny, being a §*-net, and optimize over 6 € (0, 1).

EXERCISE 6.17. The argument in the proof of Lemma [6.16] works if AN > 1.
Show that when AN < 1, then the optimal majorant is @ BAN and check that,
consequently, the bound from Lemma [6.16] holds whenever AN > 0.4236.

EXERCISE 6.18 (Median of the maximum of a subgaussian process). Show that
under the hypotheses of Lemma the median of max; Y; is at most 84/log(2AN)-

EXERCISE 6.19 (The gap in Dudley’s inequality). Let (Zj)}_, be an iicd. se-
quence of N (0, 1) variables and let X, = Z;/4/1 + log k. Check that E maxy; X < 3
for any n € N, but that the integral on the right-hand side of (6.20) is:@(loglogn).

EXERCISE 6.20 (The gap in Dudley’s inequality via B}). Let K = B}. Show

that Sé V/Iog N(K,n)dn ~ (logn)®? while wg(K) ~ +/2logn. Interpret this dis-

crepancy as a gap in Dudley’s inequality.

EXERCISE 6.21 (Law of the iterated logarithm via Dudley’s inequality). Here is
a rough version of the law of the iterated logarithm. Let (Z;)1<i<n be independent
N(0, 1) random variables and consider the Gaussian proeess X = (X})1<k<n defined
by X, = ﬁ(Zl + -+ + Zi). Estimate the covering numbers of X and conclude

that Emax{X; : 1<k < n}=06(loglogn).
EXERCISE 6.22 (Dudley integral as.a chaining bound). Prove (6.27]).

EXERCISE 6.23 (Generic chaining improves on Dudley’s inequality). Show that
the processes from Exercise can be shown to be uniformly bounded via generic
chaining.

6.2. 'Random matrices

Random matrix theory (RMT) studies spectral properties of large-dimensional
matrices generated by seme random procedure. We present in this chapter a very
small selection of résults from RMT, which will be useful to analyze random con-
structions of interest-in QIT. In particular, while we focus mostly on the Gaussian
setting, most-of\the limit theorems are valid for a much wider class of random
matrices; this'principle is known as universality. We study primarily (but not ex-
clusively).matrices with complex entries since these are the most relevant to QIT.
In contrast, much of the original motivation for RMT research came from statistics,
the'setting in which the real case is more usual.

For A € M?? we denote by (A;(A))1<i<n or simply (A;)1<i<n the eigenvalues of
A, listed with multiplicities and arranged so that

(6.28) AL(A) = Ao(A) = - = A (A).

The empirical spectral distribution of A, denoted by psp(A), is the probability mea-
sure obtained as the uniform measure over the spectrum of A. More formally

1 n
(6.29) psp(A) = — D6
1=1

which is clearly independent of the order of eigenvalues. Obviously, if the matrix
A is random, the corresponding empirical spectral distribution is also random. We
are interested in giving a description of the typical shape of this random measure.
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6.2.1. oco-Wasserstein distance. At least two kinds of RMT limit theorems
are relevant for quantum information theory: fine information about the extreme
eigenvalues (or about the operator norm) and large-scale information about the
entire spectrum. These two possible perspectives are known in RMT as “local”
vs. “global” regimes. In order to encompass both aspects, we find it convenient to
introduce the co-Wasserstein distance between probability measures on R.

DEFINITION 6.19. Let 1, 42 be probability measures on R. The co-Wasserstein
distance is defined as

(630) doc(lilvﬂ2) = ll’lf HXl - XQHLOO’

with infimum over all couples (X7, X5) of random variables with (marginal) laws uq
and po, defined on a common probability space. Similarly, if Y7, Y5 arereal random
variables, we will mean by dy (Y7, Y>) the oo-Wasserstein distance between the laws
of Y7 and Y5.

The definition of co-Wasserstein distance immediately. extends to probability
measures on a metric space (E, d) if we interpret in the quantity | X, — X2z,
as the smallest A such that P(d(X1, X3) < A) = 1. Similarly, replacing the L-
norm by the L,-norm leads to the p-Wasserstein. distance d,, with the “finite p”
case (and particularly p = 1,2) being much more’intensively studied than p = o0.
The metric d; is also known, particularly in the computer science community, as
the Earth Mover’s distance.

We note the following inequality (cf.-Exereise : whenever f: R — R is an
L-Lipschitz function and X,Y are random variables, then

(6.31) |Ef(X)—Ef(Y)| < Ldp(X,Y).

The oo-Wasserstein distance“can, be computed from cumulative distribution
functions: if Fx (t) = P(X <), then

(6.32) dy(X,Y) =inf{e >0 : Fx(t—¢) < Fy(t) < Fx(t +¢) for all t € R}.

Note the similarity withthe definition of Lévy distance dy,, which metrizes the weak
convergence

dL(X,Y) = inf{s >0 : Fx(tfé‘) —e< Fy(t) < Fx(t+€) +eforallte R}
The following(lemma is elementary, but it will be crucial for our purposes.

LEMMA”6.20. Let Z be a random wvartable distributed according to a measure
vz, -with support equal to some bounded interval [a,b]. If (Y,) is a sequence of
random variables, the following are equivalent:

(Ddo(Yn,Z) — 0,
(2) Y., > Z weakly and supY,, — b, infY,, — a.

By inf and sup we really mean here essential inf and sup. Note that the hy-
pothesis on the support is vital: the equivalence fails if the support is not connected

(see Exercise [6.29)).

PROOF. Since dj, < do, convergence in co-Wasserstein distance implies weak
convergence. Moreover we have |supY;, —sup Z| < dy (Y, Z) and similarly for the
infima, and therefore (1) implies (2).

Conversely, assume (2). Given ¢ > 0, choose a = 29 < 21 < -+ < x, = b such
that z;41 — z; < € and such that, for 0 < j < r, x; is a continuity point of Fz
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(such points are dense in R). The hypothesis on the support of vz implies that
Fy is strictly increasing on [a, b], so that there exists a > 0 with the property that
Fz(x;) = Fz(xj—1) + o for 0 < j < r. For n large enough, we have infY,, > a —¢,
supY, < b+ ¢ and |Fy, (z;) — Fz(z;)| < a for any 0 < j < r (using the fact that
F7 is continuous at x;). This conditions imply that for any real number ¢,

Fz(t — 26) < Fyn(t) < Fz(t + 25)
and therefore dy (Y, Z) < 2e. O

REMARK 6.21. The proof of Lemma [6.20] gives actually the following: a neigh-
bourhood basis around vz for the topology induced by dy is given by (W:)eso,
where V; is the set of probability measures p satisfying the condition

max (dL(u,Vz), | sup u — sup vgz|, | inf p — infyz|) <E,

where by inf v and sup v we denote the infimum and supremum of the support of a
measure V.

EXERCISE 6.24 (oo-Wasserstein distance and Lipschitz functions). Show the
stronger version of (6.31)) : If f : R — R is an L-Lipschitz function, then |E f(X)—
Ef(Y)| < Ldi(X,Y),

EXERCISE 6.25. Show that if f : R — R, isran L-Lipschitz function and
do(X,Y) <e, then E f(Y) > Eg(X), where ¢ = (f — Le)*.

EXERCISE 6.26 (00-Wasserstein distance.via cumulative distribution functions).
Prove the alternate formula (6.32)) for the co-Wasserstein distance.

EXERCISE 6.27 (0o-Wasserstein distance and weak convergence). Show directly
that do(Yy, Z) — 0 implies the weak convergence Y,, — Z, i.e., the convergence
E f(Y,) — E f(Z) for any bounded continuous function f: R — R.

EXERCISE 6.28. Show that under the hypotheses of Lemma doo (Y, Z) —
0 implies the convergence E f(Y,,) — E f(Z) for any continuous function f : R - R
(bounded or not). Show, by example, that this may be false when Z is unbounded.

EXERCISE 6.29. Give an example showing that connectedness is important in
Lemma [6.20)

EXERCISE 6.30. Show that if A, B € M3, then do (ptsp(A), psp(B)) < |[A—DB|op.-

6.2.2. The Gaussian Unitary Ensemble.
6.2.2.1. Definition of GUE. Recall that the space M$* of complex Hermitian
n X n matrices can be considered as real Euclidean space when equipped with
the Hilbert—Schmidt inner product. We denote by GUE(n) (Gaussian Unitary
Ensemble) the distribution of the standard Gaussian vector in M3 (see Appendix
IA). When a random matrix A has distribution GUE(n), we say simply that A is a
GUE(n) matrix. Here are some other equivalent descriptions of GUE(n) matrices
(see Exercise [6.31]).
(1) The density of GUE(n) is cpe~ TX*/2 for X € Ms2,
propriate normalization constant.
(2) Let C € M,, be a random matrix with independent Nc(0,1) entries (see
Appendix [A). Then the matrix A = (C' + CT)/+/2 is a GUE(n) matrix.

where ¢, is the ap-
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(3) A = (a;;) € M3 is a GUE(n) matrix if and only if the random variables
(@ij)1<i<j<n are independent, the random variable a;; having distribution
Nc(0,1) when 4 # j and Ng(0,1) when ¢ = j.

The GUE has the property of unitary invariance: if A € M,, is a GUE(n)
matrix, then, for any fixed U € U(n), the random matrix UAUT is also a GUE(n)
matrix.

Although it plays almost no role in our approach, an important feature of
natural unitarily invariant models is that there are explicit formulas for the density
of eigenvalues (see also Exercise .

PROPOSITION 6.22 (Ginibre formula, not proved here). Let A be a GUE(h)
matriz, and M(A) = (N\;)1<i<n be the spectrum of A, arranged in the non-increasing
order. Then the density of the random vector A(A) is given by

C1ym 2
Cn1{>\1>--->>\n}e 3 21 i H ()\i_>\j)2v

1<i<j<n

where ¢, is the appropriate normalization constant.

The real-valued companion to the GUE is the Gaussian Orthogonal Ensemble or
GOE, which corresponds to the standard Gaussian-vectorin the space of self-adjoint
real matrices (up to normalization, see Section . The Gaussian Symplectic
Ensemble (GSE) similarly corresponds to the standard Gaussian vector in the space
of quaternionic Hermitian matrices.

For some arguments, it is important-to_introduce what we call the GUE((n) en-
semble, which is the GUE ensemble conditjoned to have trace zero. In other words,
Go is a GUE((n) matrix if it has the distribution of a standard Gaussian vector
in the hyperplane H < M3* of trace zero Hermitian matrices. If A is a GUE(n)
matrix, then Ag = A — TYTAI issa GUEq(n) matrix. Note that the coefficient TYTA
has distribution N(0,1/n) and is independent of Ag.

EXERCISE 6.31. Show that (1), (2) and (3) provide equivalent definitions of
GUE(n).

EXERCISE, 6.32"(Characterization of GUE(n)). Show that GUE(n) is the only
unitarily invariant distribution on M3* for which the formula from Proposition
holds.

6.2(2:2.7Limit theorems. The probability distribution that is the non-commu-
tative-analogue of the Gaussian distribution is the semicircular distribution (or
semicircle law). The standard semicircular distribution pgc is the probability dis-
tribution on R with support [—2,2] and with density

1
6.33 —/4— 2?2
(6.33) 5
with respect to the Lebesgue measure. The even moments of the semicircular

distribution are the Catalan numbers: for a nonnegative integer p, we have
2
1 2p
6.34 J 2?P dpgc(x) = ( )
(6:34) , @=—=(7
In particular the variance equals 1. If X is a random variable with distribution

psc, then for any m € R and o > 0, we denote by figc(m,02) the distribution of
m + 0X, called the semicircular distribution with mean m and variance o.
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Eigenvalues of A, /\/n

-2 0 2

FIGURE 6.1. The empirical eigenvalue distribution of a GUE(n)
matrix A, for n = 10000 approaches the semicircular distribution.

The semicircular distribution appears as the limit spectral distribution of GUE
random matrices (see Figure[6.1]).

THEOREM 6.23 (Convergence of GUE spectrum tewards the semicircular dis-
tribution, not proved here). For each n, let A, bé o GUE(n) or GUEy(n) matriz.
After normalization, the sequence of empirical spectral distributions (pusp(Ay)) con-
verges towards the semicircular distribution (with -respect to the co-Wasserstein dis-
tance) in the following sense: for any e >0,

lim P (doo (p15p (02 A,), psc) > €) = 0.

Using Lemma (see also, Remark[6.21)), one checks that Theorem brings
together two facts, usually presented'(and proved) independently in the RMT lit-
erature:

(1) The fact that the sequence (psp(n~2A,,)) of random empirical measures
converges (weakly, in probability) towards the semicircle law, a result
going back to-Wigner.

(2) The convergence (in probability) of the largest and smallest eigenvalues of
n~Y?4,, towards +2. This requires a different and finer analysis, which
we sketch in what follows.

Since*GUE(n) is the standard Gaussian vector in M$*, and by the duality
between_Schatten norms (see Proposition [[.17), the quantity E[A,| is exactly
the Gaussian mean width of S}"*, the self-adjoint part of the unit ball for the
trace-norm. Although the order of magnitude of E|A,| can be readily deduced
from general principles (see Exercise , the derivation of the precise constant 2
requires more specialized arguments. However, once an appropriate bound such as
below is established, concentration of | A, | around its expectation is provided

by Theorem and gives the following estimates.

PROPOSITION 6.24. Let A,, be a GUE(n) or GUEy(n) matriz. Then, for any
e>0,

2

(6.35) P (M(n7"24,) > 2+¢) <P (|0 124,], > 24 ¢) < %exp (-%).

PROOF. Since || - o < || - |us, the function | - | is a 1-Lipschitz function. By
Theorem (recall that GUE(n) is the standard Gaussian vector in the space M2,
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and similarly for GUEg(n) and the hyperplane of trace zero matrices), it follows
that

(6.36) P (|An|, = M+1) < %exp(—t2/2),

where M is the median of the random variable HA"”oo' We claim that M < 24/n.
This follows from two facts. First, we have the inequality

(6.37) E|A,|0 < 2vn—0.6n"Y5 < 2¢/n,

which was derived in Appendix F in [Sza05| (note that this inequality extends to
the case of GUEqg(n) via Jensen’s inequality). Second, it follows from Proposition
that the median of the random variable |4, | is smaller than its mean, Once
we know that M < 24/n, follows by setting ¢ = e4/n and appealing-to-(6.36]).

An alternative proof is to use directly in combination with Theorem [5.25
but we opted for the argument above since, in our approach, concentration around
the median is more elementary than that around the mean. O

Similar estimates also hold for the GOE. For example, if A, is a GOE(n)
matrix, we have E A\ (4,) < 24/n (see Exercise [6.48)) and therefore

P ()\1(7171/214”) > 2+5> < %exp(— %52)

We next note that if A € M3 then Al =’max{\(A4),—A.(A)}, and that, by
symmetry of GOE(n), the distribution of —\,,(4,,) is the same as that of A;(A,,).
Combining these observations with the bound above yields

1o ne?
(6.38) P (Hn_ 2 A oo 2 + 5) <exp ( - 7)
The bound from Proposition can be improved for small values of ¢ (the

Tracy-Widom effect).

PROPOSITION 6.25 (not proved here). Let A,, be a GUE(n) or a GOE(n) ma-
triz. Then for any € €(0,1),

P (Al(n’l/QAn) > 2+ 6) < Cexp(—cne’?)

and
P ()\1 (n=124,) <2 - e’:‘) < Cexp(—cn?e?),

for some absolute constants C,c > 0.

The main result of this section, Theorem [6.23] is formulated as an asymptotic

statement. One can ask for a more quantitative version, or for a fixed—dimension
bound.

PROBLEM 6.26. If A, is a GUE(n), a GUEq(n), or a GOE(n) matriz, what is
the rate of convergence in de(psp(n™Y2?A,,), usc) — 02 Proposition suggests
that the answer may be @(n_2/3). The convergence cannot be faster than n~2/
due to the Tracy—Widom effect; see Notes and Remarks. The same question can be
asked about the Wishart matrices considered in the next section.

EXERCISE 6.33 (An elementary proof of boundedness of GUE(n)). Using a net
argument, show that if A4, is a GUE(n) matrix, then |A,|, < Cy/n with large
probability, where C' > 2 is some universal constant.
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EXERCISE 6.34. Show that the GUE(n) version of Theorem implies the
GUEq(n) version.

6.2.3. Wishart matrices.

6.2.3.1. Definition of the Wishart ensemble. Let n,s be nonzero integers. Let
B e M,, s a random matrix with independent N¢(0, 1) entries. The random matrix
W = BB' € M$ is called a (complex) Wishart matrix and its distribution is
denoted by Wishart(n,s). We often say simply that B is a Wishart(n, s) matrix.
The eigenvalues of W are the squares of the singular values of B, so that statements
about the spectrum of Wishart matrices are equivalent to statements about singular
values of a random (rectangular) Gaussian matrix.

Here is an equivalent description: let (Gy,...,Gs) be s independent copies of
a standard complex Gaussian vector in the space C". Then the matrix
S
(6.39) W = 1GiXGil
i=1

has distribution Wishart(n, s).

The rank of a Wishart(n, s) matrix is almost surely. equal to min(n, s). In the
following we often assume that s > n, i.e., that the Wishart matrices are almost
surely positive definite. This is not really a restriction since the case s < n can
be covered by the following observation: if B € My, ; is a random matrix with
independent N¢(0,1) entries, then W; = BBilis a Wishart(n, s) matrix while
Wy = BYB is a Wishart(s, n) matrix (because-the N¢(0, 1) distribution is invariant
under complex conjugation), and the matrices W7 and W5 share the same non-zero
eigenvalues.

One can also consider the-real version of Wishart matrices by starting with
G1,...,G, that are standard Gaussian vectors on R™ rather than on C™ (see Section
. This is the setup which has a long history due to the fact that it is frequently
encountered in statistics.

6.2.3.2. Limit theorems. What does the spectrum of large Wishart matrices
look like? Before answering this question, it might be useful to have in mind the
following elementary result from probability theory, which can be considered as the
commutative analogue of a Wishart(n, s) matrix (think of p as 1/n).

Let X be/a random variable following a binomial distribution of parameters
s € N and{p'e(0,1) (this means that X has the same distribution as the sum of s
independent Bernoulli random variables taking values 1 with probability p and 0
with ‘probability 1 — p). We then have

FACT 6.27 (easy). When s tends to infinity and p tends to 0, then
(i) If o = limsp exists in (0,00), then X converges (weakly) towards a Poisson
distribution of parameter c.
(ii) If lim sp = oo, then (X —sp)/\/sp converges (weakly) towards a standard Gauss-
1an distribution.

In the non-commutative context, we replace independent Bernoulli variables by
free Bernoulli variables. The resulting limit laws are the so-called free Poisson dis-
tribution and, again, the semi-circular distribution given by . Free probability
theory is beyond the scope of this book (see Section for a brief introduction)
and so, rather than defining freeness, we will explain the heuristics relating it to
RMT.
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In non-commutative probability theory, a Bernoulli variable with parameter
p = % can be represented as a random rank 1 projection on C" (i.e., uniformly
distributed on Gr(n,1); more generally, we may consider a random rank pdim #H
projection on H). According to a fundamental paradigm of free probability, freeness
is realized as a large dimension limit of independent matrix ensembles. Accordingly,
the RMT model to consider is

(6.40) X = Z |t )il

where the vectors 1); are i.i.d. and uniformly distributed on the sphere in C™* aiid
n,s — o0. Since, for large n, the standard Gaussian vector on C" is «lose to
being uniformly distributed on the sphere of radius n'/? (see Corollary. , it
follows that X is close to the appropriately rescaled Wishart random. matrix given
by (see Exercise . Consequently, the limiting behavior that”is the non-
commutative analogue of Fact [6.27] can be retrieved from the results on spectral
properties of Wishart(n, s) as n,s — c0. Such results hatve been'known for quite
a while, even if the full extent of the analogy and the identification of the limit
laws as the free analogues of the Poisson and normal distributions had to await the
development of the language of free probability.

To make the limit results for Wishart matrices.more tangible, we need to de-
scribe explicitly what the free Poisson distributions are. They originally appeared
in RMT as Marcenko—Pastur distributions. First, for A > 0, we let x5 = (1 +v/))?
and define a function supported on [z5%+].by

@) = YD, ),

The Mar¢enko-Pastur (a.k.a. free Poisson) distribution with parameter A, denoted
HMP(n), 1S then defined by

(6.41) pvp(yy = (1= X) "0 + fad,

where dyp denotes a-Dirac mass at 0 and fdz is the measure whose density (with
respect to the Lebesgue measure) is f.

0 T- Tt

FIGURE 6.2. Maréenko—Pastur densities for A = 1 and A = 2.

THEOREM 6.28 (not proved here). Consider a sequence of indices (n,s) which
tend to infinity in such a way that A = lims/n € [1,00) exists. For each (n,s),
let W,,,s be a Wishart(n,s) matriz. After renormalization, the sequence of ran-
dom empirical spectral distributions (psp(Wh,s)) converges in probability towards
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the Marcenko—Pastur distribution pyp(x)y with respect to the oo-Wasserstein dis-
tance: for any e > 0,
lim P(doo(ﬂsp(n_lwn,s)vMMP()\)) > 6) =0.
(n,s)—o0

The alternative normalization s 7' W,, ; = (s7%/2B)(s~¥/?B)T converges towards
a rescaled Marcenko-Pastur distribution with support [(1 — 1/v/A)2, (1 4+ 1/v/A)?].
For large ), this shows that the matrix s~'/2B is an almost isometric embedding
from C™ into C?®, all singular values being close to 1.

As explained earlier, a similar result follows formally in the case A € (0, 1).
However, some care is needed in the formulation, since the atomic part in the
Mar¢enko—Pastur distribution is supported outside of the continuous partyand this
lack of connectedness may prevent convergence with respect to the-oo-Wasserstein
distance (cf. Lemma and Exercises and .

In the case where the ratio s/n tends to infinity, the limiting'Mar¢enko—Pastur
distribution degenerates into a semicircular distribution, in the same way that a
Poisson distribution with a large parameter is almost Gaussian:

THEOREM 6.29 (not proved here). Consider a sequence of indices (n,s) which
both tend to infinity in such a way that lim s/n(=(c0y "For each (n,s), let Wy s
be a Wishart(n,s) matriz. After renormalization~and recentering, the sequence
of empirical spectral distributions (psp(Wh, s)) "converges in probability towards the
semicircular distribution usc with respect to the oo-Wasserstein distance, in the
following sense: for any e > 0,

nh—r»%o P(doo(//ésp(An,s)a NSC) > E) =0,

where A, s stands for %(Wns —sT).

ns

As in Theorem [6.23] theassertion of convergence in co-Wasserstein distance in
Theorems|[6.28 and [6.29 subsumes both global convergence of the spectrum towards
the limit distribution, and convergence of the extreme eigenvalues towards the edges
of the limit distribution)(see Proposition .

Our last limit ‘théorem deals with partial transposition of Wishart matrices.
As we shall see;\the partial transposition dramatically changes the limit behavior.
Note that the distributions MP(A) and SC(A, A) which appear in Theorems
and have the same mean and the same variance (see Exercise . This
was to be expected since the partial transposition preserves both the trace and the
Hilbert-Schmidt norm.

THEOREM 6.30 (not proved here). Consider a sequence of indices (d, s) which
tend to infinity in such a way that A\ = lims/d? € (0,00) exists. For each d, s, let
Wz s be a Wishart(d?, s) random matriz (considered as an operator on C¢ ® C?)
and WJQ < its partial transpose. Then, for any e > 0,

(dlsi;noop(doo(ﬂsp(ddwdras)a #SC(,\,,\)) > 5) =0,
where pisc(a,n) denotes the semicircular distribution with mean A and variance .
EXERCISE 6.35. Verify that (6.41]) does indeed define a probability distribution

both for A > 1 and for 0 < A < 1, and that the expected value and the variance of
the corresponding random variable are both equal to A.
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EXERCISE 6.36. Check that fi(Az) = fi/x(z). Use this to deduce from The-
orem that the weak convergence of usp(%Wms) towards pyp(y) holds for any
A > 0.

EXERCISE 6.37 (Spherical variant of Wishart ensemble). Deduce from Theorem
the following variant: if X,  is defined as in and n, s tend to infinity
with lims/n = A, then pg, (X, s) converge towards MP(A) (in probability, in co-
Wasserstein distance).

EXERCISE 6.38 (The quartercircular distribution). Check that if X has a.stan=
dard semicircular distribution, then X? has a MP(1) distribution. In what sense
can we say that the singular value distribution of a large random (non-Hermitian)
square matrix B with independent N¢(0,1) entries is given by a quartereircular
distribution?

EXERCISE 6.39 (Free Poisson variables in the large A limit). (&) Show that if X
has a MP()) distribution, then (X, —X)/v/A converges to thé stafidard semicircular
distribution with respect to the oco-Wasserstein distance asiA—c0.

(b) Find a gap in the following argument, which purports to-show that part (a) in
combination with Theorem implies Theorem

By Theorem the empirical spectral distribution_of W, s/n is approzimately
X (in the sense of the oo-Wasserstein distance) if s/n ~ A and n,s are large.
Consequently (Xx — )\)/\/X ~ (X — s/n)/vts/n is approzimately the empirical
spectral distribution of (Wi s/n — s/n)f~/ls/r= Wy — s)/y/sn, which is ezactly
the assertion of Theorem [6.29

6.2.3.3. Concentration of spectrum. In view of Theorem [6.28] it is natural to
expect that the spectrum of a typical\Wishart(n, s) matrix lies close to the interval
[(\/s —+/1)?, (/s ++/n)?] (fors = n), or equivalently that all singular values of an
nx s matrix with i.i.d. Nc(041)jentries lie close to the interval [v/s—+/n,/s++/n]. A
first result in this direction is a precise bound (without any multiplicative constants
or error terms) for the expected largest singular value, i.e., the operator norm.

PROPOSITION 6.31. Let B be an nx s random matriz with independent N¢ (0, 1)

entries. Then
E|Blop < Vi + 5

Proposition will be deduced from its analogue for real Wishart matrices,
which requires methods specific to that setting. Accordingly, we postpone its proof
unfil Section

In view of Proposition [6.31] it is natural to ask the following question, the
answer to which is known to be affirmative in the real case (see Corollary .
Recall that s, (B) denotes the smallest singular value of B.

PROBLEM 6.32. Let s = n, and let B be an n x s random matriz with indepen-
dent N¢(0,1) entries. Do we have the inequality E s,,(B) = /s —/n?

We now state a concentration result for the spectrum of Wishart matrices.

PROPOSITION 6.33. Let B be a random n x s matriz with independent N¢ (0, 1)
entries. For everyt > 0,

(6.42) P (|Blop > Vit + Vi +1) < g exp(—).
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If s > n, then for every t > 44/2logn/(+/s/n — 1),
(6.43) P (sn(B) < /s —v/n—t) < exp(—t?/4),
where C and ¢ denote absolute constants.

The above result is closely related to Proposition [6.24] and shares many of the
ramifications of the latter. For example, while we know from the general theory
of Gaussian concentration that the quantities in question are concentrated around
some value, identifying that value requires a separate argument and may be hard:
In particular, a positive answer to Problem would imply the validity of
for all t > 0 and with the bound exp(—t2).

PrROOF. The functions ||-||op and s, are 1-Lipschitz with respect to the Hilbert—
Schmidt norm on M,, 5. Let M be the median of | B|op. By combining Propositions
and it follows that M < y/n + +/s, and we deduce by using the
values from Table

Let M’ be the median of s, (B). We claim that

24/s + ny/log 2n
6.44 M > /5 — Jm — 2V8+nylog2n
(6.44) Vo i B
As before, using the values from Table we getfor > 44/2logn/(+/s/n — 1)
1
P(5,(B) < /5 —+/n—1t) < P(s,(B) <M —t/2) < 5 exp(—t%/4).

We may obtain (6.44) as a consequence-ofithe following inequality valid for any
t>0

(6.45) %exp(—tM’z) < ETrexp(<tBB') < nexp (—(vs — vn)*t + (s + n)t?)..

(The second inequality in (6:45))yis not at all immediate to prove; it appears as
Lemma 7.2 in [HT03].) We _then use the optimal choice t = 4/(s + n)log(2n) and
the inequality va — b >3/a — b/+y/a (valid for a > b). O

6.2.3.4. Random induced states. Wishart matrices are of interest in quantum
theory since they lead to a very natural model of random quantum states. One
possible way to“generate a random state on C” is to take independent unit vec-
tors (¥;)1<i<d distributed uniformly on the sphere and to consider the average of
corresponding pure states, i.e.,

p= % Z |vi){Wil.
=1

This is exactly up to normalization. However a closely related and often
better model is to consider the partial trace of a Haar-distributed pure state on
C™ ® C?. We call states obtained that way random induced states.

Let us denote by gy, s the distribution of the induced state Trcs [1){1p| when
1 is uniformly distributed on the unit sphere in C* ® C*. The measure p,, 5 is a
probability measure on the set D(C™) of states on C™. As the following simple fact
shows, this measure is just a renormalization of Wishart(n, s).

PROPOSITION 6.34 (Wishart matrices as induced states). Let W be a random

matriz with distribution Wishart(n,s). Then % has distribution pi, s and is

independent of Tr W.
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PRrROOF. The Proposition follows from the combination of two facts. First, if
G is a standard Gaussian vector in any given Euclidean or Hilbert space V' (in our
case V = C" ®C?®), then the vector % is uniformly distributed on the unit sphere
of V and is independent of |G|. Second, when we identify a tensor ¢ € C" ® C*
with a matrix A € M,, 5, we have (see Section

Tres [)(y] = AAT O

The normalization factor Tr W is very strongly concentrated around the value
ns (see Exercise . Therefore, it can be virtually treated as a constant.when
translating the results for Wishart matrices in the language of induced states. “We
have the following (recall that pg,(A) is the empirical spectral distributionof a
self-adjoint matrix A, see )

THEOREM 6.35. Given integers n,s, let p, s be a random induced state with
distribution p, s.
(i) If n is fized and s tends to infinity, then v/n(n — 1)spp,s— %) converges in
distribution towards a GUEq(n) matriz.
(i1) If n tends to infinity and lims/n = X € (0,00), then us,(5pn,s) converges weakly
in probability towards pyp(xy. Moreover, if A > 1, then\the convergence also holds
in c0- Wasserstein distance.
(i11) If both n and s/n tend to infinity, then ps,(v/ns(pn,s —1/n)) converges in
probability in co- Wasserstein distance towards-iise:.

Recall that the empirical spectral“distributions of a rescaled GUEy matrix is
almost semicircular (see Theorem [6.23)), so that (i) and (iii) are indeed consistent.
To deduce (ii) from Theorem and (iii) from Theorem use Proposition
and the bounds from Exercise The statement (i) is more elementary (see
Exercise [6.41)).

Similarly, Proposition [6.33] can be restated as a result about spectrum of ran-
dom induced states or as.a result about Schmidt coefficients of random pure states.
We single it out as a separate statement since it will be used several times. Alterna-
tively, a weaker statement follows from an elementary net argument (see Exercise
6.43)).

PROPOSITION 6.36. For n < s, let ¢ be a random vector uniformly distributed
on the unit sphere of C*"QC?® and let A (¢) = - -+ = A\ (¥) be its Schmidt coefficients.
Then, for\any € > 0,

1 1+e¢

(6.16) P (Al(w) e
and, for any e = C+/slogn/(y/ns —n),

P (An(zp) < % - H\g) < exp(—cne?),

where ¢ and C are absolute constants.

) < exp(—ne?)

Proposition [6.36] can be deduced from Proposition [6.33] or proved in the same
way using concentration of measure on the sphere (cf. Exercise . We also note
that Proposition[6.36|can be equivalently restated using matrices instead of tensors:
if M € M, 5 is uniformly distributed on the Hilbert-Schmidt sphere, then with large

probability all its singular values belong to the interval [ﬁ — 1:/“;, ﬁ + 1\4/'5]
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When s > n, the probability measure u, s has a density with respect to the
Lebesgue measure on D(C™) which has a simple form

den, s 1
dvol (p) = Zns

where Z,  is a normalization factor. Note that formula allows to define the
measure i, s (in particular) for every real s > n, while the partial trace construction
makes sense only for integer values of s. The explicit formula will not be
used in this book.

In the important special case where s = n, the density of the measure fi,,\is
constant: a random state distributed according to py, ,, is distributed with respect’to
the uniform (Lebesgue) measure on D(C™). This can be seen as a non-commutative
version of the following classical fact: if ¢ = (¢1,...,%,) is uniformly‘distributed
on the unit sphere in C", the vector (|¢1|%,...,|¥n]?) is uniformly distributed on
the (n — 1)-dimensional simplex.

EXERCISE 6.40 (Trace of a Wishart matrix). Let W béa Wishart(n, s) matrix.
Check that 2 Tr W has distribution x?(2ns) and deduce from Exercise that for
any t >0

(6.47)

(det p)*",

P(| Tt W — ns| > tns) < 2 P
rW —ns ns) < 2exp p——r—— | .
PUe a3
EXERCISE 6.41. Use the multivariate central limit theorem to prove part (i)
from Theorem [6.35]

EXERCISE 6.42 (Mean of the largest Schmidt coefficient). Let ¥ be a ran-
dom vector uniformly distributed on Scages. Deduce from (6.49)) that E A (¢) <
Konthze ﬁ + ﬁ Then prove (6.46).

K2ns

EXERCISE 6.43 (Elementary bounds on the spectrum of random induced states).
Let p be a random induced(state with distribution p, s, i.e., p = Tres |1)(3| with
1 uniformly distributed-en Scrgcs.
(i) For any y € Scn, show-that the function f defined on Scrgcs by f(v) = /<y|ply)
is 1-Lipschitz and that E f? = 1/n. Conclude from Exercisethat, for any ¢ > 0,
P(|f —1/y/n]> t) < (1 + e) exp(—nst?).
(i) Let A bea dsnet in Scr for § < 1/2. Denote A = p — I /n and show that

1
Al € —— Aly|.
1A < 7755 EBEK‘Q' [yl
(i), Let s = n. Conclude than |Al, < C/y/ns with high probability for some
constant C.

EXERCISE 6.44 (The limit distribution of the partial transpose). Let v be the
law of XY, where X and Y are independent random variables following the standard
semicircular distribution. Let 1) € Sgagca be a uniformly distributed random vector,
and A = d|y)(|'. (The partial transposition I' was defined in Section M) Show
that, when d tends to infinity, us,(A) converges in probability, in co-Wasserstein
distance, towards v.

EXERCISE 6.45 (Low moments of Wishart matrices and expected purity of
random induced states).
(i) Let G be an n x s random matrix with independent N¢(0,1) entries. Show that
E Tr(GGTGGT) = n%s + s?n and that E(Tr GG1)? = ns(ns + 1).
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(ii) Let p be a random induced state with distribution s, s. Show that E Tr p? =
n+s
ns+1°

6.2.4. Real RMT models and Chevet—Gordon inequalities. We con-
sider now variants of the random matrix models introduced before, where the
entries are real instead of complex. All the theorems stated for the GUE and
for complex Wishart matrices carry over mutatis mutandis to the real case. One
important modification that is worth pointing out is that in the density formula
from Proposition the factors A; — A; are not squared, which makes certain
arguments harder. However, the formulas in question play almost no role in our
approach. On the other hand, some other tools—most notably the analysis via
Gaussian processes—are more adapted to the real setting.

The Gaussian Orthogonal Ensemble (GOE) is the real version of the)\GUE. A
random matrix A has the GOE(n) distribution if the random variables (a;;)1<i<j<n
are independent, with a;; having the N (0, 2) distribution and a;;*(for» # j) having
the N(0,1) distribution. This normalization is chosen so,that-the distribution is
invariant under conjugacy by an orthogonal matrix. Note.also that A/+/2 is a
standard Gaussian vector in the space M3

Real Wishart matrices are then defined exactly as their complex analogues: if
B is an n x s random matrix with independent N(0}1) entries, the distribution of
W = BB is denoted by Wishartg(n, s).

In both settings, an argument based on Gordon’s lemma (Proposition al-
lows for concise proofs of precise inequalities. "This scheme actually allows obtaining
sharp bounds on the norm of a random matrix as an operator between any two real
normed spaces. The basic ingredient is a contraction property of the tensor product
map which holds only in the real case (Exercise .

6.2.4.1. Chevet—Gordon inequalities.

PROPOSITION 6.37 (Chevet—Gordon inequalities). Let B € My, 5 be a random
matriz with independent-N(0,1) entries. Let K < R® and L < S" ! be compact
sets, and rix = 0 such that K < rxB5. Then

we (K) —rgwe (L)< Emin max(Bt, vy < Emax max{(Bt,u) < wg(K)+rgwg(L).
uel teK uel teK

Note that thé upper bound in Proposition [6.37] is always sharp up to a factor
of 2 (see Exercise [6.46)).

PRrROOF. Let G be a standard Gaussian vector in R* @ R™. We are going to
compare the following Gaussian processes indexed by (¢,u) € K x L,

Xt,u = <Bt,u>,
Yiw ={G,t®rgu).

One checks (see Exercise ii)) that for (¢,u), (t,v') in K x L
(6.48) E(Xiu — Xow)? SEYiu — Yiuw)?
We may now apply Slepian’s lemma (Proposition as usual, the fact that the

supremum is presently taken over an infinite set can be circumvented by considering
all finite subfamilies, see (6.1))) to conclude that

E max X;,<E max Y, =wg(K)+rgwg(L).
(t,u)e KxL (t,u)e K xL
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To prove the other inequality we use the Slepian—Gordon lemma (Proposition
in the min max version, see Remark with the partition K x L = | J,,.; T, where
T, = K x {u}. The hypotheses are satisfied since there is equality in when
u = u’. Consequently,

E min max X; , > EminmaxY; , = wg(K) — rgwg(L). a
uel teK ’ uel teK

As a corollary we obtain sharp bounds on the extreme singular values of a rect-
angular Gaussian matrix, or equivalently on the extreme eigenvalues of a Wishart
matrix. These bounds match the support of the Maré¢enko—Pastur distribution frem
Theorem It is then routine to derive concentration estimates.

COROLLARY 6.38. Letn < s, let B € M,, 5 be a random matriz with independent
N(0,1) entries, and denote by s,(B) its smallest singular value. Then

Vs —vn < ks —kp <Es,(B) SE|Blop < ks + kin < ¥/s B/

Consequently, for anyt = 0,
1
P(|Blop > Vs + v+ 1) < 5 exp(=/2),

P(s,(B) < /5 —+/n—t) <exp(=t*/2).

Proor. We apply Proposition with K = §°~! and L = S”~!. Note that
wg(K) = ks and wg(L) = k,. The leftmost and rightmost inequalities follow
from Proposition (iv) and (i). The concentration estimates are proved as in

Proposition [6.33} O

EXERCISE 6.46 (Sharpness‘of €hevet’s inequality). In the notation of Proposi-
tion [6.37] show that

EmaLX Itnz}?((Bt, wy > max(wg(K), outrad (K)weg(L)).
ue €

EXERCISE 6.47 (The contractions underlying the Gordon—Chevet inequality).
Let m,n be integers:
(i) If 6 : R™ xR™ —R™ x R" is defined by §(x,y) = (|y|z, |x|y), show that for any
(z,y) and (a/5¢"),in R™ x R™,

2@y —2' @y < |d(x,y) — (', y)|-
(ii) Fix'#> 0 and consider the map ¢, : R™ x R™ — R™ x R™ defined by 6, (z,y) =
rTT|Y). ow that for any (z,y) and (z',y") In X rBy,
Sh hat f d («/,y') in R™ By
2@y — 2’ ®Y'| < [0:(x,y) — 6-(2, ).
111 ow that the analogues of (1) and (11) fail in the complex setting.
iii) Shy hat th log f (i d (ii) fail in th 1 ing

EXERCISE 6.48 (Sharp bounds on the largest eigenvalue of GOE(n) and GUE(n)
matrices). Let A be a GOE(n) or GUE(n) random matrix. By arguing along the
lines of the proofs of Proposition and Corollary show that EAj(A) < 24/n.

EXERCISE 6.49 (Mean width of the projective tensor product). Let K < R™
and L < R™ be convex bodies. Assume that K c rxgBJ* and L < rpBY. Prove

that we(K ® L) < wa(K)ry, +we(L)rk and w(K ® L) < w(K)T—\/% + w(L)\T/Km.
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6.2.4.2. A coupling argument. We prove here Proposition Let B be an
n x s random matrix with independent N¢ (0, 1) entries and A be 2n x 2s random
matrix with independent N(0,1) entries. We show that

1 Kon + K2
(6.49) E|B|op < 7 E|Alop < % <V/n+ /s

We use representations of A and B via y-distributed random variables. If G is
a standard Gaussian vector in R™, the distribution of |G| is denoted by x(n) (the
square of a x(n)-distributed variable has distribution x?(n)). If G is a standard
Gaussian vector in C", then v/2|G| has distribution x(2n).

LEMMA 6.39 (see Exercise . Let n < s and A be an n x s random. matrix
with independent N(0,1) entries. There exist random matrices U € Q(n) and V €
O(s), such that, denoting R = UAV,

(i) The random variables {r; ; : 1<i<mn,1<j< s} are independent,
(i1) For 1 <i<mn, r;; has distribution x(s +1—1),

(iii) For 2 <i < n, ri;—1 has distribution x(n + 1 — 1),

(iv) Other entries of R are almost surely zero.

LEMMA 6.40 (see Exercise [6.50). Let n < s and B be an n x s random matriz
with independent N¢(0,1) entries. There exist random matrices U' € U(n) and
V' e U(s), such that, denoting S = /2U'BV’,

(1) The random variables {s; ; : 1 <i<n,1 <y <s} are independent,
(i1) For 1 <i<m, s;; has distribution x(2s+ 2 — 2i),

(i11) For 2 <i<m, s;;—1 has distribution X(2n + 2 — 2i),

(iv) Other entries of S are almost surely zero.

We apply Lemmas m (with“dimensions 2n x 2s instead of n x s) and
to the matrices A and B appearing in . Since 2s +2 —2i < 2s +1 — 4 for
l1<i<mnand2n+2—2i<2n+1—1 for 2 < i < n, the initial matrices A
and B can be coupled (i.e.,"both defined on a single probability space) in such a
way that, almost surely; s;; < r;; for any 1 < i < nand 1 < j < s. Since R
and S have positive-entries, this implies that (almost surely) |S|lop < |R]op. Since
[4op = |Rlop and | Blop = 1S ]op, it follows that B |Blop < - B |Alep. The

V2
remaining inequalities in (6.49) are proved in Corollary

PROBLEM 6.41. Does there exist an argument along similar lines (i.e., using
Slepian/s lemma and coupling) that yields inequalities in the spirit of (6.49)), but
involving GUE and GOE matrices (say, E|B|op < %EHAHOp < 24/n, with B
being-a GUE(n) matriz and A being a GOE(2n) matriz)?

EXERCISE 6.50 (Representation of Wishart matrices via x-distributed vari-
ables). Prove Lemmas and Show also that the matrices U,V and R can
be chosen to be independent, with U, V Haar-distributed (same for U’, V' and S).

EXERCISE 6.51 (Neat bounds on the norms of Wishart matrices). Let A be a
random n x s matrix with independent N(0,1) entries with n < s.
(i) Show that E|A| > |M| where M = (m; ;) is the n x s matrix such that
M = Ks+1—i for 1 <i < nand m;;—1 = Kpy1-; for 2 < i < n (other entries being
zero).
(ii) Conclude that E|A| > (vVn —k + /s — k)4/1 — 1/k for any 1 < k < n. Show
that this inequality also holds when A is defined using N¢(0, 1) variables.
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6.2.4.3. The escape phenomenon. Another consequence of the Chevet—Gordon
inequalities is the fact that a subset of the sphere which is small (when measured
using mean width) typically does not intersect a subspace of large dimension: a
generic subspace “escapes”’ from any small set. This is made very precise in the
following proposition.

PROPOSITION 6.42. Let L = S™~! a closed subset, k€ {1,...,n — 1} such that
wg(L) < kp—g, and E < R™ a random k-dimensional subspace. Then

P(EnL# &) <exp(—(kn-t —wg(L))?/2).

Proposition will give a direct proof of the low-M* estimate (Theorem
7.45]).

PROOF OF PROPOSITION [6.42] Let s = n—k, and B an n x s random matrix
with i.i.d. N(0,1) entries, and E' = ker B. One checks that E is distributed accord-
ing to the Haar measure on Gr(k,R™). (This follows from the characterization of
the Haar measure as the only measure invariant under the.action’ of O(n).) More-
over, since L is closed, the condition E n L = ¢ is equivalent.to mingey, |Bx| > 0.
We apply the Chevet—Gordon inequalities (Proposition with K = S°~! to
conclude that

Emin|Bz| > ks — wg(L):
zeL

Since the function g : B +— mingey, |Bz| is 1-Lipschitz with respect to the Hilbert—
Schmidt distance, we may apply Gaussian concentration of measure (see Table [5.2)
to conclude that

P(EnL# J)=P(g(B)=0)
=®(9(B) <Bg(B) - (r. — we(L)
<exp(—(ks — we(L))?/2). O

6.2.5. A quick initiation to free probability. We now mention briefly
deeper results about high-dimensional random matrices that touch upon the con-
nection with free probability. A rigorous introduction to free probability is behind
the scope of this book, so we instead illustrate, on an example, the kind of conclu-
sions that canbe derived from the general theory.

Free probability describes limit objects towards which large-dimensional ran-
dom matrices converge. Here is a typical statement about polynomials in indepen-
dent (GUE matrices.

THEOREM 6.43 (not proved here). Let P be a non-commutative self-adjoint

polynomial in N wvariables. For every n, let AS}), ceey ASLN) be N independent ran-
dom matrices with GUE(n) distribution, and let X,, = P(Agll)/\/ﬁ, e ,A%N)/\/ﬁ).
Then, as n — o, the empirical spectral distributions (usp(X,)) converge weakly,
in probability, towards the distribution of P(a1,...,an), where ay,...,an are free
semicircular variables. Moreover, || X, |l converges in probability towards the value
H‘P(al,"';aN)H'

Let us explain the meaning of the concepts and notions that appear in The-
orem m First, a polynomial P is self-adjoint if P(My,..., My) € M$* when-
ever My,..., My € M5 an example is P(z1,22) = x12221. Second, a family of
N “free semicircular random variables” can be concretely realized as follows: let
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F = @,en(CY)®* be the Fock space over C, with the usual convention that
(CN)®0 is a one-dimensional space spanned by a unit vector 2. Let [1),...,|N) be
the canonical basis of CV, and let hy, ..., hx € B(F) be the corresponding creation
operators, defined by hi(z) = |i) ® z € (CV)®K+D for every 2 € (CV)®*, Set
a; = h; + hz; then the operators aj,...,any are an example of “free semicircular
variables.” The quantity |P(a1,...,an)| appearing in Theorem is simply the
operator norm, and the distribution of a self-adjoint operator Y € B(H) is defined
as the unique probability measure p on R such that, for every bounded continuous
function f: R — R,

QU Y)IQ) = f fdp

(it is enough to consider the case where f is a polynomial). The unfamiliar reader
is invited to check that this formalism is consistent with Theorem (see Exercise
6.52)).

The phenomenon behind Theorem [6.43]is called “asymptotic fréeness of random
matrices” and is not limited to the case of GUE matrices (see'Notes and Remarks
for more references). Here is another example involving unitary matrices. The “free
additive convolution” is a binary operation (denoted by [ and not defined here) on
probability measures (say, with compact support).on R.

THEOREM 6.44 (not proved here). Let moand U be two compactly supported
probability measures on R. For every n, let Ay, B, € M3 be real (resp., complex)
self-adjoint matrices such that the sequences“of empirical measures (usp(Ay)) and
(tsp(Bn)) converge weakly towards p and'v_asn — co. Let U, be a Haar-distributed
random orthogonal (resp., unitary) matriz. Then (weakly, in probability)

lim pep(An+ U, B, U = p@v.
n—0o0

The usefulness of Theorem6.44] comes from the fact that in many situations
the free additive convolution-of probability measures can be computed using the
so-called R-transform, & non-commutative analogue of the Fourier transform (see
for example Lecture.12 in [NS06]). Here is an example of conclusions that can be
derived from Theoreni [6.441

COROLLARY,6.45 (not proved here). Fiz 0 <t < 1/2. For any n, let E,, and
F,, be subspaces which are independent and Haar-distributed on the Grassmann
manifold Gr(|tn],C") and denote A, = Pg, + Pg, the sum of the corresponding
projectors. Then the sequence of empirical measures (psp(An)) converges weakly in
praobability towards the deterministic measure

Al —t) — (z —1)2 L
Tz(2 — z) [1—2\/t(1—t),1+2\/t(1—t)

Moreover, the sequence (|An|aw) converges in probability towards 1 + 24/t(1 — t).

(6.50) (1 —2t)0g + ](m) dz.

An analogous statement for ¢ > 1/2 follows by applying6.45|to ;- and F;-. The
measure defined in (6.50) is the free additive convolution of the measure (1—¢)dg+td1
with itself (for ¢ = 1/2 we recover the arcsine distribution).

EXERCISE 6.52 (Semicircular variables via creation operators). Show that the
distribution of the operators a; defined on the Fock space in the paragraph following
Theorem [6.43 is indeed the semicircular distribution.
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Notes and Remarks

Section|[6.1] The elegant proof of Lemmal[6.1]is due to Talagrand (see [Tall1]).
Denote by u,, the expectation of the maximum of n independent N(0, 1) variables.
For small n, explicit formulas are known: wu; = 0, us = 1/y/7, uz = 3/(2y/m),
ug = %(% + Tarcsin(3))) and us = %(% + 2 arcsin(3))) (numbers are from
the website . Moreover, an asymptotic expansion of u,, can be obtained from
the convergence of the maximum of independent Gaussian samples to the Gumbel
distribution (see [LLR83|, Theorem 1.5.3 and also [Pic68| to justify convergence

in expectation)

loglogn 1
Up = +/2logn — 5vaTogn +0 < ﬁogn) .
Inequalities in a similar spirit, but also for fixed n, appear in [DLS14],

References for the result from Remark are [Glu88|, [CP88} and [BF88|.
The conjecture from Remark appears in [HS05].

The second part of Propositionwas originally proved by Slepian [Sle62] and
is usually referred to as Slepian’s lemma. The first assertion, which follows from
the second one, is sometimes called the Sudakov—Fernique inequality and appears
in [Fer75|. Several proofs of Proposition are available in addition to the original
one; see, e.g., Kahane [Kah86| and Gromov [Gro87.

We also mention a well-known open problem related to Slepian’s lemma which
is known as the Kneser—Poulsen conjecture: Suppose that z1,...,zy and y1,...,ynN
are points in R? with the property that |2;—2;| < |y; —y;| for any 1 <i,j < N. The
conjecture asks whether for every radii r,...,rny > 0, we have vol(J B(z;,7;)) <
vol(l B(yi,7:)). Under the same hypotheses, a sister conjecture is whether the
inequality vol([) B(x;, 7)) = vol([\ B(yi, r;)) holds. Similar questions can be asked
for the spherical, hyperbolic and projective spaces. Note that, in the spherical
case, the two conjectures are equivalent since the complement of a cap is also a cap.
Also, since all Riemannian manifolds are asymptotically flat as distances go to 0,
the Euclidean case (in-any particular dimension) would be a formal consequence of
a positive answer in any other setting. The answers were shown to be affirmative
when k < d + Iin the spherical setting (see [Gro87]) and when k < d + 3 or when
d = 2 (for arbitrary k) in the Euclidean setting (see [BC02]). Both conjectures are
known to-be.true for spherical caps of angle 7/2, see [Bez08|, which also surveys
partial results and specific open problems in the hyperbolic setting. In the setting
of proejective spaces the question about unions appears to have a negative answer,
assindicated by counterexamples in section 4 of [Sid68]7 which show that a full
two-sided analogue of Slepian’s lemma (in the spirit of Proposition does not
hold.

Propositionl@‘was proved independently by Khatri [Kha67| and Sidak [Sid67]
(see also |Sid68, [GIu88|). The Gaussian correlation conjecture was proved by
Royen in [Roy14]. A more accessible and more detailed exposition can be found
in [LM15], to which we also refer for more background and references.

The Sudakov minoration (Proposition[6.10) appears in [Sud71]. The dual Su-
dakov inequality (Proposition is due to Pajor-Tomczak-Jaegermann [PT.J85]|.
The proof presented here is due to Talagrand (see [LT91]). Some refinements of
both inequalities appear in [MTJ87].
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Dudley’s inequality (Proposition goes back to [Dud67]| and was gener-
alized to the subgaussian setting in [JMT78|. A version of Proposition in the
language of stationary Gaussian processes can be found in [Fer97|. The first part
of Theorem is due to Fernique [Fer75| and the second part (which is much
harder) is due to Talagrand [Tal87] (a later paper [Tal01] contains a more transpar-
ent exposition). For more information about the “generic chaining” principle (which
is a reincarnation of the “majorizing measures”), we refer to the books [Tal05| and
[Tall4] by Talagrand, the latter one being more accessible.

Section Two recent and excellent references about RMT are [AGZ10]
and [Taol2|, and we direct the reader to them for the background, further, in-
formation, and bibliography. In particular, a huge branch of RMT which jis not
considered here revolves around the universality principle and aims_at_extending
convergence results to models with less symmetries and/or with weaker integrabil-
ity properties. Random matrices drawn from classical compact groups are the topic
of the forthcoming monograph [Mec]|.

In the context of empirical measures, the co-Wasserstein distance was intro-
duced in [ASY14]|. The oo-Wasserstein distance is much-less popular than its
“finite p” cousins; for example, in [Vil09] it appears only in the bibliographical
notes to the entire chapter devoted to the topic. However, it has a few interesting
applications, see for example [McC06|. We refer to [Vil09] for a thorough dis-
cussion of why the terminology “Wasserstein distance” is as highly questionable as
it is predominant. For a proof that the.Lévy-distance metrizes weak convergence,
see Section 4.3 in [Gal95]. Knowing that the weak convergence is metrizable gives
unambiguous meaning to statements asserting that a sequence of random measures
“converges weakly in probability,” which are ubiquitous in RMT. A long list of con-
ditions equivalent to weak convergence is known as the Portmanteau lemma and
can be found, along many other facts about convergence of probability measures,
in [Bil99].

Wigner’s theorem about convergence to the semicircle distribution originates
from [Wigh5|, [Wig58| and has been extended and strengthened in various direc-
tions, notably to matrices with independent (but not necessarily Gaussian) entries
(see, e.g., references in [Taol2]).

The “small\deviation” inequalities from Proposition are from [Aub05)
Led03, [ER10]. The perhaps surprising normalization is sharp and reflects the
fact that fluctuations of large random matrices are asymptotically smaller than
the ipper bound given by the Gaussian concentration. For example, the quan-
tity M (GUE(n)) — 24/n is of order n='/% (as opposed to O(1) following from the
Gaussian isoperimetric inequality), and it converges, after normalization, to the
Tracy—Widom distribution [TW94]| (resp., GOE(n), [TW96]).

The Marcenko-Pastur distribution appearing in Theorem [6.28 was introduced
in [MP67|, where the weak convergence was proved. Convergence of extreme
eigenvalues was obtained in [Gem80, [SiI85]. A reference for Theorem is
[BY88|. Theorem about partial transposition appears in [Aubl12] (see also
[BN13, [FS13| for a slightly different setting). We also refer to [CN16] for a survey
of RMT techniques in quantum information theory.

Proposition [6.31] seems new, but it is likely that—similarly as its special case,
(6.37)—it can be derived from the subtle inequalities contained in [HT03), [HTO05].
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The proof is, to the best of our knowledge, new; however, Lemma [6.39] appears in
[SiIg5].

The formula has been derived in [ZS01| (and probably independently in
many other sources). Proposition [6.37]is from [Gor85] and improves on [Che78].
The argument leading to Corollary [6.3§| is taken from [DSO01]. Proposition is
from [Gor88].

Free probability. The very interesting and fruitful link between free proba-
bility and large random matrices mentioned in Section goes back to [Voi9ll:
The monograph [NS06]| gives an accessible and comprehensive approach to the sub-
ject with an emphasis on its combinatorial aspects. A highly readable exposition;of
many aspects of the subject relevant to quantum information theory can.be.found
in [HPOO].

The weak convergence in Theorem was proved by Voiculeseu. The exten-
sion to the convergence of the operator norm is a difficult result which was derived
later by Haagerup—Thorbjgrnsen [HTO05].

Free additive convolution was introduced by Voiculeseu in [Voi85| and the
statement of Theorem is from [V0i90|. The needed convergence of the operator
norms required for the last part of Corollary was supplied recently in [CM14].
A formula for the sum of more than two projectors.can also be derived, see [FIN15].

Finally, we mention that some concentration estimates for polynomials in ran-
dom matrices can be found in [MS12].



CHAPTER 7

Some Tools from Asymptotic Geometric Analysis

This chapter contains a selection of results from asymptotic geometric analysis
which we believe to be of interest to quantum information theory. The most famous
of them is arguably Dvoretzky’s theorem which asserts that, roughly speaking, every
convex body of sufficiently large dimension admits sections whichrare arbitrarily
close to Euclidean balls. There are actually several variations on this statement
and they are studied in detail in Section We also introduce-the ¢-position of
convex bodies and use it to deduce the M M *-estimate, an~important result that
allows appealing to duality when studying mean widths.

7.1. (-position, K-convexity and the MM *-estimate

7.1.1. f-norm and /-position. Let K < R" be a convex body containing 0
in the interior. For T' € M,,, we define the quantity ¢k (T) as

lg(T) = E|T(G)|x,
where G denotes a standard Gaussian vector in R™. If there is no ambiguity about

the underlying convex body, we.write £ instead of £x. The following proposition
collects elementary properties, of.this-concept.

PROPOSITION 7.1 (see Exercise . If K < R"™ is a convex body containing 0
in the interior, then
(i) Lk (-) is a norm on-Nt;,
(i1) Li obeys the ideal property: for S,T € M,,, we have L (ST) < Lk (S)|T|op,
(iti) Li (1) = wg(K°) = kpw(K°) ~ y/nw(K°),
(iv) for T € G(w;R), Lk (T) = br-1x(I),
(v) if Pg.denotes the orthogonal projection on a subspace E < R™, then

Uk (Pg) = we((K n E)°) = wa(PpK®),

where by (K n E)° we mean the polar of K n E inside E.

We now introduce the concept of £-position via the following lemma.

LEMMA 7.2. For any conver body K < R™ containing 0 in the interior, there
is a unique Ty € PSD that is a solution to the mazimization problem
(7.1) max{detT : T € PSD(R"),{x(T) < 1}.
If Ty is a multiple of the identity, we say that K is in the {-position.

Proor or LEMMA [Z.2] The maximum is attained by compactness and is ob-
viously strictly positive. Assume that Ty, 77 € PSD(R™) are both solutions of the

maximization problem. If Ty # T3, it would follow that T = (T + T1)/2 verifies,
on the one hand, £(T) < 1 and, on the other hand, det T > (det Tp)"/?(det T})"/? =

181
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det Ty (by strict log-concavity of det over PSD, see Exercise , a contradic-
tion. O

Note that the ¢-position of a convex body is unique up to homotheties and ro-
tations. It follows from Proposition [£.8that convex bodies with enough symmetries
are automatically in the /-position.

LEMMA 7.3. Let K be a convex body in the €-position. Then wa(K°)Tr(A) <
nli (A) for any Ae M,.

PrOOF. We may assume A € PSD. Indeed, any B € M,, can be written as AO
for Ae PSD and O € O(n), and we have £ (A) = ¢k (B) by rotational invariance
of the Gaussian measure, while Tr B < |B|; = Tr A.

Since K is in ¢-position, the solution of the variational problem is XT with
A= Llg()7! = wg(K°)~L. Consider A € PSD and £ > 0 small enotigh-such that
I[+cA € PSD. Let B = ({x(I1+eA)) 1 (I+cA). Since {x(B) = 1'it follows that
det(B) < det(AI) = A". Consequently, using the triangle inequality,

(det(I+cANY™ < M (I+£A) < 1+ eMlic(A).
Since det(I+eA)Y/™ =1+ 1 Tr(A) + o(¢) as e goes to0, the result follows. O

REMARK 7.4. Before proceeding, let us point>out _that the more common def-
inition of the ¢-norm (and of the ¢-position). is via”the second moment, namely
(E||T(G)|%)?. Using the second moment leads-to nicer duality relations, but we
prefer to use the first moment to make the“connection to the mean width more
transparent. The next proposition shows that the two quantities are equivalent;
however, they are not equal nor proportional, and so the corresponding two maxi-
mization problems lead to two slightly-different notions of ¢-position.

PROPOSITION 7.5 (not proved here). For any symmetric convex body K < R™
and for any linear operator(T™; R™ — R™, we have

0
BIT(Glx < (BIT(@)F)"7 <[5 BITG)lx
EXERCISE 7.1°\Prove the properties of the £-norm listed in Proposition [7.1

EXERCISE, 722 (The left ideal property). In the setting of Proposition is it
true that lx (ST) < ||S|4x (T)?

7.1.2y 'K-convexity and the M M*-estimate. Consider the Hilbert space

. =15 (RF ). Tt is useful to write the norm of an element f € %, as
(BIF(E))",

where G is a standard Gaussian vector in R¥. Recall that the Hermite polynomials
(ha)aent defined in form an orthonormal basis in J#,. For an integer d > 0,
denote by Ry : 54, — 7%, the orthogonal projection onto the subspace of homo-
geneous polynomials of total degree d : Rg(ha) = hq if |a| = d and Rg(hs) = 0
if |a| # d. For f € J4, Ro(f) is a constant function and R;(f) has the form
x — {(x,a) for some a € R”.

Given n € N, let 4, ,, be the space of Borel functions © = (fi,..., f,) : RF —
R™ such that f; € %, for each i. The space 7 ,, is a Hilbert space for the inner
product

(7.2) ((©,09) := EB(G),0'(G))
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and can be identified with the Hilbert space tensor product s, ® R™. (This is the
canonical identification of the space of H-valued Lo functions on Q with Ly () @ H;
if dim#H < o0, no completion of the latter is needed.) The projections R, induce
extensions Ry = Ry ® Ign : oy — i, . More concretely, for © € S, ,,, we have
R4(©) := (Rafi1,...,Rafn). Similarly as for n = 1, the function R;(©) : R¥ — R"
is linear, i.e., it has the form x — Az for some A € My, (depending on ©), and
the operator Ry is the orthogonal projection onto the subspace of 77 ,, formed by
such linear functions.

Let K be a convex body in R" containing 0 in the interior. For © e ¢ ,,
define

(7.3) I®llx = (B|6E)[ik)

(this quantity is a norm when K is symmetric; again, we have here.X-valued
Ly functions on (R 4;), where X = (R™,| - |x)). It is easily checkéd that, for
(CXS %z,k;

(7.4) 01k = sup{(©, ) : = & H, Il ir < .

The K -convexity constant of the convex body K, denoted by K(K), is the smallest
constant C such that the inequality

(7.5) IR ()l x < ClI®lx

holds for every k and for all © € 4, ,,. It.is not hard to show that K(K) < oo (see
Exercise . Moreover, rather surprisingly, K(-) is often uniformly bounded for
large classes of bodies (for example, for balls in all commutative or non-commutative
£, spaces for a fixed p € (1,0)). For general symmetric convex bodies, the sharp
estimate K(K) = O(logn) appears-in Corollary

We now connect the K-convexity constant with mean width estimates.

1/2

PROPOSITION 7.6. Let'K\c R™ be a convex body containing O in the interior
which is in the C-position, Then we(K)we(K°) < nK(K).

PRrOOF. To each 7 e R™ associate ©(x) € K with the property that (z,©(z)) =
|z| ko3 we can also.efisure that the map © is Borel (see Exercise [1.12), so that
© € 4, . Since © takes values in K, it follows that |©||x < 1. (Actually, since
x # 0 implies ©(z) € 0K, we necessarily have ||©x = 1.) We have

wa(K) = E|G|ke = EXG,0(G)) = (g, 6)).

Giyenthat Ry is an orthogonal projection onto a subspace containing Ig~, we have
{Tgny©)) = ({Ign, R1(©))). Recalling that R;(0) has the form z — Az for some
A€M, we can write

wag(K) = EG, AG).
Since an elementary computation shows that E(G, AG) = Tr A, a straightforward
application of Lemma [7.3] yields

(7.6) we(Kwg(K°) < nli(A).
It remains to unscramble the meaning of the quantity ¢k (A). We have
1/2
(k(4) = EJAG)|k < (BJAG)IX)" = 4llx
= [IR1(®)llx < K(K)[O[lx < K(K),
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as needed, the only significant step in the above chain of equalities/inequalities
being the application of (7.5)), the definition of the K-convexity constant. ([

An upper bound on the K-convexity constant, whose importance cannot be
overstated, is the following result due to Pisier.

THEOREM 7.7. There is a universal constant C' such that
K(K) < C(1+logd(K,B%))
for any n € N and any symmetric conver body K < R".

REMARK 7.8. If K < R" is unconditional, the bound in Theorem [7.7] can be
improved to C(1 + log d(K, Bg))1/2.

Before proving Theorem we derive some of its consequences, First, since
d(K,By) < 4/n for every symmetric convex body K < R" (seé\ Exercise
actually, the weaker result from Exercise would suffice), we first have

COROLLARY 7.9. There is a universal constant C' such.that K(K) < Clogn
for any symmetric conver body K < R", n > 2.

Combined with Proposition [7.6] this implies the follewing result known in as-
ymptotic geometric analysis as the “ M M *-estimate,”

THEOREM 7.10 (The M M*-estimate). Letwn > 2 and let K < R™ be a sym-
metric convex body which is in the ¢-position. ) Then

(7.7 1 < w(K)w(K’) < Clogn.

We point out that the lower bound.w(K)w(K°) > 1 is elementary (see Exercise
4.37). As a corollary, we obtain the fact that, in the ¢-position, the Urysohn
inequality (4.34) is sharp up teo_aylogarithmic factor.

COROLLARY 7.11 (Reverse Urysohn’s inequality). Letn = 2 and let K < R™ be
a symmetric convex body. ) Then there exists a linear transformation T € GL(n,R)
such that
w(T(K)) < Clognvrad(T(K)).
Moreover, T can_be chosen to commute with the group of isometries of K. In
particular, <f K has enough symmetries, one may take T = 1.

Note that since both w(T(K)) and vrad(T'(K)) are 1-homogeneous in 7', one
may- ‘zequire in Corollary that T € SL(R™), in which case vrad(T(K)) =
vrad(K).

For the proof of Theorem [7.7] we need two auxiliary lemmas, the first of which
requires recalling some notation. Fix k& > 1 and let (P;);>0 be the Ornstein—
Uhlenbeck semigroup introduced in . Then each P; is a contraction on 47
(Exercise . Moreover, the operator P; extends to an operator ]5,5 on 4, , by
the formula

jjt(flv"'vfk) = (Ptf17~~,Ptfk)

(or, more abstractly, P, =P ® Ig») and this extension is also a contraction with
respect to any “reasonable functional norm.”

LEMMA 7.12. For any © € 4, , and for any convex body K < R"™ containing
0 in the interior, we have || POk < ||O] k-
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PrOOF. For x € R¥ denote g(z) = ||O(z)|k, so that ||©]|x = |g| . Then,
for any z € K° and any = € R¥, we have (O(x),z) < g(z). Since P; preserves
positivity (this is clear from (5.55))), it follows that

((P,0)(x),z) = P((O(x), 2)) < (Pg)(x)-
Taking supremum over z € K° yields [(P,©)(z)|x < (P,g)(z). Squaring and
integrating against -, we obtain (cf. (7.3))

B0l x < Pyl < llglloa = IOk,

the second inequality following from P, being a contraction on 7, (see Exercise
5.62)). (|

The second lemma that we need for the proof of Theorem [7.7] is“the-following.

LEMMA 7.13 (see Exercise [7.6). Let p be a polynomial such that (1) [p(z)| <1
for any x € [-1,1] and (2) for some XA = e, |p(2)| < X for any éomplex number z
with |z| < 1. Then |p/(0)] < 22 log A.

PROOF OF THEOREM [L.7l Fix k > 1 and let A\ = d(K}BY). Since the K-

convexity constant is linearly invariant (see Exercise.[T.3), we may assume that
BY < K < ABj and therefore

(7.8) - lee < - iy < AllF- Thac

Further, since K(K) < d(K, BY) (again, by Exereise[7.3] or directly from (7.8)), we
may assume that A\ > e. Note that the-Hilbert-space norm on .7 ,, corresponding
to the inner product is exactly || - [Igp-

Our objective is to show that if @ € /#4 ,, satisfies ||O|| x < 1, then || R1(0)]|x <
% log A. (This will imply the Theorem with C' = 4—;) By density, we may assume
that © is a polynomial; denote by m-its degree. Consider the .7, ,,-valued polyno-
mial defined for z € C by

m(z) = Y. 2/ R;(O).
j=1
For |z| <1, we have
Im()llx < liw()llsy < [©ll5y <A
where the middle inequality uses the Pythagorean theorem. If z = exp(—t) >
0, thenm(z) = P,© (by ) and therefore ||7(z)||x < 1. Similarly, if y =
—exp(—=t) < 0, then m(y) = P,V where V¥ is defined by ¥(x) = —O(—z). Because
K is.symmetric, we have || V]| x = ||©]|x and therefore |7 (y)||x < 1. For any E €
Hem, with ||Z]| ke < 1, the polynomial p(z) = ((w(z), E)) satisfies the hypotheses of

Lemma It follows that [p'(0)| = [((R1(©),E))| < 4¢Jog A and the conclusion
follows from the duality formula (7.4)). O

REMARK 7.14. An alternative definition of K-convexity is obtained if we re-
place the Gauss space by the discrete cube. Given a function f : {—1,1}} — R,
consider its decomposition f = 3’ Ac(l,...k} WATA, where w4 is the Walsh function
(e1,---,€k) = [ L;ca €i- Define then Rf := Zle W3y, the orthogonal projection
onto the space of linear functions (the Rademacher projection). Given a convex
body K in R”, let K'(K) be the smallest constant C' such that the inequality

(EIRf()%)" < C (EBIf()%)"
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holds for every k and every f : {—1,1}¥ — R", where ¢ is uniformly distributed on
{=1,1}*. Tt can be shown (see Section 6.6 in [AAGMI5] for a detailed argument)
that for any symmetric convex body K,

2

“K'(K) < K(K) < K'(K).

T
This definition allows for a derivation of the estimate from Theorem [7.7] that par-
allels the one presented above, with the Hermite polynomials being replaced by
the Walsh functions, and Lemma [7.13] replaced by a careful application of Bern=
stein’s inequality: If p is a polynomial of degree at most m such that |p(z)| <1 for

€ [-1,1], then |p'(0)| < m.

EXERCISE 7.3 (A rough bound for the K-convexity constant). (i) Show that
K(By) = 1. (ii) Show that if K, L are symmetric convex bodies in R", then
K(K) < dpy (K, L)K(L). (iii) Conclude that K(K) < /n for symmetric convex
bodies K < R".

EXERCISE 7.4 (K-convexity and duality). Show that K(K). = K(K°) for every
convex body K containing 0 in the interior.

EXERCISE 7.5 (The K-convexity constant for B and for the cube). Let N = 2%
and write the canonical basis of RY as (ec).c(_1}x.’ Define a map © € 4, n

by O(x) = e. if the signs of the coordinates,of x € R¥ match the sequence ¢ €
{—1,1}*. Show that [R1(©)]l g~ = cV'k for some-¢ > 0 and conclude that K(B}) =
O(Viogn) - K(B2).

EXERCISE 7.6 (A Bernstein-like inequality). Prove Lemma by using the
conformal transformation z — tanh(wz/4) mapping the strip S = {z : |Imz| < 1}

onto the open unit disk; reformulate the question as an inequality about holomor-
phic functions on S and use the three-lines lemma.

7.2. Sections of convex bodies

7.2.1. Dvoretzky’s theorem for Lipschitz functions. We start with the
simple but crucial ‘observation that concentration of measure for Lipschitz functions
defined on the wnit sphere (Corollary implies that such functions are actually
almost constant.on a typical (randomly chosen) subspace of large dimension.

Throughout this section, whenever we consider a “random” k-dimensional sub-
space E O\ R" (resp., E c C"), it is tacitly assumed that E is distributed uniformly
with ‘respect to the Haar measure (as defined in Appendix on the Grassmann
manifold Gr(k,R") (resp., Gr(k,C")), for example by setting E = U(R¥) (resp.,
E~= U(CF)) where U is Haar-distributed on O(n) or SO(n) (resp., on U(n) or
SU(n)) and R* = R™ (resp., C*¥ = C") is the canonical inclusion.

It will be convenient to use the following concept: given a function f : X — R,
the oscillation of f around the value p on a subset A — X is defined as

OSC(f,A,lu) = Su}: |f(SC) - :u|

In the following we consider the space S"~' < R™ equipped with the geodesic
metric g. The objective is to show that, for a Lipschitz function f : S”~! — R and a
random k-dimensional subspace E < R", the oscillation of f around a central value
on the subsphere Sg := S"~! N E is small (and similarly for Scn < C™). We first
present a straightforward e-net argument, which gives easily a result that is only
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slightly worse than Theorem [7.15] below. We focus on the real case, but the same
argument applies in the complex setting. Note, however, that the latter does not
follow formally from the former: while C", Sc» can be identified with R?", §27~1
as metric spaces, not every 2k-dimensional R-linear subspace of R?" corresponds
to k-dimensional C-linear subspace of C".

Let f: (8", g) — R be a 1-Lipschitz function, let ;17 be a central value for
f, and let E = U(RF) be a random k-dimensional subspace of R", with U Haar-
distributed on O(n). Let € € (0,1) and let V' be an e-net in (S¥~1, g). First, since
the function f o U is 1-Lipschitz, we have

osc(folU, S up) <e+osc(folUN, uyp).
We know from Corollary that for any x € N,
P (|f(U(z)) — ps| > ) < 2exp(—ne?/4).
By the union bound, it follows that
(7.9) P (osc(foU,N,uy) > ¢) < card(N) - 2exp(~=ne?/4).

By Lemma we may choose N with card N < (7/¢)¥, so that the bound from
is substantially smaller than 1 provided k¥ < c'ne?/log(1/e). In that case
we have osc(f, Sg, ftf) < 2¢ with high probability. ( We will slightly improve the
dependence on ¢ in Theorem below; this improvement turns out to be crucial
for some applications.

A function f : Scn — R is said to be circled if it satisfies f(e?x) = f(z) for
every ¢ € Scn and € € R. Circled functions are the complex counterpart of even
functions.

THEOREM 7.15 (Dvoretzky<Milméan theorem for Lipschitz functions). There
are constants ¢, > 0 such that“the following holds. Let f : Scn — R be a I-
Lipschitz circled function, pybe a central value for f (with respect to the uniform
measure) and 0 < & < 1. Assume that k < cne?, and let E < C" be a random
k-dimensional subspace.. Then, with probability larger than 1 — exp(—c'ne?)

OSC(fv SEvﬂf) <e.

The same conclusion holds for any 1-Lipschitz function f : S"~1 — R and a random
subspace E < R™. In both cases the dimension changes to cne®/L? if the function
f is L-Lipschitz.

REMARK 7.16. The proof given below gives for example the value ¢ = 1/400,
which is certainly far from optimal. (The argument actually works provided k+1 <
ne?/200.) While the bound can be undoubtedly improved, the use of Dudley’s
inequality inevitably results in poor constants. In the real case, the use of Slepian—
Gordon inequalities gives a constant of order 1/6 (see Exercise|7.7) and even better
when the function f is the restriction of a norm (see Remark. It would be
desirable to come up with a complex version of that argument, the difficulty being
that the inequalities from Exercise do not carry over to the complex case.

PRroor oF THEOREM [L.I5l We consider the complex case and note that the
same argument applies in the real setting. We may also assume that puy = 0
(otherwise consider f — fuf).

Let E = U(C*), with U € SU(n) a random Haar-distributed unitary matrix
(we could use equivalently the Haar measure on U(n), but this would lead to worse
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constants in (7.10) below, see Table [5.2). Consider the function F : SU(n) — R
defined by

FU) = S;plfl = sup |f(U(x))l.

xESCk

For U,V € SU(n) and x € Sck, we have (see Exercise for the last inequality)
[fUz) = f(Vz)| < Uz = V| < U = V]op < U = V]us < g2(U, V)

where g2 denotes the geodesic distance on SU(n), defined in (B.§]). It follows that E
is 1-Lipschitz on (SU(n), g2). Using concentration of measure (see Table gives
then, for any ¢ > 0,

(7.10) P(F > EF +1t) < exp(—nt?/4).

The remaining part of the proof consists in bounding E F'. We will rely on the
following lemma.

LEMMA 7.17. Let f : Scn — R be a 1-Lipschitz circled, function and U € SU(n)
be a Haar-distributed random unitary matriz. Then for anyx,y € Scn with x # y
and for any A > 0,

1) \2
P(f(Ux) — f(Uy) > \) < exp <*ﬁ) 7

where A and ¢ are absolute constants.

PROOF. Fix x,y € Scn. Since f is-circled-(and U is C-linear), we may replace
y by ¢y and choose 6 so that (x|y) is real nonnegative; note that this choice of 6
minimizes |z — y| and ensures that .z + y and z — y are orthogonal. Set z = %
and w = *5¥, then z = z + w andy.= z — w. Further, set 8 = |w| = 3|z — y| (we
may assume that 8 # 0) and w"=>87"w. Then, conditionally on u = U(z), U(w’)
is distributed uniformly on the sphere S, := Scn N ut. Since U(z) = u + SU(w')
and U(y) = u — BU(w'),.it follows that the conditional (on u = U(z)) distribution
of f(Ux) — f(Uy) is thesame as that of f, : S,1. — R defined by

fu(v) = f(u+ Bv) — fu— pv).
As is readily seen, f,, is 20-Lipschitz and its mean is 0. From Lévy’s lemma (Corol-
lary |5.32)) applied to f, and to the (2n — 3)-dimensional sphere S,., we deduce
that, conditionally on u = U(z),
P(f(Uz) — f(Uy) > \) < exp(—(2n — 2)A?/4|z — y[?),

and hence the same inequality holds also without the conditioning. (I

We now return to the proof of Theorem [7.15] Lemma [7.17] asserts that the
process (X;)ses,,, defined by X = f(Us) is subgaussian (a notion defined in (6.19)))

with constants A =1 and @ = (n—1)/2. We apply Dudley’s inequality in the form
given in Corollary to obtain

6yv2 (12
7.11 E sup X, < sup E X +
( ) S€Sck S€Sck Vvn — 1 0

For any s € S, E X is equal to the mean of f. Since 0 is a central value for f,
it follows from Corollary that E X < +/2log2/v/2n. We know from Lemma

V1 + 21og(N(Sex, | |, m)) dn.
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that N(Scx,|-|,7) < (2/n)?*. Using the bound /1 + ¢ < 1 + +/t gives
V1og?2 3v2 12\/7 12
EF =E sup X < log(2/n)d
P Tn Tt 1l Vv g(2/n) dn.
The numerical value So 4/1og(2/n) dn < 0.759 leads to

. 12. k
EF:Esustéw.
s€eS vn—1
This quantity is smaller than £/2 provided k < cne? for some constant ¢, and the
conclusion follows by applying (7.10]) for ¢t = £/2.
To obtain the constant ¢ = 1/400, one checks the inequality 5.08 —|— 12. 89\/7

4/200(k + 1) — 1. It follows that EF < e provided 4/200(k + 1) 5 Vn—1

or (since ¢ < 1) when k + 1 < ne?/200. Since we may assume that ne? 400
(otherwise there is nothing to prove), this inequality is implied<bythe condition
k < ne?/400. O

EXERCISE 7.7 (An alternative argument for Theorem in the real case).
Let f:S" ' — R be a 1-Lipschitz function. Denote by My the median of f, and
consider T = {f = M¢}. Let € > 0 such that ne? > 12 and k an integer such that
E+1< %Ezn
(i) For a € (0,7/2), let T, = {x € S"~ ! » dist(z,T) < a}, where distance
refers to the geodesic metric. Show that o (S"\T,,) < exp(—na?/2). We now set
a = +/2log 2/+/n, so that o(T,) = 1/2.

(i) Show that if B c §™~! satisfies o(B) > 1/2, then w(S™ 1\ Bg) < 8,

2
(iii) Let A = S" !\T.. Check that the assumptions on n, k,e imply the inequality

H%(E_a) < /1 —(k + 1)/n, and conclude from (ii) that wg(A4) < Kn—k.
(iv) Using Proposition conclude that with positive probability, a random k-
dimensional subspace E c R™ satisfies En S""! < A, and thus osc(f, Sg, Mf) < ¢

EXERCISE 7.8 (Removing the circledness assumption in Theorem [7.15]). Show
that the following helds for some constants C,c > 0. Let f : Scn — R a 1-Lipschitz
function with. mean iy and € > Cy/logn/y/n. Then for k < ce?n, a random k-
dimensional subspace E c C" satisfies osc(f, Sg, 1f) < € with high probability.

(Start by introducing the auxiliary circled functions g(z) = 5= gﬂ f(e’?r)dd and

h(x) = max{[f(ez) — f(@)] : 0 e [0,2x]}.)
We do not know whether the assumption € = C'v/logn/+4/n can be dropped.

7.2.2. The Dvoretzky dimension. A convex body K is said to be C-Eu-
clidean if dpy (K, BS™K) < C (the Banach Mazur distance dgps and the geo-
metric distance d, were defined in and . It is customary to separate
the situation Where C is controlled, but possibly large (the “isomorphic” theory),
from the situation where C' = 1 + ¢ with € « 1 or at least “sufficiently small” (the
“almost isometric” theory). Still another aspect is when ¢ = 0 (the “isometric”
theory), which is quite different in nature and hardly mentioned in this book (with
the exception of Section .

The goal of this section, and of the following ones, is to give upper and lower
bounds on the maximal possible dimension of a subspace £ < R™ such that K n FE
is C-Euclidean (when K is symmetric, we restrict ourselves to subspaces through
the origin, so that the results can be translated in terms of subspaces of normed
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spaces). It is remarkable that, up to an absolute multiplicative constant, this
maximal dimension can be computed via a simple formula, which we now introduce
under the name of the Dvoretzky dimension.

DEFINITION 7.18 (Dvoretzky dimension). Let K be either a convex body in
R™ containing 0 in the interior, or a circled convex body in C™. The Dvoretzky
dimension of K is defined as

ky(K) = (w(K°)inrad(K))?n.

If | -] is @ norm on R™ (or C™), the Dvoretzky dimension of X = (R", | -|) is defined
as the Dvoretzky dimension of its unit ball, or equivalently as

ks (X) = (M/b)*n,

where b is the smallest number such that || - || < b| - | and M = E | X, where X is
a random variable uniformly distributed on S™~1.

We note that b corresponds to the maximum value of ||.- | over the Euclidean
sphere, while M is the average value. Hence we always have M < b, thus k. < n.
Note also the inequality ky(K) < dg(K, L)k, (L) for a pair.of-convex bodies K, L.
We should think of k4 as a quantity meaningful only upto (absolute) multiplicative
constant. Likewise, in order to not to obscure the arguments, we will sometimes
pretend in what follows that k. and similar expressions are integers.

The Dvoretzky dimension of a convex body K < R™ depends on the choice of
the underlying Euclidean structure. The‘remarkable fact is that the following two
quantities are equivalent up to multiplicative universal constants (see Exercise
and Theorem
(i) The supremum of k. (K) over all Euclidean structures on R".

(ii) The largest k such that K n\E is 2-Euclidean for some F € Gr(k,R™).

The usefulness of this coneept comes from the fact that, for standard norms,
the Dvoretzky dimension is‘usually easily computed. We illustrate this in the case
of £, spaces and Schatten norms in Section However, the following Theorem
is also of interest-when applied to abstract norms. For example, it implies
the celebrated fact.that any high-dimensional convex body has sections which are
arbitrarily close to a Euclidean ball (see Corollary .

i
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FIGURE 7.1. Low-dimensional illustration of Dvoretzky’s theorem:
the regular hexagon appears as a section of B} and B3 .
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THEOREM 7.19 (Tangible Dvoretzky—Milman theorem). There are absolute
constants ¢, > 0 such that the following holds. Let K be either a convez body in R™
containing 0 in the interior, or a circled convex body in C™. Let M and ky = ky(K)
(the Dvoretzky dimension of K) be as in Definition . Fir 0 <e <1, and let
k = ce?ky. Then a random k-dimensional subspace E satisfies the following: with
probability larger than 1 — exp(—c'e%ky), we have

(7.12) Vee E, (1—¢e)M|z|<|z|x <1 +e)M|z|
and consequently
1
dy(K 0 B, BY) < .

where dy denotes the geometric distance as defined in ([£1)) and BY = B} ~ E.

PROOF. This is a straightforward consequence of Theorem applied to the
function f(x) = ||x||x, which is a b-Lipschitz function (and, moreever, is circled in
the complex case). Indeed, provided k < cn(eM/b)?, we-obtain with probability
larger than 1 — exp(—c/(eM)?n) that osc(| - | x, Sz, M) < €M, Which is equivalent

to (7.12). O

REMARK 7.20. A simple e-net argument combined with a little trick (see Exer-
cise[7.11)) gives a version of the complex case of Theorem with a slightly worse
dependence on ¢, but without the assumption that K is circled.

REMARK 7.21 (about the dependence-one). We now comment about the sharp-
ness of Theorem First, the isomorphic version (for macroscopic ¢) is always
sharp: the dimension of generic 2-Euclidean sections can never exceed k,(K) (see
Exercise . Second, one can“construct norms for which the dependence on ¢ is
sharp (see Exercise . However; for some natural and interesting instances the
dependence on ¢ can be improved (we will see a very important example in Chapter
connected to the additivity conjecture; see Remark .

REMARK 7.22. If-K is A-Euclidean, then k4 (K) > n/A%. Consequently, by
Theorem [7.19] fortany fixed ¢ > 0, K admits sections of proportional dimension
which are (1 +¢)-Euclidean. Therefore any result about isomorphically Euclidean
sections impliesoa counterpart about almost isometric sections, the dimension of
the section_being affected only by a multiplicative Q(2?) constant.

REMARK 7.23. In the real case, the conclusion of Theorem[7.19]also holds for a
gauge (i.e., without the symmetry assumption of K). Moreover, a derivation from
the Chevet—Gordon inequalities allows for a more direct proof and gives a better
constant. For any k£ < k., we show the existence of a k-dimensional subspace
FE < R™ such that

1+/Ek/k
(7.13) dpym(K n E,Bb) < 7/*.
1—/k/ky
To achieve this, we consider a random matrix B € My, ,,, which we interpret as
an operator from R¥ to R”. By the Chevet—Gordon inequalities (Proposition |6.37)),

°) — < i < < ° .
wg(K°) — bky, Emglgllcrlllllrel?()C(J(Bsc,w Emg}ﬁ)jl ;2?()§<Bsc,y> wa(K°) + bk



192 7. SOME TOOLS FROM ASYMPTOTIC GEOMETRIC ANALYSIS

Using the inequality rj/vk < kn/y/n (Proposition |A.1)), we are led to
k
Kn (M - b\/7> < E min max{(Bz,y)
n zeSk—1 yeK®

k
< E max max(Bz,y) < &k <M+b\/7>
zeSk—1 yeK° n
and the existence of a subspace E = B(RF) satisfying (7.13)) follows.

Due to the duality between sections and projections of convex bodies (see {|1.12)
and (1.13))), Theorem admits a dual formulation via projections onto subspaces.

COROLLARY 7.24. Let K be a convex body in R™, and € > 0. ~Provided k <
ce?k4(K°), a random k-dimensional subspace E satisfies with large probability

(1 - Jw(K)BY < PgK = (1 + e)w(K)BY.

REMARK 7.25 (Geometric interpretation of the M M *-estimate). Let K < R™
be a symmetric convex body and let k < ce? min(ky(K), ki (5°)). We know then
from Theorem and Corollary that for a random subspace E € Gr(k,R"™),
the section K n E is (1 + ¢)-close to a Euclidean ball of radius w(K°)~! while the
projection PrK is (14 ¢)-close to a Euclidean ball of radius w(K); the ratio of these
radii is the quantity w(K )w(K°) which appears in Theorem In particular, if
K is in the ¢-position, the radius of a typical k-dimensional projection only exceeds
the radius of a typical k-dimensional seetion by a log(n) factor. However it is not
clear whether the f-position is always compatible with the conditions k4 (K) > 1
and ky(K°) » 1 (see Problem [7.26).

PROBLEM 7.26. Does there exist, for every symmetric convex body K < R", a
subspace E of dimension clogn such that

mBY c KnE<e2rBY and rBY c PpK < 2r,BE,

with ro/r1 = O(logn)? \Without the constraint on the radii this follows from clas-
sical facts, see Exercise[7.27,

EXERCISE 7.9 (Dvoretzky dimension and duality). Let K < R™ be a convex
body such that. dy (K, BY) < A. Show that ky(K)k«(K°) = n?/A%. In particular,
if K is symmetric and is in John or Léwner position, then ky (K )k (K°) = n.

EXERCISE 7.10. Let K < R™ be a symmetric convex body, and suppose that
dpa(K'n E,Bg) < A for some k-dimensional subspace E, where By = B} n E.
Show” that there is a linear transformation 7" € GL(n,R) such that k.(T(L)) >
(k—1)/A2

EXERCISE 7.11 (Almost spherical sections discretized). (i) Let A be a d-net in
(Scn,|-|), and | - | a norm on C™ such that

VeeN, l—a<|z|<1+8.
Show that
d(1+p) 1+p
.14 n, l—a———-=< < —.
(714) Vo e Ser, 1—0— 20D <o < 220
(ii) Use (i) to show that, when k < ce?log™!(1/¢)k4 (K), the conclusion from The-
orem can be derived via the elementary net argument that led to (7.9)).



7.2. SECTIONS OF CONVEX BODIES 193

EXERCISE 7.12 (Sharpness of the Dvoretzky—Milman theorem for random sub-
spaces). Consider a norm |- | on R", and let M, b, ks be as in Definition [7.18] The
goal of this exercise is to show that, in Theorem the value k, is always sharp
for macroscopic values of € (say, € = 1 so that the lower bound in is vacuous).
Assume that k is an integer with the following property: with probability larger
than 1 — 1/n, a random k-dimensional subspace FE satisfies

(7.15) VreE, |z|<2Mlz|.

(i) Show that there is an orthogonal decomposition of R™ as the direct sum of [n/k]
subspaces, each of them satisfying .

(ii) Show that for every z € R, |z| < 2M+/[n/k]|x|.

(iii) Conclude that k < C(M /b)?*n for some absolute constant C.

7.2.3. The Figiel-Lindenstrauss—Milman inequality. In this section we
will derive, as a consequence of Theorem [7.19] a useful inequality due to Figiel-
Lindenstrauss—Milman which can be interpreted as follows: Cecomplezity (of any
convex body) must lie somewhere.

Fix a convex body K < R"™ containing the origin in the interior. Define the
verticial dimension of K as

dimy (K) = loginf{N : there is a polytope P with ‘W vertices s.t. K ¢ P c 4K}
and the facial dimension of K as
dimp(K) = loginf{N : there is a polytope-Q with N facets s.t. K < Q < 4K}.

The number 4 plays no special role in these definitions; all the results below are
only affected in the values of the constants if 4 is replaced by another number larger
than 1 (see Exercise . The basic properties of these concepts are gathered in
Proposition

ProroOsITION 7.27. Let. K < R™ a convexr body containing the origin in the
interior. Then
(i) for any T € GL(myR), we have dimy (TK) = dimy(K) and dimp(TK) =
dimF (K);
(i) we have dimy (K°) = dimp(K) and dimp(K°) = dimy (K),
(iii) for any subspace E < R™, we have dimp(K nE) < dimp K and dimy (PpK) <
dimv K,
(iv) if K has centroid at the origin, then dimy (K) < Cn and dimp(K) < Cn for
some-absolute constant C'.

We note that the verticial and facial dimensions are linearly invariant but not
affinely invariant (see Exercise [7.13)).

PROOF. (i) is obvious and (ii) follows from the fact that polarity exchanges
vertices and facets for polytopes (see (1.16])). The two dual inequalities in (iii) hold
since projections do not increase the number of vertices of polytopes, while sections
do not increase the number of facets. For (iv), see Exercises and O

Define also the asphericity of a convex body K < R™ as
(7.16)

R
a(K) = inf {r : there is a O-symmetric ellipsoid & with r& < K < R@@} .
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We have a(K) = dpy (K, BY) if K is centrally symmetric. The following lemma
gives a simple connection between asphericity and verticial (resp., facial) dimension.
It is an immediate consequence of Proposition [5.6]

LEMMA 7.28. Let K < R"™ be a conver body containing the origin in the interior.
Then
n—1 n—1
32 32

When combined with Dvoretzky’s theorem, the inequalities from Lemma
give a much sharper result.

dimy (K) a(K)? = , dimp(K)a(K)? >

THEOREM 7.29 (Figiel-Lindenstrauss—Milman inequality). For any convez body
K < R” containing the origin in the interior we have

(7.17) dimp(K) dimy (K) a(K)? = cn?
where ¢ > 0 is an absolute constant.

PROOF. We may assume that rBY ¢ K ¢ RBY with(Rfr'= a(K). Let M =
E |X|k and M* = E|X| ko where X is a random vector uniformly distributed on
the unit sphere.

We apply Theoremto K for e = 1/2 (say). There yields a subspace E c R"
of dimension ¢(rM)?n such that

M M

?BQECKOEC %Bf.

It follows (using Proposition iii) and Lemma|7.28]) that dimp(K) = dimp (K n
E) = ¢(rM)*n for an absolute.constant ¢ > 0. We apply the same argument to
K° (note that R™*BY} < K°).and obtain that dimg(K°) = ¢(M*/R)?n. Since
dimy (K) = dimp(K°), it follows’that

dimp(K) dimy (K) = ¢*n*(MM*)*(r/R)* = ¢*n?/a(K)?
as needed, where we used the fact (see Exercise (4.37)) that MM* > 1. O
A conseqtience isa remarkable combinatorial result about symmetric polytopes.

Indeed, we know from Exercise that a(K) < 4/n for any symmetric convex body
K c R".

COROLLARY 7.30. Let P < R"™ be a symmetric polytope with ny vertices and
ng «faces. Then

(logny)(logng) = cn.

The conclusion of the Corollary fails dramatically for non-symmetric polytopes
(consider the simplex).

EXERCISE 7.13 (The position of the origin matters). Give examples of pla-
nar convex bodies containing the origin in the interior, whose verticial or facial
dimension is arbitrarily high.

EXERCISE 7.14. Give examples of symmetric polytopes in R™ with exp(o(n))
vertices and exp(o(n)) facets.
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EXERCISE 7.15 (Isomorphic facial and verticial dimension). Let K < R™ be a
convex body containing the origin in the interior. For A > 1, define dimp (K, A)
(resp., dimy (K, A)) as log N, where N is the minimal number of facets (resp.,
vertices) of a polytope P such that K ¢ P < AK. Show that, for any A, B > 1,

A?dimp (K, A) - B>dimy (K, B) - a(K)? > cn?
where ¢ > 0 is an absolute constant.

7.2.4. The Dvoretzky dimension of standard spaces. In this section
we compute the Dvoretzky dimension for the unit balls with respect to the. most
standard norms: the commutative and non-commutative p-norms. Unless specified
otherwise, the statements refer to both the real and the complex case.

7.2.4.1. £, norms. Let B} denote the unit ball (in either R™ orC™) for the
norm || - ||,, where p € [1,00]. We also define the conjugate exponent g € [1, 0] by
the relation p~' 4+ ¢! = 1. Recall that (B}})° = By.

THEOREM 7.31. The Dvoretzky dimension of B} is of-the. following order

n if1<p<2,
ke(Bp) =~ { pn®P if 2 < p < logu,
logn if logn'< p< .

REMARK 7.32. We emphasize that the constants implicit in the relations “~”
do not depend on p (in addition to not depending on n). The proof actually shows
that, for fixed p and as n tends to o0, w(BI) ~ n'/P=1/2|g| , where g is a standard
N(0,1) (real or complex, accordingly) Gaussian random variable (“~” is uniform
in p on bounded sets, but not globally). A closed expression for |g||z, is given in
(5.63]).

PROOF. We treat the real case, the complex case being similar. Let ¢ € [1, o]
be such that 1/p + 1/¢ = 1. By Definition we have

k«(B)) = ninrad(B})*w(B})?.

Accordingly, the Theorem will follow from the estimates

1/2—1/p if 1 < <2
inrad(B)) = " 1 b '
P 1 if 2<p< oo,
and
Up=1/2 jf1<p<l
(7:18) E o], - w(By) ~ { V2" Fl<p<logn,
Viogn/y/n if logn < p < w0

where z is a random vector uniformly distributed on S™~1.

The value of inrad(B}) is a reformulation of the corresponding inequality
between £,-norms. We estimate the mean width by introducing a standard Gaussian
vector G = (g1,...,gx) in R, so that w(B?) = k' E |G|, where r, ~ n'/? was
defined in (A.8). Consider also the random variable X = |G|,. What is easy to
compute is the pth moment (or the L,-norm) of X:

(7.19) |X|z, = (EX?)? = WE|[g:[")"? ~ \/pje n'/?

(see (5.63)) for the last relation). Since we are interested in the value of E X, we
will use Gaussian concentration to relate the expectation of X to its pth moment.



196 7. SOME TOOLS FROM ASYMPTOTIC GEOMETRIC ANALYSIS

Consider first the case p > 2, then |- |, is 1-Lipschitz (with respect to the Euclidean
metric) and so by Proposition and Theorem
PX-EX>)<P(X-M>t)<P(g1>t) forallt>0,

where M is the median of X. In particular, we have
a0
E((X-EX)")" = f ptP P X —EX|>t)dt <E(g])? < (f
0

(see or (5.63)) and so
(7.20) (X —EX)"|z, <+/p/e

Since | X |z, — [(X —EX)*|r, <EX < |X],, it follows from and
that w((B,)°) = O(/pnt/P~1/2) whenever 2 < p < logn. For logn < p'< o, we
have ||+ oo < ||, < €] |, so that it suffices to prove the second part-of for
p = oo. This is exactly (modulo the relation between the spherical ‘and Gaussian
means) the content of Lemma which asserts that, in®the-present notation,
E|G|w ~ +/2logn.

If1<p<2,|-|,is n'/P~2 Lipschitz and an argument along the same lines
yields

(7.21) (X —EX)F|r, <n/P~Ry/ple.

Combining this with (7.19) shows that E X = 0(n'/?) for 1 < p < 2, whence (7.18)
for that range of p readily follows. O

While the above argument relies heavily on tools specific to the Gaussian case,
most of its elements can be carried over to a much more general setting. An example
of a more robust calculation is givéniin Exercise

REMARK 7.33 (Sharpness of Theorem. It can be shown that the estimates
for the dimension of nearly Euclidean subspaces implied by Theorem [7.31] are sharp
in the following sense: for 2 < p < oo, if some k-dimensional subspace E c R"™ is
such that dpy (B 0 E:-B5) < 2, then k < Cpn?/?, where C is an absolute constant

(see Exercise [7.19)):

REMARK-7.34 (Euclidean sections of £). The case of 7 deserves a special
mention sincelalmost FEuclidean subspaces of 7 are closely related to e-nets in the
unit Euelidean sphere. It is easily checked (see Exercise that the following
two statements are equivalent
(i) “There is a k-dimensional subspace E = R" such that dpys(BY, B2 nE) < 1+e.
(i) There exist n points z1, ..., z, in S¥~! such that

(7.22) (1+¢)7'B c conv{taz; : 1<i<n}.

Moreover, is also equivalent to (+x;) being a f-net in (S*~!, g) with cosf =
(1 +¢)~! (Exercise [5.7). Since the smallest cardinality of such a net is essentially
of order V(0)~! (Corollary , it follows from Proposition that the largest
dimension of a (1 + ¢)-Euclidean subspace in £7 is O(log(n)/log(1/¢)).

The Dvoretzky dimension of ¢7 is of order n, and consequently (by Theorem
, for 0 < € < 1, a typical subspace of dimension ce?n of £} is (1+¢)-close to the
FEuclidean space. Remarkably, this phenomenon persists even when the dimension
of the subspace approaches n. We have
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THEOREM 7.35 (see Section [7.2.6.2). Let 0 < « < 1. With large probability,
a typical |(1 — a)n|-dimensional subspace E — R™ has the property that for every
reF,

(7.23) Ae)""Wnla| < =1 < /nlal,
where A(a) is a constant depending only on c.

For a more general result in this direction, see Theorem [7.42

REMARK 7.36. (i) The optimal dependence as « tends to 0 in Theorem [7:35
is A(a) = ©((log(2/a)/a)'/?). The upper bound will be shown in Section [7.2:6.2

where the Theorem is proved; see Exercise [7.10] for a slightly weaker lower-bound.
An alternative approach to Theorem m (with a simpler proof, but~werse.depen-
dence on ) is via Theorem[7.42] (ii) In the context of Theorem the.parameter
A is often called the distortion (of the ¢;-norm over E). However, an”alternative
(and arguably better, see Section definition of the distortion of a subspace
E < R” is the ratio between the maximum and the minintum-of the function |z|
over S"~1 ~ E. This is because for A < 4/m/2 the inequality [¥|; > A~'y/n|z| may
hold for all « € F only if dim E is small (depending on.4) [SW].

EXERCISE 7.16 (Simple lower bound on ¢; distortion). Let a € (0,1] and let
E < R™ be a subspace such that the inequality |z[f = a+/n|z| is satisfied for all
x € E. Show that the codimension of F is at-least a?n — 1. (This is elementary.)
Conclude that the optimal A(«) in Theorem satisfies A(a) = Q(1/y/a).

EXERCISE 7.17 (p-norms of subgaussian vectors). Let (Y1,...,Y,) be inde-
pendent random variables satisfying [Y;[y, < A for some A > 0. Denote Y =
(Y1,...,Y,). Show that E|Y|, < A4,/pn/? for 1 < p < +o0 and that E Y|, <
CAy/logn.

EXERCISE 7.18 (Optimal almost spherical sections of the cube). Show the
equivalence (i) <= (ii) in Remark [7.34]

EXERCISE 7.19 (Sharpness of Dvoretzky-Milman theorem for Bj). We show
here that for'2 < p < o0, if some k-dimensional subspace E < R™ is such that
dpm (B} n E3BY) < 2, then k < Cpn?/P, where C is an absolute constant. (i)
Prove that ky(7'(B)))) < Cpn?? for any T € GL(n,R). (ii) Conclude using Exercise
10

EXERCISE 7.20 (Isomorphic vs. almost isometric Euclidean subspaces). Given

0.<)¢ < 1 and n large enough, here is an example of a norm | - | on R™ such that
|-]<| ]| <2|-]|, while if E € R™ is a subspace such that (for some A)

(7.24) Vee E, Alx|<|z| < (1+¢)A|z|

then necessarily dim £ = O(?n). We define the norm as |- | = |- |+ - |,, where

p € [2,4] is given by the relation n'/P~/2 = 2¢ (this is possible for n large enough).
Suppose that a subspace E satisfies .

(i) Show that A = 1+ ¢/2 and that eA < 4(A —1).

(i) Show that for every x € E, we have B|z| < |z|, < 5B|z| with B =A — 1.

(iil) Using the result of Exercise conclude that dim E < Ce?n for some absolute
constant C.
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EXERCISE 7.21. Fix integers m,n > 1 and consider the convex body obtained
as the ¢;-sum of m copies of B

K={(x1,...,xm) € R™)™ : |z1| + -+ |zm| <1}
Show that k4 (K) = cnm for some absolute constant ¢ > 0.

EXERCISE 7.22. Show that for every € > 0, there is a polytope P with at most
exp(Cn/e?) vertices and at most exp(Cn/e?) facets, such that (1—¢)By < P < BY.

7.2.4.2. Schatten norms. We now consider the Schatten p-norms, for p € [1, w0}
Recall that Sp™ is the corresponding unit ball in the space of (real of complex)
m x n matrices, and S)»** is its analogue for the space of (real of complex).self-
adjoint n x n matrices. Also recall (see Corollary that (S;"")2 =.97"™ and
(Sps*)° = Sisa where g € [1,0] is defined by p~' +¢7! = 1.

THEOREM 7.37 (Dvoretzky dimension for Schatten norms).<Consider two in-
tegers m < n, and p € [1,0]. The Dvoretzky dimension of. Sy " satisfies

mn ifl<p<2,
<00.

m2Pn if2<p

ke (STM) {

Moreover, in the case m = n, the same estimates are true for ky(S;*).

REMARK 7.38. We emphasize again that.the constants implicit in the ~ no-
tation are absolute and do not depend_on pymi, n. Moreover, the proof allows to
describe the precise asymptotic behavior of k,(S;"") and ky(S}°*) (i.e., relations
“~” in place of “~” with reasonably explicit constants), see Exercise

PrROOF. We focus primarily~on-the real case, the complex case being similar.
Let g € [1, 0] be such that 1/p+17/¢'= 1. We have (see Definition [7.18])
Ky (S6™) = nminrad (S)") 2w (S7™)2.

Accordingly, the Theorem will follow from the estimates

)

m2=r if1<p<2
<

1 if2<p

inrad(S,"") = {
0

and
(7.25) E HA”[) _ ’LU(S(T’”) _ @(ml/p*1/2)’

where A is a random matrix uniformly distributed on the Hilbert—Schmidt unit
sphere in M,,, ,,. The inradius is the same as in the commutative case: we are just
comparing the ¢,-norm and the fo-norm of the sequence of singular values of a

matrix (see ((1.29)); the comparison is formalized in (1.31))). In turn, (7.25) will be

obtained by combining well-known properties of random matrices with the relation
(A.7) between the spherical and the Gaussian mean. To that end, we note first
that once we show the following one-sided bounds for the extreme values of p

(i) E|A|, <m™ Y2 and (i) E|A|; = m'/?,

the remaining cases will follow by appealing again to the inequalities (|1.31]) relating
different Schatten p-norms

m P <y < PP oo
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Next, we know from the duality (S7"")° = Sio”" and from Exercise that
w(SMMw(SE") = 1,

so that (ii) follows from (i) with ¢ = 1/C. Finally, to justify (i), introduce a standard
Gaussian vector B in M,, ,,, so that E |A|s = &}, E|B|s (in the complex case
replace Ky, by H%n). Note that the random matrix W = BB is a Wishart matrix,
allowing to use the results from Section We know (see Proposition for
the complex case and Corollary for the real case) that E |B|, < /m + 4/n,
Since Ky, ~ y/mn, this shows (i), completes the proof of and, consequently;
of the part of the Theorem concerning ki (S;"").

The self-adjoint version can be treated exactly the same way, using estimates
on the norm of GOE/GUE matrices (Proposition; recall that the GOE (resp.,
GUE) is essentially the standard Gaussian vector in the space of real\symmetric
(resp., complex self-adjoint) matrices. O

EXERCISE 7.23 (Sharp bounds for mean widths of Schatten‘balls). We consider
either the real or the complex case. (i) Fix p € [1,00] and, let m, s tend to infinity
in such a way that lim & = A € [1,00). Show that the quantity E||A[, = w(S;**)
appearing in is equivalent to a, A\"1/2n1/P~1/2 where oy, is defined by ob =
§ |z|P/? dpp(ny(z) for 1 < p < 00, and ag = 1+ VAX. (One can check that the
product a,A\~'/? is bounded away from 0 and #o0.) (ii) Fix p € [1,0]. Show that,
as n tends to infinity, the quantity w(Sp«**) is\equivalent to Bpnl/p_l/Q, where (3,
is defined by g7 = 82_2 |z|P dusc(x) for T<p< o0, and Sy = 2.

EXERCISE 7.24 (Uniformly bounded volume ratio for Schatten balls, 1 < p < 2).
Using the (reverse) Santalo inequality, ‘show that for m < n and 1 < p < o0,

em/?71P < viad(S,"") < w(S)"") < Cm!/?=p,

Deduce that the convex bodies S;™" have a (uniformly) bounded volume ratio if
1 <p < 2. (See Section||7.2.6.1] for the definition.)

EXERCISE 7.25, (Sharpness of Dvoretzky—Milman theorem for Schatten spaces).
Let m < n be integers, let p € [1, 0], and suppose that E < M,,, ,, is a k-dimensional
subspace suchythat dpp(E N S;”’”,Bg) < 2. The goal of this exercise is to show
that

(7.26) k< Cha(SI™),

where C' is an absolute constant. This shows that, for isomorphically Euclidean sec-
tions, the Dvoretzky dimension gives a sharp bound. (Note, however, the hypothesis
dpm(E n S, B%) < 1+ ¢ does not imply that k < 052]6*(5;”’”); exploiting this
“room for improvement” will be crucial in Chapter |8 see Remark ) Note that
holds trivially when 1 < p < 2.

(i) Show that there is a constant Cp and a polytope P with at most C;**" vertices
such that P < S7"" < 2P.

(ii) Using (i) and Remark show that holds when p = co.

(iii) Assume now that 2 < p < o, and suppose that dpy (E n Sp", BY) <
Show that ky(E n S5™) = ck/n*?, and (using the previous question) that k
Cky(SpH™).

2.
<
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7.2.5. Dvoretzky’s theorem for general convex bodies. A famous con-
sequence of the Dvoretzky—Milman theorem is the fact that any convex body of
sufficiently large dimension admits almost Euclidean sections (see Corollary
below). It is based on the fact that n-dimensional convex bodies, which are in John
position, have Dvoretzky dimensions that are Q(logn).

PrROPOSITION 7.39. Let K < R" be a convex body in John position. Then
the Duvoretzky dimension of K satisfies ky«(K) = clogn for some absolute constant
c>0.

COROLLARY 7.40 (Dvoretzky’s theorem). There is a constant ¢ > 0 such that
the following holds. Let K be a symmetric convex body in R™ (for some n e\N)-and
let € > 0. Then there exists a subspace E — R™ of dimension at least'ce*logn such
that

dy(K nE,BY) <1+-¢,

where BY is the Euclidean unit ball in E.
If K is a non-symmetric convex body, the same conclusion holds for some k-
dimensional affine subspace E and the corresponding notion-of the distance.

Proor or COROLLARY [Z.40l If K is in John position, the conclusion follows
immediately from Proposition [7.39] and Theorem For a general convex body
K < R", we know from Proposition [£.7]that thete is a linear map T such that TK is
in John position. Therefore there exists assubspace E with dimension ce? log n such
that dy(T(K) n E,B¥) <1+ ¢. It follows.that there is an ellipsoid & = T-1(E)
such that

EcKnEc(l+¢)8.

We now use the result from Exercise to conclude that & can be replaced
by a multiple of the Euclidean ball if we replace E by a subspace F' < E with
dim F = [ dim E].

Finally, the same arguments works for non-symmetric convex bodies, except
that the subspace FE is affine. [

The key estimate needed for the proof of Proposition is the following
lemma, known as the Dvoretzky-Rogers lemma.

LEMMA~7.41 (Dvoretzky—Rogers lemma). Let K < R™ be a convex body which
is in John position. Then there exists an orthonormal basis (xx)1<k<n Such that,

for any 1T < k <n,
|kl = v/ E/n.

PRrROOF. The Lemma is a consequence of the following claim: under the hy-
potheses of the Lemma, any m-dimensional subspace F' < R™ contains a vector x
with |z| = 1 and |z||x = 4/m/n. Indeed, we construct successively x,,...,z; and
obtain x by applying the claim to the subspace orthogonal to {z; : i > k}.

To prove the claim, consider a resolution of identity (c;, x;) given by Proposition
[A77 Recall that x; € 0K n B} are contact points, in particular it follows that K
is contained in each half-space {(:,z;) < 1}, or that || - |x = {:,x;). Given an
m-~dimensional subspace F' < R”, we have

PF = ZCZPF|1'1><$1|
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Taking the trace gives m = > ¢;|Prpx;|?. Since Y c¢; = n, there exists an index j
with |Ppax;| = 1/m/n. Let © = Ppz;/|Pra;|. We have

|zl & = <z, x;) = [Pra;| = +/m/n. O
We can now complete the proof of Proposition

Proor or PROPOSITION [7.39l Let K be a convex body in John position, and
let X be a random vector uniformly distributed on S™~!. Since inrad(K) = 1, it
suffices to prove in view of Definition that

E|X|k = cv/logn/n.
for some constant c.

We know from Lemma that there exists an orthonormal family of n/4
vectors (z;) with ||z;|x > 1/2. In particular, we have | - || x > § max{¢, z;) : 1<
i < n/4}. Consequently, if G denotes a standard Gaussian vector<in R™, then

1 1
E|X|xk = —E|G|xk = — Emax{{G,z;) : I'<H<n/4}.
Kn 2K,

The random variables (G, z;) are i.i.d. standard normalvariables, and therefore the
expectation of their maximum is of order +/logn by (Lemma as needed. O

EXERCISE 7.26 (Complex version of Dvoretzky’s theorem). Check that Corol-
lary remains valid for a circled convex body-K < C™.

EXERCISE 7.27 (Simultaneous spherical sections for a set and its polar). (i)
Show that the following holds for some constant ¢ > 0: for every symmetric convex
body K < R"™ there is a k-dimensional subspace F < R" with k = clogn such
that both K n E and PgK (or, equivalently, K° n E) are 2-Euclidean. (ii) Can we
choose a position of K such that\the conclusion is valid for most subspaces E?

7.2.6. Related results.
7.2.6.1. Volume ratio.)Define the volume ratio of a convex body K < R" as

w09~ (i)

The quantity (ve(K) is an affine invariant. Consequently, if K = By, it makes
sense to denote vr(X) = vr(K). Examples of convex bodies with “bounded volume
ratio” (i.e), bounded by a dimension-independent constant) include By, Spv™ and
Sps*for 1 < p < 2. For By, this is a consequence of the computations from
Section m (Table Exercises and For the Schatten spaces, the
boundedness follows from the proof of Theorem (see also Exercise [7.24). The
following theorem asserts that bodies (resp., spaces) with bounded volume ratio
always have nearly Euclidean sections (resp., subspaces) of proportional dimension,
for arbitrary proportion « € (0, 1).

THEOREM 7.42 (not proved here). Let K < R™ a convex body in John position

and denote A = vr(K). Let E ¢ R™ be a random k-dimensional subspace. Then,

with probability larger than 1 —e™",
B c KnEc (CA)"*BE,

where C is an absolute constant.
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In general, the bounded volume ratio property is inherited by subspaces only if
the dimension of the space and that of the subspace are comparable (Exercise.
However, all subspaces of the classical and non-commutative Ly-spaces alluded to
above do have uniformly bounded volume ratio. This is due to the fact that they
possess the so-called cotype 2 property, which is clearly inherited by subspaces and
which is known to imply the bounded volume ratio (see Notes and Remarks).

An important instance of Theorem [7.42]is the following striking fact.

COROLLARY 7.43 (see Exercise|7.29). Let n = 2k; there exist Ey, Eo < R™ with
dim F; = dim Ey = k and E; L Ey such that

(7.27) ce| <n Vx|, < |z| for xeE; i=1,2,

where ¢ > 0 is a universal constant. Similarly, if n = 3k, there. exist\mutually
orthogonal k-dimensional subspaces E, Ea, E5 such that the bounds-from (7.27))
hold for x € E; + Ej, for any {i,7} < {1,2,3}.

The property expressed by (7.27) is usually referred to“as*the Kashin decompo-
sition of 1. Another statement closely related to Theorer [7542]is the following.

THEOREM 7.44 (not proved here). Let K < R™ a_convex body in John position
and denote A = vr(K). There is an orthogonal transformation U € O(n) such that
KnUK c 8A%Bj.

EXERCISE 7.28 (Volume ratio of subspaces). (a) Let K < R"™ be a symmetric
convex body and E < R™ be a k-dimensional subspace. Show that vi(K n F) <
(Cvr(K ))"/ ¥ (b) Give examples of symmetric convex bodies K = R" and sub-
spaces E < R™ such that the ratio vr(K n E)/vr(K) is arbitrarily large.

EXERCISE 7.29 (Kashin decomposition via volume ratio). (i) Derive Corollary
from Theorem [7.35] (ii).Show that the assertion of Corollary holds for
spaces X with uniform bound on their volume ratios (i.e., with constant ¢ depending
only on vr(X)).

EXERCISE 7.30_ (A dual Kashin decomposition). Show that, for any n € N, there
is an orthogohal transformation U € O(n) such that ¢y/nBY < conv(B%,UBL),
where ¢ > 0 is,an-absolute constant. Note that we always have conv(Bl,UB%}) <

\/nBg.

7.26.2." The low-M* estimate and the proof of Theorem[7.58, Let K = R™ be a
symmnietric convex body. The argument from Exercise[7.12] shows that sections of K
of dimension larger than k,(K) cannot be isomorphically Euclidean. Remarkably,
“one half” of the estimates persists: an avatar of the lower bound remains
valid for subspaces of proportional dimension.

THEOREM 7.45 (Low-M* estimate). Let K be either a convex body in R™ con-
taining 0 in the interior or a circled convex body in C", and M* = w(K). Let
0<a<1andk=n(l—a). Then, with probability larger than 1 — exp(—can), a
random k-dimensional subspace E satisfies

ca

(7.28) Vx e E, |z] < ||l=) x

where ¢ > 0 is an absolute constant.
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If we denote (as in Theorem [7.19) w(K°) by M, we recall that MM* > 1 (see
Exercise |4.37)), so that the lower bound in (7.28) is always worse than the lower
712)

bound in ( However, when a good upper bound on the product MM* is
present (which is always the case for some choice of the Euclidean structure, see
Theorem [7.10), both estimates become comparable.

PROOF. We give a proof (valid only in the real case) based on Proposition[6.42]
Consider L = S"" 1 ntK for t > 0 to be chosen later. We have wg(L) < wg(tK) =
twe(K) = tk,M*. We now chose t such that tk,M* = %/{n_k; this implies
t = cy/a/My for some ¢ > 0 because K, ~ +/m. Proposition implies then
that, with high probability, a random subspace E € Gr(k,R™) does not intersect L.
This is equivalent to the fact that the inequality | - |x > ¢| - | holds on E. O

PROOF OF THEOREM [Z.35] We argue as in the proof of Theorem [7.45specified
to K = BT, the only modification comes in upper-bounding wg{(L)> Denote L =
BY ntB} (t € [1,4/n] to be chosen later), then clearly

wg (L) < wg(L).

(We actually have equality since L = conv L; this is afairly easy consequence of the
fact that no extreme point of ¢tBY lies inside BY.)*Next, L° = conv (BS ) t’lB?O)

by (L.15)) and so we have

- 2
wa(L°) = we(t™*BL). =11 x —n,

see Table and Exercise for the equality. Given that L is permutationally
symmetric, it has enough symmetries and hence it is in the ¢-position (see Section

and particularly Proposition . Accordingly, Proposition applies and
shows that

we(L)we(L°) < nK(L).
Further, since L is uneonditional, it follows from Remark that

K(L) < C(1+1logd(L, By))"? = C(1 + log(t/v/n))"*.

Combining the¢ above inequalities yields

we (L) < wa(L) < C\/zt(l +log(v/n/t)) 2.

As’in'the proof of Theorem we now choose ¢ so that

20\/?(1 +log(vn/))"? = kn_ ~ van,

which can be rewritten as g(\) ~ ca~ 2, where g(x) = z(1 4+ logz) =2, A = \/n/t
and ¢ = +/2nC. Solving for A we obtain A ~ a_l/z(log(2/a))l/2, whence t =
/A ~ (a/log(2/a))/?/n, as needed. (We are using here the fact that if 5 € R is
fixed and if y = g(x) := x(1 + logz)?, then the inverse function—which is defined
for sufficiently large y—satisfies g~ (y) ~ y(1 + logy) ™% as y — 0.) O
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7.2.6.3. The quotient of a subspace theorem. It follows from Corollary [7.40] that
any convex body K < R™ admits isomorphically Euclidean sections of dimension
Q(logn). Dually, any convex body admits orthogonal projections of the same di-
mension which are isomorphically Euclidean. The bound Q(logn) cannot be im-
proved, as shown by the case of the cube (for sections) or of the ¢7 ball (for projec-
tions). However, it turns out that combining both operations leads to a surprising
phenomenon: every convex body admits a projection of a section of proportional
dimension which is isomorphically Euclidean.

THEOREM 7.46 (Quotient of a subspace theorem, not proved here). Given a
symmetric convex body K < R™ and « € (0,1), there exist subspaces E ¢ F{c R™
with dim FE = (1 — a)n such that

dpy(Pp(K n F), BimE) < Ca~'log(Ca™).

We note that an “almost isometric” version of the quotient of a‘subspace theo-
rem follows then by appealing to Remark

EXERCISE 7.31 (Quotient of a subspace = subspace of a.quotient). Show that
given a decomposition R" = E@® F @ G into orthogonal subspaces, we have, for
KcR"

(PE(-DFK) NE = PE(K N (E@G))
Conclude that the class of sections of projections of”K coincides with the class of
projections of sections of K.

EXERCISE 7.32 (Combining quotiént-and subspace operations is necessary).
Give an example of a family of convex bodies of growing dimension which has
neither sections nor projections of proportional dimension which are isomorphically
Euclidean. Therefore, in general, combining both operations is really needed for
Theorem [7.46] to be valid.

EXERCISE 7.33 (Quotient of a subspace implies reverse Santald). We show here
how to derive the reverse-Santal6 inequality from the quotient of a subspace theorem
(Theorem. Let K =R" be a symmetric convex body, and R" = E1® Fy ® F3
be an orthogonal decomposition. Let n; = dim E;. Denote K1 = Pg, (K n (E1 @
Ey)), Ky = K.n E3, and K3 = Pg,K; these are convex bodies in, respectively
El,EQ, and Eg.

(i) Check.by.applying Lemma twice that vol(K) > 2+ vol(K71) vol(K3) vol(K3)
and vol(K) > 2 vol(K?) vol(K3) vol(K3).

(ii) Given convex body L < R¥, define (L) = vrad(L)vrad(L°). Show that, for
some, constant ¢, a(K)" = ¢"a(K;)™ a(K)"2a(K3)"s.

(iit) By Theorem we may assume that ny = n/2; and that K; is A-Euclidean
for some absolute constant A. Show that a(K;) = A~ If By denotes the infimum
of a(K) over all symmetric convex bodies of dimension at most N, conclude that

By = ?/A.

7.2.6.4. Approximation of zonoids by zonotopes. We first state a reformulation
of Dvoretzky’s theorem for ¢7.

THEOREM 7.47 (see Exercise [7.34). For any n € N, € > 0, there exists an
integer N < Cn/e? and vectors x1,...,xn € R™ such that Z < BY < (1 +¢)Z,
where Z denotes the zonotope

(729) Z = [—$1,$1] + -+ [—SL’N,.’EN].
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It is natural to ask whether a version of Theorem [7.47]holds when the Euclidean
ball is replaced by an arbitrary zonoid. The best result in this direction is the
following.

THEOREM 7.48 (not proved here). For any 0-symmetric zonoid Y < R™ and
e > 0, there ewists an integer N < Cnlog(n)/e? and vectors x1,...,xy € R™ such
that Z 'Y < (1 +¢€)Z, where Z denotes the zonotope . Moreover, we can
ensure that supp uz < supp py, where the measures vy, uz are defined in .

EXERCISE 7.34 (Approximating balls by zonotopes via Dvoretzky’s theorenr)s
Prove Theorem [7.47| using the fact that the Dvoretzky dimension of B} is of order
n (Theorem [7.31)).

7.2.6.5. The Johnson—Lindenstrauss lemma.

THEOREM 7.49 (Johnson—Lindenstrauss lemma). Let A be afinite subset of
R, m = card A, and ¢ € (0,1). If k > 4e=2logm, there exists’a linear map
f:R™ > R such that, for every z,y € A,

(7.30) (1 —g)lz —y[ < [f(x) = FW) < (1 +&)|l2—wl.

PROOF. We show that a random choice for f satisfies with high prob-
ability. Let B : R® — R* be a random matrix>with i.i.d. N(0,1) entries. For
every unit vector u € R", Bu is a standard Gaussian’vector in R*, and the random
variable |Bu| follows the x?(k) distribution, -Denoting by M? the median of the
x2(k) distribution, it follows from Theorem that for any ¢ > 0,

P (||Bu| — My| >'t) < exp(—t*/2).

Define f as ﬁk B. Given,z,y €.A, we apply he above inequality for u =
(x —y)/lx — y| and t = e M}, to_obtain

P (|[f(z) = fhole = yl| > el — yl) < exp(—e*M;/2).

We now take the union bound over the (7;) < m?/2 pairs of points from A. It

follows that (7.30) is satisfied whenever m?/2 - exp(—e>M?/2) < 1, i.e., 2logm <
e?M?/2 + log 2. Since M? > k — 2/3 (see Exercise [5.34)), this condition is satisfied
provided k > 4e~2logm. (]

7.2.7. Constructivity. A general feature of the proofs of most of the the-
orems in ‘this chapter is a heavy use of the probabilistic method. For example,
the existence of a subspace satisfying the conclusion of Dvoretzky’s theorem or its
variants' is proved by selecting it at random according to the unitarily invariant
measure on the corresponding Grassmannian (after a suitable Euclidean structure
has been chosen) or by using random matrices. Random constructions benefit from
the blessing of dimensionality, as opposed to the curse of dimensionality, which
renders an exhaustive search (and many deterministic algorithms) nonfeasible.

However, for theoretical and practical reasons, existence results are often unsat-
isfactory. For example, to write a computer code implementing an error-correcting
algorithm one needs a specific encoding matrix. This leads to the class of prob-
lems asking for explicit versions of, or pseudo-random models for objects whose
constructions involve probabilistic arguments. By “explicit” we mean here an algo-
rithm, whose complexity is manageable (say, with running time being polynomial
in the dimension). Individual constructions are often “more explicit” than that,
they may involve, e.g., closed formulas. An alternative to an explicit solution may
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be a guarantee that we can efficiently check whether a randomly generated object
actually does the job.

When the initial setting is completely abstract, it seems unrealistic to expect
any meaningful statement. We therefore mostly concentrate on standard convex
bodies. Here is an example of a satisfactory result.

THEOREM 7.50 (Explicit quotient of a subspace theorem for the simplex, not
proved here). Given n € N, there exists a set S < R™ which is an explicit affine
image of an explicit section of the bn-dimensional simplex and which verifies

By < ScCBj.

Moreover, C can be replaced by 1+¢ fore € (0,1), if we use a simplex of dimension
= Cinlog(2/e).

Another result, for which substantial efforts has been devoted- to_derandom-
ization, is Dvoretzky’s theorem for B} (or ¢}). Recall that the<(¢1)distortion of
a subspace E < R"™ is the ratio between the maximum and, the minimum of the
function |z[; over "1 A E. We already showed, via the probabilistic method, the
existence of subspaces of proportional dimension with arbitrarily small distortion
(Theorem and the existence of subspaces of arbitrarily large proportional di-
mension with bounded distortion (Theorem . The randomness relied on the
Haar measure on Grassmann manifold, which requires an infinite amount of ran-
dom bits to be exactly simulated. However, a_careful look at the arguments shows
that the same conclusion can be derived using only O(n?) random bits.

A natural step towards explicit examples is randomness reduction: can we
match, or approach, the optimal dimension and distortion bounds using fewer ran-
dom bits? We point that constructions.using O(log n) random bits are very close to
be explicit, since we can then perform an exhaustive search among the polynomially
many possible bit strings. However, it is not clear whether the distortion of a given
subspace can be efficiently estimated; the following seems to be unknown.

PROBLEM 7.51. Is\the problem of calculating (or approzimating well enough)
the {1 -distortion of-a general subspace E = R™ NP-hard?

The best “results known to the authors and directed towards constructing ex-
plicit subspaces of ¢} (going in several different directions) are gathered in Table
One result that “doesn’t fit” in the table is the following.

THEOREM 7.52 (not proved here). GivenneN, pe (1,2) and ne (0,1), there
is an-explicitly defined subspace E — R™ of dimension (1 —n)n such that

(7.31) dy(B} " E,BY N E) < (1/77)0((2*1”)”).

In the language of this section, gives a bound on the distortion of the ¢;-norm
on the sphere of /] intersected with F.

In a different direction, we state a result which derandomizes Dvoretzky’s the-
orem (Corollary simultaneously for a wide class of convex bodies.

THEOREM 7.53 (not proved here). Given n € N and € € (0,1), there is an
explicitly defined subspace E — R™ of dimension k = clogn/log(1/e) such that the
following holds. If K < R™ is a convex body invariant under the isometry group of
the cube (i.e., permutation of coordinates and sign flips) then

dy(K nE,BF) <1+e.
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TABLE 7.1. The best known results for constructing almost-
Euclidean sections of Bf*. The parameters ¢,n,v € (0,1) are as-
sumed to be constants, although we explicitly point out when the
dependence on them is subsumed by the big-Oh or the little-oh

notation.
Reference Distortion Subspace dimension | Randomness
[Ind07] 1+e nt=ocM explicit
[GLR10] (log n)©On(logloglogn) (I—=n)n explicit
[Ind00] 1+e Q(e%/log(1/e))n O(nlog” n)
[AAMO6, LS08| 0,(1) (I=n)n O(n)
[GIWO0S| 200 (1/7) (1—n)n o)
[IS10] 1+e (v€)PW/Mp O(n")

Notes and Remarks

A recent and comprehensive reference for the material presented in this chapter
(and much more) is [JAAGM15|. Older standard and.valuable references include
[MS86, [Pis89b), T J89), [Ver].

Section Proposition is a special case of Corollary 3 in [LO99]|. If we
do not insist on obtaining the optimal constanty/7/2, the result is more elemen-
tary: it is an instance of the Gaussian version of the Khintchine-Kahane inequality,
Exercise whose proof carries over to the present context (modulo replacing
an application of Theorem 5.23 with that of Theorem 5.51) and extends to non-
symmetric convex bodies (see, e.g55-[BLPS99|, Lemma 3.3).

The K-convexity constant-is ‘more frequently defined in the literature for a
normed space Y and corresponds; on our notation, to K(By ).

Proposition [7.6]is due to-Figiel and Tomczak-Jaegermann [FTJ79] (where the
{-norm is also introduced)) whereas Theorem and the bound stated in Remark
are due to Pisier (see [Pis80, [Pis81]). The proof of Theorem that is
presented here is based on Lemma which is from [Mau03]. The bound on
the K-convexity. constant from Theorem [7.7] is sharp: there is an example due to
Bourgain [Bou&4] of a symmetric convex body K < R" (for an arbitrarily large n)
with K(KY), = Q(logn); this example is presented in detail in [AAGM15] Section
6.7]. Besides unconditional bodies, the improved bound K(K) = O(y/logn) holds
if ' R™ is, for example, a zonoid (see [Pis80|; or Theorem IV.5 in [LQO04] for a
detailed proof).

In is unknown if the M M *-estimate is sharp, i.e., whether log n can be replaced
by a smaller function in Theorem The pair (B}, BY) gives an example of a
(sequence of) symmetric convex bodies, for which w(K)w(K°) = O(y/logn), and
one may conjecture that the M M*-estimate holds (for symmetric bodies) with a
bound O(y/logn). In the non-symmetric case, the n-dimensional simplex A is an
example with w(A)w(A°) ~ logn. While it is conceivable that the M M *-estimate
holds with a bound that is polynomial in logn also for non-symmetric bodies, the
known general upper bounds in that setting are much weaker [BLPS99), [Rud00].
This question is related to the problem of determining the diameter of the Banach—
Mazur compactum of not-necessarily-symmetric convex bodies.
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Section The history around Dvoretzky’s theorem starts with a conjec-
ture by Grothendieck [Gro53b]|: does every n-dimensional normed space contain a
k(e,n)-dimensional subspace which is (1 + ¢)-Euclidean, for some function k(e, n)
tending to infinity with n? This was shown affirmatively by Dvoretzky [Dvo61],
and later refined by [Mil71] using crucially concentration of measure. Other early
proofs include [Sza74] and [Fig76].

Theorem with the dependence on ¢ as stated appears in [Gor88]| in the
real case (see Exercise[7.7)). The proof via Lemma[7.17)is from [Sch89] and it was
noticed in [ASW11] that it carries over to the complex case.

When asking about the dependence on € in Dvoretzky’s theorem, it is important
to keep in mind that there are two different questions, depending whether.we ask
if (1 + ¢)-Euclidean subspaces either (i) exist or (ii) have measure 1»—o(1) in the
Grassmann manifold equipped with the standard Haar measure.

For example, one may ask: given € > 0 and k, for which valties of n can we
guarantee that every m-dimensional symmetric convex body has“a k-dimensional
section which is (1 + ¢)-Euclidean? If we believe that the worst case is the cube, it
is natural to conjecture that this holds for n > C(k)e~(*<1/2." This conjecture is
confirmed for k = 2 (see [Mil88]). For k > 2 the problein is wide open and a good
dependence would follow from a positive answer to a weak version of the Knaster
problem, see [KS03|. In a related direction, the random version of the Dvoretzky
theorem for the cube has been studied in [SchQ7, [Tik14] and the dependence on
e in Theorem [7.19| for K = B is c(¢) = O(g/In(1/e)).

Most of the material from Sections{72.2] through [7.2.4] is based on the very
influential paper [FLM77|. The concepts,of the verticial and facial dimensions of
a convex body were formally defined in [AS17].

Exercise about the sharpness of the Dvoretzky dimension is an observation
due to Milman-Schechtman [MS97|-(see [HW16] for a sharper statement). The
paper [MS97| also introduces global versions of Dvoretzky’s theorem, of which
here is a sample: for any symmetric convex body K < R™, there is an integer
t < Ce ?n/ky(K) and Uy, ...,U; € O(n) such that the Minkowski sum Uy (K) +
<o+ Uy(K) is (1 +€)<Buclidean. For other similar results, see [AAGM15|. The
result from Exercisef7.19appears in [BDG*77] (for another proof, see [AAGM15|
Theorem 5.4.3])~ The construction from Exercise is due to Figiel.

The estimate from Exercise is relevant to [FHS13|. Theorem is
from [Ka§77|; the correct order of magnitude of the distortion constant A(«) was
determined in [GG84]; the proof of the upper bound presented in Section
follows [PTJ90]. We also refer to [FR13| Chapter 10] for a detailed presentation
focusing on applications to compressed sensing.

The Dvoretzky—Rogers lemma was first proved in [DR50]. The proof presented
comes from [Pel80]. It has been realized since [BS88| that actually a stronger
property holds: There is a function f : (0,1] — [1,00) such that, for any n-
dimensional normed space X there exist m = (1 — §)n and operators o : R™ — X,
B X — R™ verifying foa =1 and |a: €7 - X| - |5 : X — €5 < f(0). The
above is often referred to as a proportional Dwvoretzky—Rogers factorization. It is
known that f(6) = O(01) and f(§) = Q(6~/?) [Gia96, Rud97|. Variants for
nonsymmetric bodies were also shown, see [Yould]. For more information and

references see the website [|@3]|
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Regarding Proposition m it has been proved in [Bal89), [Bal91] that the
cube (resp., the simplex) has the smallest mean width among all symmetric (resp.,
non-necessarily symmetric) convex bodies in John position.

The relevance of the concept of volume ratio to Dvoretzky-like theorems was
realized in [Sza78) [ST80], which were inspired by the important work [KaS77|
that in particular established the existence of the Kashin decomposition of £} (see
Corollary . This concept is related to the notion of cotype 2. Let (g,) be a
sequence of independent variables such that P(e; = 1) = P(g; = —1) = 1/2. The
cotype 2 constant of a normed space X is the smallest number C5(X) such. that;
for every vectors x1,...,z, € X, we have
2

2 lzil? < Co(X)E
i=1

n
PIEES
i—1

The estimate vr(X) = O(C2(X)log C2(X)) connecting volume ratio,and cotype 2
was proved in [BM87, MP86]| (see [Mil87] for a simpler proof and [DS85] for an
earlier argument yielding Kashin’s decompositions under cotype 2 assumptions).
Any bound on the cotype 2 constant is obviously inherited by subspaces. For more
information about the type and cotype theory, see [Mau03]. The formulation of
Theorem appears in [Bal97].

The low-M* estimate (Theorem was proved originally by Milman with a
worse dependence on «; the proof we present is.due to Gordon [Gor88|. Another
proof giving the correct dependence, and valid)also in the complex setting, is due
to Pajor and Tomczak—Jaegermann [PT86]:~See [AAGM15]| for a presentation of
several different proofs. We also point that in some cases the upper bound in the
Dvoretzky—Milman theorem (Theorem holds for dimensions larger than the
Dvoretzky dimension: see [KVOT|.

The quotient of a subspaee ‘theorem is due to Milman |[Mil85|. The simple
argument to deduce the reverse Santalé inequality sketched in Exercise is due
to Pisier. Another related result due to Milman [Mil86]| is the reverse Brunn—
Minkowsk: inequality, which asserts the following: for any symmetric convexr body
B c R" there is avolume-preserving linear map Ts € SL(n,R) such that, if K,L
are symmetric convex bodies, then

(7.32) vol (T (K) + T (L))" < C (vol(K)l/” + vol(L)l/") .

There i a‘close link with the M-ellipsoid and M-position introduced in , since
is easily seen to hold when Tk (K) and T7,(L) admit multiples of Euclidean
ballssas M -ellipsoids.

The results from AGA are classically presented in the real setting, but typically
remain valid for complex spaces (or circled convex bodies) as well. This is the case
for Theorems [7.42] [7.45] and [7.46] Often the proofs can be translated verbatim,
with the notable exception of the Chevet—Gordon inequalities, for which no complex
analogue is known. We also note that Pisier [Pis89al obtained a proof of
via interpolation which works primarily in the complex setting (see Chapter 7 in
[Pis89Db]).

The theme of the approximation of zonoids by zonotopes with few summands
attracted attention in the late 80’s. The best result (Theorem is due to
Talagrand [Tal90] and improves on [Sch87, [BLMS89|. It is an open question
whether Theorem [7.48| holds without the factor logn, i.e., with N < C(e)n.
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The Johnson-Lindenstrauss lemma appeared in [JL84|. It was announced in
[LN16] that the dependence on € in the version presented here is optimal.

Theorem [7.50]is due to Ben-Tal and Nemirovski [BTNO1D]; see also [KTJ09].
Problem [7.51] appears to be folklore. Analogous question for a vaguely similar re-
stricted invertibility property (RIP), important in the theory of compressed sensing,
was answered in the affirmative, see [BDMS13]. Table [7.1] comes from [IS10].

Theorem is a special case of a result from [Kar11], which deals with the
distortion of the ¢,-norm on the sphere of £} for any 0 < < p < 2. Theorem
is from [Freld]|, which contains also a version of the Theorem for convex bodies
that are only assumed to be invariant under permutation of coordinates.
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CHAPTER 8

Entanglement of Pure States in High Dimensions

Throughout this chapter, we consider a multipartite Hilbert space
H=C"® - -@Ch
and study the entanglement of pure states on H. We will always assume'that k > 2
and that dy,...,dx = 2.

We identify pure states on H with elements of P(?), the projective space on
H. The set of product vectors forms the Segré variety Seg. & P(H) (see in
Appendix . A simple remark, on which we will elaborate, is that most pure
states are entangled. Indeed, since the variety Seg <(P(H) has lower dimension
and measure zero, it follows that a randomly chosén—in any reasonable sense—
pure state in ‘H is almost surely entangled.

A problem which turns out to be fundamental to several constructions in QIT
is to show the existence of large-dimensional subspaces of H, in which every unit
vector corresponds to an entangled pure-state. There are several variations on
this question. We may consider the qualitative version of the problem, where we
require the subspace simply to contain no nonzero product vector (see Theorem
. Alternatively, we may insist that the subspace contains only very entangled
vectors, once it is specified how to ‘quantify entanglement; for pure states this may
be done via the von Neumann\or Rényi entropy of the partial trace.

The versions of Dveretzky’s theorem that were discussed in Section [7.2] are
obviously relevant to such questions, since they show the existence of large subspaces
on which a given function is almost constant. This approach allows us to give
a complete presentation of Hastings’s counterexample to the additivity problem
(Section [8.4.4).

Much of our exposition will be focused on detailed study of the bipartite case
H = CF®C? (we will always assume that k < d). One reason for such emphasis
is the faet’/that subspaces of a bipartite Hilbert space can provide a convenient de-
scription of quantum channels through the Stinespring representation, as we explain
in_Section [B:2.2] Fine aspects of pure state entanglement in multipartite systems
are dealt with in the last part of the chapter (Section [8.5)).

8.1. Entangled subspaces: qualitative approach

Let H = Ch @ C%. A fundamental qualitative question we may ask about
entangled subspaces is: “What is the maximal dimension of a subspace of H in
which every unit vector corresponds to an entangled pure state?” The answer to
this question is (d; — 1)(d2 — 1), as shown by the following theorem, which also
settles the multipartite case.

THEOREM 8.1. Let H = CH ® --- @ C¥*, and let ng = dy--odi —(dy+ -+
di) +k—1. Then
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(1) If m > ng, then any m-dimensional subspace of H contains a (nonzero)
product vector.

(2) If m < ng, a generic m-dimensional subspace of H contains no (nonzero)
product vector.

PROOF. We only give an argument for the second part of the Theorem (the
first assertion can be proved via the projective dimension theorem from algebraic
geometry). The proof is based on dimension counting, and we find it instructive
to give a “probabilistic” version of dimension counting, which naturally fits in the
general framework of this book. For simplicity, we only consider the case” H\=
C?® C? (so that ng = (d — 1)?), the general case being similar.

We work in the projective space P(H), which we equip with the distance.given
by . The ball of center ¢ and radius r is denoted by B(¢,r). Weluse bounds
on the size of e-nets in P(H) and the measure of e-balls from Theorem (and
Exercise the more elementary results from Section [5.1.2] would actually suffice,
cf. Exercise and ) In this proof, as opposed to most material in this book,
the dependence of constants on the dimension is allowed, andwe will denote by
C,C" etc. positive constants which may depend on d and m; but are independent
of the parameter ¢.

Let F' be a random m-dimensional subspace of H, chosen with respect to the
Haar measure on the Grassmann manifold. More ‘concretely, we may realize F
as F' = U(Fp), where Fy is any fixed m-dimensional subspace, and U is a Haar-
distributed unitary matrix. Denote also Seg & P(#) the set of product vectors (the
Segré variety).

We are going to show that the event Seg nF' = (& has probability 1. Given
e > 0, let M. be an e-net inside the projective space P(Fp) with card(M.) <
(C'/e)?>™=2. Next, let N. be an e-net inside P(C?) with card(NV.) < (C'/e)?42.
One checks that N®? = {z @y > x,y € N.} is a 2e-net inside Seg. We use the
union bound in the following way

P(SegnF + gy )< P U B(cp,2£)mU< U B(t/),a)) #
peND? weM.
< Y, P(B(p2e) nU(B(,e)) # )
PeNE? eM.
< Y, Pdp,Uy) < 3e).
PeNE? e M.

The quantity P(d(¢, U) < 3e) does not depend on the particular points ¢, €
P(H), and is equal to the normalized measure of a ball of radius 3¢ in P(H), which

is bounded from above by (C”Q-:)de*2 (or see Exercise for the exact value).
Consequently,

P(Seg nU(Fy) # &) < card(N®?) card(./\/lg)(C’"&:)zdk2
< C€2d2727(2m72)72(2d72)'

Provided m < (d — 1)?, the last quantity tends to 0 as e tends to 0. This shows
that the event {F intersects Seg} has probability 0, so that F' contains no nonzero
product vector. ([l
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EXERCISE 8.1 (Universal entanglers). Show that whenever d > 4, a generic

unitary matrix U € U(d?) has the property that for every product unit vector
Y e Cr®CY Ulp)p|UT is entangled.

8.2. Entropies of entanglement and additivity questions

8.2.1. Quantifying entanglement for pure states. The most common way
to quantify the entanglement of a bipartite pure state is to use the entropy of
entanglement (for operational meanings of the entropy of entanglement, we refer to
Notes and Remarks).

Let ¢ € C*F®C? be a unit vector. The entropy of entanglement of 1, denoted by
E(v), is defined as the von Neumann entropy of the reduced matrix p = Trga e 1|

(8.1) E()) = S(p) = —=Trplogp.

Both parties play a symmetric role since the two reduced matriees Trea |1){1)|
and Trer [10)(1| have the same von Neumann entropy (in the matrix formalism, a
consequence of the fact that MM and MTM have the same nonzero eigenvalues
for M € My q). If ¢ = > X\i; ® x; is a Schmidt decomposition of v, then

(8.2) E®) = —Z)\? log \? = —22)\? log A;.
For any p € [0, ], we introduce the p-entropy of entanglement, defined as
(8.3) Ey(¢) = Sptp)s

where p = Trca [)(3| and S, is the p*Rényi entropy introduced in Section
Recall that the case p = 1 corresponds to the von Neumann entropy, i.e., E1(¢) =
E(v) (as given by ) The limit cases p = 0 and p = o0 should be interpreted
as Fo(v) = logrank(y) and Ey(¢)= —2logmax A1, where rank ¢ is the Schmidt
rank of ¥ and )\, its largest Schmidt-coefficient.

Rényi entropies for p > 1 are easier to manipulate since they are closely related
to Schatten norms. If we identify a vector ¢ € C¥ ® C? with a matrix M € My, 4 as
explained in Section we obtain (see (2.12)))

(8.4) lol, = 1M13,
and therefore
P 2p
(55) 5,(¥) = 72 1og ol = 12108 | M.

In all-this chapter we assume that k < d, and therefore (for any p € [0, 0]) the
p-entropy of entanglement varies between 0 and logk. Moreover, a pure state
satisfies E,(¢0) = 0 if and only if it is a product vector, and satisfies E, (1)) = log k
if and only if it is a maximally entangled vector.

These definitions make sense only in the bipartite case, as they rely on the
Schmidt decomposition of a bipartite pure state, which has no canonical analogue
for the multipartite case. The limit case p = oo is different: F, depends only on
the largest Schmidt coefficient, which can be defined in a multipartite system as
the maximal modulus of inner product (or the maximal overlap) with a product
vector (cf. (2.13))). We elaborate on this in Section

One of the goals of this chapter is to find subspaces W < C*F ® C? which are
very entangled, in the sense that the quantity E(1) (or E,()) has a uniform lower
bound over all unit vectors ¢ € W.
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8.2.2. Channels as subspaces. A crucial insight allowing to relate analysis
of quantum channels to high-dimensional convex geometry is the observation that
there is an essentially one-to-one correspondence between channels and linear sub-
spaces of composite Hilbert spaces. Specifically, let W be a subspace of CF @ C¢
of dimension m. Then ® : B(W) — My, defined by ®(p) = Trca(p) is a quantum
channel. Alternatively, and perhaps more properly, we could identify W with C™
via an isometry V : C™ — CF ® C? whose range is YW and define, for p € M,,, the
corresponding channel ® : M,,, — My by

(8.6) O(p) = Trca(VpV'T).

There is no restriction in considering quantum channels of the form :
by Stinespring representation theorem (Theorem , any quantum channel ® :
M,, — M can be represented via for some subspace W < CF'® C?, with
d=km.

It is now easy to define a natural family of random quantum channels. They will
be associated, via the above scheme, to random m-dimensional'subspaces W of CF®
C?, distributed according to the Haar measure on the cotresponding Grassmann
manifold (for some fixed positive integers m, d, k that will be specified later). Note
that most interesting parameters of a channel defined> by (8.6) depend only on
the subspace W = V(C™) and not on a particular.choice of the isometry V (see,
e.g., Lemma . In this sense, the language of “random m-dimensional subspaces
of C¥ ® C*?” is equivalent to that of “random isometries from C™ to CF @ C%)
with the corresponding mathematical objects being, respectively, the closely related
Grassmann manifolds and Stiefel manifolds (see Appendix .

8.2.3. Minimal output entropy and additivity problems. Given a quan-
tum channel ® : M,,, — My, we-define its minimum output entropy as

(8.7) SU@)E SP@) = min S(®(p).

as well as the p-entropy ‘variant for p > 0,

Sy (@) = ein Sp(2(p))-

The following lemma shows that, for channels defined via , the minimum output
entropy depends only on the range of the isometry V.

LEMMA 8.2. Let ® : M,,, — My a random channel, obtained by from a
Haar-distributed isometry V : C™ — C* @ C. Then, for any 0 < p < o0,

min P) = :
SO = il B

where W < CF ® C? is the range of V.

PROOF. Since the function S, is concave (see Section , the minimum is
achieved on a pure state (pure states are extreme points of D(C™)). Consequently,

Spn(®) = min S,(@(@Xe)) = min  S,(Trca )W)

and the result follows. O
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For some time, an important open problem in quantum information theory was
to decide whether the quantity S™" is additive, i.e., whether every pair (®, ¥) of
quantum channels satisfies

(8.8) MNP R W) £ M) 4+ 5™ ().

The problem admits several equivalent formulations with operational meaning,
notably whether entangled inputs can increase the capacity of a quantum channel
to transmit classical information. (Note that the inequality “<” in always
holds and is easy, see Exercise [8.2])

A similar question can be asked for the quantities S;nin, the motivation being
that a positive answer to the p > 1 question would have implied a positivesanswer
to the (arguably more important) p = 1 problem. However, it turns out that all
these equalities are do not hold, at least for sufficiently large dimensions.

THEOREM 8.3. For any p = 1, there exist quantum channels'®, ¥ such that
(8.9) S @ @ W) < SE(@) + S (D).

Theorem will be a consequence of Proposition (for p > 1) and Proposi-
tion (for p=1).

EXERCISE 8.2 (S)"" is always subadditive). Show that the inequality Sy (®®
W) < S (@) + S (W) is satisfied for any channels ®, ¥ and any p > 0.

EXERCISE 8.3 (Reduction of the additivity problem to the case ® = ¥). A trick
based on direct sums (as defined in ) allows a reduction to the case ® = ¥ in
questions such as .

(i) Given quantum channels ®, ¥, show that Sy (@) = min(S;™(®), Sy (¥)).
(ii) Assume that there is a pairofichannels ®, ¥ such that holds for some p.
Deduce formally the existence,of a channel Z such that SP'"(E2® E) < 255" (2).

8.2.4. On the 1 — p norm of quantum channels. The p > 1 version of the
additivity problem has-a nice functional-analytic interpretation. If p > 1 and p is a
state, then Sy (p) = 7% log | o[, and so the study of Smin(®) is replaced by that of

max{[|®(p)|, pe€D(C™)}, or the mazimum output p-norm. The latter quantity

equals [|®[|;pni€., the norm of ® as an operator from (M3, |- 1) to (M52, | - |,).
Therefore is equivalent to
(8.10) @@ T]1mp > [@f1pW1sp-

A remarkable fact is that for completely positive maps (and even for 2-positive
maps), the norm | - |1, is unchanged if we drop the self-adjointness constraint.

PropPOSITION 8.4. Let ® : M,,, — My, be a 2-positive map, and p = 1. Then

(8.11) sup [ (X)[, = sup  [@(X)],
XeMy [ X[ =1 XeMs [ X[ =1

We first show the following fact

LEMMA 8.5. If A, B,C € My, are such that the block matric M = [;T g} 18

positive semi-definite, then for every p =1, | B2 < |Al,|C]lp.
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PROOF. From the singular value decomposition, there exist unitary matrices
U,V e U(k) such that UBVT is a diagonal matrix with nonnegative diagonal entries.
Denote W = U @V € U(2k). We have

VvBiUT vevt

Since the Schatten norms are invariant under multiplication by unitaries, this shows
that to prove the Lemma it is enough to treat the case when the matrix B is diagonal
with nonnegative entries, which we consider now.

Waw! < [UAUT UBVT]

We first note that bfi < a;;cy;, which follows from the matrix [ai% b“] being

biz Cij
positive as a submatrix of M. Consequently, we have

A A i 12 1/2
IBIZ = 3 ¥ < Db dl” < <Z ) (Z cp> < |4z,
i=1 i=1 i=1 i=1
where the last inequality uses the fact that the diagonal is\niajorized by the spec-
trum (Lemma [1.14)). O

PROOF OF PROPOSITION B4l For ¢, 1) € Sgm, consider u = ¢®|1)+ 9 ®|2) €
C™ ® C?. By direct calculation

T2(el) B9
 ® Ldw, (fuyul) = [‘I>(|90><¢|) <1><|w><w|>] :

Since ® is 2-positive, the resulting matrix-is block-positive and thus, by Lemma

@7 2
[@(XeDlp < 42D, (@D, -

Taking supremum over unit vectors gives the required result (recall that extreme
points of S¢ and S%** are rank. I>operators). O

EXERCISE 8.4 (The equality (8.11]) does not hold always). Define ® : My — My
by ®(X) =X — Tr(X)% Show that for p > 1, ® fails to satisfy the equality (8.11)).
Known examples where/(8.11)) fails for p = 1 are more complicated, see [Wat05].

8.3. Concentration of E, for p > 1 and applications

8.3.1. Counterexamples to the multiplicativity problem. We first con-
sider the“case of the p-entropy of entanglement with p > 1, and show that the
Dvoretzky theorem can be used to produce counterexamples to the multiplicativity
problem as announced in Theorem

PROPOSITION 8.6. There is a constant ¢ such that the following holds. Let
p>1, and & : M,,, — Mg be a random channel, obtained by from a Haar-
distributed isometry V : C™ — CF®C?. Denote ¥ = ®, the channel obtained from
V, the complex conjugate of V. Assume that k = d and that m = cd**'/P. Then,
for d large enough, with high probability,

(8.12) [ @ Wimp > [@1-p[¥]1-p-

PRrOOF. Denote by W < My the range of V' (we may consider W as a subspace
of M after we identify tensors and matrices). From (8.4) and Lemma we have

8.13 Dy, = Al?. .
(8.13) [y =, max 1A,
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We remark that |®|;—,, = |¥|l1—, since the Schatten norms are invariant under
complex conjugation. We now appeal to Dvoretzky’s theorem for the Schatten
norm | - [|; with ¢ = 2p. Provided that m < cd'*?/4 for an appropriate universal
constant ¢ > 0, it follows from Theorem that, with large probability

a2 Alus < |Ally < CdVe V2 Al
for all A € W. We have therefore, by (8.13]),
(8.14) AP < D)1y = [Ty, < (CaVI12)? = c2qMrt,

The reason for choosing ® as a second channel is that the channel ® ® ® necessarily
has at least one output with at least one large eigenvalue, as shown by the following
lemma.

LEMMA 8.7. Let ® : M,,, —» My be a quantum channel obtained.from an isom-
etry V.. C"™ — CF® C?, as in . Denote by v € C™ @ C™ “the mazximally

entangled state
1

Jm

(@B (vxw)| =2

W (D@ + -+ [m) @ [m))-

Then

and consequently, for any p > 1,
_ —_ m
H(I’ ® (I)Hl—m = H(I) ® ‘I)HI—wo > %

In our setting, d = k and m = cd* /P s0 we obtain from Lemma the lower
bound |® ® @[, = Q(d'/P~1). Since we have, by (8.14),

[21-p By = @17, = O(@HP7Y),
we conclude that the inequality(8.12)) holds for d large enough (a priori depending
onp>1). O
REMARK 8.8. The proof shows that, for any fixed p > 1, both the multiplicative

violation in (8.10)«and the additive violation in tend to infinity as the dimen-
sion of the problem increases (at the rates Q(d'~/?) and Q(logd) respectively).

PRrROOE.OF L.EMMA Bl We work in the matrix formalism. Identify the range
of V with an m-dimensional subspace W < My, 4. Let (A4, ..., A,,) be the orthonor-
mal basis in W (with respect to the Hilbert—Schmidt inner product) obtained as
thelimage under V of the canonical basis in C™, and

1 — —

The conclusion of the Lemma is equivalent to the inequality | M|« = +/m/kd.
Let (¢;)1<j<k and (¥jr)1<;<q be orthonormal bases in C¥ and C, respectively.
We consider the maximally entangled states

M =

k d
1 1 J—
:72 i ® @5, :*E Y @1y
2 \/%j:1‘?] 5, ¥ \/gj/=1 5 ® Y
and compute
Ml = [KyIM|g)|
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Il
&MS
=~

’<¢J ®1/fg | A; ® A; |SDJ ®90J>}

3

i=1j5=135'=1
1 m k d
= Wil Ailes)
Vmkd ;;j;' vldden]
_ ym
Vkd’
where we used the fact that | X|fs = 3, v\X|<pj>|2. 0

EXERCISE 8.5 (Non-random counterexamples for p > 2). Let W <"Mg the
subspace of anti-symmetric matrices, i.e., such that AT = —A.
(i) Show that for any A e W, |All < %HAHHS
(ii) Let @ be the quantum channel constructed from W as in and fix p > 2.
Using Lemma show that the pair (®,®) is an example for_which holds
for d large enough.

8.3.2. Almost randomizing channels. A variant of the construction used in
the proof of Proposition [8.6]for p = +00 gives the following: a channel ® : Mgy — My
constructed from a generic random embedding V :*C%— C? @ CV with N = O(d)
has the property that |®(p)|op < C/d for any state p € D(C?). In other words,
all output states have small eigenvalues. At is hatural to ask whether similar lower
bounds of the eigenvalues of output states.can also be achieved; showing that this
is indeed the case is the content of this section. Recall also (see Section that
the dimension N of the environment in the Stinespring representation is an upper
bound on the Kraus rank of ®.

Let 0 < e < 1. A quantum channel ® : My — My is said to be e-randomizing
if for all states p € D(C?)

12(p) = psllop < £/d.

Recall that p, = I/d-denotes the maximally mixed state. These channels can
be thought as approximations of the completely randomizing channel R, which is
defined by théproperty R(p) = py for any p € D(C?). The completely randomizing
channel rank has-Kraus rank equal to d? (see Exercise . On the other hand,
it turns out.that there exist e-randomizing channels with a substantially smaller
Kraus ranky as shown by the following theorem. The dependence on d is optimal
since(any-¢-randomizing channel has Kraus rank at least d, which is due to the fact
that.rank one states must be mapped to full rank states.

THEOREM 8.9. Let (U;)1<i<n be independent random matrices Haar-distributed
on the unitary group U(d). Let ® : Mg — My be the quantum channel defined by

®(p) 2 U;pU].

i=1

Assume that 0 < e <1 and N > Cd/e?. Then the channel ® is e-randomizing with
high probability.

The proof of Theorem is based on two lemmas.
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LEMMA 8.10. Let p and o be pure states on C? and let (U;)1<i<n be independent
Haar-distributed random unitary matrices. Then, for every 0 < § <1,

g

ProoF. Write p = |oXp| and o = |[¢)(@)|. Denote X; = dTr(UipUiTa) =
2
)\/8<¢|U2|g0>’ . We know from Lemma|5.57| that this variable is subexponential (as

the square of a subgaussian variable) and satisfies |X;|y, < C. The conclusion
follows now directly from Bernstein’s inequalities (Proposition [5.59)). 0

1Y o1
N 2 Te(U;pU/ o) — =

= d|~ d

> 6) < 2exp(—cd®N).

LEMMA 8.11. Let A : M3 — M3 be a linear map. Let A be the quantity

A= sup [A(p)|op = sup [TroA(p)|
peD(C?) p,0€D(C?)

Let 0 < § < 1/4 and N be a §-net in (Sca,|-|). Then A< (1 +45)"'B, where
B = sup |Tr[y)p[A(l)el)]-

P, PE
Proor oF LEmMA [RI]l First note that for any-X3Y € M3, we have
(8.15) ITr YA(X)[ < A X1 31

By a convexity argument, the supremum in-A.can be restricted to pure states.
Given unit vectors ¢, 1 € Sca, let o, 1o € Nso'that | — o] < & and [1p — o] < 4.
Given x € Sca, we write P, for |x)x|. We have

[P = Poo 1 < [P — lp){eol 1 + [[[0){pol = Pey 1 < 26
and similarly | Py — Py,|l1 < 26 (this'simple bound is not optimal). We now write

|TrP’¢1A(PSD)| < |TI‘(P1/, _P’lPo)A(PLP)‘ + |TrP¢0A(P¢P - P¢0)| + |TrP¢0A(P¢0)|'

Using twice (8.15)) and taking Supremum over ¢, ¥ gives A < 264+ 25 A + B, hence
the result. (]

PROOF OF THEOREM B9 Fix a g-net N < (Sca, |- |) with card N < 162, as
provided by Lemma5.3] Let A = R — ® and A, B as in Lemma [8:11] Here A and
B are randony'quantities and it follows from Lemma [8:T1] that

€ €
P(Az—) <P<B>—).
d 2d

Using the union bound and Lemma [810, we get
P (B> %) < 16 - 2 exp(—ce2N/4).
This is less than 1 if N > Cd/e?, for some constant C. g

EXERCISE 8.6 (Kraus decomposition of the completely randomizing channel).
(i) Show that the Kraus rank of the completely randomizing channel R is d?.
(ii) Let w = exp(2im/d) and A, B be the unitary operators defined by their action
on the canonical basis by

(8.16) Aljy=lj+1moddy  Blj)=ullj).

Show that the operators (B7A*)1<; r<a give a Kraus decomposition of R. These
operators are sometimes called the Heisenberg—Weyl operators.
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8.4. Concentration of von Neumann entropy and applications

8.4.1. The basic concentration argument. We now consider the von Neu-
mann entropy (instead of the p-Rényi entropy) as the invariant quantifying entan-
glement. Since the von Neumann entropy is not naturally associated with a norm,
we are going to use the version of Dvoretzky theorem for Lipschitz functions (Theo-
rem 7.15: . The relevant function is the entropy of entanglement ¢ — E(1)), defined
(via (8.1)) on the unit sphere in C* @ C¢. As usual in such situations, we need two
pieces of information: the Lipschitz constant of E(-) and a central value. They aré

provided by the next two lemmas.

LEMMA 8.12. The Lipschitz constant of the function i — E(v), defined on
(Scrgcd, | - |) is bounded from above by C'logk for some absolute constant C.

This is clearly optimal up to the value of the constant C, since the function
E maps Scrgee (which has diameter m, or 7/2 if we consider Bfas'a function on
P(C*®CY)) onto the segment [0, log k]. (Remember that in this-chapter we always
assume k < d.) Note that, in view of (B.1)), it doesn’t matterapart from the value
of the constant—whether we use the geodesic distance or, the'extrinsic distance. For
a discussion of the optimal values of the constants see Exercise [B.7]

ProoOF. We first check the commutative case by considering the function f :
Sk=1 — [0,log k] defined by

(8.17) fla) = = 2ileg(a?),

i.e., the Shannon entropy of the probability distribution (z7) € Ag. In the terminol-
ogy of (8.2)), this is equivalent to reStricting attention to vectors ¢ whose Schmidt
decompositions use fixed sequences (¢;), (x;). One computes

K
(8.18) |V f(x)|2=)4 Z 22(1 + log(x2))? < Clog? k,
i=1
where the last inequality can be obtained by observing that the function ¢ —
t(1 + logt)? is concave on [0,e~2], and so the quantity |V f(x)| increases when we
replace the coordinates of x smaller than e™! by their ¢y average. It follows that
if L is the Lipschitz constant of f with respect to the geodesic distance on S*~1,
then L <-C*?logk. Our objective is to show is that the same constant works for
the function ¢ — E(v).
Tothat end, we will consider an auxiliary function which is defined as follows.
Let (ui)1<i<k be an orthonormal basis of C*. If ¢ € Scrged, set p = Trea [¥){¥|
and let

k
(8.19) f) = - Z<ui|p|ui>10g(<ui|p|ui>)~

In other words, f (1) is the entropy of the diagonal part of p, calculated in the
basis (u;). An important property of f is that f(¢) = S(p) if (u;) a basis which
diagonalizes p (which is obvious from the definitions) and f(1)) < S(p) in general
(which is a consequence of concavity of S and is the content of Exercise . Next,
one verifies that (u;|p|lu;y = |P;t|, where P; is the orthogonal projection onto the

subspace u; ® C? = CF®C?. Since the map 1 — (|P1%)|, ..., |Py|) is a contraction,
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it follows that the Lipschitz constant of f (with respect to g, the geodesic distance
on Scrged) is at most L.

We now return to the original question. Let 1,12 € Scrgea; set pp =
Trea [ )¥k| and let f be defined by using a basis (u;) which diagonalizes
p1- Then

E(1) = E(2) = S(p1) = S(p2) = f(¢1) = S(p2) < f(¥1) = fh2) < Lg(vhr,¢2).

Since the roles of 11 and 12 can be reversed, it follows that the Lipschitz constant
of FE with respect to g is at most L (and hence exactly L), as claimed. g

LEMMA 8.13 (not proved here, but see Remark|8.14). For k < d, the expeétation
of the function 1 — E() (with respect to the uniform measure on the unit sphere
in C*F @ C?) satisfies

kd
1y k-1 1k
8.20 EF = - | ———=logk — ——.
(520 ) (jzd;&-l ]> 2d "t 2d

REMARK 8.14 (An easy bound on the entropy of entanglement). An inequal-
ity slightly weaker than follows readily from Proposition m (or Exercise
which is even more elementary). First, with (large probability, all Schmidt
coeflicients of 1 belong to the interval

1 c 1 C
[«E TR w]
for some constant C. It follows that all the eigenvalues of the Trca [¢)(3)| lie then
in an interval [1—;5, I—ZE] for some € = O(m), and Lemma@ yields the bound

E() = S(p) = logk — C'k/d. (The-use of Lemma requires € < 1, for larger ¢
we may use the simpler bound S(p) = S»(p) = —log|p|w.)

An immediate consequence of Dvoretzky’s theorem (in the form from Theorem
7.15)) is now:

THEOREM 8.155Let € > 0 and m < ce?kd/log” k. Then most m-dimensional
subspaces W « CF @ C? have the property that any unit vector z € W satisfies

1k
>logh — —& —¢.
E(z) = logk 54 ¢

In some cases the result given by Theorem [8.15(can be improved. In particular,
in orden to obtain violations for the additivity of Sy, we will need to produce
“extremely entangled subspaces,” in which every state has entropy log(k) — o(1)
(see Section [8.4.3).

In the opposite direction, Exercise [8.9] shows an upper bound on the minimal
entropy inside any subspace of given dimension.

EXERCISE 8.7 (Sharp bounds for the Lipschitz constant of E'). In the notation
of Lemma [B:12] assume k < d and let L = Lj be the Lipschitz constant of the
function 1 +— E(1)), calculated with respect to the geodesic distance on Scrgca (or
on P(C*F ® C?)). Show that Ly ~ logk.

EXERCISE 8.8. Show that any s-dimensional subspace F' = C™ contains a unit
vector z satisfying ||z]. = +/s/n.
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EXERCISE 8.9 (An upper bound on the minimal entropy for general subspaces).
Let W < CF ® C? be a subspace of dimension akd, with o > 1/k. (i) Using
the previous exercise, show that W contains a unit vector ¢ satisfying F(¢) <
h(a) + (1 — a)log(k — 1), where h(t) = —tlogt — (1 — t)log(l —t) < log2 is the
binary entropy function. (ii) Conclude that if A = 1 and E(¢) = log k — \/k for all
Y € W, then dim W = O(Ad/(1 + log \)).

8.4.2. Entangled subspaces of small codimension. The argument from
the previous section gives nothing for subspaces of dimension cdk or larger: if
e = logd, the conclusion of Theorem does not even imply nonnegativity\of
E(z). However, in view of Theorem it seems plausible to quantify entanglement
on subspaces of larger dimension. This can be achieved provided we use a suitable
measure of entanglement.

One possibility is to use the p-Rényi entropy for p = 1/2. Recall from
that if we identify a unit vector z € C* ® C* with A e My 4, then

Eya(x) = 2log Al

and our problem becomes a question about the behavior of |[];/¥s. |||z on subspaces
of Mk,d-

THEOREM 8.16. Let k < d, and W < CF ® C*be-a random subspace of dimen-
sion m. The following holds with large probability: for every unit vector x € W,

Eyjo(x) = log(k < my/d) — C.

The conclusion of Theorem [8.16| yields nontrivial quantitative information for
subspaces of codimension larger than C,d, for some constant C;. This compares
well with Theorem which asserts that subspaces of codimension smaller than
d+ k — 1 are never fully entangled.

PrOOF. We identify C¥®C? with My, 4, and apply the low M*-estimate (The-
orem to the norm | - [[;. One needs the value of M* := E | X|,p, where X
is uniformly distributed<on the Hilbert—Schmidt sphere in My 4. The inequality
M* < C/\k follows Proposition m Denoting @ = 1 — m/kd, we conclude that
for every A €W,

|Al = evEkvalAlus,

and therefore, for every unit vector € W (now seen as a subspace of C¥ ® C%),
Eyjo(x) = 2log |Ally = log(k —m/d) — C. O

8.4.3. Extremely entangled subspaces. In a different direction, we might
seek for subspaces of not-so-large dimension, but with near-maximal entropy of
entanglement, say logk — o(1) for example. In view of Lemma this requires
k = o(d). For simplicity, we will focus on the case d = k2. This choice of dimensions
allows us to produce an example of a pair of channels violating the additivity
relation 7 although the method is applicable to a wider range of parameters.

PRrROPOSITION 8.17. There are absolute constants ¢, C' such that the following
holds. Let k be an integer and set d = k?>, m = ck®. With large probability,
a random m-dimensional subspace W < CF ® C¢ has the property that any unit
vector ¢ € W satisfies

E() = logk — %



8.4. CONCENTRATION OF VON NEUMANN ENTROPY AND APPLICATIONS 225

REMARK 8.18. Proposition [8.17] is optimal in the following sense. First, we
cannot hope for larger values of E(v) on a random subspace since (by Lemma
the global average value is precisely of order log k — % Second, subspaces of
dimension larger than C'k? cannot have this property, as shown by Exercise (ii).

We start by relating the entropy of very mixed states to their Hilbert—Schmidt
distance to the maximally mixed state ps (cf. Lemma|l.20, which leads to a slightly
stronger conclusion under stronger hypothesis).

LEMMA 8.19. If p is any state on CF, then
S(p) = logk — klp— pelfis -

PRrOOF. The following inequality compares the entropy with its.seeond order
approximation: for every x,t € [0,1],

1
(8.21) —zlogz = —tlogt—(1+logt)(x—t)—¥(x—t)2.

To check inequality (8.21]), notice that it can be rewritten as log(y) < y — 1 with
y = x/t. Given a state p € D(CF) with eigenvalues (p;)1<i<k, we apply (8.21) with
x = p; and t = 1/k. Summing over 4, we obtain the announced inequality. O

It will be more convenient to work with a randomr matrix M € My, 4 of Hilbert—
Schmidt norm 1, rather than with a random ninit vector ¢» € C* ® C¢ (both ap-
proaches are equivalent, see Section . Also recall that when a vector 1 is
identified with a matrix M, we have Trga{e)(Y| = MM, see (2.12).

Here is a proposition which (via Lemma immediately implies Proposition
BI7

PRrROPOSITION 8.20. There are_absolute constants ¢, C' such that the following
holds. Let k be an integer, d "= k>, m = ck?® and let Sug be the Hilbert-Schmidt
sphere in My, 4. Consider the function g : Sus — R defined by

1

g(M) = | MM — o

HS
With large probability, a random m-dimensional subspace W < My, 4 has the prop-
erty that
(8.22) sup g(M) < CJk.
MESHsﬁW

REMARK 8.21. We wish to point out that while Proposition[8:20] will be derived
from>Dvoretzky for Lipschitz functions, it can be rephrased in the language of the
standard Dvoretzky’s theorem. Indeed, its assertion says that for every M € W
with | M|gs = 1 we have

I

C? ; 2
. — = ——
(823) - HMM 5

=Tr|M|* -
HS

2Tr MM Trl
4+ =Tr|M|'-

>0.
PR

B

Consequently,

02 1/4 02
. —1/4 < < kU4 o < kU4 o
(8:24) k=4 M s < [M[s < k7 (14+ =) M Ins < K741+ ) M ]

for all M € W. In other words, W is (1 + ¢)-Euclidean, with § = %:, when

considered as a subspace of the Schatten normed space (Mk,dv I- H4). On the other
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hand, the Dvoretzky dimension of (My, 4, |- 1) equals k'/2d (see Theorem and
therefore the general theory (such as Theorem gives only 0§ = O(k~*) for m-
dimensional subspaces. Although the Dvoretzky dimension is sharp for the size of
isomorphically Euclidean subspaces (in the sense exemplified in Exercises and
, supplies an instance where it can be beaten for almost isometrically
Euclidean subspaces.

Before embarking on the proof of Proposition we offer some preliminary
remarks. We know from Proposition (the elementary argument from Exercise
would actually be sufficient) that all singular values of a typical M €Sys
belong to the interval

(8.25) [1 c 1 cC

—_— =, = + N .

VE VA VE Vd

It follows that |MMT —1/k|, = O(k=%/2) and thus the median My of g satisfies
M, < C/k. We next estimate the Lipschitz constant of g. Theinequality

|MMT—NNTus < [M(M" =N+ (M~ N)N'|us < (|M]op | Nlop) [M — Nus
has the following immediate consequence.

LEMMA 8.22. Let Q; = {M € Sus : |M|op <t} for somet = 0. The function
defined on Q by M — MM?' is 2t-Lipschitz with tespect to the Hilbert-Schmidt
norm.

In particular, the function g is 2-Lipschitz on Q; = Sys. However, a direct
application of Theorem yields only a bound of order 1/ Vk in . (This
calculation parallels the one from Remark that was expressed in the alterna-
tive language of the Dvoretzky dimension.) The trick is to apply concentration of
measure twice: to the function gitself, and to the function f : M — ||M|op, which
is used to control the Lipschitz constant of g.

The function f is I-Lipschitz on Sus. By (8.25)), its median equals 1/Vk +
O(1/k); in particular_itis bounded by 2/vk for k large enough. Consequently,
Lévy’s lemma (Corollary implies that

(8.26) P (f(M) > 3/\/E) < %exp(—kz).

Similarly,“anvapplication of the standard Dvoretzky’s theorem (Theorem [7.19) to
the norm || - |, with ¢ = 1/vk (note that the dimension of the ambient space is
n = kd and that the Dvoretzky dimension is of order d, see Theorem shows
that & random ck?-dimensional subspace W satisfies Sys " W < Q, IR with high
probability.

Starting from this point, we will present two possible paths to complete the
proof of Proposition [8:20f The first argument uses twice the general Dvoretzky
theorem for Lipschitz functions (Theorem with the optimal dependence on
€. The second argument is based on a trick due to Fukuda making the overall
argument more elementary. In terms of the hierarchy discussed at the beginning of
Section the first proof we give uses principles from level (ii), namely the Dudley
inequality, whereas the second argument uses a single e-net, staying at level (i).

PROOF #1 OF PROPOSITION [8:20] We know from Lemma [8.22] that the func-
tion g is 2¢-Lipschitz on €2;. Let g be a 2t-Lipschitz extension of gq to Sus. Note
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that, in any metric space X, it is possible to extend any L-Lipschitz function h
defined on a subset Y without increasing the Lipschitz constant; use, e.g., the
formula

h(zx) = ;2}@ [h(y) + Ldist(z,y)] .

This formula also guarantees that the extended function g is circled. Since § = g
on most of Syg, the median of g (resp., §) is a central value of § (resp., g). We
apply Theorem to g with e = 1/k, p = M, and L = 2t = 6k~ /2 to get

sup |g—ul < 1/k
SHsﬁW

on a random subspace W < M, 4 of dimension m = cq - kd - (k=1/(6k~Y/2))2 = cd.
We then have
1
< —.
Sus AW k= k
If Suys N W < Q (which, as noticed before, holds with large-probability), g and
g coincide on Sys N W and therefore g < C’/k on Sus n Wi proving (8.22). O

PROOF #2 OF PROPOSITION [B8:20} We use the following lemma which allows
to discretize the supremum in (8.22)).

LEMMA 8.23. Let N be an e-net in (Sus oW, |¥|) with e < /2 — 1. Then
su M) < ———— su M
Mesﬂspmwg( ) IT—e? —2¢ Me.I/\)/g( )

Proor or LEMMA [R23l Let M € Sug n W. There exists My € N such that
0 == || M — My|us < e. We write M\= My + 0N with N € Sys, and consider also
A= My + N and B = My — N-(note that the operators N, A and B all belong to
W). One checks that |A%g =2~ § and |B|%4g = 2+ 6. We then set

A= MM -~ MM = g (AA"— BB' + 26N NT),

and the triangle inequality implies
)
[Als < 5 (JAAT = (2 = 0)pallus — [ BBT — (2 + 8)pullns + [20NNT = 26y |mss) -

We can thus estimate

gAY < g(Mo) + |MM" — Mo M s
0
< 9(Mo) + 5 (2= 0)g(A/|Allus) + (2 + 8)g(B/|Blus) + 209(N))
< g(Mo) + (26 +6%) sup  g(X).
XGSHsﬁW
< g(Mo) + (26 +€%)  sup  g(X)
XGSHsﬁW
and taking supremum over M € Syg gives the result. (|

We now return to the proof of the Proposition. The random subspace is realized
as W = V(C™) where V : C™ — My, 4 is a Haar-distributed isometry. If M is an
e-net in (Sgm, |- |), then N'= V(M) is an e-net in (Sgs N W, | - |). Let us choose
(for example) e = 1/3; by Lemma we can ensure that card NV < 36™.
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We apply the “local Lévy lemma” (Corollary [5.35|) to the function g with the
subset 2 = Q7 < Sus and € = 1/k. The function g|q is 6//k-Lipschitz, and

therefore, using (|8.26])
P({g > M, +1/k}) < P(Sus < Q) + 2exp(—d/36) < Cexp(—cd).
Using the union bound and Lemma [8:23] this gives

9
P ( sup  g(M)=-(My+ l/k)) < 36 C exp(—cd)
MeSusnW 2

and this quantity is (much) smaller than 1 provided m < ¢d, for sufficiently small
¢ > 0. Since M, = O(1/k), this concludes the proof. O

8.4.4. Counterexamples to the additivity problem. Using Proposition
[B-I7)and the approach used in Proposition [8:6] for the p-Rényi entropy; we can show
the following.

PROPOSITION 8.24. There is a constant ¢ such that the~following holds. Let
d =k, m = ck? and ® : M,,, — My be a random channel] obtained by
from a Haar-distributed isometry V : C™ — C¢ ®@ C4. Set @ = ®, the channel
obtained from V, the complex conjugate of V. If k is-large enough, then with large
probability,
SMIN (P @ W) < SU (D) + S™(W),

PROOF. Denote by W < CF ® C? thé range of V. From Lemma we have

Smin(®) = ~min  E(y).
(@) o (¥)
Note that Spin(P) = Smin(¥).~From Proposition we have with large proba-
bility
C
Stain (D) = logk — %
On the other hand, we know from Lemmathat applying ®®® to the maximally
entangled state yields-an output state with an eigenvalue greater than or equal
dim W m c

to TmMe g — kd =_F° Then, a simple argument using just concavity of S (see

Proposition [1.19) reduces the problem to calculating the entropy of the state with

one eigenvalue equal to £ and all the remaining ones identical, which yields

k k
We have therefore S™*(PRW) < S™in(P)+ S™in (W) provided k is large enough. [

logh 1
Snin(® @ U) < 2logk — 088 4

8.5. Entangled pure states in multipartite systems

8.5.1. Geometric measure of entanglement. The definition of the p-en-
tropy of entanglement relies on the Schmidt decomposition, which is specific to
the bipartite case. However, the case p = o is different since its definition only
involves the largest Schmidt coefficient, and this quantity can be defined in a mul-
tipartite setting as the square of the maximal overlap with a product vector. In
the multipartite setting, the corresponding “co-entropy of entanglement” has been
introduced in the QIT literature via the geometric measure of entanglement.

Let H =H1®---® Hi be a multipartite real or complex Hilbert space. Given
a unit vector ¥ € H, the geometric measure of entanglement of 1 is defined as
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(8.27)  g(¢) = max {‘@p,wl ®--- @) : i unit vector in Hy,1 < i < k}
(cf. (2.13)) and the oo-entropy of entanglement is

(8.28) Eo (1) = —2log g(¢).

We always have Ey (1) = 0, and E,(¢) is equal to 0 if and only if ¢ is a
product vector. Therefore, it makes sense to call unit vectors ¢ which maximize
E (1) “maximally entangled” vectors. In the bipartite case C? ® C?, one recovers
the usual notion of a maximally entangled state (see Section . However, ‘in
the multipartite case it seems hard to describe the maximally entangled .vectors.
The problem has an immediate geometric reformulation.

PROPOSITION 8.25 (easy). Let H = H1® - Q@ Hy. The following.numbers are
equal
(i) The minimal value of g(v) over all unit vectors v € H.
(ii) The inradius of By, ® -+ ® By, , where By, denotes the wnit ball in H,;.
(iii) The largest constant ¢ such that any k-linear map ¢ Hy x -+ x H — C
satisfies

C|||¢m < max{|(b(ac1,. o axk)‘ : |.131| <\ |l‘k| < 1}a
where ||| - ||| denotes the norm
> = > - (b, ... @)l
r1€%1 IkE%k
with %B; an orthonormal basis in H; (thervalue of ||| - ||| does not depend on the

choice of the bases).

Denote by gmin(H) be the common value of the numbers appearing in Propo-
sition There is a simpleloweér bound on gpin(H).

LEMMA 8.26. If H =CH®---QC% orH = R1®---QR%* withd, < --- < dy,
then gmin(H) = 1/4/di“<dix_1. Equivalently, for every unit vector ¥ € H,

Ex () <log(dy) + - -log(dk—1).

Proor or LEMMA [B.26l The same argument works for the real case and the
complex case;(we prove the Lemma by induction on k. For k = 2, we have

1
d d
Imin(C" @ CP) = ——————
( ) min(y/dy, v/d2)
whick is a restatement on the inequalities between the trace norm and the Hilbert—
Schmidt norm on the space of d; x do matrices. For the induction step, we use the
bound (which is again the k = 2 case)
1
d
gminC1®H = gminH. O
(© ©H) > = gun(H)

8.5.2. The case of many qubits. We will now focus, for simplicity, on the

particular case of k qubits, i.e., d; = dy = --- = d = 2 in the complex case.
In this section it is convenient to define entropy via logarithm to the base
2 and so we will exceptionally use Eéﬁ’(w) = —2log, g(¢) (cf. (8.28))). In this

notation, the conclusion of Lemma can be rewritten as follows: for any pure
state ¢ € (C2)®* we have E\? (1) < k — 1. The following seems to be unknown.
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PROBLEM 8.27. Does there exist a constant C, and for each k a unit vector
P e (C?)®* ) such that
EQW)=k-C7?

The next proposition shows that random states are typically very entangled,
but not entangled enough to give a positive answer to Problem

PRrROPOSITION 8.28. There exist absolute constants c,C such that a uniformly
distributed random unit vector 1 € (C*)®F satisfies with high probability

Vklogk vklogk

The conclusion of Proposition [8.28] can be equivalently rewritten.as
k —log(k) — loglog(k) — C' < E2 (1) < k — log(k) — log log(k)+C".

PROOF OF PROPOSITION |8:T§| The average of g over the unit'sphere is exactly
the mean width of K = (Bce )®’c (we think of (C?)®* as“a 2%*!l-dimensional real
space). The concentration of the functional g around its mean follows from Lévy’s
lemma (see Table . Indeed, since K is contained in.the unit ball, the functional
g = w(K,-) is 1-Lipschitz and therefore

P(lg(y) — w(K)| > t) < 2exp(=2°?).

It remains to show that w(K) = O(yv/klog k2/?), or equivalently that wg(K) =
©(+/klogk). The upper bound follows-from a standard e-net argument: let A
be an e-net in (Scz,| - |) with card V' < (2/¢)* (see Lemma . From Exercise
(the weaker result from Lemma would be enough here), it follows that
conv N o (1 — £2/2) Be2. Conséquently, denoting by N®F the set

N®k:{¢1®"'®1/)k s e Nfor 1 <i <k},

we have
conv(N®F) o (1 — 2/2)*K.
Using Lemma [6.1] weconclude that

we (conv(NEF)) < 4/2 card(NOF) < /8K log(2/e).

Choosing &= '1/v/k gives the upper bound wg(K) = O(y/klogk).

To show that this argument is sharp, we are going to construct large separated
sets in-K. Start with a set M = {x1,..., 25} which is 1/v/k-separated in the
projective space over C2, with N = card(M) > ck. (The estimate on the size of
separated sets in P(C?) is an elementary special case of Theorem or Exercise
note that P(C?) identifies with the Bloch sphere, a 2-dimensional Euclidean
sphere of radius 1/2, if we use the metric (B.5).) This means that for i # j, we
have [{z;,z;)| <1—1/2k.

We claim that a large subset of M®* is separated. To construct it, introduce
Q = {1,...,N}*, equipped with the normalized Hamming metric, defined for o, 5 €

Q by

1
d(a, B) = %card{i s # B}
To each element a = (a1, ..., q) € Q we associate the vector

Ta = Ta; @ Qq, € K.
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When «, 8 € @ are such that d(«, 8) = k/10, we have

k
k
Ko wa)| = [ | Cay 28,0 < (1= 1/20)"1 < c

j=1
for some constant ¢ < 1. We then have |z, — xg| = ¢ == v/2 — 2¢ > 0. If we start

from a subset Q@ < ) which is k/10-separated, the set {z, : « € Q} is ¢’-separated
in (C?)®k, By the Sudakov inequality (Proposition [6.10)), we have then

wa (K) = cv/log card Q.

It remains to give a lower bound on the size of Q. Using the inequality (5.17)
from Chapter [5| (which was obtained by the greedy packing algorithm), we obtain
card @ = N*1-H~(1/5)) > N¢"F for some constant ¢’ > 0. It follows that we(K) =

cy/klogk. ([

8.5.3. Multipartite entanglement in real Hilbert spaces. It turns out
that in the real case, Lemma [8.20] is surprisingly sharp, so that-the real version of
Problem has a positive answer with C' = 1. The construetion from Proposition
seems to be specific to the real case. For variants related to Clifford algebras,
see Exercise

PROPOSITION 8.29. For any integers k = ¥, we have
gunin (R?)22) = 2=(0/2,

PROOF OF PROPOSITION B.29] The inequality gmin((R?)®F) = 2-*-1/2 i5 5
consequence of Lemma Using, Proposition iii), the converse inequality
will follow provided we show thé.existence of a k-linear form ¢ : (R?)* — R such
that |¢(z1,...,2x)| < 1 for unit vectors x1,...,zx, and |||¢||] = 20-~1/2. Let
# : R? — C the canonical isomorphism. It is easily verified that

k
¢ (x1,...,28) — ReHG(mi)
i=1

(where || means_complex multiplication) satisfies the desired conclusion. (]

EXERCISE 8.10 (Clifford matrices and multipartite maximally entangled states).
Given d 2\2; let N such that My (R) contains a d-dimensional subspace F in which
every-matrix is a multiple of an isometry (the smallest possible N is described in
Theorem . Show that

VN
(8.29) gmin (R)®F) < FIEh
When d € {2,4, 8}, one can achieve N = d and the upper bound (8.29)) matches the
lower bound from Lemma [8.20]

Notes and Remarks

Section Theoremwas proved in [Wal02], [Par04), WS08|. The state-
ment from Exercise [8.1]is taken from |[CDJ™08|.
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Section There are multiple operational motivations to use the von Neu-
mann entropy when defining the entropy of entanglement in . Given a bipartite
state p, there are several ways to quantify how much entanglement it contains. Two
approaches that are in some sense extremal and dual to each other are the entan-
glement of distillation (the rate at which one can LOCC-transform copies of p into
Bell states, see also Chapter and the entanglement cost (the rate at which one
can LOCC-transform Bell states into copies of p). For a general survey on entan-
glement measures we refer to [PV07]. If we restrict ourselves to pure states as we
do in this chapter, all these entanglement measures coincide with the entropy of
entanglement (see Chapter 12.5.2 in [NCO00].)

The “additivity conjecture” has been a major open problem in QI'T partic-
ularly since work by Shor [Sho04], who showed that the additivity ofthe-minimum
output von Neumann entropy was equivalent to the additivity of several other quan-
tities, including the capacity of quantum channels to carry classical information and
the entanglement of formation (defined later in Section . For example, the
entire ICM 2006 talk by A. Holevo [Hol06] was devoted to_this. circle of ideas. A
positive answer would have greatly simplified the theory, leading to a “single letter”
formula for the aforementioned capacity, see, e.g., [Hol06]. However, the answer
to the conjecture was shown to be negative by Hastings [Has09].

Exercise [8.3|is based on [EWO0T].

Proposition was proved in [Wat05), [Aud09, [Szal0]. We follow here the
argument from [Szal0].

Our presentation in this chapter barely scratches the surface of the topic of
quantum channel capacities. In the quantum context, there are many notions of
capacity (see, e.g., [Will17]) and each of them leads to its own class of mathemat-
ical questions. For a recent overview of applications of operator space theory to
the problem of estimating quatnitum eapacity (i.e., the capacity to carry quantum
information) see [LJL15].

Section The question of the multiplicativity of | - |1, has been
considered in [WHO2}-and solved in [HWO0S8|. The presentation in the text is based
on [ASW10], where the connection to Dvoretzky’s theorem was noticed. It is also
known that | -{;1—, is not multiplicative for p close to 0 [CHL™ 08|, but part of
the range 0 <'p < 1 is not covered by any approach. The explicit example from
Exercise comes from [GHP10].

Modulo” the optimal dependence on the dimension, Theorem [8:9] concerning
e-ranidomizing channels has been proved in [HLSWO04]; the parasitic logarithmic
factor has been removed in [Aub09]. A step towards derandomization has also
been made in [Aub09], where it was shown that the unitaries in question can be
sampled from any Kraus decomposition of the completely randomizing channel.

Section Lemma appears in [HILWO06] with the value C' = /8/log 2.
The argument leading to a better constant (Cy ~ 1) in Lemmathat is sketched
in Exercise(8.7|was an unpublished byproduct of the work on [ASW11]. For various
aspects of continuity of the von Neumann entropy, see [Winl6|.

The exact formula from Lemma has been conjectured in [Pag93]|
and proved in [FK94, [SR95| [Sen96|]. Having the precise form (as opposed to the
weaker version stated in Remark results in better constants in Theorem
in Section [0.31]
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Theorem [8.16] appears to be new.

After Hastings’s counterexample to the additivity conjecture [Has09] appeared,
several papers tried to simplify and extend the original approach, including [BH10),
FKM10, FK10,[ASW11), Fuk14]. We follow mostly [ASW11]; Lemmaand
the second proof of Proposition are from [Fuk14].

A completely different strategy was used in a series of papers initiated by
Collins—Nechita [CN10, [CN11] via free probability and allows to derive results
which are more precise in some regimes. Here is a sample theorem from [BCN12,
CFN15|. Fiz an integer k andt € (0,1). There is a deterministic convex set Ky, y &
D(C*) with the following property: if ® : M, — My, is a quantum channel obtained
from a random embedding V : C™ — CF @ C? with m = tkd, then, almost surely as
d — oo, the set (D(C™)) converges to Ky, . This allows, at least in prineiple, to
answer any question about minimal output entropies in this range of parameters. It
was subsequently shown in [BCN16]| that generic channels violating additivity can
be obtained by following this strategy if and only if k > 183. Moreover, the defect
of non-additivity, i.e., the difference between the two sideés o6f is generically
almost log 2 for large k (or 1 bit if we use log, to define entropy). This improves on
the preceding arguments—including the one presented(in the text—which showed
a violation that was minuscule. Still, in contrast with the'Hayden—Winter example
[HWO08]| (cf. Remark [8.8), the demonstrated violation does not go to infinity as
the dimensions increase. A drawback of the free probability-based method is that
the results are valid only when the environment dimension d goes to infinity, and
obtaining explicit values of d, for which“these asymptotic phenomena hold, requires
extra analysis, which is not supplied in [BCN16|. For more information on this
approach we refer to the survey [CN16|. Still another approach, due to Collins
[Col16] and perhaps more conceptual, relies on the Haagerup inequality about the
norms of convolutions on the free group.

In the opposite direction, it'is proved in [Mon13] that random quantum chan-
nels satisfy a weak form of multiplicativity.

Section The-geometric measure of entanglement was considered under a
different terminologyyin [Shi95, BLO1] ; see also [WGO03|. Lemma is well-
known and appears for example in [AS06), JHK 08}, [Arv09].

We could not locate Problem in the literature although it seems a very
natural question. It is known that E(¢) < k — 1 for any unit vector ¢ e (C?)®*
whenever'k’z 3 (see |[JHKT08]). The fact that random states are very entangled
(the. wpper bound from Proposition has been noticed and used in [GFEQ9,
BMWO09|.

The argument behind Proposition and Exercise has been communi-
cated to us by Mikael de la Salle (see also Theorem 3.3 in [Hil07al]). The pa-
pers [Hil06), [Hil07a] compute also the exact values gmin((R3)®) = 1/4/7 and

gmin((R3)®4) = 1/\/ﬁ






CHAPTER 9

Geometry of the Set of Mixed States

Let H = H1 ® --- ® Hi be a multipartite Hilbert space. We are interested
in the geometry of the set of separable states on H, and related questions. To
simplify the exposition we are going to focus on two specific cases: the‘bipartite
case H = Ch @ Ct (we may restrict ourselves to the balanced case'd; = do = d
in order to keep notation simple) and the case of k qubits H = (C?)®*. However,
essentially all the methods carry over to the general case, except-that the formulas
may sometimes become not very elegant (see, for example, Theorem. The sets
D = D(H), Sep = Sep(H) and PPT = PPT(H) were defined-in Chapter [2 Recall
that Sep € PPT < D. One of the main goals of this chapter is to produce a table
(Table which contains radii estimates for theses ‘states, similar to Table for
the classical examples of convex bodies. The following table (Table matches
estimates from Table to the corresponding. theorems in the text.

TABLE 9.1. Radii estimates for sets of quantum states. In each
row n denotes the dimension of the corresponding Hilbert space.
The first columns reads as D'= D(C"), Sep = Sep(C¢®C?), PPT =
PPT(CY®C?) and Sep’ = Sep((C?)®*). The notation ©* indicates
a two-sided estimate~up,to multiplicative factors polynomial in
logn. References to precise statements can be found in Table
Quantities in each row are non-decreasing from left to right, see
Exercise Proposition and Proposition (This gives in
particular.non=matching two-sided bounds for the missing entry in
the ldst row?:)

K |m inrad(K) w(K°)™T vrad(K) w(K) outrad(K)
D 1 o1  exp(=1/4) o 2 n—1
4/n(n—1) 2¢/n Vn Vn n
2 1 %, —3/4 —3/4 —3/4 n—1
Sep’ | d JrD © (n ) (C) (n ) (C) (n ) -
2 1 —1/2 —1/2 —1/2 n—1
PPT | @ | L | em) | e (n ) e (n ) -
Sepl 2k [e) (n71.292.,.) 27 9* (n71.094...) (__)* (,nfl) nT—l

We next clarify the statements about the radii appearing in Table[0.1] They are
all computed with respect to the Hilbert—Schmidt Euclidean structure. Both inradii
and outradii are computed for Hilbert—Schmidt balls centered at the maximally
mixed state ps. This choice of a center is optimal: one may argue that the optimal
center can be chosen to be invariant under isometries of the convex set, and this

property characterizes py (see Propositions and cf. Exercise and its
hint). Statements referred to as trivial in Table follow from ({2.7]).

235
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TABLE 9.2. References for proofs of the results from Table

K inrad(K) w(K°)~! vrad(K), w(K) | outrad(K)
D(C™) trivial use (|1.26)) Theorem 9.1 trivial

Sep(C? @ C?) | Theorem |9.15| Theorem (9.6 Theorem (9.3 trivial
PPT(C?® C) trivial Theorem |9.13| Theorem (9.13 trivial
Sep((C?)®*%) | Theorem |9.21| unknown Theorem [9.11 trivial

Some arguments require to consider the affine space H; of trace one Hermitian
matrices as a vector space with py as the origin. In order to emphasize this.point
of view we use a specialized notation: if p € H; and t € R, then we write

(9.1) tep:=tp+ (1—1)ps.

If K € Hy, wedenote te K = {tex : x € K}. A similar caveat.applies to polarity
calculated inside the space H;.

It is a remarkable fact that, despite sharing the same inradii and outradii, the
sets Sep and D behave so differently with respect to volume radius. In particular,
the proportion of states on C¢ ® C% which are separable, when measured in terms
of volume, is extremely small: of order exp(—cd*logd). We will return to such
considerations in Chapter [I0]

9.1. Volume and mean width estimates

In this section, we prove the volume radius and mean width estimates from
Table In particular, we compute (up to a logarithmic factor) the mean width
of Sep® (Theorem , which will'play a crucial role in Chapter

9.1.1. Symmetrization. We heavily use the symmetrization operations de-
fined in Section[I.1.2] Revcall that, on a multipartite Hilbert space H = H1®- - -Q@Hx,
we have

Sep(H)p = D(H1)p ® - - @ D(Hy) g,
and that D(H;) is the unit ball for the space (B%*(H;),| - [1)-

The Rogers=Shephard inequality (Theorem controls how much the volume
changes after,symmetrization. In our context (i.e., H = C?® C? < C", dimD =
dim Sep. =)n? — 1), it implies the inequalities

n2

2
vol,2_1 (D) < vol,2 (Déy) < nT VOlnz_l(D)7

9:2) o

/2

n2

2 2
(9.3) —=vol,2_1(Sep) < vol,,2(Sepy) < 5 vol,2_1(Sep).

Vn &
9.1.2. The set of all quantum states.

THEOREM 9.1. Let D = D(C") be the set of states on C™. The volume of D
equals

VO = \/n (2m)" (D)2
(94) I(D) = Vi (2n) T
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and satisfies the two-sided estimates
1 1
2\/n NGE
The mean width of D satisfies the asymptotic estimate w(D) ~ 2/y/n when n — o0.
Moreover, the upper bound w(D) < 2/+/n holds for every dimension n.

(9.5) < vrad(D) <

PrOOF. We do not derive the exact value . From there, a tedious but
routine calculation based on the Stirling formula gives then the asymptotic behavior
of vrad(D) in Table

Alternatively, we present a “soft” way to prove (9.5). First, we know frem the
Santalo inequality (Theorem that vrad(D) vrad(D°) < 1. On the other hand,
D° = (—n) ¢ D (see (1.26]), recall that polarity is with respect to p4 ) This gives
the upper bound in

For the lower bound, consider the symmetrization Dy = Si"**;the unit ball
with respect to the trace norm. Since | - |1 < /n| - [|us, the inradius of Dy
equals 1/4/n and therefore vrad(Dg) > 1/4/n. We may now-appeal to the Rogers—
Shephard inequality to obtain the lower bound vrad(BD) > ﬁ (this requires
some numerical verification since the convex bodies D, and Dy live in different
dimensions, leading to different powers in the definition of the volume radii).

We now compute the Gaussian mean width of Dz If A4,, is a GUEq(n) random
matrix, then
(96)  wa(D) = EsupTe(Aup) = B—sup  Tr(A,[)0]) = BAy(4,)

peD PYeH,||=1
since Tr(B|y)(¥|) = (¥|B[y).. Given that w(D) = x,_,wg(D), the asymptotic
estimate follows from the facts that k,2_; ~ n and EX;(A4,) ~ 24/n (Theorem
[6-23). To show that the inequality w(D) < 2/4/n holds in every dimension, we use
the refined bounds from Preposition [A-1fi) and from (6.37). O

It is possible to givela/more direct proof of the upper bound w(D) = O(1/4/n)
using a discretization lemma, which we state for future reference (see Exercise|9.1)).

LEMMA 9.2. Let H = C?¢, and N be an a-net in (Sca,g), with o < w/4. Then
(9.7 cos(2a)Dg < conv {+|)(¢| : e N} € Dg.
Equivalently, N is e-net in (Sca, |-|) fore = 2sin(a/2), and cos(2a) = 1—2e2+¢£/2.

PROOF OF LEMMA [0.2] Set P = conv{+|y)| : ¢ € N}. The inclusion
P.c Dy is trivial. Let us check the other inclusion through the corresponding dual
(polar) norms

[Alpg)e = max KelAlo)] = [[Allop,

A e = mavx [CO1A1).

We need to show that |A|pe > cos(2c)|Allop for every A € M5*. We may assume
by homogeneity and symmetry that | Ao, and the largest eigenvalue of A are both
equal to 1. Let ¢ € C? be a unit vector such that Ap = . Choose 1) € N verifying
g(p,v) < a. By adjusting the phase of ¢ (i.e., replacing ¢ with an appropriate
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element of [¢]), we may write ) = cos(8)p + sin(8)x for a unit vector x L ¢, and
0 < 8 < a. We have then (since {¢|A|x) = 0 and {x|A4|x) = —1)

I AJ) = cos®(B){p|A|g) +sin® (B)(x|A|x) > cos® B —sin® B = cos(268) > cos(20).
O

EXERCISE 9.1 (An easy upper bound on the mean width of D). Using Lemma
[0:2] give an alternate proof of the relation

w(D(C")) = O(1/v/n).

EXERCISE 9.2. Show that Lemma [9.2]is sharp on C2, i.e., that cos(2«) cahnot
be replaced by a larger number in (9.7).

9.1.3. The set of separable states (the bipartite case).
THEOREM 9.3. If Sep = Sep(C? ® C?%), we have the two-sided ‘estimates

(9.8) < vrad(Sep) < w(Sep)

1
- < .
6d3/2 = g3t
The inequality vrad(Sep) < w(Sep) is the Urysohn imequality (Proposition
4.15)). We first give an elementary argument showing that w(Sep) = O(d~/?), and

then prove separately the more precise bounds from \(9.8)).

PROOF THAT w(Sep) = O(d—%/?). We proceed through a net argument. It is
easier to work with the Gaussian mean width| and therefore we prove the equivalent
statement wg (Sep) = O(v/d). Since we(Sep) < wg(Sepg), it is enough to give an
upper bound on wg(Sepy). Let P the polytope given by Lemma (9.4 below. Then

wa(Sepg) < 2Wa(P) < 24/2log(Cd) = O(Vd)
where we used Proposition [6.3](note that vertices of P have Hilbert-Schmidt norm
). 0

LEMMA 9.4. There'is’'a constant C > 0 such that for every dimension d, there
is a family N of product pure states on H = C? ® C¢, with card N' < C?¢ and such
that, if we denote by-P the polytope conv{t|p @YX @] : @@ € N}, we have

1
§P C Sepg < P.

The constant 1/2 appearing in Lemma could be replaced by 1 — € for any
¢ >0; affecting only the value of C. Interestingly, the analogous statement for Sep
(i-e.,»without symmetrization) is false, see Proposition W

PROOF. Let M be an a-net in (Sca,g) and Py = conv{t|)(¢| : ¢ € M}.
We write D for D(C?) and Sep for Sep(C? ® C¢). We know from Lemma that

cos(2a)Dy < Py < Dg.
Since Sepy = Dy ® Dy, it follows that
(9.9) cos?(2a)Sepy = Py ® Py < Sepg.

It remains to choose a = /8, so that cos?(2a) = 1/2. We choose N to be the set
{p®Y : ¢, e M}, so that P = Py ® Py. We bound the cardinality of M using
Lemma yielding card N' < C? for some absolute constant C. (]
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PROOF THAT w(Sep) < 4d~%/2. We have Sep = D®D, where D means D(C?).
We use the Chevet—Gordon inequality in the form of Exercise [6.49] to obtain that
wg(Sep) < 2wg(D). The bound w(D) < 2/v/d from Theore implies only
w(Sep) < (4 + o(1))d=%/2. However, using the refined bound (6.37) (cf. the proof
of Theorem , we can obtain

4v/d —1.2d~1/6
’wg(sep) < f—

< 4d32. O
Rqg4_1 d4 -1

w(Sep) =

PROOF THAT vrad(Sep) > %d*‘g/z. We first give a lower bound on vrad(Sepy)
by estimating from below the inradius of Sepy. We are going to compare Sepg
with a simpler convex body which we now define. Let K < B(H) be thé convex
hull of rank one product operators (not necessarily self-adjoint!)

K = conv {|z1 @ 22){(y1 ® ya| : T1,Y1,72,Y2 € Bral:

The convex body K is most naturally seen as S{ @ S¢, it can also be identified

with (B(Cd)®4 up to identification with dual space. The néxt‘lemma (the proof we
postpone for a moment) relates K to Sepg.

LEMMA 9.5. Let H = C?®C?. Let 7 : B(H) — B%(H) be the projection onto
self-adjoint part, w(A) = (A + AT). Then

Sepy < m(K) < 3Sepg.

Lemmaimplies that inrad(Sepg) > Finrad(K). We also know from Lemma
8.26] that

inrad(K) = inrad ((Bcd)®4> > #

Therefore,

. 1
vrad(Sepg) = inrad(Sepyg) > EYEER
We conclude using (9.3))-that vrad(Sep) > fm%/?' (As in the proof of Theorem
this requires a somewhat tedious verification due to the fact that Sepy and Sep live

in different dimensions.) O

Proor oF*LEMMA [0.5l The factor 3 appears as an upper bound on the geo-
metric distance,between the sets Dy and Sepy corresponding to 2 qubits, i.e., the
smallest positive number X such that D(C?® C?), = ASep(C? ® C?)s. The upper
bound A <3 follows from Proposition [9.17] or by noting that any state p can be
decomposed as

p=2

)

pt1/2  I-p
3 3
S~ 7 ~—~
separable separable
where separability can be checked, e.g., using the Peres criterion (see Theorem
2.15).
It is enough to show that extreme points of 7(K) are contained in 3Sepy. Any

extreme point A of w(K) can be written as

1
A= 3 (|1 ®@ 22){y1 @ y2| + Y1 @ Y2 {71 ® x2])

It may appear at the first sight that the above representation shows that A is
separable. However, while the two terms in the parentheses are indeed product
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operators, they are not self-adjoint and we can only conclude that A € D(H)o (as
a self-adjoint operator whose trace norm is < 1).

Let H; be the 2-dimensional subspace of C? spanned by z; and y; (if the
vectors are proportional, add any vector to get a 2-dimensional space) and let
H' == H1®Hs. Then A can be considered as an operator on H’; more precisely, as
an element of D(#H’) o (and, conversely, any operator acting on H’ can be canonically
lifted to one acting on H). Since A belongs to D(H’) o, it also belongs to 3Sep(H’) o,
and thus to 3Sep(H)e. O

9.1.4. The set of block-positive matrices. Let Sep = Sep(C? ® C?). \In
Theorem [0.3] we computed the order of magnitude of the mean width of Sép. We
now focus on the dual quantity: the mean gauge of Sep, or the mean“width of
Sep® (recall that polarity is taken with maximally mixed state py =1 /d? being the
origin).

THEOREM 9.6. Let Sep be the set of separable states on CL® C%. Then for
some absolute constants ¢, C,

cd®? < vrad(Sep®) < Cd®?,
cd®? < w(Sep®) < Cd*?1og(d):

Since the cone BP of block-positive operators is”dual to the cone SEP of sep-
arable operators (see Section [2.4]), we obtain the following corollary.

COROLLARY 9.7. Let BP be the set-of.trace one block-positive operators on
C?*®C?. Then, for some absolute constants c,C

cd™'/2 < vrad(BP) < Cd~ Y2,
cd Y<K w(BP) < Cd~Y?log(d).

PROOF. Since BP = —~d7%Sep® (see (2.47)), the derivation of Corollary
from Theorem is immediate. O

The Santalé and reverse Santald inequalities (Theorem [4.17) allow to esti-
mate directly~vrad(Sep®) from vrad(Sep), so the first part of Theorem fol-
lows from Theorem [9.3] However the analogous result for the mean width, the
M M*-estimate (Theorem , is more demanding. Since we already know that
w(Sep) =O(d—>/?) (again from Theorem, the conclusion of Theoremfollows
after we prove the M M*-estimate for the pair (Sep, Sep?), i.e.,

(9:10) w(Sep)w(Sep®) = O(log d).

Recall that the lower bound w(Sep)w(Sep”) = 1 is elementary and holds for any
pair of polar bodies (see Exercise. However, does not follow immediately
from the general theory: Theorem is known to hold only for symmetric convex
bodies which are in a specific position (the ¢-position). In our situation Sep is not
symmetric and there is no reason to think that it is in the ¢-position.

The first step towards proving Theorem [9.6] is to introduce the following sym-
metrization of Sep

Sep, = —Sep N Sep,
where —Sep = (—1) e Sep, see . We check that the relevant geometric param-
eters are essentially unchanged by this symmetrization procedure.
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PROPOSITION 9.8. The convex bodies Sep and Sep. have comparable volume
radius, mean width and dual mean with, as show by the following formulas, where
Sepy, means (Sepn)°

(9.11) w(Sep”) < w(Sep?) < 2w(Sep?),

1
(9.12) 5 vrad(Sep) < vrad(Sep,,) < vrad(Sep),
(9.13) w(Sep) ~ w(Sep,,) ~ d~3/2.

Moreover, Sep and Sep,., have the same inradius, equal to (d*(d®—1))~Y2. However,
the outradius of Sep,, is bounded by 1/d, while the outradius of Sep is of order 1.

PROOF. We have, for any self-adjoint A with zero trace,

lps + Allsep,, = max([px + Allsep, [+ — Allsep) < o5 + Allsep +ps— Allsep-
When averaging A over the Hilbert—Schmidt sphere, using the fact that A and
—A have the same distribution, we obtain (9.11)). Inequalities (9.12) follow from
Proposition For (9.13), we already know (cf. Theoremn [9:3) that
vrad(Sep) ~ w(Sep) ~ d~%/2
We therefore have the following chain of inequalities:-the first is trivial, the third
is (9.12)) and the last is Urysohn’s inequality (Proposition |4.15)
w(Sep~) < w(Sep) ~ vrad(Sep) = yrad(Sep.) < w(Sep,).

Therefore all these quantities are comparable, and follows.

The statement about the inradius is trivial. On the other hand, any matrix
A such that p, + A € Sep satisfies A-> —1/d?. Consequently, any A such that
px + A € Sep,, satisfies —1/d*> <A < 1/d?, or ||Allx < 1/d%. Tt follows that the
outradius of Sep,, which is measured with respect to the Hilbert-Schmidt norm,
is bounded by 1/d. O

We are now going-te_prove that the M M*-estimate holds for Sep,,.
PROPOSITION9.9." There is an absolute constant C' such that
(9.14) d* ~ K2, < wg(Sep,)wa(Sep?) < Cd*logd.

It is now easy to deduce Theorem Indeed, using the relation (4.32]) between
spherical~and Gaussian widths, Proposition implies that w(Sep,)w(Sepy,) =

O(log d);-and (9.10) follows from (i) and (iii) of Proposition [9.8]

PROOF OF PROPOSITION [.0] Denote K = Sep,., — p«, so that K is a symmet-

ri¢ convex body in the space Hy of self-adjoint trace zero operators on C? @ C?.
The lower bound in (9.14) is a reformulation of the inequality w(K)w(K°) = 1,
which is elementary (see Exercise [4.37). Using the ¢-norms introduced in Section

7.1.1] (especially Proposition [7.1fiii)), we may reformulate (9.14) as
(9.15) d* < L (Tg, ) ke (Tg,) < Cd*logd

To prove the upper bound in (9.15)), let T : Hy — Hy be a linear map such that
TK is in the f-position. We will take advantage of the symmetries of K. The set

Sep (hence also K) is invariant under local unitaries, and the decomposition of H
into irreducible subspaces is (see Lemma [2.19) Hy = E @ F; @ F5, where

E = span{o1 ® 03 : Tro; = Trog = 0},
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Fy =span{o; ®I : Troy = 0},
Fy = span{I®oy : Tros = 0}.

By Proposition [£.8] we may assume that 7' = «Pg + A1 P, + A2 Pp, for some
positive numbers a;, A1, Ao. We may also assume o = 1 without loss of generality.
The ideal property of the f-norm (Proposition (ii)) implies that

Uk (Pp) =k (TPg) < Uk (T),

and similarly for £xo(Pg). By the M M*-estimate (Theorem [7.10)), we know that
Cic(T) o (T7Y) = O(d* log d).

Noting that T~! = Py + A\ ' Pr, + Ay Pr,, it follows that

(9.16) (x(Pp)lro(Pr) = O(d*logd).

The ¢-norms of the projections Pr,, Pr, can be upper-bounded in a rather
straightforward fashion, mostly due to the fact that their ranks are relatively small.
We have

LEMMA 9.10. Let F = Fy ® Fy. Then {x(Pp) = O(d®) and {x-(Pr) = O(1).

We now postpone the proof of Lemma [9.10] and show how it allows to com-
plete the proof of Proposition To that end, we compare the estimates from
Lemma the bounds with fxo(Ig,) = /d (a reformulation of Theorem
and (x (Ip,) = d/? (which follows froni the-already proved lower bound in (9.15))).
For L = K or L = K°, we have therefore { , (Pr) < %EL(IHO) for d large enough.
Using the triangle inequality ¢1,(Ig,) < ¢1(Pg) + £L(Pr), it follows that £1, (I, ) <
201 (Pg) for d large enough. Combined with (9.16), this gives the upper bound in
, as needed. ([

PROOF OF LEMMA [0.T0L 'We have dim F' = 2(d* — 1). We use Proposition

lk(Pr) = wg((K N F)°) < *kdimr < d°,
lgo(Pp) = wg(PrK) < d ' Kaimr < 1. 0

9.1:5. The set of separable states (multipartite case). We first note
that_an’iteration of the arguments from the bipartite case (Theorem [9.3)) can be
used ‘to show the following estimates (where the constants ¢k, Cyx depend a priori

on k), for H=Ch ®...®Cl.

max(v/dy, . .., Vdk) o Vit 4 Vi
dy - dy k dy - dy :

These estimates are reasonably sharp as long as k remains bounded (few sub-
systems, each of them being possibly large), but deteriorate very quickly once k
grows. However, it is also possible to obtain fairly sharp bounds valid for large
values of k (many small subsystems). For simplicity, we first consider the case of k
qubits.

Ck = vrad(Sep) < w(Sep) <
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THEOREM 9.11. Let k=1, n = 2%, and H = (C?)®*. Then

Vlognloglogn Vognloglogn
(9.17) cvlognloglogn _ oy o CvIognloglogn
n n
and
C+/lognloglogn
(9.18) < vrad(Sep) < ognlog ogn,

nlto nlta

where ¢, C are absolute constants, and o = élog2(27/16) ~ 0.094.

PRrROOF OF THEOREM [0.11l We write D = D(C?) and Sep = Sep(H). ‘Since
Sepy = D®* it follows from Lemma that, if A" is an e-net in (Scz, g), then

cos(2¢)" Sepp = P < Sepg,
where

P:=conv{+|[y ® - @ Up)Xt)1 @ @ x| 1 V1, ... s e N}

We choose ¢ such that cos(2¢)¥ = 1/2, i.e., ¢ ~ 1/v/k. The polytope P is
contained in the Hilbert—Schmidt unit ball, and (using Lemma can be chosen
with at most 2(card N')* < exp(Cklog k) vertices. The first idea would be to apply
directly Proposition [6.3} This approach yields thexbound

C+/lognloglogn

n

which is the upper bound in (9.17)). Fof thelower bound in (9.17)), see Exercise[9.3]

The reason for the extra factor n® in comes from the fact that the
Hilbert—Schmidt Euclidean structure is not the most adapted to the present prob-
lem. When we apply Proposition in the Euclidean structure induced by some
ellipsoid &£, we actually obtain.the following result: if P is a polytope with v vertices
contained in an ellipsoid £ € RY, we have

vol P\ /N - 2logwv
vol &€ = N

In this inequality, for a fixed polytope P, the best choice of ellipsoid is given
by the Lowner ellipsoid of P. Accordingly, we are going to consider the Lowner
ellipsoid associated to the set Sepy. By Lemma 4.9} we have

(9.20) Low(Sepg) = Low(Dg)®2".
The set Dy is a cylinder. To compute its Lowner ellipsoid, we use Lemma@ with

n=3, h=1/1/2,a=0and S =1/v/2€e M,. It follows that Léw(Dy) = T(Bus),
where Bpg denotes the Hilbert-Schmidt unit ball in M$* and T is the matrix

diag(v/2,4/2/3,4/2/3,4/2/3) in the basis of Pauli matrices (2.3)). Consequently,

D)y [
or, equivalently, vrad(Low(Dg)) = (16/27)/%. From the formula
vrad(Low(Sepy)) = vrad(Low(Dy))*
(which follows from (9.20), see Exercise [1.32), we conclude that
vrad Low(Sepy) = (16/27)%/8 = n=

vrad(Sep) < w(Sep) < w(Sepg), <

(9.19)
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with o = 11log,(27/16). If we use the (inner product induced by the) Lowner
ellipsoid of Sepg as the reference Euclidean structure to apply (9.19), we obtain
the upper bound

v/lognloglogn

vrad(Sepg) < C Tra

vhlogk vrad(Low(Sepg)) = C
n

To show the lower bound in (9.18)), we use the fact (see Exercise [4.20]) that for
every symmetric convex body K < R¥, the inclusion K o \/% Loéw(K) holds. We

apply this for K = Sepy (so that N = n?) to conclude that

1

1 iy
vad(Sepg) > — vrad(Low(Sepg)) = -

Finally, an application of the Rogers—Shephard inequality (9:3)\shows that
vrad(Sep) and vrad(Sepg) are of the same order. O

A similar argument allows to estimate the size of the set. of separable states on
k “qudits”, i.e., on (C%)®*.

THEOREM 9.12 (see Exercise|9.5). Letd =2, k > 1, n = d*, and H = (C?)®F.
Then

cqgv/lognloglogn

< Car/lognloglogn

9.21 < w(S
(9.21) . w(Sep) :
and

cd Cqav/lognloglogn
(922) W < Vrad(Sep) < n1+ad 5

where o = 3logy(1+ 3) — s5=loga(d + 1).

EXERCISE 9.3 (Lower boundion the mean width of Sep). Show that, for some
constant ¢ > 0, Sep ((C2)®k) dontains k°* elements which are c-separated with re-
spect to the Hilbert—-Schmidt distance. Then, use the Sudakov minoration (Propo-

sition [6.10) to show the-lower bound in (9.17).

EXERCISE 9.4 (Lowner ellipsoid and the Killing form). Check that the Lowner
ellipsoid of D(C?), induces on M§* the inner product

1
{u, vy, = gTr(uv) ~3 Tr(u) Tr(v).
EXERCISE 9.5 (The size of of Sep for k qudits). Complete the proof of Theorem

9.1.6. The set of PPT states. We present estimates for the volume and
mean width of PPT. For asymptotic versions improving some of the constants, see
Exercise

THEOREM 9.13 (Volume and mean width of PPT). For H = C?*®C?, we have
1 2
< w(PPT®)™! < vrad(PPT) < w(PPT) < e

PROOF. The upper bound on the mean width follows from the obvious inequal-
ity w(PPT) < w(D) and from the bound w(D) < 2/d (Theorem [9.1]). To prove the
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lower bound, we use the dual Urysohn inequality (Proposition 4.16)), where polarity
is taken with respect to p

1
w(PPT?)’
If T denotes the partial transposition on H, then PPT = DNI'(D) and therefore

vrad(PPT) >

(9.23) PPT® = conv(D° U T(D)°) « D° + I'(D)°.

Geometrically, the transformation I' is an isometry with respect to the Hilbert—
Schmidt norm (cf. Exercise the argument we present actually works for any
Hilbert—Schmidt isometry). Using the fact that D° = —d?D and the upper-bound
from Theorem 0.1 we obtain

w(PPT®) < w(D°) + w(T'(D)°) < 2w(D°) = 2d*w(D) <'4d. O

It follows from Theorem that D and PPT have comparable volume radii,
up to an absolute constant. An interesting question is whether this constant ap-
proaches 1 as the dimension increases.

PROBLEM 9.14. Is there an absolute constantc < 1) such that, for every d = 3,
vrad(PPT(C? ® C%)) < cvrad(D(C? ® C9)).

EXERCISE 9.6 (Sharper asymptotic_bounds on the size of PPT). Prove that
w(PPT?) < (2 + 0(1))d and conclude that

1—o0(1)
2d

EXERCISE 9.7 (Volume radius’of PPT as a large deviation problem). Show that
Problem [9.14] can be reformulated as follows: does there exist a constant ¢ > 0 such
that, if B is a d*> x d?® matriz with independent Nc(0,1) entries, then

w(PPT) >vrad(PPT) >

(9.24) P ((BB")' is positive) < exp(—cd*)?

This recasts the. problem as a large deviation estimate for some random matrix
ensemble. Note that the same ensemble appears in Theorem [6.30] which asserts
that it is.asymptotically semicircular with appropriate parameters. It is worthwhile
pointing_out that bounds in the spirit of hold for the GUE ensembles and
Wishart ensembles, see [BAG97, HP98| and [AGZ10].

9.2. Distance estimates

In this section we gather known estimates for the geometric distance (defined in
) between D, Sep and the Hilbert—Schmidt ball Byg. Computing the distance
to the Hilbert—Schmidt ball is equivalent to computing the inradius and outradius.
In particular, it follows from the results of Table that for H = C¢ ® C¢,

(9.25) dy(D, Bus) = dy(Sep, Bus) = d* — 1.
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9.2.1. The Gurvits—Barnum theorem. A remarkable fact, which is im-
plicit in (9.25)) above, is that—in the bipartite case—not only the outradii, but also
the inradii of Sep and D are the same.

THEOREM 9.15. Let H = C* ® C%, n = didy and p be a state on H such that

'p_ % s «/n(i —1)
HS

Then p is separable.

An elementary geometric argument shows that Theorem is equivalent.to
the following statement: if A € B*(C%h ® C?%) satisfies ||A|us < 1, then" I +A €
SEP.

PrOOF. Let K < D(#H) be the set of states p such that {lp ~1I/n|us <
1/4/n(n —1) and C = Ry K be the cone generated by K. The-assertion of Theo-
rem is equivalent to the cone inclusion C ¢ SEP. By cone duality (see Section
his is also equivalent to SEP* < C*. Recall that 'SEP* is the cone of

block-positive operators, see (2.46)).
Let M € B%*(H). One checks that

1

Tr M.
Vaor— 1

MelC — HMHH5§

It follows (see Exercise|1.31)) that
M e C* < |M|lgs < Tr M.

We thus reduced the proof of Theorem to the following problem: for a block-
positive matriz M € B%*(C4 ® C4), prove that Tr M? < (Tr M)2. We will need
the following lemma.

LEMMA 9.16. Let M'= ( ;T g ) be a block-positive operator in BS*(Ch ®
C?). Then
|BIZ < A1 |ClL-

Assuming(the Lemma, we can complete the proof of the Theorem. Denote by
My, € B(C%Y the blocks of M. For k,l € {1,...,ds}, we then have

| Mial|5 < | Mg |1 | Mul|y

(if’k>= [ this is obvious; if k # [ this is the content of the Lemma). Noting that
the diagonal blocks My are positive semi-definite and summing over k,[ gives the
needed inequality |M|%g < (Tr M)2 O

Proor or LEMMA [0.16l Let B = HU be the polar decomposition of B, with
H positive and U unitary. We may choose an orthonormal basis in C% which makes
U diagonal. From the inequalities | B;;|> < A;;Cy; and |H;;|? < H;; Hjj;, we get

1
‘B¢j|2 = |Hij|2 < H”'Hjj = |Bn‘Bjj| < «/AiiCZ-iAijjj < §(A“‘ij + Aijii).

Summing over i, j proves the Lemma. (I
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EXERCISE 9.8 (Another proof of the Gurvits—Barnum theorem). Here is an
alternative argument for Theorem [9.15]
(i) Show that for any operators A;; € Mg,
2

d2 d2
MA@l < D) 1413,
ij=1 ij=1

op

(ii) Use (i), Theorem and Exercise to give an alternate proof of Theorem

9.2.2. Robustness in the bipartite case. We now compute the geometric
distance between D and Sep in the bipartite case.

PROPOSITION 9.17. Let H = CU ® C% for di,ds > 2, and denoten = dids.
We have n
dg(D, Sep) = dy(D,PPT) = 5 + 1.

An equivalent way to describe the geometric distance is\to define the robustness
of a state p as follows (the notation e was defined in (9.1]))

OpESep}.

Proposition asserts that the maximal robustness of a state on C“ @ C% equals
n/2. Since Sep = PPT < D, it suffices-to.prove that dy(D,PPT) > % + 1 and
dg(D,Sep) < § + 1.

2 = inf >0 :
(9.26) R(p) =in {s 0 Tos

PROOF THAT dy(D,PPT) > %4 1. Let x = %(|1>®\1>+|2>®|2>) e Ch®C®
and p = |x){x|]- Now for 0 <#.<>1; consider the state p, = t @ p. The non-zero
eigenvalues of pl' are (1/2,1/2,1/2,—1/2). It follows that p; is not PPT whenever
—t/2+ (1 —t)/n < 0, or equivalently ¢t > 2/(2 + n). Therefore d,(D,PPT) >
T+ 1 O
2

PROOF THAT (D, Sep) < § + 1. We have to show that for any state p, the
state to e p is separable when tg := 2/(2 + n). By convexity, we may assume that p
is a pure statex¥{x|. Consider the Schmidt decomposition of x

d
X =2, A @,
j=1

for some d < min(dy,ds) and orthonormal bases (¢;) in C% and (v;) in C92.
Let 8 = (61,...,04) a d-tuple of complex numbers with modulus one. Consider
the vectors

d
p(0) = Y, V/Abp; € CH,
j=1

d
»(0) = Z VA0 € Co.
j=1

We compute E[p(6) @ 1(0))p(0) @ ¥(0)|, where 01, ...,60,4 are independent and
uniformly distributed on the unit circle, and 6 denotes the coordinatewise complex
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conjugate of . The resulting operator B, which belongs to the separable cone SEP
by construction, equals

d
B= > AV AMMNAE (0040100 |0 ® 1)1 @ ]

7.k, l,m=1
The quantity E[6;0560,0,,] vanishes unless either (1) j = k and [ = m, or (2) j =m
and k = [. The non-vanishing terms can be gathered as B = |x){x| + A, where

A= AMelo; ® i X ® .
ik

Denote o = max{A;j\, : j # k}. It is easily checked that aI—A € SEP sinee it
can be written as a positive combination of the operators

{lo;j @UrXp; @Yr| + 1<j<di,1<k<dy}.

Note that @ < 5 since AjAx < 5(AF + A7) < 5. It follows that 5 T~A € SEP, and
therefore that

n 1
toep=1tp (‘X><X‘ + §p*> =1y (B—A+ 51)
is a separable state, as needed. (I

9.2.3. Distances involving the set of \PPT states. We consider the case
of a balanced bipartite Hilbert space H =.C4®C% Another relevant quantity—not
covered by Proposition[9.17—is the geometric distance between PPT and Sep. This
quantity is of interest since it quantifies the degree to which PPT is a poor substitute
for separability in large dimensions. However, even the order of magnitude of the
distance seems unknown. Actually;-we are not aware of any upper bound improving
substantially on the obvious estimate d,(Sep, PPT) < d4(Sep, D).

PROPOSITION 9.18. Let H = C¢® C. We have

Vd

16

PROOF. We use the lower bound on the distance that comes from volume
comparison

< dy(Sep, PPT).

vrad PPT
dg(Sep, PPT) > —————,
g(Sep, ) vrad Sep
togetherwith the lower bound vrad PPT > ﬁ (Theorem j and the upper bound
vrad(Sep) < 4d—3/? (Theorem [9.3)). O

Proposition [9.18| asserts that there are PPT states that are far from the set of
separable states. Another way of quantifying this phenomenon is as follows. Given
a state p on C¢® C?, we introduce

d = min — ol
sep(p) seSep(CimCd) lp (B

THEOREM 9.19 (not proved here). For every € > 0, for d large enough, there

is a PPT state p on C? ® C? such that dgep(p) =2 — €.

The proof of Theorem involves tricks that are beyond the scope of this
book. However, we present an argument showing that a weaker lower bound on the
distance to separable states (1/4 instead of 2) is achieved in a generic direction.
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PROPOSITION 9.20. Let S denote the unit sphere in the space of trace zero
Hermitian operators on C* @ C?. For most directions u € S, there exists a PPT
state p such that

- . 1
dseplp) > Julz! __min . Tr((p—o)u) > |~ of1).

ProOOF. We consider the support functions w(PPT, ) and w(Sep, -), as defined
in . Since the outradii of PPT and Sep are less than 1, these functions are
1-Lipschitz on S. Note also that the average of these functions on S is exactly the
mean width of the corresponding set. Using the values from Table[5.2] we conclude
that, for K = PPT or K = Sep and for € > 0,

P(lw(K, ) —w(K)| > ¢) < 2exp(—*(d* —1)/2).

We next use the bounds w(PPT) > (3 — o(1))d™! (Exercise and w(Sep) <
4d=3/? (Theorem to conclude that, for most directions v € Sywe have

1
(9.27) w(PPT,u) > (2 - o(l)) d=',  w(Sep,u) € 5d7°2.

Moreover (see Proposition [6.24)), most directions u also satisfy
(9.28) |ufoo < (2 + o(1))d™™

Choose u € S satisfying both (9.27) and (9-28)), and let p € PPT be such that
Tr(pu) = w(PPT, u). We then have

1
sup Tr((p — o)u) = w(PPT,u) = w(Sep,u) > ( - 0(1)) d—t.
o€eSep 2
Using the inequality Tr((p — o)) < |lulls]p — o1 < (2 + o(1))d7H|p — o1, we
obtain
1
4

Any improvement-on the lower bound (9.27)) for the mean width of PPT would
improve the lower bound in Proposition [9.20)

dsep(p) = 7 — o(1). O

9.2.4. Distance estimates in the multipartite case. We now focus on the
case of k qubits, i.e., the Hilbert space H = (C?)®*. Recall that the inradius of Sep
is witnessed by balls centered at p, (see Proposition and the discussion in the
preamble to the present chapter). The inradius of Sep is known up to a universal
(not\too large) multiplicative constant.

THEOREM 9.21 (not proved here, but see Exercise . For H = (C*)®*, we
have

\/54/17 x 67%/2 < inrad(Sep) < 2 x 67F/2

We next turn to the problem of estimating the geometric distance between D
and Sep in the case of many qubits, for which even the asymptotic order is not
known.

PROPOSITION 9.22 (Robustness for many qubits). For H = (C?)®*, we have
281 4 1 < dy(Sep, D) < (V6)*.
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ProOOF. The upper bound is fairly straightforward: it follows by comparing
the two sets with the Hilbert—Schmidt ball. Specifically, we use the elementary
inequality dy(Sep,D) < outrad(D)/inrad(Sep), combined with Theorem and
with the obvious fact that outrad(D(C")) = +/(n —1)/n.

To prove the lower bound, consider any decomposition (C?)®* = A® B, where
A = (C*)® and B = (C?)®*~9) for some 0 < j < k. A separable state on (C2)®*
is also separable along the A : B cut, and therefore

dg(D((C?*)®),Sep((C?)®*)) = dy(D(A® B), Sep(A® B)) = 2"~ + 1,
where the last equality comes from Proposition [9.1 =

EXERCISE 9.9 (A bound on the inradius of Sep on k qubits via mean width).
Let P : M3* — M3?* be the orthogonal projection onto the hyperplane ‘of trace zero
matrices, and let IT = P®F, A
(i) Check that II(Sep((C?)®%)y) = (P(D(C?)y))%*.
(ii) Show that

®k
inrad (Sep((CQ)@“)) < inrad ((21/233) ) = O(\fklogk - 677/2).

9.3. The super-picture: classes-of maps

Up to now, we focused on determining volumes and other geometric parameters
for various classes of states. Due to the Choi-Jamiotkowski isomorphism (see Sec-
tion , these results can be translated into statements about the corresponding
classes of quantum maps, or superoperators. However, there are some fine points
that need to be addressed for such translation to be rigorous.

To exemplify the fine pointsy.consider the cone CP = CP(M,,,M,,) of com-
pletely positive maps ® : M,,~—>"M,,, which can be identified via the Choi isomor-
phism ® — C(®) (see Section especially Table with the positive semi-
definite cone PSD(C" ® C™). So far, so good. However, if we restrict our at-
tention to the subset of-trace-preserving maps ® (denoted by CPrp), the set of
the corresponding. Choi matrices C(®) forms a proper subset of the rescaled set
of states mD(C™ ® C™). This is due to the fact that the trace-preserving condi-
tion Tr ®(p) =.Trp (for p € M,,) translates into Trcrn C(®) = Igm (which implies
Tr C(®) = m,whence the rescaling factor m), which represents m? independent
(real linear)-scalar constraints. On the other hand, membership in mD(C" ® C™)
is represented by just one scalar constraint Tr(-) = m (in addition to the positive
semii-definiteness constraint common to both settings).

In other words, if we denote by H < B%*(C" ® C™) the affine subspace
{Trcn (+) = Igm}, then the rescaled set of states K = mD(C" ® C™) is a base of the
positive semi-definite cone, which is an m?n? — 1-dimensional convex set, while the
set of Choi matrices corresponding to completely positive trace-preserving maps is
K n H, a section of that base of relative codimension m? — 1, i.e., a convex set of
dimension m?n? — m?2.

The problem of relating the size of a convex set to that of its (central) sections
is in general nontrivial, and two-sided bounds are only possible if the set is isotropic
(in the technical sense defined in Section see especially Proposition . The
set D of all states actually is isotropic (see Proposition. While not all natural
sets of states have this property, they are all sufficiently balanced so that the more
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robust Proposition [£:28]leads to reasonable estimates. For notational simplicity, we
restrict ourself to superoperators ® : My — My in the following theorem.

THEOREM 9.23. Let C = C(Mgy,My) be one of the cones of superoperators
appearing in Table and Ctp = {® € C : @ is trace-preserving}. Denote
also by C = {C(®) : @ € C} the corresponding cone of Choi matrices and by
CP={AeC : TrA=1} its base. Then, as d — o,

(9.29) vrad (Crp) ~ d vrad (Cb).

TABLE 9.3. Each cone C of superoperators is a nondegenerate
cone in B(M$, M%) and the subset Crp of trace-preserving el-
ements is a convex set of dimension d* — d2. The cone '€ &
B*(C? ® C?) is the image of C under the map ® — C(®); see

Section 2.4
Cone of superoperators C Cone C Base €P vrad(Crp)
Positivity-preserving P BP BP O(v/d)
Decomposable DEC |co-PSD +PSD | conv(D uT'(D)) O(1)
Completely positive CcP PSD D ~e /4
PPT-inducing PPT PPT. PPT O(1)
Entanglement breaking | EB SEP Sep o(1/V/d)

PROOF OF THEOREM [1.23] Denote K = dCP and n = dim K = d* — 1. Since
K is invariant under local unitaries, it.follows (see Proposition that the cen-
troid of K equals I/d.

As explained earlier, Crp“identifies with a section of K (through the centroid)
of codimension k = d? — 1. It follows from Proposition that

_ d(CTp)lie _ n\"
9.30 R b k) < I <0 b, k
( ) (n’7 ) Vrad(K) r (n’ ) k Y
where 0 = % = Zij < d% and r, R denote respectively the inradius and outradius

of K. The constants b(n, k) were defined in (4.51)); in our setting the bounds (4.55)
can be sharpened (see Exercise [9.10]) to

(9.31) b(n,k)=1—0 (k;id) . b(n, k) (Z) " 1+0 <lczig2d> .

Since all the cones we consider have the property that Sep — C® < BP =
~d?Sep®, we know from Table that r=1/v/d —1and R=+/d>—1,s0 7% =
R’ = 1+0('%%). Combining and yields vrad(Crp)'~? ~ d vrad (CP),
and it remains to again notice that since 6 is small, the exponent 1 — 8 does not
make much of a difference (this uses very weakly the estimates on the volume radii
from Table or just rough bounds given by r and R). (]

The same argument leads to non-asymptotic bounds (i.e., stated for a fixed
dimension) and to bound for maps from M,, to M,. We also state a version of
Theorem [0.23] for the mean width. As we shall see in Chapter the latter may
also be of independent importance.
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PROPOSITION 9.24. In the same notation as in Theorem@ we have
(9.32) w(Crp) < (1+d7?)dw(C’).

PRroor. This is a consequence of the following inequality: for an n-dimensional
convex body K and a k-codimensional affine subspace H, we have

(9.33) w(K n H) < 4 /# w(K).

Inequality (9.33) follows from the link (4.32]) between the Gaussian mean width and
the standard mean width, from the fact that the Gaussian mean width of a subset
does not exceed that of the entire set, and from the inequality vn — 1 < k< /n

(Proposition [A.1]i)). O

Deriving meaningful lower bounds for w(K n H) in terms of w(K-) in a general
setting (such as Proposition for the volume radius) is not that easy. However,
when K is one of the sets C? from Table nontrivial lower bounds for the mean
width follow from the estimates on the volume radii contained.in the Table and
from Urysohn’s inequality.

EXERCISE 9.10. Prove the bounds (9.31)).

EXERCISE 9.11 (Cones of channels are not self-dual). Let H = C™ ® C".
(i) Consider the affine subspace H = {A € B(H) : Trcr A = L}, Show that
Dn H S PygD and Sep n H < PySep.
(ii) Conclude in particular that (D n H)*s.—mn(D n H): the self-duality of D is
destroyed by the partial trace condition.
(iii) Consider the affine subspace Fi={L ®c : 0 e M : Tro =1} ¢ H. Show
that D n F = PrD = Sep n F' = PpgSep.

9.4. Approximation by polytopes

The proofs of volume and mean width estimates given in Section proceed
through a symmetrization argument, by showing that the symmetrized sets (Do
or Sepg) are close, with respect to the geometric distance, to a polytope with not-
too-many vertices. It is natural to wonder whether similar effect can be achieved
without symmetrization. This problem is also of independent interest since approx-
imating convex sets by polytopes with not-too-many vertices, or with not-too-many
faces, has, important algorithmic implications, and is a much studied question in
computational geometry. It is convenient to formulate the results using the notion
of verticial and facial dimensions introduced in Section[7.2.3] For an easy overview
aud reference, we list the results in Table [9.4} the proofs can be found in the next
two sections.

9.4.1. Approximating the set of all quantum states. We first show that
it is possible to approximate D by a polytope whose number of vertices is expo-
nential in the dimension of the underlying Hilbert space. Recall that the notation
t ¢ K was defined in .

PROPOSITION 9.25. For every e € (0, 1), there is a constant C(g) such that the
following holds: for every dimension d > 2, there exists a family N' = (¢;)1<i<n of
unit vectors in C?, with N < exp(C(e)d), such that

(9.34) (1 —¢) e D(CY)  conv{|p; il = @ieN}.
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TABLE 9.4. Verticial and facial dimensions of the set of states
D(C™) and of the set of separable states Sep(C? ® C¢). They
are proved respectively in Sections (Corollary and
(Propositionand Corollary|9.32)). We also include the values of
asphericities a(D) and a(Sep) (see Exercises and [0.14)), which
are important in some applications and derivations. For all these
notions, the maximally mixed state ps plays the role of the origin.

K dimension | a(K) | dimy (K) | dimp(K)
D(C™) m2—1 |m-—1 ©(m) ©(m)
Sep(C4®@CY) | d*—1 |d®>—1]|06(dlogd) | Q(d®/logd)

The result from Proposition [0.25] can be rephrased as estimates on the verticial
(or facial) dimension of D(CY).

COROLLARY 9.26. There are absolute constants ¢, C' such’that, for any d = 2,
cd < dimy (D(C?)) = dimp(D(CYH) < Cd.

PROOF. Since D° = (—d) e D, the facial and verticial dimensions are equal.
The upper bound follows from Proposition Using the value a(D) = d—1 (see
Table and Exercise , one can deduce the lower bound from Theorem
Alternatively, an elementary argument is-sketched in Exercise [9.13] ([

It may seem reasonable to expect that choosing N as a d-net in Sca (for some
0 depending only on ) would be enough for the conclusion of Proposition to
hold. This is the case for Dy (see Lemma . However, this approach fails for
D. Indeed, given §, for d large‘eniough, a d-net N' may have the property that for
some fixed unit vector v, we have |(p;, 1> > 1/v/d for every ; € N. Tt follows
that {¢|p|y) > 1/d for every p € conv{|p;{p;|}. However, this inequality fails for
p = px, which shows'that even the maximally mixed state does not belong to the
convex hull of the'net! Elements of the net may somehow conspire towards the
direction 1.

Yet, this. approach can be salvaged if we use a balanced d-net to avoid such
conspiracies.", The idea is to use, instead of an arbitrary net, a family of random
points independently and uniformly distributed on the unit sphere, and to show
that these points satisfy the conclusion of Proposition with high probability.
Thisuis reminiscent of the random covering argument used in Proposition

We start with a lemma which gives a rough bound on the number of unit vectors
that are needed.

LEMMA 9.27. Let M be a 6-net in (Sga,|-|). Then
(9.35) (1 —2d5) e D(C?) < conv{|v){¥;| : ¥; € M} < D(CY).

The reader will notice that the proof given below can be fine-tuned to yield a
slightly better (but more complicated) factor (1 —2(d — 1)) in (9.35).

ProOF. We have to show that, for any trace zero Hermitian matrix A,
Ai(A) = sup WIA[Y) < (1—25d)™" sup (il Alwy).
PESd hieN
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Since A has zero trace, we have |A]s < dA\1(A4). Given ¢ € Sca, there is ¢; € M
with 1) — 1;| < 0. By the triangle inequality, we have

(9.36) WAl < O]l Al + (Pl Al

(9.37) 26] Alleo + Wil Alps)

(9.38) 26dA1(A) + Wil Ali).

Taking supremum over ¥, we get A1 (A) < 20d A1 (A4) + sup{{w;|Alj;y @ 1, € M}
and the result follows. O

NN

Lemma [9.27] is not enough to directly imply Proposition [9.25] but it can\be
“bootstrapped” to yield the needed estimate.

ProoF orF PrROPOSITION [9.25] The conclusion (9.34) can be équivalently re-
formulated as follows: For any self-adjoint trace zero matriz A we~have

(9.39) A(A) = sup (WPlAJY) <

YES a

Let M be a 55-net in (Sga,|-[). By Lemma we may. enforce card M < (8d/¢)??.
By Lemma [9.27] we have

(9.40) ng;&@MI@ < ) SSE@‘AW'

1
T2 sup (eil Ay
€ pieN

Set n = \/% For ¢ € Sga, denote by Cas, ) < Sca the cap with center ¢ and
radius n with respect to the geodesic distance. By symmetry, there is a number «
(depending on d and ¢) such that

(9.41) ST S eeldee) = (1 —a) s e
Taking (Hilbert—Schmidt) inner product with |1)(1)|, we obtain
l—a+ % = m fC(w,n) [<v, )P do(p) = cos®n =1 —n?
so that
(9.42) a < nQL <e/4.
d—1

Denote 'L = o(C(¢p,n))"* and let N' = {¢; : 1 < i < 2L?} be a family of
N>=4[2L3] independent random vectors uniformly distributed on Sca. (To not to
obscure the argument, we will pretend in what follows that 2L2 is an integer and
so N = 2L3.) We will rely on the following lemma

LEMMA 9.28. Let S = {A e My : |Alop < 1} be the unit ball for the operator
norm. For 1 € Sca and t = 0, the event

Bye={(p:) : (1—a) e |0)w| e85 + convilp(pi] :1<i <20}

satisfies
1—P(Ey,) <exp(—L)+ 2dexp (—t*L?/8) .
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We apply Lemma with ¢ = £/8d. When the event Ey; holds, we have

(9.43) (1= a)|Alp) < t|Afr + sug\)f<<Pi|A‘<Pi>-
Pi€E

If the events Ey: hold simultaneously for every i € M, we can conclude from
(9.40) and (9.43) that
(9.44) (1-¢/2)A = )M (A) <t|Afx + Su%@i\Alm

PiE.
Since A has zero trace, we have |A[; < 2dA\1(A), and (9.44)) combined with (9.42)
implies that
(1—e)A(A) < (1 —¢/2)(1 — ) — 2td) M\ (A) < su&(gpﬂ/ﬂgpi},
Pi€.

yielding (9.39)). The Proposition will follow once we show that the events Ey, ; hold
simultaneously for every ¢ € M with positive probability. To that end, we use
Lemma [9.28 and the union bound

(9.45) P ( N Ew,t> > 1- ) (1-P(Ey))

PpeM PeM
Sd 2d
(9.46) > 1- (E) (exp(—L) ¥ odexp (- st*2L2/512)).

We know from Proposition that exp(ci(e)d) < L < exp(Ci(e)d) for some con-
stants ¢;(g), C1(¢) depending only on e It follows that the quantity in (9.45)—
is positive for d large enough (depending on ¢), yielding a family of 2L3 <
2exp(3C1(e)d) vectors satistyirig the conclusion of Proposition Small values
of d are taken care of by adjusting;the constant C(e) if necessary. d

PRrROOF OF LEMMA [9.28l Let My, = card(N n C(¢,n)). The random variable
M, follows the binomial distribution B(N,p) for N = 2L3 and p = 1/L. It follows
from Hoeffding’s inequality (5.43)) that

N °N
P (B(N,p) < 2p> < exp (_1?2> .

Specialized to our situation, this yields
(9.47) P (My <L?) <exp(—L).

Moreover, conditionally on the value of My, the points from N n C(i,n) have
the same distribution as (¢x)i1<r<nm,, where (@) are independent and uniformly
distributed inside C'(+,n). The random matrices

Xk = |or)Xer] — Elp1 Xe1] = |or)Xer| — (1 — a) o [1){Y

are independent mean zero matrices. We now use the matriz Hoeffding inequality
(see, e.g., Theorem 1.3 in [Trol2]) to conclude that for any ¢t > 0,

My

(9.48) P <

> t> < 2d exp(—Myt?/8)
0
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(the factor 2 appears because we want to control the operator norm rather than
the largest eigenvalue). Define a random matrix A by the relation

My,
AL}}@Z [oXorl + A = (- a) o [,

The bound (9.48)) translates into P(|A[, > t) < 2dexp(—Myt%/8). If we remove
the conditioning on M, and take (9.47) into account, we are led to

P(|A]e = t) < exp(—L) + 2dexp (—L*t*/8)
which is exactly the content of Lemma [9.28 O

EXERCISE 9.12 (Asphericity of D). By comparing the values of. the inradius
and the outradius of D(C™) from Table we see that the aspherieity.of D(C™)
is at most m — 1. Prove that it actually equals m — 1.

EXERCISE 9.13 (An elementary bound for verticial dimension of D). Let P be
a polytope such that 1 e D(C%) = P < D(C?). Use Proposition to prove that P
has at least exp(cd) vertices for some ¢ > 0.

9.4.2. Approximating the set of separable states. For simplicity, we only
consider the case H = C?® C? and denote Sep = Sep((Cd ® (Cd). As in the case
of D, a simple net argument (Lemma shows that the verticial dimension of
Sep is O(dlog d). However there is no andlogue'of the random construction used in
Proposition this upper bound is sharp. (see Proposition . Here are the
precise statements and the proofs.

LEMMA 9.29. Let Sep = Sep(€4&C?). If N is a {55 -net in (Sca, |- |), then
(1 - 5) ° Sep < COHV{WQ ®¢ﬁ><¢a ®¢ﬁ| : %M/fﬁ EN}

In particular, dimy (Sep) <'Cdlogd for some constant C.

PRrROOF. We have to'show that for any trace zero Hermitian matrix A, we have

Wi= sup WA @p <(1-e) Sup (Vo ® YlAftoa @ vg)-

Y, p€Scd Yo, PsE

First, note using Theorem [9.15] that

1
W= 1Al > Al

1
2|
Let\d = ¢/4d?. Given ¢, € Sca, there are 1,15 € N with ¢ — .| < § and
|th = 1pg| < d. Using the triangle inequality as in (9.36)(9.37), we have

(p@Y[Alp @) < 46 Al + (Yo @ V5| Alpa @ Yg) < €W + (o @ Y| Altha ® Yp)-

Taking supremum over 1, ¢ gives the result. The estimate on the verticial dimension
follows from Lemma [B.3] O

REMARK 9.30. A closer examination of the above proof shows that the bound
O(dlogd) on the verticial dimension allows for an approximation more precise than
the default “up to factor 4”7 implicit in the definitions from in Section [7.2.3] For
example, the argument gives that (in the notation from Exercise dimy (Sep, 1+
d=") < Cdlogd, where the constant C' depends on x > 0.
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We will show next that the upper bound obtained in Lemma[9.29]is sharp. This
is in contrast with the case of the symmetrized set Sepg, whose verticial dimension
is of order d (see Lemma [9.4).

PROPOSITION 9.31. Let Sep = Sep(C? ® C?). Then dimy (Sep) > cdlogd for
some constant ¢ > 0.

PROOF. Let P be a polytope with N vertices such that i e Sep P < Sep.
By Carathéodory’s theorem, we may write each vertex of P as a combination of d*
extreme points of Sep (which are pure product states, i.e., of the form | @)} ®p|
for unit vectors 1, o € C%). We obtain therefore a polytope @ which is the convex
hull of N’ < Nd* pure product states, and such that i e Sep < () < Sep~_Let
(|; ® @i X ® wil)1<i<n be the vertices of Q. Fix y € Sca arbitrarily. “For any
¢ € Spa, let a = max{|{p, p;i)|* : 1<i< N'}. Consider the linear form

g(p) = Tr [p (POX| @ (lca | X¢]))]
For any 1 < i < N’ we have

9(l¥: ® o) ® @il) = [ i) (a = (e, % = 0

and therefore g is nonnegative on Q). Since () D i e Sep, we have

1
0<9<4'X®<P><X®¢’|>

d
(-3)- ()
4 4d 4 4d?
It follows that 5
plreE ., 3
1+5 d
In other words, w proved that for every ¢ € Sca there is an index i € {1,..., N’}

such that [{g,p;)[>*>_1—3/d. This means that (p;)1<;<n’ is a (C/v/d)-net in
the projective space.P(C?) equipped with the quotient metric from (Sga,| - |). By
Theorem (or Exercise 7 this implies that N’ > (¢/+/d)?(*~1) | and therefore
log N = cdlogd for some constant ¢ > 0. (]

Weconclude this section by stating an estimate on the facial dimension of Sep.
COROLLARY 9.32. Let Sep = Sep(C? ® C%). Then

(9.49) cd®/logd < dimp(Sep) < Cd*

for some absolute constants C,c > 0.

PROOF. We use the Figiel-Lindenstrauss—Milman inequality (Theorem .
Recall that the dimension of Sep equals d* — 1. The asphericity of Sep is bounded
from above by the ratio outrad(Sep)/ inrad(Sep) (see Table|9.1|for the values of the
radii; as indicated in Table there is actually equality, see Exercise[9.14)). Since
the value of this ratio is d? — 1, it follows that

(9.50) dimp(Sep) dimy (Sep) > cd*.

The lower bound in (9.49) is immediate from (9.50) and Lemma while the
upper bound follows from Proposition iv). O
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PROBLEM 9.33. Is it true that dimp(Sep(C? ® C?%)) = ©(d*)?

EXERCISE 9.14 (Asphericity of Sep). Prove that the asphericity of Sep(C?®C?)
equals d? — 1.

9.4.3. Exponentially many entanglement witnesses are necessary. We
conclude this chapter by showing that Dvoretzky’s theorem (applied via the Figiel-
Lindenstrauss—Milman inequality ) implies that the set of separable states is
complex in the following sense: super-exponentially many entanglement witnesses
are necessary to approximate it within a constant factor.

In this section we write D, PSD and Sep for D(C? ® C?), PSD(C? ® C¢)and
Sep(C®C?). We denote by P(C?) the cone of positivity-preserving operaters-from
Mg to Mg. Recall the statement of Theorem 234 a state p € D is entangled if and
only if there exists an entanglement witness, i.e., ® € P(C?) such that (@®1d)(p)
is not positive. In other words

(9.51) Sep= [ {peD : (2®Id)(p) e PSD}.
PeP(C4)

It is natural to wonder whether the intersection in can be taken over a
smaller subfamily. For d = 2, two superoperators_suffice, namely Id and T’; this is
the content of Stgrmer’s theorem. It is known that for' d > 3 an infinite family is
needed. If we consider instead the isomorphic yversion of the problem, the following
theorem shows that super-exponentially (in the dimension of the underlying Hilbert
space) many witnesses are necessary.

THEOREM 9.34. There is a constant e > 0 such that the following holds: if
®y,...,0x5 € P(C?) are such that

N
(9.52) () {peD ~ (@i ®Id)(p) € PSD} < 2 o Sep,

then N + 1 > exp(cd®/log(d)).
The following variant of the above theorem also holds.

THEOREM: 9.35 (see Exercise [9.16). There are universal constants co,c¢ > 0
such that thefollowing holds: if ®1,...,®yx € P(CY) are such that

covd
log d

N
(9.53) (({peD : (®;®1d)(p) e PSD} = e Sep,

Then N + 1 > exp(cd® logd).

In other words, even being able to detect very robust entanglement requires
super-exponentially many witnesses. It would be of some interest to determine the
maximal robustness level (defined in ) at which this phenomenon still persist.
Note that, by Proposition m Dc (1 + d—;) e Sep for states on C¢ ® C¢, so the

d2

question is nontrivial only if a threshold for the robustness level is smaller than

ProoF orF THEOREM [9.34l Without loss of generality, we may assume that
each superoperator ®; is unital (see Exercise [9.15). We use the following lemma

LEMMA 9.36. Let ® € P(C?) be unital. Then for any pe D,
0< Tr[(®®Id)p] < d.
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PROOF. Since linear forms achieve their extrema on extreme points of convex
compact sets, we may assume that p = |)1| is pure. Let ¥ = > \je; ® f; the
Schmidt decomposition of 1. We compute

d
Tr[(@ @ 1d)p] = D) A2 Tr (leei]) < d

i=1
where the last inequality follows from the facts that ;A7 = 1 and ®(|e;)e;|) <
o(I) = 1. E

Let e = 1/(1 + d). Let P be a polytope with at most exp(Cod? log(d)), facets
such that

(9.54) (1—¢)eDc PcD.

The existence of P is guaranteed by Lemma by the relation D° = (—d?) ¢ D
and by the fact that facets of P are in bijection with vertices-of\P° (see Section

[1.1.5). Introduce the convex body
K;={peD : (& ®Id)(p) e PSD} =D n (&; ®Id) "' (PSD)
(note that Sep c K;) and the polyhedral cone
(9.55) Ci={AeB*C'®C") : (®; ®Id)(A) e R, P}.
We claim that
(9.56) %.Kicpmcicm.

Before proving the claim, let us firstt show how it implies the Theorem. Combining

(19.56) and (9.52) we obtain
N

N N N
1 1
§OSep c ﬂ(zoKZ) c Q(Pm(l’i) = Pn iDlCi c QKZ c 2 e Sep.
The polytope R = Po{); ;< y Ci has at most f = (N + 1) exp(Cod? log d) facets.
Consequently, by the'definition of the facial dimension (see Section [7.2.3), we must
have log f = dimp(Sep) and so

log(N + 1) + Cd*log d > dim(Sep).

Since we kiow from Corollary that dimg(Sep) = Q(d®/logd), it follows that
log(N-A41) > cd®/logd for d large enough. Since small values of d can be taken
intoraccount by adjusting the constant c if necessary, this implies the Theorem.

It remains to prove the claimed inclusions . The second inclusion is imme-
diate from the definitions and from . For the first inclusion, it is clearly enough
to show that e K; < C;. To that end, let p € K; and denote ¢ = Tr [(®; ® Id)p] = 0.
We now consider two cases. First, if ¢ = 0, then (since (®; ® Id)(p) is a positive
operator) we must have (®; ® Id)(p) = 0. Hence trivially p € C; and, a fortiori,
1epeC;. If t >0, we note that t~(®; ® Id)(p) € D and that, by Lemma we

have t < d, and therefore 5 = 1 — %th <1- ?1(1 = 1 —e¢. It thus follows from
1) that

ot H®;,®Id)(p) € 1—t|—t.D c (l—g)eD < P.

1+
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It remains to notice that

P (2i®Id)(p) +px 2 P+ px
T (®: @1d)(p) = 1+t _1+t(¢’®1d) 2 ’
which means that we showed that (®; ® Id) (3 e p) € £ P. In particular (cf.
(19.59)), % e p € C;, as needed. O

EXERCISE 9.15 (Unital witnesses suffice). Let ® € P(C?). Show that there is
a unital map ¥ e P(C?) with the property that, for any p € D(C? ® C9),

(@ ®1d)(p) e PSD «— (¥ ®1Id)(p) € PSD.

EXERCISE 9.16 (Detecting very robust entanglement is also hard). (i), Show
that, in the notation of Exercise we have dim z(Sep(C?®C?), A).>d>42/log d
for every A > 1, where ¢ > 0 is an absolute constant. (ii) Prove Theorem m

Notes and Remarks

Section The exact formula for the volume of D ’appears in |ZS03).
The question of computing exactly the volume of Sep was asked in [ZHSL98| and
seems challenging already in the bipartite case. A ccenjecture by Slater [Slal2],
strongly supported by numerical evidence, is that“for H = C2? ® C2, one has
vol(Sep)/vol(D) = 8/33.

Theorems and are from [ASQ6]; Theorem appeared earlier
in [Sza05]. Theorem [9.6| and its corollary about block-positive matrices is from
[ASY14], and will be crucial in Chapter The same question for multipartite
Hilbert spaces or unbalanced bipartite Hilbert spaces was also studied in [ASY14];
an extra ingredient needed is the fact that PrSep = Sep n F' for certain subspaces
F, see Exercise iii).

Volume and mean width-estimates for the hierarchies of states introduced in
Section [2.2.5| are also knownFor 1 < k < d, denote by Entj, the set of k-entangled
states in C? ® CY. Tt is'proved in [SWZ11]| that

ck1/2 Ck'/?
B < Vrad(Entk) < w(Entk) < B

which is of course compatible with the extreme cases Ent; = Sep and Enty = D.
Similarly, if Ext;, denotes the set of k-extendible states on C¢®C?, it is proved
in [Lanl16] that for each fixed k, as d — oo

(9.57)

2
9.58 w(Exty) ~ —=
(9.58) (Bxty) ~ — NG
Note that D = Ext; and Sep = [|{Extx : k& > 1}. However the implicit dependence
on k in (9.58]) does not allow to recover Theorem as k — oo.

Section Theorem was proved in [GBO02|. The proof we present is
due to Hans-Jiirgen Sommers and appears is [Som09]; the equivalence between
Theorem and the inequality Tr(M?) < (Tr M)? for a block-positive matrix M
has been noted in [SWZO08|. The alternative argument from Exercise is from
[Wat].

Proposition @ (in the language of robustness) has been proved by Vidal and
Tarrach [VT99]. Proposition is from [Jenl3|. The result from Theorem
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is due to Beigi and Shor [BS10] and relies on the quantum de Finetti theo-
rem. Another argument, yielding better quantitative estimates, was presented in
[m and was based on the concept of private states. Proposition is also
from [BHHT14].

Both inequalities from Theorem are due to Hildebrand ([Hil06] for the
lower bound and [Hil07a] for the upper bound), improving on previous results by
Gurvits and Barnum [GBO03, [GB05| (the lower bound) and [AS06] (the upper
bound, cf. the proof of Proposition [9.22)).

The question of determining the exact order of d,(Sep,D) for many qubits
(cf. Proposition deserves attention since it can be connected to feasibility
of nuclear magnetic resonance (NMR) quantum information protocols (see,-e.g.,

GBO05)).

Section Theorem was derived in [SWZO08|, to which we refer for
precise estimates for the constants implicit in the O(-) notation from-Table

Another class of superoperators for which volume estimatesare known is the
class of k-positive maps. Indeed, this class is essentially [dual to the class of k-
entangled operators (see Exercise . It was proved in [SWZ11|—as a conse-
quence of —that if P, tp denotes the set of k-positive trace-preserving maps
from My to itself, then

ey k/d < vrad(Py rp < CA/k/d.
Section The results from this-section’are from [AS17]. The fact that for

d = 3 the intersection in (9.51]) cannot be restricted to a finite subfamily has been
proved in [Sko16] and is based on [HK11].






CHAPTER 10

Random Quantum States

The main goal of this chapter is to prove the following result. Consider a System
of N identical particles (e.g., N qubits) in a random pure state. For somek < N /2,
let A and B be two subsystems, each consisting of k particles. There exists a
threshold function ko(IN) which satisfies ko(N) ~ N/5 as N — og-and such that
the following holds. If k < ko(N), then with high probability the two subsystems
A and B share entanglement. Conversely, if k > ko(N), then with high probability
the two subsystems A and B do not share entanglement.
If the Hilbert space associated to a single particle is C?\(e.g., ¢ = 2 for qubits),
the dimension of the system A® B equals ¢?* and the State p describing the A® B
subsystem is obtained as a partial trace over an environment of dimension ¢V —2F
(the remaining N — 2k particles). If the global systenris in a random and uniformly
distributed pure state, the state p is a random induced state as introduced in Section
where its distribution was denoted by pi,2r o~-2:. The central result of the
chapter (Theorem answers the question whether a random induced state on
C? @ C¢ with distribution 142 s is separable or entangled. It relies on the volume
and mean width estimates from Chapter [0]
Section [[0.3] contains results about other thresholds for random induced states:
for the PPT vs. non-PPT dichotomy (Theorem and for the value of the

entanglement of formation being close to maximal or close to minimal (Theorem

10.15).

10.1. Miscellaneous tools

The first sections of this chapter contain an intermediate result (a quantitative
central limit theorem) about approximation of random induced states by Gaussian
matrices (Proposition [10.6). As a tool, we present some majorization inequalities

in Section [I0.1.1]

10.1.1. Majorization inequalities. Majorization was introduced in Section
We first state a technical result that ascertains that “flat” vectors (i.e., vectors
with a large ¢1-norm and small £,-norm) majorize many other vectors. Since we
need to consider homotheties, it is natural to work in R™°, the hyperplane of R"
consisting of vectors whose coordinates add up to 0.

LEMMA 10.1. Let z,y € R™0. Assume that |y|e < 1 and |y|1 = an for some
a € (0,1]. Then

(10.1) < (2/a—1)|z|wy.
Proor or LEMMA [I0.1l By homogeneity, it is enough to verify that the con-

dition |z|, < 1 implies z < (2/a — 1)y. Moreover, it is enough to check this for

263



264 10. RANDOM QUANTUM STATES

x being an extreme point of the set A = {x € R™? : |z|,, < 1}, since the set
{reR™ : 2 < 2} is convex for any z € R™°.

Extreme points of A are of the following form: |n/2| coordinates are equal to
1 and |n/2] coordinates equal to —1. In the case of odd n there is one remaining
coordinate, which is necessarily equal to 0. It is thus enough to verify that if x is
of that form, and if y satisfies ||y|s < 1 and ||y|; = an, then z < (2/a — 1)y. This
is shown by establishing that an average of permutations of y is a multiple of x.

First, average separately the positive and the negative coordinates of y to obtain
a vector ¢/ whose coordinates take only two values, one positive and one negatiye:
Since the #1-norm of the positive and the negative part of 3/ is equal and amounts
to an/2, the support of each part must be at least an/2 and at most (1 = a/2)n,
and the absolute value of each coordinate at least /(2 — ).

Assume now that n is even. Next, select a set of n/2 equal coordinates/(positive
or negative, depending on which part has larger support) and average the remaining
ones. The obtained vector is a multiple of an extreme point, as needed. If n is odd,
select [n/2| equal coordinates (from the dominant sign) arld dverage the remaining
ones to produce one zero and |n/2] equal coordinates. Thé resulting vector is also
a multiple of an extreme point. ([l

A simpler but less precise version of Lemma [10.1] can be obtained without any
hypothesis on |y .

LEMMA 10.2. Let z,y € R™? with y # 0/ Then

2
(10.2) My'
Il
PROOF. By homogeneity, we may assume that |y|, = 1 and the result follows
from Lemma [I0.11 O

As a consequence, we obtain the fact that if two vectors from R™° are flat and
close to each other, one is majorized by a small perturbation of the other one.

PROPOSITION 103+ Let z,y € R™Y. Assume that |z — y|o < € and |ly|1 = an

for some a > 0. Then
(+3)
r<|1+—]uy.
«a

PROOE. 'We use the following elementary property of majorization: if x1 < A1y
and 25 '< Aoy for some positive A1, Aa, then 1 + 29 < (A1 + A2)y. We apply this
fact'with x1 = y, Ay = 1 and 22 = z — y. Lemma shows that we can choose
A2’="2¢/a, and the Proposition follows. O

EXERCISE 10.1. Provide an alternative proof of Lemma [10.2] by using directly
the definition of majorization.

10.1.2. Spectra and norms of unitarily invariant random matrices. A
lot of information about a self-adjoint matrix can be retrieved from its spectrum; for
example, all unitarily invariant norms can be computed if one knows the eigenvalues
(see Section. In contrast, computing the values of other norms or gauges (e.g.,
the gauge associated to the set of separable states) usually requires some knowledge
about the eigenvectors.

However, if the matrix is random and if its distribution is unitarily invariant,
it is possible to circumvent this difficulty. Heuristically, the principle we are going
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to establish and use is as follows: if A and B are two unitarily invariant random
matrices with similar spectra, then, for any norm or gauge | - |, the typical values
of |All and of | B|| are comparable.

It is convenient to work in the hyperplane M0 of self-adjoint complex n x
n matrices with trace zero. One says that a M$0-valued random variable A is
unitarily invariant if, for any U € U(n), the random matrices A and UAUT have
the same distribution. Recall also that ugc is the standard semicircular distribution,
that ps,(A) is the empirical spectral distribution of a self-adjoint matrix A, and
that do, denotes the co-Wasserstein distance. All these concepts were introduced
in Section 6.2

PROPOSITION 10.4. Let A and B be two Ms*°-valued random variables\which
are unitarily invariant and satisfy the following conditions

(10.3) P(do(psp(A), psc) <€) 21 —p and Edeo(psp(A), isc) < €
for some e,p € (0,1), and similarly for B. Then, for any conves body K = M50
containing the origin in its interior,
1—p 1+ Ce
E|A|x <E|B|x <
- BlAlk < BBk < T

for some absolute constant C'.

E|Alx

Proor or ProrosITiON [I0.4l Note that possible relations between A and
B (such as independence) are irrelevant in‘the present situation. Consider the
following function on R™C (recall that R™% denotes the hyperplane of vectors of
sum zero in R™)

(@), = E |U Diag(2)U"| k.
where U € U(n) denotes a Haar=distributed random unitary matrix (independent of
everything else) and Diag(x)is the diagonal matrix whose ii-th entry is ;. Unitary
invariance implies that
(10.4) E|A|x = E ¢(spec(A))

and similarly for B\(see Exercise|10.2). Let E be the event {du (1sp(B), usc) < €}.
Assume for thesmoment that E holds, we have then (see Exercise [6.25))

Bl = [ el di(B)e) > n | (el =)" duscla)

2
> nf (lz| = )" dusc(z) = an,
2

a ~ 0.16 being a numerical constant. Applying Proposition [10.3] to the vectors
spec(A) and spec(B), we conclude that (with C' = 2/«)
spec(A) < (14 Cdoo (psp(A), psp(B))) spec(B).

Since ¢ is convex and permutationally invariant, it follows that

¢(spec(A)) < (1 + Cdo(psp(A), psp(B))) ¢(spec(B)).

Using the fact that de (psp(A4), ptsp(B)) < € + doo(psp(A4), usc) and taking expecta-
tion over A yields
E ¢(spec(A)) < (1 + 2Ce)¢p(spec(B)).
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Recall that the above inequality is true conditionally on E. Consequently,
E ¢(spec(B)) = E ¢(spec(B))1p = (1 + 20e) " 'P(E) E ¢(spec(A)).
In view of (10.4)) and since P(F) > 1 — p by hypothesis, this shows that

1+2Ce
1 —
The other inequality follows by symmetry. O

E Ak < E[B|k.

If € is large (2 or larger), the hypothesis do(1tsp(A), tsc) < € does not prevent
A from being identically zero. However, an isomorphic version of Proposition [T0.4]
can be similarly obtained under the hypothesis that the spectra of A and\ B are
reasonably flat.

PROPOSITION 10.5 (see Exercise [10.3)). Let A and B be two M5*9valued ran-
dom variables which are unitarily invariant. Assume that

(10.5) P(lAl1 2 can)=21—p and E|Al|e <OCs,

and similarly for B. Then, for any convez body K = M$*Y containing the origin in
the interior,
CT'E|A|x <E|B|x < CEfA|x

with C = (1 —p)~1(2Cy/c1).

EXERCISE 10.2 (Retrieving unitarily invariant distributions from the spec-
trum). Let A be a M50-valued random variable which is unitarily invariant. Recall
that Diag(spec(A)) is the diagonal matrix whose diagonal entries are the eigen-
values of A arranged in the nom-increasing order. Let U € U(n) be a Haar-
distributed random unitary matrix:independent of A. Show that the random matrix
U Diag(spec(A))UT has the same ‘distribution as A.

EXERCISE 10.3 (All-flat unitarily invariant distributions look alike). Prove

Proposition

10.1.3. Gaussian approximation to induced states. We are going to in-
vestigate typicalproperties of random induced states, in the large dimension regime.
Their spectral properties where discussed in Section [6.2.3] and are described either
by the Mar¢enko—Pastur distribution (when s is proportional to n) or by the semi-
circulardistribution (when s » n).

However, we are also interested in properties that cannot be inferred from the
spéctrum (the main example being separability vs. entanglement on a bipartite
system). In this context, it is useful to compare induced states with their Gaussian
approximation. Indeed, the Gaussian model allows to connect with tools from
convex geometry, such as the mean width.

It is convenient to work in the hyperplane M3*9 and to consider the shifted
operators p — I /n, which we compare with a GUEy random matrix (see Section
6.2.2). The following proposition compares the expected value of any norm (or
gauge) computed for both models.

PrOPOSITION 10.6. Given integers n, s, denote by p, s a random induced state
on C™ with distribution i, s, and by G,, annxn GUEy random matriz. Let C,, s be
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the smallest constant such that the following holds: for any convez body K < M53:0
containing 0 in the interior,

Gn
ny/s

Gn
n+/8

(10.6) Crt <E

K

pn,s - < Cn,s E

HK K

Then

(i) For any sequences (ng) and (sx) such that limg_,o ng = limg_ Sx/nk = 00, we
have limy_,o Ch, 5, = 1.

(it) For any a > 0, we have sup{Cy, s : s = an} < .

REMARK 10.7. We emphasize that the quantity E |G, | x appearing in is
exactly the Gaussian mean width of the polar set K°. Indeed, the standard Gauss-
ian vector in the space Ms*? (equipped with the Hilbert—Schmidt scalar'product, as
always) is exactly a GUE( random matrix. In view of 7 we could have equiva-
lently formulated Proposition using the usual mean width: if CN',LS denotes the
smallest constant such that the inequalities

~ w(K° I -~ w(K°
o1 wlE?) 1 g wliy
/s Nk Vs
are true for every convex body containing 0 in the*interior, then the conclusions of
Proposition hold for C,, ¢ instead of C,, s:

(10.7) <E

pn,s -

PROOF. It is easy to check that (10:6) holds for some C,, s < +o0 if n and s
are fixed (see Exercise [10.4). Moreover; we*know from Theorem i) that, for
every fixed n,

(10.8) sup{Chs : s€ N} < +o0.

(i) Assume that n = ng and s= 8k, with nj and si/nj both tending to infinity, and
denote Ay = v/ns(pn,s —I/n) and By = G, /+/n. Consider the random variables
Xk = doo(tsp(Ax), tsc)and Yy, = doo(ttsp(Br), tsc). We know from Theorem
and Theorem iii)that Xj and Yj converge to zero in probability. We also
claim that im E Xy, =1lim E Y}, = 0; this follows from the fact that X <2+ | A/,
Y;, < 2 + |Bghand from Proposition and Proposition [6.33] Part (i) follows
now from Proposition [10.4]

(ii) Let Ay and By be as before, but now we only assume that sx > any for some
a > 0.0 We argue by contradiction: suppose that C),, s, tends to infinity. We
know_from that the sequence (ng) cannot be bounded, so we may assume
limgpng = +00. Similarly, using part (i), we may assume that si/ni is bounded,
and’ therefore (by passing to a subsequence) that limsg/ni = A € [a,00). We
know from Theorem ii) and Theoremthat tsp(Ar) and pigp (By) converge
in probability towards a nontrivial deterministic limit, and therefore satisfy the
hypotheses of Proposition for some constants p, ¢1, Cs. O

EXERCISE 10.4. Let X and Y two R"-valued random vectors with the property
that, for any 6 € S"71, we have 0 < E[(X,0)| < 400 and 0 < E[(Y,0)| < +o0.
Show that there exists a constant C' (depending on n, X,Y) such that, for any
convex body K containing the origin in the interior, we have E | X |x < CE|Y| k.
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10.1.4. Concentration for gauges of induced states. We present a con-
centration result valid for any gauge evaluated on random induced states.

PROPOSITION 10.8. Let s = n, let K < D(C™) be a convex body with inradius
r, and let p be a random state with distribution p, s. Let M be the median of
lp —1/n|k,, with Ko = K —1/n. Then, for every n > 0,

e (I

PRrOOF OF PROPOSITION [I0.8l We know that p has the same distribution|as
AAT, where A is an n x s matrix uniformly distributed on the Hilbert-Sehmidt
sphere Syg. Consider the function f : Sgys — R defined by

(10.9) f(A) = |AAT — !

P M‘ > n) < exp(—s) + 2exp(—n?sr?n?/72).
0

n

Ko

For every t > 0, denote by §2; the subset Q; = {A € Sus : | Al <'t}. The function
f is the composition of several operations:

(a) the map A — | A k,, which is 1/r-Lipschitz with respectito'the Hilbert—Schmidt
norm.

(b) the map A — A —1I/n, which is an isometry for the Hilbert—Schmidt norm,
(c) the map A +— AAT which is 2t-Lipschitz on Q; (see Lemma .

It follows that the Lipschitz constant of the restriction of f to €2; is bounded by
2t/r. We now apply the local version of Eévy’s’lemma (Corollary and obtain
that, for every n > 0,

P(|f — M| > n) < P(Sus\) + 2exp(—nsr’n®/8t%).

If we choose t = 3/4/n, then P(Sis\:) < exp(—s) (apply Proposition with
€ = 4/s/n) and the result follows. O

REMARK 10.9. Taking .=/1 in the argument above, one obtains that the global
Lipschitz constant of f is"bounded by 2/r. This implies (see Proposition [5.29)) that
any two central valuesfor f differ by at most C/(r4/ns).

10.2. Separability of random states

Assume now that we work in a bipartite Hilbert space, and for simplicity con-
sider the ‘case of C? @ C? where both parties play a symmetric role. Throughout
this section we write Sep for Sep(C? ® C?) and consider random induced states on
C?*®C? with distribution M2 -

10.2.1. Almost sure entanglement for low-dimensional environments.
Since the maximally mixed state lies in the interior of the set of separable states, and
since the measures ji42 5 converge weakly towards the Dirac mass at the maximally
mixed state (see Section , it follows that pg2 s(Sep) tends to 1 when s tends
to infinity (d being fixed). Conversely, the following result shows that random
induced states are entangled with probability one when s < (d — 1)2.

PROPOSITION 10.10. Let d, s be integers with s < (d—1)%. Then pgz <(Sep) = 0.

PROOF. Let S ¢ C? ® C? be the range of p. The random subspace S is
Haar-distributed on the Grassmann manifold Gr(s, C?® C?). We use the following
simple fact which is an immediate consequence of the definition of separability: if
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p is separable, then S is spanned by product vectors. The Proposition now follows
from Theorem when s < (d—1)2, S almost surely contains no nonzero product
vector. O

PROBLEM 10.11. For which values of d, s do we have pg2 s(Sep) =07
EXERCISE 10.5. Let d, s be integers with s > d?. Show that 0 < p42 s(Sep) < 1.

EXERCISE 10.6. Let d,s be integers such that pg2 ;(Sep) > 0. Show that
a2 ¢ (Sep) > 0 for every t > s. (Cf. Problem [10.14])

10.2.2. The threshold theorem. From the two extreme cases, s < (d —1)2
and s = o0, we may infer that induced states are more likely to be separable when
the environment has larger dimension. As it turns out, a phase transition takes
place (at least when d is sufficiently large): the generic behavior of p¥flips” to the
opposite one when s changes from being a little smaller than a.certain threshold
dimension sq to being larger than sg. More precisely, we have-the following theorem.

THEOREM 10.12. Define a function so(d) as so(d) = w(Sep(C?® C4)°)2. This
function satisfies

(10.10) cd?® < so(d) < Cd31og? d

for some constants ¢, C' and is the threshold between’separability and entanglement
in the following sense. If p is a random state on,.CI®RC? induced by the environment
C?, then, for any e > 0,

(i) if s < (1 —e€)so(d), we have

(10.11) P(p is entangled). > 1 — 2 exp(—c(e)d®),
(i) if s = (1 + €)so(d), wehawe
(10.12) P(p i§ separable) = 1 — 2 exp(—c(e)s),

where c(g) is a constant depending only on .

As a corollary, we reécover the result mentioned in the preamble of the chapter:
given N identical particles in a generic pure state, if we assign k of them to Alice
and k of them.to,Bob, their shared state suddenly jumps from typically entangled
to typicallyseparable when k crosses a certain threshold value ky ~ N /5. We state
the result, for qubits only, but both the statement and the proof easily generalize
to Drlevel particles for D > 2.

CGOROLLARY 10.13 (see Exercise[10.8)). Given an integer N, there is ky ~ N /5
with the following property. For some integer k < N /2, decompose H = (C?)®N as
AR®BRE with A= B = (C?)® and £ = (C*)®WN=2K) " and consider a unit vector
Y € H chosen uniformly at random. Let p = Trg |) )| be the induced state on
A® B. Then

(1) for k < ky, P(p is entangled) > 1 — 2 exp(—al),
(2) for k > ky, P(p is separable) > 1 — 2exp(—a®),

where a > 1 is a constant independent of N.

ProorF oF THEOREM [10.12] The inequalities ([10.10]) are a direct consequence
of Theorem [9.6
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We next present a detailed proof of part (ii). Let pgs2 o be a random state
with distribution 42 ;. Denote Sepy = Sep — 1 /d?. Consider also the function
flp)=|p- ;—QHSCPO and the quantity Eg s == E f(pg2s)-

Fix € > 0, and let s,d be such that s > (1 + €)so(d). Appealing to Proposition
10.6| (in the version given in Remark , we obtain

o w(K®) _ Ch
10.13 B4 <C < s
( ) d,s n,s \/g \/m
where C'n’s is the constant appearing in ((10.7). The constants C’n’s tend to 1 ag d
and s tend to infinity under the constraint s = (1 + ¢)so(d).

Let Mg, be the median of f(pg2). We know from Proposition [10:8] (the

inradius of Sep being ©(1/d?), see Table that

(10.14) P (f(paz,s) > Mas +1n) < exp(—s) + 2exp(—csn?).

Remark implies that [My s — Eq 5| < Cd/+/s. It follows then from
that there is an 7 > 0 (depending only on ¢) with the property that My s +n <1
for all d large enough and s > (1 + €)sg(d). The inequality follows now
from and from the obvious remark that a state«p is entangled if and only if
f(p) > 1. Small values of d can be taken into account by adjusting the constants if
necessary. Note that the argument yields a priori a bound C’ exp(—c'(¢)s), possibly
with ¢’ > 2, but the bound follows then with c¢(e) = ¢/(g)/log, C.

The proof of part (i) goes along sintilat lines, particularly if we do not care
about the exact power of d appearing in-the exponent of the probability bound
in ; this is because Proposition yields an estimate parallel to
for P (f(pdzﬁ) < Mgs— 77). There‘are some fine points which emerge when s is

relatively small, but they can be‘handled using inequalities from Exercise [10.7} see
[ASY14] for details. See also-Remark [10.15 O

The fine points in the proof of part (i) of Theorem [10.12| would disappear if the
answer to the following(natural problem was positive (cf. Exercise [10.6)).

PROBLEM 10.14"(As environment increases, entanglement decreases). Fiz an
integer d = 2:\Is it true that the function s — pg2 (Sep) is non-decreasing?

REMARK 10:15. An alternative and simpler argument to prove part (i) of Theo-
rem [T0.12}4s sketched in Exercise [10.9] That argument also has the advantage that
it produces’ explicitly an entanglement witness certifying that the induced state
is entangled. However, the argument works only in the range s < cd® for some
constant ¢ > 0; while this does not cover the entire range, it handles the case of
relatively small s that does not readily follow from Proposition

EXERCISE 10.7 (Partial results on monotonicity of entanglement). Set mq 5 :=
fta2,s(Sep(C* @ C4)) .
(1) Show that the function d — 74 is non-increasing for any integer s > 1.
(i) Show the inequality moq s < Tq 4s-

EXERCISE 10.8 (Proof of the N/5 threshold result). Prove Corollary [10.13| by
combining Theorem [10.12] (applied with & = 1/2) and Exercise [10.7}

EXERCISE 10.9 (The induced state is its own witness). Let p be a random state
on C?® C? with distribution g2 o, and W = p — 1 /d>.
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(i) Show that Tr(Wp) is of order 1/s with high probability.
(ii) Show that for any unit vector z € C¢® C? and 0 < 7 < 1, we have
n
P(|<x|W\x>| > ﬁ) < Cexp(—csn?).

(iii) Conclude that with high probability, sup{Tr(¢W) : o € Sep} < Cd—3/2s~1/2,
(iv) Conclude that in the regime s < cd®, with high probability, W witnesses the
fact that p is entangled.
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10.3. Other thresholds

10.3.1. Entanglement of formation. Theorem [T0.12] settles the “entangle-
ment vs. separability” dichotomy for random induced states. In the generic entan-
glement regime, we could be more precise and ask about quantitative estimates:
how strongly is a random state entangled?

To address the above question we need a method to quantify the amount of
entanglement present in a quantum state. The approach from the preceding section
allows to use the value of the gauge ||p — I/dQHSep as a measure of the strength of
entanglement. In this section we will work with i)nvariants that are more ‘“native”
to quantum information theory.

For a pure state v, the entropy of entanglement F(1)) was introduced\in .
A possible way to extend this definition to mixed states is to use a “convex roof”
construction. For a state p on C?*@C?, define its entanglement of formation Er(p)
as

(10.15) Ep(p) = inf {Y @) : p= Y milvikit)

the infimum being taken over all decompositions of p as convex combinations of
pure states. Equivalently, the entanglement of formation is the smallest convex
function which coincides with the entropy of entanglement on pure states.
Entanglement of pure states was studied,in Chapter In particular, for a
random pure state 1) (which corresponds to-the case s = 1), we typically have

Er(|Y)®]) = E(p) = logd — % + o(d);_see-Lemma Here is a statement
describing a “behavior shift” which takes place as s increases.

THEOREM 10.16 (Entanglement of formation for random induced states). Let
p be a random state on C? @ C¥ with distribution Ha2 s
(1) If s < cd?/log® d, then with high probability Er(p) = log(d) — 1.
(2) If 0 < e < 1 and s'= Ce—2d?log® d, then with high probability Er(p) < .
PROOF. Assume s <.d?. If S denotes the range of p, then S is a random Haar-
distributed s-dimensional subspace of C2 ® C2. We use the following relaxation
Br(p) > mf{E@) : e S},
We then conclude using Theorem that, with high probability, Er(p) = log(d)—
1 provided's < cd?/log? d.

For\the second part, denote by a the smallest eigenvalue of p and consider the
convex-combination

I
p=(p—al)+al= (1—d2a)o+d2aﬁ

for some state o. Using the convexity of Er and the obvious facts that Ep(0) <

logd and Ep(I/d*) = 0, we obtain Er(p) < (1 — d?a)logd. However, we know
from Proposition (or Exercise |6.43) that a > diz — dL\/E with large probability.

It follows that as long as s > C2e242 log? d, then
< Cdlog(d) <
NG
EXERCISE 10.10. Check that Er(p) = 0 if and only if p is separable.

Er(p)
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10.3.2. Threshold for PPT. The machinery developed in this chapter can
be applied to any property instead of separability and allows to reduce the estima-
tion of threshold dimensions to the estimation of a geometric quantity (the mean
width for the polar set).

One natural example is the PPT property. Since PPT = D nI'(D), where T is
the partial transpose, it follows easily (arguing as in the first part of the proof of
Proposition that w(PPTS) < 2w(D§) ~ d. The threshold s; appearing in this
approach satisfies then

s51(d) = w(PPT{)? = ©(d?).

However, we know that the spectrum of large-dimensional partially transposed
random states is described by a non-centered semicircular distribution. (se¢ Theorem
[6.30). A more precise estimation of the threshold follows (note that the distribution
SC(A, A) appearing in Theorem has support [A — 2v/X\, A +-2v/X], which is
included in [0, +00) if and only if A > 4).

THEOREM 10.17 (Threshold for the PPT property). Define s, (d) = 4d?. Let p
be a random state on C*® C? with distribution ta2,s- Then

(i) if s < (1 —€)s1(d), we have
P(p is PPT) < 2exp(—cle)d?),
(i1) if s = (1 +¢€)s1(d), we have
P(p is PPT) =1 ~ 2exp(—c(e)s).
Here ¢(€) is a constant depending only one.

The comparison between Theorems [I0.12] [T0.16] and [I0.17] is instructive: if s
is sufficiently larger than d?, but.sufficiently smaller than d®, random states are
typically PPT and entangled (in’particular they cannot be distilled, see Chapter
, but have an amount of\entanglement extremely small when measured via the
entanglement of formation.

EXERCISE 10.11. Explain the presence of expressions of the form Q.(d?) and
. (s) in the exponents in Theorem [10.17]

Notes and Remarks

Theorem as well as the preliminary results from Section [10.1] are from
[ASY14]. A high-level non-technical overview can be found in [ASY12]. In partic-
ulary the existence of a separability threshold around the value s = d® was proved
in JASY14]; previously only the cases s < d? or s > d* were covered (see e.g
[HLWO06]).

The answer to Problem is known for qubits: we have 114 2(Sep(C2*®C?)) =
0 and p4 3(Sep(C2®C?)) > 0. As explained in section 7.1 of [ASY14], this follows
from results of [RW09] and |[SBZO06]|, respectively.

The entanglement of formation is only one of the many possible ways to quantify
entanglement of mixed states. However, other measures are harder to manipulate.
For a survey of the subject of entanglement measures see [PVO0T].

The threshold for the entanglement of formation (Theorem [10.16)) is essentially
from [HLWO06|, and the threshold for the PPT property (The is from
[Aub12] (see also [ASY12]).
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Other thresholds functions have been computed or estimated: for the realign-
ment criterion [AN12], for the k-extendibility property [Lan16], and for still other
properties [CNY12l, JLN14, [JLN15| (including the absolute PPT property and

the reduction criterion).



CHAPTER 11

Bell Inequalities and the Grothendieck—Tsirelson
Inequality

In this chapter we briefly sketch the connection (originally made-by-Tsirelson)
between the celebrated Bell inequalities from the quantum theory, and the equally
celebrated Grothendieck inequality from functional analysis. The“presentation is
anything but comprehensive: it has been unequivocally established in the last dozen
or so years that the proper “mathematical home” of Bell inequalities is in the theories
of operator spaces and operator systems, which are beyond, the scope of this book.
An excellent survey that addresses these topics in muclr greater detail is [PV16].

11.1. Isometrically Euclidean subspaces ‘via Clifford algebras

In Section we studied in detail the ’almost Euclidean subspaces of M,,,
i.e., on which a given Schatten p-norm is{1 + €)-equivalent to the Hilbert—Schmidt
norm. For the purposes of the present chapter it is useful to focus on the case of
ezactly or isometrically Euclidean subspaces, i.e., € = 0.

We first note that for a rank one matrix, all Schatten p-norms are equal. It
follows that there are subspaces of dimension n in M,, (e.g., the space of all matrices
with zero coefficients outside the first row) in which the ratio |- |op/| - |us is constant
and equal to 1. However, such'a’subspace is not at the “correct level”: for subspaces
produced by Dvoretzky’s, theorem — which are also of dimension ©(n) — the same
ratio is ©(1/y/n) (or, more precisely, ~ 2/4/n, see Exercise [7.23).

A less trivial construction, based on Clifford algebras (or, in more elementary
terms, on Pauli matrices), gives isometrically Euclidean subspaces of M,, (and even
of M), at the correct level, of dimension ©(logn), at least when n is a power
of 2. It is~a matural question whether it is possible to interpolate between that
construction and the subspaces given by Dvoretzky’s theorem (see Problem
in Notes-and Remarks).

LEMMA 11.1. For every k = 2, there is a (2k — 2)-dimensional subspace of the
space of 2F x 2F real self-adjoint matrices in which every matriz is a multiple of an
orthogonal matriz.

This result is specific to subspaces over the real field: any 2-dimensional com-
plex subspace of complex matrices (or, more to the point, every l-dimensional
complex affine subspace not containing 0) contains a singular matrix since the
polynomial A — det(A + AB) must vanish (see also Exercise [[1.1). However, a
similar phenomenon holds for complex self-adjoint matrices.

LEMMA 11.2. For every k = 1, there is a 2k-dimensional (real vector) subspace
of the space of 28 x 28 complex Hermitian matrices in which every matriz is a
multiple of a unitary matriz.
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Lemma [T1.2] implies immediately Lemma since an m x n unitary matrix
can be considered as a 2n x 2n orthogonal matrix when one disregards the complex
structure.

Proor or LEMMA [I1.21 Consider the following elements Uy, ..., Us of Mg‘)k
Ui =1%0"V® 0, @ 0P,

Uk+i = I®(i71) ® (o ® o—y®(k_i)v

where 0,,0,,0. are the Pauli matrices introduced in (2.2)). It is easily checked (cf.
Exercise that the operators (U;)1<i<2r are self-adjoint and are anticommuting
reflections: U2 =1 and U;U; = —U;U; for i # j. It follows that for any & € R2F “the
matrix X = &U; + - - + & Uy satisfies X XT = €21 and therefore is aymultiple
of a unitary matrix. O

REMARK 11.3. The subspaces in Lemmas [I1.1] and [I1.2] ¢onsist of trace zero
matrices.

The dimensions appearing in Lemma[I1.I]are not optimal. Finding the minimal
possible dimension is related to the Radon-Hurwitz-problem and involves more
advanced analysis of Clifford algebras.

THEOREM 11.4 (not proved here). Given ‘an integer k = 1, consider
(i) a(k), the minimal integer n such that M,,(R) contains a k-dimensional subspace
i which every matrix is a multiple of an orthogonal matriz.
(ii) B(k), the minimal integer n such that M, (R) contains a k-dimensional subspace
in which every nonzero matriz is invertible.
Then

2=2)2 if k=0 mod 8,

alk) = B(k) = 2E=1/2 ifk=1ork=7 mod 8,
ok/2 ifk=2ork=4o0ork=6 mod S8,
2k+1)/2 jf k=3 or k=5 mod 8.

EXERCISE 1.1 (Isometrically Euclidean subspaces and parity of the dimen-
sion). Show that M, (R) contains a 2-dimensional subspace in which every matrix
is a multiple of an orthogonal matrix if and only if n is even.

11.2. Local vs. quantum correlations

Ever since the seminal 1935 paper [EPR35]| by Einstein, Podolsky and Rosen it
has been apparent that quantum theory leads to predictions which are incompatible
with the classical understanding of physical reality. Specifically, the outcomes of
some experiment may be correlated in a way contradicting common sense (“spooky
action at a distance”). In this section we formalize the concept of correlations,
which will lead to the famous Bell inequalities discovered in [Bel64].

11.2.1. Correlation matrices. Let us start by defining what we mean by
correlation matrices in the classical and the quantum worlds. As we shall see,
comparing the two naturally involves the Grothendieck constant.
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DEFINITION 11.5. A m x n real matrix (a;;) is called a classical (or local)
correlation matriz if there exist random variables (X;)1<i<m and (Y;)1<j<n defined
on a common probability space, satisfying |X;| < 1, |Y;| < 1 (almost surely), and
such that, for any 1 <i<m, 1 <j<n,

(111) Qg =EX1Y3
We write LC,, ,, (or simply LC) for the set of m x n local correlation matrices.

We emphasize that this notion does not coincide with the correlation or covaris
ance matrices from statistics. In that context, covariance matrices are square and
positive semi-definite, corresponding to the scenario when (X;) = (¥;) and EXX; =0
(see, e.g., Appendix, while the correlation matrix of (X;) is the covariance ma-
trix of the standardized variables (X;) = (X;/|X|2). When E X; = E¥; =0,
coincides with the somewhat less frequently used notion of cross-covariance.

The set LC,, ,, is a polytope with 27T~ vertices (see Proposition and
appears in the literature under various names such as correlation polytope, Bell
polytope, local hidden variable polytope, local polytope. (The reader should be
forewarned, though, that sometimes the same names are used for sets of the more
general objects, the so-called bozxes, defined in Section ) The reasons for the
adjective “local” will become more clear later on.\ The facial structure of LC,, ,, is
rather complicated (except in very low dimensions, see Exercises and

11.15).

DEFINITION 11.6. A m x n real matrix (a;;) is called a quantum correlation
matriz if there is a state p € D(C% ® C92) (for some dy,ds), self-adjoint operators
(X;)1<i<m on C1 and (Y;)1<j<n onC% satisfying | Xi[ o < 1, [Yjllo < 1, and such
that, for any 1 <i < m and 1 <j'<n,

(11.2) ay = Trp(X; ®Y;).

We write QC,,, ,, (or simply QC) for the set of m x n quantum correlation matrices.
It turns out that both/sets LC and QC have simple descriptions.
PROPOSITION™11)7. The set LC,, ,, can be alternatively described as

I—Cm,n = COHV{(fin)1<i<m,1<j<n : g € {_17 1}m777 € {_17 1}71} = Bg ®B§o

PROPOSKITON 11.8. The set QC,, ,, is convex and can be alternatively described
as

QCp . = {(<Ii7yj>)1<i<m,1sj<n D oag,yy € REROM) g <1y < 1}-

It is obvious from the Propositions that LC < QC. (This can also be established
directly from the definitions, without appealing to the results of Section [11.1})
The crucial point—which is simple, but not entirely trivial, and will be studied in
detail in the next section—is that this inclusion is strict. This is one mathematical
manifestation of the fact that the quantum description of reality is different from
the classical one. Correlation matrices that do not belong to LC will be called
nonclassical or nonlocal.

ProOF OF PROPOSITION [I1.7l We first prove the inclusion o. It is clear that
given ¢ € {—1,1} and n € {—1,1}", we have (§n;) € LC,,,, (consider constant
random variables taking values +1), so it suffices to show that LC,, , is convex.
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If agjl-) = EXi(l)Yj(l) and az(-jz.) = EXZ-(z)Yj@) are two classical correlation matrices
(without loss of generality we may assume that all random variables are defined on
the same probability space), define random variables X; = Xi(a) and Y; = Yj(a),
where « is an independent random index, equal to 1 with probability p and equal
to 2 with probability 1 — p. Then E X,Y; = pal(;) +(1 —p)ag) and this shows that
LCyn n is convex.

Conversely, note that any vector X € [—1,1]¢ can we written as a convex
combination of elements of I := {—1,1}¢

X = > M(x)E

Eely

with the functions )\g : [-1,1]¢ — [0, 1] being measurable (or even contintous) and
adding to 1. If a € LC,, ,, is a classical correlation matrix with a;;> = E XY}, we
may write (denoting X = (X1,..., X)) and Y = (Y1,...,Y,))

ay =B( 3 A0) (X nmm) = Y, ERAEON )] &,
gel,y, nel,

Eelm meln

which shows that a € conv{(§n;)i; : § € Im,n € I} O

Proor or ProrosITION [[1.8l Let us first prove the direct inclusion. Let
(aij) € QCpnp. There is a Hilbert space H =.C% ® C%, a state p € D(H) and
self-adjoint contractions (X;) and (Y;) such that a;; = Tr p(X; ®Y;). We introduce
the bilinear form on the space B (H)

B(S,T) = ReTr(pST).

This bilinear form is positive semi-definite (to check symmetry, use the fact that
ReTr X = ReTr X') and thereforé, after possibly passing to a quotient, it makes
B%(H) into a real Euclidean\space. The conclusion follows since a;; = B(X; ®
I, I®Y;) while 5(X;®I, X;®I) < 1 and S(I®Y;,I®Y;) < 1. To obtain the dimension
min(m,n) as claimed; note that we may a posteriori project the vectors (z;)1<i<m
onto span{y; : 1 < <'n}, or vice versa.

Conversely, let (z;)1<i<m and (y;)1<j<n be vectors of Euclidean norm at most
1 in R™n(mn) By Lemma there exist d x d complex Hermitian matrices
A;, B; (forsome d), with Hilbert-Schmidt norm at most 1 and such that Tr A; B; =
{x;,y; )¢ Moreover, A;, B; are multiples of unitaries. Set X; = dY?4; and Y; =
d1/2B]T; then X;,Y; are unitaries and in particular |X;[» < 1 and [[Yj[e < 1.
Finally, if p = [¢)(¥|, where ¢ € C?® C? is a maximally entangled vector, then we
have

1
TrpXi @Y = 5 Tr X;Y;" = Tr A; B = (x;, y;),
where the first equality follows by direct calculation (see Exercise [2.12)). (]

REMARK 11.9. As a by-product of the proof, we obtain the following extra
information: Definition is unchanged if we require the operators X;, Y; to
satisfy X2 = 1, Yj2 =Tand TrX; = TrY; = 0 (cf. Remark . Moreover,
the latter reduction can be performed in a “functorial” way which preserves many
properties of p, see Exercise [I1.7}
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REMARK 11.10. Definitions and [I1.6] can be readily extended to the mul-
tipartite setting. One defines LC,,, . ,, < R™ "™ as the set of arrays (a;, . ;) of

,,,,, i = E [Xi(ll) . Xz(f)] where all the Xi(j) are random variables with
\XZ(J])| <1las., and QC,, ., © R™ "™ as the set of arrays (a;, ..., ) of the form
a5 = Tr [p(xfp ® -® Xi(j))] where all the X\ ¢ B(#,) are sclf-adjoint
operators with HXi(jj)Hoc <l,and pe D(H1 ® - @ H).

EXERCISE 11.2 (Convexity of the set of quantum correlations). Show (directly
from the definition) that the set QC is convex.

EXERCISE 11.3 (Unit vectors suffice). Show that
QCn = {(@i yp))1<ismas<jcn : wi,y; € R AN, |z] = 1, |yl =1}

EXERCISE 11.4 (The 2 x 2 local correlation polytope is an £i=ball). Show that
LCz2, considered as a subset of R, is congruent to 2B} (a ball of radius 2 in the
{1-norm).

EXERCISE 11.5 (Local correlation polytope and the cut-norm). The cut-norm
of a matrix B € My, ,, is defined as

2.2 bis

| Bllcut = sup {
i€l jeJ

: IC{1,...,m},Jc{1,...,n}}.

Show that |Blcut < [|Bics, , =sup{Tr AB : A€ LCpn} < 4|Bcut-

EXERCISE 11.6 (Correlation polytopes and operator norms). Let M € M,,, ,, be
a real matrix. Verify that | M|Leq “equals |[M : £, — ¢7]. Similarly, | M|qce,
equals | M : €2 (H) — £7(H)|l, where H is any real Hilbert space of dimension at
least min{m, n}.

EXERCISE 11.7 (Trace zero measurements suffice). Let (a;;) be a quantum
correlation matrix defined by . Show that (aij) can be realized with a state
pP=pRTR®TrE D((Cd1 ® C¥% ® C? ® C?) (so that, in particular, p is separable or
PPT if p was)_and with operators X; € B%(Ch ® C?), Y; € B*(C% ® C?) such
that, in addition to | X;|, < 1 and |[Yj]s < 1, we have also Tr X; = TrY; = 0 for
all 7, j. Moreover, it can be arranged that all X; and f/j are multiples of isometries
if XY, were.

EXERCISE 11.8 (Local correlation polytope on k qubits is also an ¢1-ball). Show

.....

. k
2k+1 yertices and 22" facets.

EXERCISE 11.9. Find the inradius and the outradius of the sets LC and QC.

EXERCISE 11.10. Show that the sets LC and QC have enough symmetries (in

the sense of Section [4.2.2)).

11.2.2. Bell correlation inequalities and the Grothendieck constant.
In the context of correlation matrices, a Bell correlation inequality is a linear func-
tional ¢ : M,, , — R with the property that p(A) < 1 for any classical correlation
matrix A € LC,, ,. (We will discuss a more general setup in Section M) If we
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identify M, , with its dual space, the set of Bell correlation inequalities becomes
the polytope LC;, . (the polar of LC,, ,,) and can be identified with B ® Bp. Of
particular interest are the extreme (or optimal) inequalities or, equivalently, the
facets of LC,, ,, (cf. Section .

A famous example of a Bell correlation inequality in the 2x 2 case is the Clauser—
Horne-Shimony—Holt or CHSH inequality ¢crsm, which is the linear functional
A %TI‘(AMCHSH), where

i,j=1

2 1 1
(11.3) Mcusa = (mij) = [1 _1].
It is easily checked that %MCHSH € LC; , since for any choice of &, € {—1, 132,

(11.4) §1m +&ime + Samy — Eam < 2.

Moreover, 8 of the 16 possible choices of (£, 7) saturate this bound.

Since, as we mentioned, the inclusion LC,, ,, = QC,, ,, is strict\(provided m,n >
2) it may happen that for a Bell correlation inequality ¢ and a.quantum correlation
matrix A € QC,, ,,, we have p(A) > 1. In that case, we say that the Bell correlation
inequality ¢ is violated by A and the quantity ¢(A) is called the violation or, more
precisely, the quantum violation. This is, in particular, the case for the CHSH
inequality. We have

ProrosITION 11.11 (CHSH violations, seé. Exercises [11.11H11.13)). The maa-
imal quantum violation of the CHSH inequality is /2, and no Bell correlation
inequality for 2 x 2 correlation matrices yields a larger violation.

A remarkable fact is that violations of Bell correlation inequalities of arbitrary
size cannot exceed a universal constant called the Grothendieck constant.

THEOREM 11.12 (Grothendieck—Tsirelson, not proved here). There exists an
absolute constant K = 1 such that, for any positive integers m,n, the following
three equivalent conditions hold:
1° We have the inclusion

(11.5) QCpnp © KLCpp.

2° For any m_xn real matriz (mij) and for any p, X;,Y; verifying the conditions
of Definition [LI-.6 we have
(11.6) > imy Trp(X; ®Y;) < K

4]

ma mg;i&mj.
se{—l@}mﬁ{—l@}"; 9%
3°> For any m X n real matrix (m”) and for any (real) Hilbert space vectors x;,y;
with |z;| < 1, |y;| <1 we have
11.7 .. . < K S Eom.

(1L.7) ;mu@c“w fe{_m}rgnlg;é{_l,l}n;mzjﬁzna

The traditional version of Grothendieck’s inequality is , the point being
the existence of K independent of m and n (not proved here). The equivalence of
3° with 2° (the Tsirelson’s bound) is the content of Proposition Finally, the
equivalence 1° <= 2° is just duality combined with the “classical” Proposition
oz

The best constant K such that (L1.5)—(L1.7) hold for any m,n is called the
(real) Grothendieck constant and denoted by K. The precise value of K¢ is not
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known; as of this writing, the best estimates are 1.6769 < Kg < m =~

1.7822. We also denote by Kg"’") the best constant in (11.5)—(11.7) for fixed

m,n, and K, gL) =K é"’n). This should not be confused with the optimal constant
in under the restriction that z;,y; live in an n-dimensional Hilbert space,
which is denoted similarly by some authors. The values of all these and related
“Grothendieck constants” are discussed in Exercises and in Notes and
Remarks.

One sees immediately that the maximum on the right-hand side of is the
norm of the bilinear form
Thus Proposition [I1.7] is really an instance of the duality between. the projective
and injective tensor products (see Section and particularly Exercise [4.18)).
Similarly, the maximum on the left-hand side of ([11.7) is the normof M as a bilinear
form on £ (H) x €% (H). In the setting of operator spaces, thelatter quantity may
be interpreted as the the so-called completely bounded norm of the bilinear form
or, equivalently, the minimal tensor norm of M in that category. In other
words, the values of the Grothendieck constants and‘of the maximal violations
of Bell correlation inequalities may be obtained ‘by. comparing two norms which
naturally appear in the context of operator spaces. We will not go into the details
of that theory (or even define precisely the concepts we mentioned above) since to
do that at a reasonable level of diligence would require (at least) another chapter.
Instead, we refer the interested reader to the excellent survey [PV16].

An important question, which has attracted lots of attention over the last 20 or
so years, is the characterization of states p that may lead to nonlocal correlations.
It is easy to see that if a state p.is separable, then any correlation matrix (11.2)
belongs to the local polytope LC.%(A more general fact of this nature is discussed in
Exercise ) In other words, entanglement is necessary—at least in the present
context—for nonlocality:> However, it is known to be insufficient [Wer89| and,
with the goal of clarifying these issues, Peres asked in 1998 whether there is a link
between locality andthie PPT property. Various variants of the question have been

answered, butthe following most basic version is apparently still open (see also
Remark [11.21)and Notes and Remarks on Section [11.3)).

PROBLEM 11.13 (Peres conjecture for correlation matrices). Can nonlocal cor-
relations_be obtained, in the sense of Definition[I1.6, from a PPT state?

As we mentioned earlier, the facial structure of the polytope LC,, ,, is, for large
my,n, rather complicated. For example, we could not find in the literature an answer
to the following simple question.

PROBLEM 11.14 (How many Bell correlation inequalities are there?). How does
the number of facets of LC,, ,, grow with n? By general arguments (see Exercises
and|11.19) it follows that LC,, ,, has at least exp(2(n)) facets. An upper bound
of n?) facets can be derived from the theory of 0/1 polytopes, i.e., of polytopes
which are the convex hull of a subset of {0,1}". (See |Zie00, BPO1].)

Of course, an even more important problem is to characterize all facets/optimal
Bell correlation inequalities modulo symmetries of LC,, ,. However, most experts
appear to think that, for large n, a satisfactory answer to such question is unlikely.
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Let us conclude this section with a result giving volume and mean width esti-
mates for the sets of correlation matrices. We state them for classical correlations
only, since similar estimates for quantum correlations follow formally via Theorem

11.12| (see, however, Problem [11.16]).

ProprosITION 11.15. For m,n € N we have
(11.9)

1
<\/§ ¢
where o(-) indicates the behavior as m,n — oo. (Recall that the ratio v/kjy, “de-
creases from \/T/Z to 1 as k increases from 1 to oo, see Proposition )

7

(1)) max(v/m, v/n) < vrad(LCpn) < w(LCpn) < \/Z(m + /) Y

Kmn

PROOF. The middle inequality is the Urysohn inequality (Proposition [4.15)).
To get the upper bound on the mean width, we use the Chevet—Gotrdon inequality

(see Section [6.2.4.1)) in the form from Exercise
wG(LCn,n) < Vnwe(By) + vVmwa(BY) = /2/m(myn+ nym).

For the lower bound on the volume radius, we may assume'm > n. We claim that
(with the identification M, ,, & R™" < (R™)™), we have

1

V2

m

(11.10) (BH)™ < LC .

Since the volume radius of (B%)™ is easy‘tolcalculate, namely

/mn
o vol(Bg)l/n B r(% + 1)1
viad ((B5)") = Soicggmy i r(g+n’”
2

by (B.3)), the lower bound in (11.9) follows then readily from Stirling’s formula (as
does an explicit nonasymptotic.bound, should it be needed).
To establish (11.10), we.note that, for B € My, 5,

11.11 sip Tr(AB) = sup bii&
(11.11) S TH(4B) “}ZZ J
> Ave bij&i

se{fl,l}mi; ;1 !

Q Li <i 52)1/2
IR a7’ 7

where (*) denotes an application of the optimal Khintchine inequality (Exercise
with the value A; = 1/4/2 from [Sza76]). It remains to observe that the
inequality between the first and the last term in (11.11]) is an equivalent dual version

of (TT.10). O

While Theorem [11.12] implies that vrad(LC, ) ~ vrad(QC,_,) uniformly in
m,n € N, it is not clear how different the two volume radii can be. Here is a
question whose flavor is similar to that of Problem

PROBLEM 11.16. Is there an absolute constant ¢ < 1 such that, for everyn > 2,

vrad(LC,,,) < cvrad(QC,, ).
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Even showing that the ratio vol(LC)/vol(QC) tends to 0 does not seem straightfor-
ward.

EXERCISE 11.11 (The CHSH bound). Show that sup{vcmsu(4) : A €
QCyp} = V2.
EXERCISE 11.12 (CHSH is the only 2 x 2 Bell correlation inequality). By Ex-

ercise the polytope LCs 2 has 16 facets. Show that the unit normals to these
facets are (up to the sign) exactly the matrices that can be obtained by permuting

1 .
0 8] Conclude that, up to the obvious
symmetries, pcgsy is the only nontrivial 2 x 2 Bell correlation inequality:

the entries of either %MCHSH or of

EXERCISE 11.13 (The Grothendieck—Tsirelson bound). Show that the'sequence
(Kgl))n increases to K and that Kg) =+/2.

EXERCISE 11.14 (CHSH is the only 2 x n Bell correlation inequality). Show
that Kg’") = /2 for any n > 2.

EXERCISE 11.15 (CHSH is the only 3 x 3 Bell correlation inequality). Using the
Matlab multi-parametric toolbox (or other software;or-lots of time), it is routine
to establish that LCs3 3 has 90 facets. Using this information, show that, up to the
obvious symmetries, pcgsy is the only nontrivial 3 x 3 Bell correlation inequality

and deduce that Kg’) =4/2.

EXERCISE 11.16. Show that Kg) coincides with the maximal ratio of |M :
2.(C) — 2(C)| and |M : 2 (R) — £2(R)|, where M varies over the set of real
2 x 2 matrices.

EXERCISE 11.17. Show that.the complex Grothendieck constant (see ((11.37)
in Notes and Remarks for the\définition) for 2 x 2 matrices equals 1.

EXERCISE 11.18 (Facial dimension of the local correlation polytope). Using
Corollary show-that LC, , has exp(Q(n)) facets. Moreover, for any fixed
A > 1, any polytope-P such that P < LC,, < AP or P < QC,,, < AP has
exp(Q2(n)) facets.

EXERCISE.11.19 (Facial dimension of the local correlation polytope, take #2).

Combine-Proposition [6.3] Theorem Proposition [T1.15| and Exercise to
show that'LC,, ,, has exp(2(n)) facets.

11.3. Boxes and games

This section outlines more general Bell inequalities described in the language
of boxes and games. It includes an explanation of how the original Grothendieck—
Bell setup fits into the broader framework, the CHSH inequality as a game, and
a presentation of several examples and special features such as no-signaling, PR-
boxes, and bounded or unbounded violations.

11.3.1. Bell inequalities as games. We start by rephrasing the CHSH in-
equality as a game. The game involves two cooperating players, Alice and
Bob, and a—fair but tough—referee. The players may use a strategy agreed upon
in advance and may share some resources, but are not allowed to communicate dur-
ing the game. At each round of the game, the referee provides Alice and Bob with
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Referee
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FIGURE 11.1. Diagrammatic representation of a quantum-gaine,
Prior to the game, Alice and Bob can agree on some strategy which,
in the quantum variant, may involve sharing a bipartitequantum
state (as depicted by the wavy line). Once the game starts, they
are no longer allowed to communicate. The referee sends privately
input i to Alice and input j to Bob; Alice and Bob answer him
privately with their outputs, respectively £ and\n.

inputs (or settings) ¢ and j, which can be 1 ox2, and each of them must respond
with an output (respectively & and 1) which/can*be 1 or —1. Alice and Bob win if
the product £n equals m;j, the (4, j)th-entry of the CHSH matrix , and lose
otherwise. The difficulty is that while Alice knows her setting i € {1, 2}, she doesn’t

know Bob’s setting j, and similarly.with the roles reversed.
A deterministic strategy cousists of two vectors (52»)?:1, (nj)jzl e {—1,1}2

indicating players’ responses for all’values of the inputs. If the amount won or lost
in each round is 1, the winnings per round, averaged over all possible inputs i, j
(the value of the game),-are

1 1
(11.12) Z;m” by < 5

(this is the same as the bound of 2 from after renormalization) and half
of deterministic strategies saturate this bound. Consequently, the same bound
holds, and“is optimal, for random strategies involving choosing at each round a
random pair of vectors (£(w),n(w)) according to some distribution p(w) (this re-
quires shared randomness if the choices of Alice and Bob are not to be independent;
such ‘strategies, deterministic or random, are usually called local or classical). If
we are interested instead in the probability of winning, the quantity to consider is
the average of %(1 + my; fmj), which yields a bound of %.

The reader may wonder whether the uniform distribution on the set of inputs
that is implicit in is not rather arbitrary. However, it is not hard to verify
that such distribution faces the players with the toughest challenge. Similarly, there
is a random strategy that yields game value % for any probability distribution on
the set of inputs that the referee may be using. (See Exercise )

The quantum version of the CHSH game is very similar, except that rather than
being deterministic or using shared randomness, the responses of Alice and Bob are
based on measurements performed (locally on their respective sites H 4 and Hpg) on
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a shared quantum state p € D(H4®H ). More precisely, for every setting i of Alice
(resp., j of Bob) there is a pair of complementary projections Ef,{“ =& e{-1,1},
on Hy (vesp., Fj',n = n; € {~1,1}, on Hp). If Alice receives from the referee

the input 4, she performs the projective measurement corresponding to (EzE Je=+1
and responds with the value of £ supplied by the outcome of the measurement,
and similarly for Bob. According to the Born rule , if the referee provides
Alice and Bob with inputs (4, j), the probability of a pair of responses (£,7) will
be Tr p(Ef ® F}'). Consequently, for these inputs, the expected value of the CHSH
game will be m;; (the corresponding entry of the payoff matrix Mcggp from )
times

(11.13) D Trp(Ef @ F)) = Trp(X; ®Y;),
&n=11

where X; = Y| €Ef = E' — B! and, similarly, Y; = Fj™' < F;'. Averaging

1
over all inputs 7 and j, we obtain the value

1
(11.14) szzj Trp(X; @ Y;).
i.j

Comparing (11.14) with (11.12)) and appealing te Rroposition [11.11{ we conclude

that there exists a quantum game, strategy (i.e., p, (EVE)7 (Fj")), which yields the

K3
value of g (which is also optimal). This is substantially better than the value of %
that can be achieved with classical strategies (deterministic or random). Similarly,
if we want to focus on the probability of winning the game, the quantum strategy
yields 2*—‘[ ~ 0.8536, which needsto be compared to the upper bound of 3 for
classical strategles that was calculated earlier. For a discussion of fine points of the
optimality of this strategy see BExercise [I1.21]

EXERCISE 11.20 (Optimality of the classical CHSH game strategies). (a) Show
that if, in the CHSH ganie, the referee uses a non-uniform distribution on the set of
inputs, then Alice and Bob have a deterministic strategy which gives a value strictly
larger than % (b)-Describe all classical strategies of Alice and Bob that yield % as
the value of the CHSH game, irrespectively of the probability distribution on the
set of inputs(used by the referee.

EXEROISE 11.21 (Optimality of the quantum CHSH game strategies). State
and prove /a quantum version of the preceding exercise.

11.3.2. Boxes and the nonsignaling principle. The scheme that we de-
scribed above via the example of the CHSH game can be conceptualized and gener-
alized using the language of bozes. A box is a family of joint probability distributions

(11.15) P={p(,|i,j) : 1<i<m, 1<j<n}

In the context of the two-player games described earlier, p(&, n|é, j) is the probability
that Alice and Bob respond with outputs £, when presented with inputs ¢, j. If
the payoff corresponding to this scenario is v(€, 7,1, j), the (average) value of the
game is

(11.16) =— Z (& mlé, 5o (& .4, 5)-

577w
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For the CHSH game (classical or quantum), we had

(1117) ’U(f,’l’],i,j) = mmfn
with m;;’s given by and &,7 taking values in {—1,1}. In the general case,
¢ and n are no longer binary and we will not require that they take the same
number of values. We will assume throughout this section that £ € {1,...,k} and
ne{l,...,l}. (In fact, in some scenarios it may even be natural to consider boxes
with the number of possible outputs dependent on the particular input.)

While the payoff function v can be a priori arbitrary, the probabilities implieit
in the box P reflect the players’ strategy and the resources available to them.

e Deterministic strategies (i.e., £ = f(i) and n = g(j) for some functions f.and g)
result in a deterministic box:

(11.18) p(&mli,7) = Lie=r@) L in=a(i))-
e Random strategies result in product boxes:
(11.19) p(&nli, j) = p(li)p(nl7),

where p(-|i) = pa(:]7) and p(:|j) = pp(-|j) are the (independent) marginals of the
distribution p(-, |4, 7).
e Random strategies with shared randomness result in local (or classical) boxes:

(11.20) p(E.nling) = pr@u,A)p(nu, X du(N).

where A € A is the (shared, knowingly or net) hidden variable, and p a probability
distribution on A.
e Quantum strategies result in quantum boxes:

(11.21) P&t )= Trp(Bf ® F),

where p is a quantum state shared by Alice and Bob and, for each ¢ (resp., j),

(Ef)5 (resp., (an)n) is a. POVM on Alice’s space H 4 (resp., Bob’s space Hp).
Let us denote the corresponding sets of boxes by DB, RB, LB and QB. If there

is a need to specify the dimensions involved, we use expressions such as QBy, jj, -

Since the number of values taken by £ and 7 is, respectively, k& and [, every box can
be thought of-as“an element of Rﬁlm” and we have

(11.22) DBc RBc LB < QB.

The first_inclusion is trivial and it is clear from the definition that LB = conv RB;
in particular LB is convex. (A moment of reflection—see Exercise [11.22—shows
also) that every product box is a mixture of deterministic boxes and so in fact
LB = convDB.) The convexity of QB and the last inclusion in (11.22), which
follows from it, are slightly less obvious (see Exercises [11.23] [11.25] [11.26] and
Notes and Remarks for a discussion of these points and related issues). Except in
trivial cases, the inclusion LB < QB is strict; this follows, for example, from the fact
that correlations can be retrieved from boxes (as in (I1.16)—(11.17)) and from the
inclusion LC,, ,, < QC,, ,, being strict. Boxes that do not belong to LB are called
nonclassical or nonlocal.

We next present a description of LB in the language of projective tensor prod-
ucts. First, consider the set of conditional marginal probability distributions

(11.23) Kpm = {p(€i) : 1<E<k,1<i<m},
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i.e., of matrices M = (mg;) € My, with nonnegative coeflicients and columns
summing to 1. Then Ky, ., is a convex compact set that canonically identifies with
(Ak,l)m < (R¥)™ = R*¥" and one sees (directly from the definitions) that

(1124) I—Bkyl|m7n = Kk:,m ® Kl;n-

Due to the requirement that p(-, -|¢, j) be probability distributions, it is evident
that the sets DB, RB, LB and QB are not full-dimensional in R¥*™”_ The description

(11.24) allows to deduce that
dim LBy jjm,n = (dim Ky, + 1) (dim K, +1) — 1
= mnk—-1)(1—-1)+m(k—1)+n(l—-1)

(see Exercise . The geometry of QB is not as transparent as that_of LB.
To shed some light on it, let us consider a quantum box P = {p(&9|i,j)} =
{Trp(EiE ® an)} € QB and, for given i, j, let us calculate the marginal density
p(€li, ) of p(&,ni, 7). We then obtain

p(Eli5) = D p(&mli, §) = Y Trp(E; @ ') = Tr p(Ef @lagy) = Tr (paEf),
n n

which doesn’t depend on j (here p4 = Try, p s the partial trace, cf. )
Similarly, the marginal densities p(7|i, j) do not depend on . In other words, there
exist distributions p(:|i) = pa(:]é), i = 1,...,m, and'p(:|j) = pa(-|j), j=1,...,n
such that, for every 7, j, pa(&|i) and pp(n|j) are‘the marginals of p(&, n|i, 5), i.e.,

(11.25) D p(&mli §) = pa€li)and > p(&,nli, §) = pa(nlj).
n 3

Let us reflect now on the operational significance of . If, for some i, the
distributions p(&|i, j) depended on j, then (by implementing the procedure deter-
mining her response £ to the“iuput ¢ obtained from the referee) Alice would gain
information about the input j)sent by the referee to Bob (complete information if
the distributions p(-|i, j)>were disjointly supported for distinct j, and some infor-
mation if they were just-different). This hypothetical event is usually interpreted
as instant—or at least faster than light—signaling or communication and, conse-
quently, the constraint is usually referred to as the nonsignaling principle.
(Actually, therarguably more appropriate interpretation may be that of precogni-
tion as nothing seems to forbid Alice from determining her response before—in the
sense of being inside the past light cone—Bob determines his or, indeed, before Bob
or even-the referee knows the value of j. Note that while, in that case, Alice could
in-principle communicate her response to Bob, this has no effect on the statistics
of-her outputs.)

The set of boxes verifying is called the nonsignaling polytope and we
will denote it by NSB. (It is indeed a polytope, being the intersection of an affine
subspace of R¥'™" with the cube [0,1]¥"™".) An analysis of the constraints shows
that LB and NSB (and hence the intermediate set QB) have the same dimension;
see Exercises and For 2-output nonsignaling boxes (i.e., if &k = [ =
2, in which case one may assume that £, 7 take values +1) one can still define
the corresponding correlation matrices by the formula that is (modulo different

normalization) implicit in (11.16)—(11.17), namely
(11.26) aij = Y. Enp(&nli,j).

En==1
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We will denote the set of such matrices by NSC,, ..

Here is an important example of elements of NSB, the so called Popescu-
Rohrlich boxes, or PR-boxes. Let m = n = k = [ = 2 (a bipartite 2 x 2 system
with binary outputs: £, = £1;4,j = 1,2) and consider the box P given by

. i1 ifi=j=2,
(11.27) p(&nli, j) = 31{5”} .
51— otherwise.

O N

In other words, the joint distributions p(-, ‘|4, j) are, respectively, either [(1)
2

&
1

[(2) 9] Since all marginals p4(+]¢) and pp(-|j) are identical, with probabilities of
2

both outputs equal to %, it is immediately clear that P is nonsignaling. [t is also

apparent that for each combination (4, j) of inputs we have >, _ ,&€np(&,nli, j) =

m;j, where (m;;) is given by (I1.3)). Accordingly, the value of the CHSH game (as
given by (11.16)—(11.17))) is 1, as is the probability of winning:~Since the analysis
from Sectqiaﬁ(_b?sed on Proposition shows that the best value that
can be achieved by a quantum strategy is g, it follows that the PR-box cannot be
realized as a quantum box via . This implies that the inclusion QB < NSB
is always proper.

We will conclude this section by giving volume estimates for the sets of nonsig-
naling boxes NSB and sets of nonsignaling correlation matrices NSC,;, 5.

ProposIiTION 11.17. For k,l,m,n € N-we have
(11.28) vrad(NSBy, jjm,n) = ©(v/mn) and vrad(NSC,, ) = Q(v/mn).

PROOF. Since NSB = [0, 1]5/™" ~ H, where H — R*™" is the nonsignal-
ing affine subspace (in the notation of Exercises H = Vim ® Vin)
the first relation follows almost immediately from Proposition [£.:27] The only two
additional points that need to be made are as follows. First, while H doesn’t
contain the center of the-eube [0, 1]¥™" it does contain the point all whose coor-

dinates are %, thescenter of the cube [0, 1]¥™". Accordingly, voly(NSB) > (%)N,
where N = dimH = mn + m + n (by Exercise . Since, by the Brunn-
Minkowski inequality, central sections are at least as large as (parallel) non-central
sections, the.upper bound from Proposition works without change and yields

voly (NSB) < 2(-mn=N)/2 " The second point is that the dimension and the codi-

mension of H are of the same order, and so (Z(klm”*N)/Q)l/N = O(1). It re-
mains to combine the above estimates with the well-known asymptotic expression
vol(BY)Y/N ~ \/2me/N (as N — o0, see Appendix and particularly Exercise
B-1).

The second relation can be analyzed in a similar way. By definition, NSC,, ,,
is a linear image of NSB, essentially a projection of a section of [0, 1]¥™"  Since a
projection of a section is larger than a section of a section, we get a lower bound.
(The reason for “essentially” is that the vector £&n = (1, —1)®(1, —1) € R2QR? < R*
is of norm 2 rather than 1.) O

PROBLEM 11.18 (Volume radius and mean width of sets of boxes). In the
assertion of Proposition[I1.17, can Q be replaced by ©? The argument given above
(combined with, say, Pmposition runs into complications if m and n are of
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very different orders. More generally, what are the asymptotic orders of the volume
radit and mean widths of sets of boxes of the sets LB, QB, NSB for arbitrary values
of k,1? Some of the cases (e.g., LB, because of ) appear fairly straightforward
consequences of the methods presented in this book, but some of other ones seem to
require further analysis.

EXERCISE 11.22. Show that every product box is a convex combination of
deterministic boxes.

EXERCISE 11.23 (Convexity of the set of quantum boxes). Show that the set
QB of quantum boxes is a convex subset of R’f"m.

EXERCISE 11.24 (Pure states suffice). Show that in the definition of-quantum
boxes ([11.21)) we can require the state p to be pure.

EXERCISE 11.25. Show that (i) LB < QB and (ii) moreover, that every P € LB
can be realized as a quantum box (11.21)) with p separable.

EXERCISE 11.26. Show that if a quantum box P can be'written as p(&, n|é, j) =
Tr(p(Ef ® F]n)) with p € Sep, then P € LB.

EXERCISE 11.27 (The dimension of the set of local hoxes). Show that dimLB =
mn(k—1)1—-1)+m(k—1)+n(l—1).

EXERCISE 11.28 (All sets of boxes have the.same dimension). Show that
dim QB = dimNSB-= dim LB.

EXERCISE 11.29. Deduce the equality dim QB = dim LB from the fact that
dim D = dim Sep (shown in Section {2.2.3).

11.3.3. Bell violations. Consider a linear functional V on R™"* (sometimes
called a “Bell functional” or a “Bell expression”). It can be written as

(11.29) VPY= S pl&,nli ol mi ).

&1M,%,J
Except for the normalizing factor, which was removed to reduce the clutter, this is
the same as tlie average value of a game defined in (T1.16)). The local (or classical)
optimal value of P is defined as

(11.30) w, (V) =max{|V(P)| : PelLB}.

(We will always tacitly assume that w, (V) > 0, ie., that V ¢ LB- = NSB™.)
In ‘thiscontext, a Bell inequality is an inequality of the kind |V (+)| < w, (V). If
a(necessarily nonlocal) box P satisfies |V(P)| > w,(V), one says that the Bell
inequality is violated and the ratio |V (P)|/w, (V) is called the violation. Similarly,
the quantum and nonsignaling optimal values of V' are defined as

(11.31) w, (V) =sup{|V(P)| : PeQB}, wy(V)=max{|V(P)| : PeNSB}.

Finally, maxy w, (V)/w, (V) is called the maximal quantum violation (for the par-
ticular values of m,n, k, [; more precisely, quantum-to-classical or quantum-to-local
violation), and similarly for violations involving nonsignaling boxes. For example,
the discussion following the definition of PR-boxes shows that, for the CHSH
game, nonsignaling-to-classical violations can as large as 2 (see Exercise and
cf. Proposition . All these parameters have nice functional-analytic interpre-
tations, see Exercise [[1.31]
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As in the case of the CHSH game, the reader may wonder whether the uniform
distribution on the set of inputs implicit in the definition of V(P), and hence
indirectly in 7 is justified. While for some “balanced” Bell functionals
it will be true that—as for the CHSH game, see Exercise [11.20}—the von Neumann—
Nash-type equilibrium indeed involves the uniform distribution, this will not be
universally the case. However, there is a simple trick that allows to sidestep this
issue: a game with the distribution 7 (i, j) on input settings and the payoff function
v(&,m,1,7) is equivalent to the game with the payoff function mnn (i, 7)v(&,n, 1, j)
and the uniform distribution. In other words, considering uniform distributions
on sets of inputs covers all possible scenarios: it is just one of many essentially
equivalent ways of parameterizing the set of all possible Bell functionals. However,
in some situations a moment of reflection will be needed; since, for~example, the
optimal 7 (2, j)’s for the local, quantum and nonsignaling strategies may be different,
one has to be sure that one does not compare “apples to oranges.”

As we will see later, measurement schemes involving boxes may lead to arbi-
trarily large violations. However, this is not the case for“boxes ‘with 2-outcomes
(i.e., when k = | = 2). The reason is that sets of 2-outcome boxes are closely
related to sets of correlations introduced in Section.I1.2] This is particularly
clear when one compares the set LC,, , of classical/local correlations, which, by
Proposition m identifies canonically with B} ® B < R @ R" < R™", and
the corresponding set LBj 5|, ,, of local boxes; which, by , identifies with
Kom @Ko = (A1)" ® (A1)" = RZ"®R?™ < R*". In other words, LC,,
is the projective tensor product of two O=symmetric cubes, while LBj 3/, ,, is the
projective tensor product of two similar cubes, but contained in spaces twice their

1

dimension and centered at the point all whose coordinates are 3.

ProposiTiON 11.19. If k= 1,= 2 then for any Bell expression V, we have
wo (V) < Kgw,(V), where-Kg”is the Grothendieck constant. If, additionally,
m=mn =2, then K¢ can be“replaced by /2.

PROOF. Assume(that'the labels & and n belong to {—1, 1} rather than {1, 2}.
The maximum in w, (V') is achieved on an extreme point of LB, i.e., on a determin-

istic box that is of the form (cf. (11.18))
. 1
p(faﬁh)j) = 1{§=xi,n=y]‘} = 1(1 + 6.131)(1 + Wyj)
for some.vectors x € {—1,1}™ and y € {—1,1}". We can then write

V(P) = Z Z Q5 TiY5 + Z Bix; + Z Y5Y5 + 1)
i=1j=1 i=1 j=1

with as; = Avelenv(€,m,i, )], B = Avel€ v(&,m, i 1)), 75 = Ave[v(€, ., 5)] and

§ = Ave[v(€,n,4,5)]. (In each formula, Ave is a shortcut for 1>} over all indices

among 4, j, £, 7 not appearing on the left of the equation.) We can gather all these

quantities in a single (m + 1) x (n + 1) matrix by defining a; n+1 = Bi, ang1,; = ;5

and agp41.n41 = 6 and obtain

m+1n+1

DI

i=1 j=1

(11.32) w (V) = |V(P)| = max{

: (aij) S LCm+17n+1} .
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Consider now a quantum box P" € QBj 3/, n, of the form p'(&, (i, j) = Tr p(Ef ®
). Using the same notation as before and setting X; = E} — E; ! and Y; =

?
Fl - j_ as in (11.13)-(11.14), we can write

V(P = ZZaWTrp(X ®Y;) +ZﬁfﬁpX®I +Z’ijrpI®Y)
im1j=1 i=1 1

m+1]n+1 =

Z Zai,jTI"P(Xi(@Yj),

i=1 j=1

where in the last sum we defined X,,,1 = and Y,,;1 = I. It now follows that
m+1n+1

PIPILLE

1=1 j=1

(11.33) V(P < max{

avj) € Qcm+1,n+1} .

Since P’ € QB was arbitrary, the first statement of the Proposition follows by
comparing (11.33)) with (11.32)) and appealing to Theorem ‘11.12L For the second
statement, we note that if m = n = 2, then Theorem [L1.12]'will be used for 3 x 3

matrices and so Kg may be replaced by K (3 - = /2, see-Exercises [11. 13H11 151 O

REMARK 11.20. The argument shows that the violations of bipartite n-input,
(n+1) (

2-output boxes do not exceed K, and similarly for “rectangular” boxes, i.e.,
m # n). Still, the matrices (a”) that appear in (11.33) have a special structure

and so it is conceivable that the bound ng) works, too. However, this is unlikely
to be a matter of a formal algebraic reduction since, for example, the setting of
3-input, 2-output boxes leads to optimal Bell inequalities, which are not present in
the context of 3 x 3 correlation~matrices (the so-called I5329 inequalities).

REMARK 11.21. Since the proof-of Proposition translates violations for
2-output quantum boxes to(quantum violations for correlation matrices associated
with the same state p,-it follows that Problem i.e., the Peres conjecture
for correlation matrices,<is/ formally equivalent to the analogous problem for boxes.
However, if we allow'three outputs in one of the boxes, the answer is known: there is
an example of\a PPT state producing violations, even with dimH 4 = dimHpg = 3.

As we mientioned earlier, measurement schemes involving more general boxes
may lead~to arbitrarily large violations. This may happen for two reasons: either
the system is not bipartite (i.e., it involves three or more parties) or the outputs are
not binary. These two situations are exemplified by the following pair of results.
Recall that LC,,, . ,, and QC,,, ., are the k-partite generalizations of the sets of
classical and quantum correlation matrices, see Remark [[1.10] for details.

PROPOSITION 11.22 (not proved here). Denote by Kg”"'"nk) the best con-
stant K such that the inclusion QC,, .. < KLCy ., holds. Then Kén’n’n) =
Q(n'/*(logn)=3/2) and K(Gnl’m’ns) < K¢ min{ny, ng, n3}'/2.

PROPOSITION 11.23 (not proved here). For any Bell functional V we have
wo (V) /w (V) < K& VEl (independently of the values of m,n). On the other hand,
ifl = 2 andm,n = 2", then there exists V such that w, (V)/w, (V) = Q(Vk/ log? k).

Above Kg stands for the complex Grothendieck constant; see Notes and Remarks
for a precise definition and for estimates. Both propositions can be understood as
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statements about comparing different norms on tensor products of operator spaces.
(The identification (11.24)) gives one hint why this may be the case.)

The existence of large nonsignaling-to-classical violations is much easier to es-
tablish. We have

PROPOSITION 11.24. In the class of boxes with binary outputs (i.e., k =1=2),
the mazimal nonsignaling-to-classical violation satisfies

m‘?‘X wys (V) /w, (V) = ( min(\/ﬁ, \/ﬁ)) :
Moreover, the same bound holds for violations involving correlation matrices,

Proor. Combine Propositions and One way to take care“of fine
points is to use Urysohn’s inequality to deduce that w(NSC,, ,) = Q(y/mn) and
then compare it to the upper bound w(LCy, ) = O(y/m + y/n) from(I1.9). This
leads to a nonsignaling-to-classical violation (of correct order) of some Bell corre-
lation inequality and shows the second (and hence the first) statenient. (]

We conclude the section by introducing another concept which quantifies non-

locality and which is, in a sense, a generalization of the.geometric distance between
sets (of boxes). Given P € NSB we define the local/fraction (or classical fraction)
of P as
(11.34) p, = p,(P) == max{t € [0,1]-:\P € tLB + (1 — t)NSB} .
The quantity p,, = 1 — p, is the nonlocal fraction. Similar parameters can be
defined for other pairs in place of LB, NSB. For example, replacing in LB
by DB, the set of deterministic boxes (defined by ) leads to the notion of
fraction of determinism.

Clearly P € LB iff p, = 1. Therefore, by the Hahn-Banach separation theorem,
whenever p,, > 0, then there exists a Bell functional V' such that V(P) > w, (V)
(i.e., P violates some Bell inequality). However, the size of the violation cannot
be immediately ascertained. What can be quantified, though, is the relationship
between different types of violations. We have

PROPOSITION 11.25. Let P € NSB and let V' be a Bell functional. Then

(11.35) ;((};)) —1<py (ZNS((VV)) — 1) .

PRrROOF. By definition, there is a local box P’ and a nonsignaling box P” such
that P = p, P’ + p,, P” and consequently

V(P) = pLV(P/) +pNLV(‘P”) S pLwy (V) + DnrWis (V),
which is equivalent to the asserted inequality (11.35]). O

The meaningful case in is when 0 < p, < 1. We can then conclude that
while P violates some Bell inequalities, the violation is always noticeably smaller
than the nonsignaling violation wy (V') /w, (V'), uniformly over all V' for which that
ratio is strictly greater than 1.

An interesting and somewhat surprising setting when one has a nontrivial lower
bound on the local fraction is for (bipartite) quantum boxes with min{m,n} = 2.
We have then
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THEOREM 11.26 (not proved here). Consider a two-player game setup with
n =2 (i.e., two input settings at Bob’s site) and arbitrary (but fixred) m,k,l. Then

(11.36) inf{p, (P) : PeQBym2} >c,

where ¢ > 0 is a constant that depends only on k and ! (but not on m nor on the
dimensions of the underlying Hilbert spaces). The same is true about the fraction
of determinism.

Theorem [11.26] in combination with Exercise provides an alternative ar-
gument that the PR-box cannot be realized as a quantum box. The same reasoning
works for any bipartite setup with min{m,n} = 2 and any box which yields ‘the
optimal nonsignaling value for any Bell functional V' such that wy, (V). >w; (V)
(so, while more involved and less sharp, the present argument is very general).

The assertion of Theorem does not hold when both playersthave 3 or
more settings. This is because in that case there exist the so-called pseudotelepathy
quantum games, i.e., the games that can be won with probability. I~using quantum
strategies, while no foolproof classical strategy is possible.. Consequently, if P is
the corresponding quantum box and V' is the probability of winning, then V(P) =
1 = wys(V), while w, (V) < 1, and so it follows from that p, =1—-p, =0.
An outline of one such game, the Mermin—Peres\magic Square game, is given in

Exercise [1.351

EXERCISE 11.30 (Linear vs. affine Bell-inequalities). Show that definitions
(11.30) and (11.31) yield the same value.if we-allow V' to vary over all affine func-
tionals and not just over linear functionals.

EXERCISE 11.31 (Violations, symmetrizations, and the geometric distance).
Verify that w, (V) = |V|ko, whete K = LBy, the “cylindrical” symmetrization of
K, and similarly for QB and~NSB” Deduce that the maximal quantum violation

equals dg(LBg,QBy). (See((4:6)) and (4.1) for definitions.)

EXERCISE 11.32 (Violations and widths). (i) Let & = max, “(@5=w(38—u)
be the maximal ratio of widths of QB and LB (see Section . Show that the
maximal quantum vielation is contained between ¢ and 26 — 1. (ii) State and prove
an analogous statement for NSB.

Note: It follows that the ratio of widths is an alternative measure of violation
equivalent \(up to a factor of 2) to the one based on values. Observe that, by

Exercise[IT.31] we would have equality—and not just equivalence—if we used LB,
QBy in'place of LB, QB in the definition of ¢.

EXERCISE 11.33 (Nonsignaling value of the CHSH game). Show that the non-
signaling value of the CHSH game is 2 and deduce that the maximal nonsignaling
violation for m =n =%k =1=21is 2.

EXERCISE 11.34 (Quantum box for the CHSH game). Give an explicit example

of an ensemble (p, (Ef)7 (an)) which induces—via (11.21)—a quantum box giving
the optimal violation of the CHSH game.

EXERCISE 11.35 (The magic square game).
(i) Verify that the self-adjoint operators on C? ® C? given in Table have the
following properties
(a) the operators in each row commute and the same is true for each column
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(b) the composition of the entries in each row is I, while the composition of the
entries in each column is — L.

TABLE 11.1. The magic square game.

0. X1 I®o, | 0. @0,
—0,®0, | —0,Q®0, | 0y ®0y

I®UZ O—z®I JZ®UZ

(ii) Show that there is no 3 x 3 table consisting of numbers such that the product
of the entries in each row is 1, while the product of the entries in each column is
—1.

(iii) The Mermin—Peres magic square game is played as follows. The- number of
input settings is m = n = 3 and the outputs are strings of +1“of length 3. An
additional restriction is that the product of elements of Alice’s string must be 1,
while the product of elements of Bob’s string must be —1 (80;.in effect, k = [ = 4).
If the input settings communicated to Alice and Bob were (,7), Alice and Bob win
if theirs output strings placed respectively in ith row-and jth column coincide on
the common 7j-th entry, and lose otherwise. Show‘that

(a) there is no deterministic (and hence classical) winning strategy,

(b) the following is a winning quantum strategy. Alice and Bob share a 4-qubit
quantum state ot ® T, where T = %(|OO> 4+ |11)) is a Bell state with the first

qubit of each copy of ¢t going to Alice and the second to Bob. Given input 4, Alice
measures her part of the state in a basis in which the (commuting) operators from
the ith row are simultaneously ‘diagenal, and answers the corresponding triple of
eigenvalues. Given input j, Bob\does'the same thing using the jth column.

Notes and Remarks

Section The‘argument that the proper mathematical home of Bell in-
equalities belongs tothe operator space theory was most explicitly put forward in
[JPPGT10].

For a proof of Theorem we refer the reader to [Por81] (Theorem 13.68) or
[Kir76|. There'is a huge gap between that Theorem and Lemma which both
yield subspaces of dimension ©(log n) and the optimal ratio |- |op/|-|us = 1/4/n, and
the subspaces given by Dvoretzky’s theorem, which feature | - ||lop/|| - |us ~ 2/4/n
and.are of dimension ©(n) (see Theorem for sharpness, see Exercise [7.25).
Accordingly, we suggest the following problem.

PROBLEM 11.27. Given A = 1, denote by d(n,\) the mazimal dimension of a
subspace E < M,,(R) such that, for any M € E,
< [Mlleo <

1 A
— || M — | M .
\/EH ls \/ﬁH |s

It follows from Lemma [11.1] that, for A > 1, d(n,\) = Q(logn). Is this sharp for
A€ (1,2]2 (For A > 2, we have d(n,\) = Ox(n).)

Note that while Lemma addresses only the case when n is a power of 2, one
can readily deduce that (for A > 1 and for arbitrary n) d(n,\) = 2logy,n — C(N).
(Consider E = F ® 1, where F' © My is the subspace from Lemma for
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appropriate k,m with 28m < n < 2¥(m + 1).) Note, however, that d(n,1) = 1 if
(and only if) n is odd, see Exercise [[1.1]

Section Proposition [T1.7] is probably folklore, and Proposition [T1.§] is
due to Tsirelson [Cir80, [Tsi85], [Tsi93]. Theorem [I1.12]is known as Grothendieck’s
inequality [Gro53al and its reformulation via correlation matrices is also due to
Tsirelson. The paper [Gro53al went largely unnoticed for 15 years until it was
“brought to the mathematical mainstream” by Lindenstrauss and Pelczynski in
[ILP68|. In particular, the elementary formulation comes from |[LP68|. For
a beautiful recent survey about Grothendieck’s inequality, including historical back-
ground and far-reaching generalizations, see [Pis12al.

Concerning values of constants Kgn’n) for specific m,n, we have Kg )

v/2 for all n and Kg’ m \/2 for all n (the latter is stated without proof in
[FR94] and attributed ultimately to Kemperman’s interpretation of\results of Garg

[Gar83]; see also [BMOS| on which Exercise |11.15]is based). -The approach that

was used to calculate K, g’ ) in Exercise|11.15{can be in principlereplicated for larger

dimensions, but the computational complexity of the problem increases very fast. It
was implemented in [Li| to show rigorously that K g; ) = V/2 (there are two new Bell
correlation inequalities that appear in the 4 x 4 context, but neither of them leads
to a violation that is v/2 or larger). Other values of K ém’n) seem to be unknown.
Various aspects of this circle of ideas, including in particular the significance of
the constant /2, are discussed in [For10] and [FR94]. The CHSH inequality was
introduced in [CHSH69|.

One may also define K gb] as the best constant such that holds for every
matrix (a;;) of arbitrary size and every vectors z;,y; € R”. An easy observation is
that K((;") < KC[;L]. While Kg] ="+/2 [Kri79], the value of Kg'] seems unknown;
see [BN'V16, HQV 7 16| forrecent lower and upper bounds.

The Grothendieck constant introduced in the text is the real Grothendieck
constant. It has a complex counterpart defined as the smallest constant K g such
that for any complex-matrix (m;;) of arbitrary size m x n and any unit vectors
x;,%y; in a complex Hilbert space, we have

11.37 < K&
(11.37) G B,

> imigxi )

.3

Zmijﬁmj
0,J

where T-denotes the set of complex numbers of unit modulus. The best estimates
are'1.338... < K§ < 1.405..., which in particular imply K& < K¢ (see [Pis12a] for
more information and references). Somewhat surprisingly, for 2 x 2 matrices the
complex Grothendieck inequality holds with constant 1, see Exercise (based
on [BMOS8]). For larger dimensions the optimal values of the constants do not seem
to be known.

The argument from Exercise is from [WW0O01la]. The description of the
extremal Bell correlation inequalities (extreme points of LC®, or equivalently faces
of LC) has attracted a lot of attention, see the website

Section For more information on quantum boxes and Bell inequalities
we refer the readers to the surveys [PV16] and [BCP*14|. Older valuable refer-
ences include [Pit89] and [WWO01b].
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Some authors reserve the term “value of the game” to payoff functions that are
nonnegative. (Of course, any finite payoff function can be made nonnegative via
an offset, but that makes a difference when we calculate the ratios of values for
different strategies, as we do.) A 2-output game for which the payoff function is of
the form for some (m;;) (or, perhaps, slightly more generally, m;;{n + n;;,
which allows in particular, talking about % (&n + 1), the probability of winning the
game) is called an XOR game. This is because when we think of the outputs as
Boolean data a,b € {0,1}, the value of the game depends only on the “exclusive
or” value a @ b. XOR games can also be defined for more than two players;, their
study is essentially equivalent to that of correlation matrices. It should be noted
that while for local correlation matrices and boxes the link to the projective tensor
product works perfectly (as in Propositionand ), the correspendence to
operator space tensor products in the quantum setting is slightly less satisfactory
once we leave the setting of XOR games. This is pointed out, e.g.,"in section IV.B
of [PV16]): while we still can, with some work, come up with two=sided estimates,
constants larger than 1 do appear. It would be very useful\te’/come up with a
natural construction (such as the use of cylindrical symretrizations in Exercise
which allows to bypass this complication.

It is known [AIIS04] that determining whether @box is local is NP-complete,
even for the class of boxes with 2 outputs, and similarly for correlation matrices.
This is established via a connection to the concept of the cut polytope associated
to a graph G = (V, E), which is a polytope in R defined as

conv{(dg(e))ecr = S <V},

where dg(e) = 1 if the edge e has one endpoint in S and one endpoint in V\S, and
0 otherwise. It can be checked that-LC,, ,, is affinely equivalent to the cut polytope
of the complete bipartite graph. K, (cf. the comments on contextuality at the
end of these notes) and that LBy o, , is affinely equivalent to the cut polytope of
the complete tripartite graph K, 1. For more information on cut polytopes we
refer the reader to [DL97].

It is unknown whether the set QB of quantum boxes is closed. A closely related
question is known as Tsirelson’s problem and has to do with how quantum physics
models locality: \we may define a set QB’ as the set of boxes p(&, nli, j) of the form

p(&,li, §) = Y| ESF) ),

where 1)-is a unit vector in a Hilbert space H, and, for every i and j, (Ef)g and
(E}"),, are POVMs on H which satisfy the commutation condition ESF 7 =F JUEf
for any 4, j,&,n. (It is crucial here to allow H to be infinite-dimensional.) To check
that QB < QB’, simply take # = Ha ® Hp, E; = Ef ® L and F] = IQF]. A
natural question is whether QB or its closure QB are equal to QB’ (the set QB’ can
be checked to be closed, see Proposition 3.4 in [Fril2]). It was proved in a series
of papers [INP*11, [Fri12], [0zal3] that the equality QB = QB’ is equivalent to
Connes’ embedding problem on von Neumann algebras. On the other hand, Slofstra
proved [SIo16] using techniques from group theory that QB < QB'.

The I3325 inequalities appeared in [Fro81] and the terminology was introduced
in [CGO04]. PR-boxes are usually credited to [PR94], were they were studied in
some detail, but they make an appearance already in [K'T85), [Tsi85].
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A concept in the spirit of local/nonlocal fraction was introduced in [BKPO06].
Fraction of determinism appears in [JHH™ 15|, which also contains Theorem
and its proof.

Peres conjecture was stated in a somewhat vague form in [Per99|. A more
rigorous mathematical formulation and interesting positive partial results can be
found in a series of papers [WWO00, WWO0la, WWO01b|. The example of a
quantum box mentioned in Remark based on a PPT state on C? ® C? and
disproving the Peres conjecture for bipartite systems was given in [VB14]. An
earlier example in the multipartite setting was given in [Diir01]. See the discussion
in [VB14] and in section III.A of [BCP™ 14| for more on the relationship between
nonlocality and entanglement, and for many more references.

The fact that the multipartite analogue of Theorem [I1.12] does-not. hold has
been known for some time. In the present context, unboundedness ‘of Kg“’"r“’na)
as mi,ng,ng tend to infinity was shown in [PGWPT'08|. Quantitative estimates
where obtained later in [Pis12b]. Proposition with a slightly worse power
of logarithm, appeared in [BV13|, the version stated here’is from’' [PV16]. Propo-
sition is from [PY15]. See also [JP11]; more refererices can be found in
[PV1i6].

The form of the Mermin—Peres magic square game given in Exercise [I1.35]
follows largely [Ara04]. Another (more explicit but less transparent) exposition
can be found in [BBTO05]. Other demonstrations of pseudotelepathy are based
on versions of the Kochen—Specker theorem [KS67| which involves the concept
of contextuality. Contextuality, or rather-noncontexrtuality, is a generalization of
locality. For example, a two party scenario allows to perform measurements indexed
by pairs {(i,7)}, where ¢ and j identify respectively local POVMs of Alice and
Bob; this can be represented by acomplete bipartite graph K,, ,. By contrast,
the more general scenario permits’a ‘general hypergraph: the observables are still
represented by vertices, with“the hyperedges corresponding to their subsets that
can be performed (simultaneously or sequentially) without mutually affecting the
outcomes of other observables in the subset. See [BBTO05| for more details and
examples and [CSW.14] for sophisticated links to graph theory.






CHAPTER 12

POVMs and the Distillability Problem

This last chapter consists of two parts which are linked by the central role’played
by the concept of POVMSs, but are otherwise largely independent. Thefirst part
deals with the norms that are associated with POVMs and which.are intimately
related to zonoids. This connection allows us to derive a sparsification result for
POVMs. The second part also uses the language of POVMs, butds fecused on the
distillability problem, a major unsolved problem in quantum information theory.

12.1. POVMs and zonoids

12.1.1. Quantum state discrimination. What happens when a quantum
system in a state p is measured with a POVM M? We only focus on the case of
a discrete POVM M = (M;)1<i<n (continuous POVMs could then be treated by
approximation).

We know from Born’s rule that-the outcome 7 is obtained with probability
Tr(pM;). This simple formula can be used to quantify the efficiency of a POVM to
perform the task of state discrimination. State discrimination can be described as
follows: a quantum system is prepared in an unknown state which is either p or o
(both hypotheses being a priori~equally likely), and we have to guess the unknown
state.

After measuring it with-the POVM M = (M;)1<i<n, the outcome i occurs
with probability p; = Tr(pM;) if the unknown state is p and with probability
q; = Tr(cM;) if theunknown state is 0. Consequently, the optimal strategy is as
follows: when.outcome i is observed, guess p if p; > ¢; and guess o if p; < ¢; (and
use any rule if p; = ¢;). The probability of failure is then

P (failure) Z min(p;, q;) = 5 Z Ipi — ai -

It is convenient to introduce the distinguishability (semi-)norm | - |m defined
for A € B**(H) by
N
(12.1) [Afn = ) ITr(AM,)].

i=1
Note that | - ||m is a norm if and only if span{M; : 1 <i < N} = B%(H), which
requires in particular N > (dim #)2. Since P(failure) = l — 7Hp — oM, this norm

can be used to quantify the performance of POVMs for state discrimination.

EXERCISE 12.1 (The Helstrom bound). Show that, for any POVM M, we have
|- lv < |- 1. Conversely, show that for any pair of states p,o € D(H) there is a
POVM M such that |p — o|lm = ||p — of1. This gives operational meaning to the

299
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trace norm distance between quantum states; the optimal inequality P(failure) >

1 —1|p— ol is known as the Helstrom bound for quantum hypothesis testing.

12.1.2. Zonotope associated to a POVM. Given a POVM M, we denote
by By = {|-|m < 1} the unit ball for the distinguishability norm, and Ky = (By)°
its polar, i.e.,

Ky ={Ae B*(H) : Tr(AB) <1 whenever |B|u < 1}.

The set Ky is a compact convex set. Moreover K); has nonempty interior if and
only if | - |m is & norm. It follows from the inequality | - | < || - |1 that Ky is
always included in the unit ball for the operator norm.

The following proposition characterizes the convex sets that can be, obtained
by means of this construction.

PROPOSITION 12.1. Let K < B**(H) be a symmetric closed copvex set. Then
the following are equivalent.
(i) K is a zonotope such that K < {|| - |0 < 1} and £1€ K.
(i) There exists a POVM M on H such that K = Ky;.

Zonotopes were defined in Section [£.1.3]and briefly-discussed in Section [7.2.6.4}
the insight implicit in the above Proposition permits us to relate the ideas and the
techniques outlined in those sections to the task of state discrimination.

ProoF oF ProprosITION (2.1l For a POVM M = (M;)1<i<n, we claim that

(122) Ky = [—Ml,Ml]-F"'—F[—MN,MN].
Indeed, denoting by L the right-hand side’of (12.2)), we have for every A € B%*(H)
N

| Al Lo = sup{Tr(AB)~; Be L} =) |Tr(AM;)| = | Al kg,
i=1
so that L = K. Conversely, suppose that K is a zonotope as in (i). By definition,
there are operators (M{)1<i<n such that

K = [7M1,M1] + -+ [*MN,MN].

The hypotheses imply that I is an extreme point of K. Any extreme point of K has
the form + My -+ My, and therefore by changing M; into —M; if necessary, we
may assume.that

I:M1+~'~+MN.
For évery 1 <i < N, we have I —M; € K and thus |I—M;|, < 1. Therefore M; is
positive, and M = (M;)1<i<n is 8 POVM such that Ky = K. O

12.1.3. Sparsification of POVMs. We are going to show that POVMs can
be sparsified, i.e., approximated by POVMs with few outcomes. The terminology
“approximation” refers here to the associated distinguishability norms: a POVM
M is considered to be e-close to a POVM M’ when their distinguishability norms
satisfy inequalities of the form

(12.3) A=<l <@+ [m

As an immediate consequence of Theorem [7.48] about approximation of zono-
topes by zonoids, we obtain a result about sparsification of POVMs: given any
POVM M, we can produce a POVM M’ with relatively few outcomes which per-
forms almost as well as M for state discrimination.
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THEOREM 12.2. There is a constant C' such that the following holds: for every
POVM M = (M;)1<i<n on C" and every € € (0,1), there exists another POVM
M’ = (M})1<j<ne with N’ < Cn?logn/e* outcomes such that

(12.4) A=)l < - -

Proor. Consider the convex set Ky < M52, which is a zonoid by Proposition

By Theorem there is a zonotope
Z = P_Aer1]+'~-[_V4N’H4NJ

with A; being positive operators, N’ < Cn?logn/e?, and such that (1 — &) Ky '€
7Z < Ky. (The positivity of A; follows from the last sentence in Theorem )
Define Ag = I—(A4; + -+ + An/). Note that A is positive since Z < Kypc"Sy™
(the unit ball for the operator norm). It follows that M’ := (Ag, A1, .5, An/) is a
POVM such that Ky © Z © (1 — €)Kwu, and therefore | - [y =41 ~¢)|| - |m as
claimed. (]

REMARK 12.3. The one-sided inequality in Theorem is the mean-
ingful half of since we want the sparsified POVM to be not weaker than the
initial one. However, it is natural to wonder whether one can insist on a two-sided
inequality as in . This seems to require an extra argument.

12.2. The distillability problem

In this section we discuss the distillability problem, one of the most important
open problems connected to entanglement,

Consider a bipartite Hilbert space H = H4 ® Hp shared between two parties
customarily called Alice and Bob:~For any integer n > 1, the Hilbert space H®"
is also considered as a bipartite Hilbert space by identifying it with H(ﬁ" ® ’H%".
Whenever we mention separability, partial transpose, LOCC,. .. for states or chan-
nels on H®", it is always understood as relative to the A : B bipartition.

12.2.1. State manipulation via LOCC channels. Given bipartite states
peD(Ha®@Hp) andyo € D(Hy @ Hlg), we write p v o if, for any € > 0, there is
an integer n aiid an LOCC quantum channel ® : B((H4®Hp)®") — B(H,@H’)
such that

o) — o, <.

In words, this property is referred to as “o can be distilled from (multiple copies
of )p.”?

We are going to discuss this notion without giving a precise definition of LOCC
quantum channels. We only need to know that the class of LOCC channels is stable
under composition (which implies, together with the result from Exercise that
the relation v~ is transitive), that (see Section

conv{product channels} ¢ {LOCC channels} c {separable channels},

and that the local filtering operation is LOCC: given a state p on Ho®H g, POVMs
(Pi)ier on Ha and (Qj)jes on Hp, and S < I x J, then (provided TrM > 0)

p %7 where

M=) (Pi®Q))p(Pi®Q,).

i,j€S
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The idea behind the last scheme is informally as follows: given n copies of
the state p, Alice and Bob can successively measure copies of p locally using the
POVMs (P;) and (Q;) until they obtain outcomes ¢ and j such that (4, j) € S, the
post-measurement state being then % (The protocol fails if none of the n copies
gives an outcome in S, but the probability of failure tends to zero as n tends to
infinity.) This is where classical communication (“CC” of LOCC) comes in: Alice
and Bob need a mechanism for certifying that ¢,j € S and this generally can not
be accomplished by “local” means unless S itself has a product structure.

The above hierarchy of channels parallels somewhat the hierarchy of boxes (see
Section [11.3.2]). For example, conv{product channels} can be thought of as “local
operations with shared randomness.”

EXERCISE 12.2 (Distillation preserves separability and PPT). If ps~> o, show
that o is separable (resp., PPT) whenever p is separable (resp., PPT):

12.2.2. Distillable states. Recall the standard notation:; the canonical basis
of C? is (]0),|1)) and we often drop the tensor product Sigiis (for example, |00)
should be understood as |0)®|0)). Next, it is convenient to\work with the family of
Bell vectors {¢*, o=, 1", 1}, which is the orthonormal basis of C2®C? consisting
of maximally entangled vectors

" 1 " 1
ot = S5 (00 £ 1) and v= —2
The corresponding states are called the-Bell 'states. A bipartite state p € D(H) is
said to be distillable if p v~ |1pT)3pt|. The motivation for this concept is that many
quantum information protocols (e.g., quantum teleportation) use Bell states as a
resource. Distillable states are exactly those which are useful for these protocols.
Note that the choice of the-Bell vector 1™ in this definition is arbitrary: if z,y
are any two maximally entangled vectors on C? ® C%, then there exist U,V € U(d)
such that y = (U ® V)x. Since the channel p — (U® V)p(U @ V)T is LOCC (as a
product channel), we have |z){x| v~ |y){y|. We use repeatedly this fact and refer
to it as “conjugating with local unitaries.”
It is easy to check that PPT states are not distillable (see Exercise . The
distillability problem asks whether the converse holds.

(101) + [10)).

PRrROBLEM-12.4 (Distillability problem). Is every non-PPT state distillable?
The answer to Problem [12:4] is commonly believed to be negative.

12.2.3. The case of two qubits.

PROPOSITION 12.5. Ewvery entangled state on C2® C? is distillable.

Since in the C? ® C? setting “entangled” and “non-PPT” are equivalent by
Theorem Proposition is indeed an instance of Problem In the
argument it will be convenient to use states that are diagonal in the basis of Bell
vectors. For a,b,c,d = 0 such that a + b+ ¢+ d = 1, let us denote

Paped = ale™ X"+ b7 )Xo+ el XY+ dlyT XY
The heart of the protocol lies in the following two lemmas, whose proofs we post-

pone. To each state p € D(C2®C?), we associate the quantity s(p) = max{{x|p|x)},
where the maximum is taken over all maximally entangled vectors y € C? ® C2.
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Given that (x|p|x) is the square of the fidelity between p and |x){(x| (cf. Exer-
cise , the functional s(-) measures proximity to the set of maximally entangled
states. In particular, p is distillable if and only if there exists a sequence (o,,) in
D(C? ® C?) such that s(o,,) — 1 and that, for every n, p «w~ o,.

LEMMA 12.6. We have p v~ p 1—s(p) 1—s(p) 1—s(p) -
s(p),—52, —52,—5

LEMMA 12.7. Given a,b,c,d > 0 with a+b+c+d = 1, denote o = (a®+b?)/N,
B =2ab/N, v = (¢ +d*)/N and § = 2¢d/N, where N = (a + b)? + (c + d)?. Then

Pab,e,d ™ Pa,By,é-

PROOF OF PROPOSITION T2, Let p € D(C2®C?) be an entangled state: By
Theorem [2.15] this means that p is not PPT. Consequently, there exists-a unit
vector x € C2 ® C? such that (z|p"|z) < 0. Conjugating with local*unitaries, we
may assume that the Schmidt decomposition of z is a|00) + B|11)~ Consider the
operator W = a|0)0| + B]1)(1], then z = v/2 (IQW)|p™). By docal filtering,
IQW)p(I1QW
(12.5) P 0= LOW)p(I&W)

Tr(IQW)p(IQW)
(note that 0 < W <1, so that W can be one of the operators in a POVM) and one
checks that (p*|oT|p*) < 0. Using the formula Tr(A"B) = Tr(ABY), we obtain

0> T (e ) = T (o (3 -y Xw71) ) = 5 - @ lolw)

and therefore s(o) > 1/2.

The problem is thus reduced to showing that any state o with s(o) > 1/2 is
distillable. By applying successively. Lemmas and we obtain that o v o’
for some state o’ such that s(c%) > ¢(s(c)), where ¢ is the function
o) = B 5(1—t)? _1—2t+ 108

A2tz i2-202 0 b4t 4827
Since ¢(t) > t for t'€ (1/2,1), we have lim, o ¢"(s(0)) = 1. In other words,

iterating the above.procedure shows that o v~ ¢”, where ¢” is a state such that
s(0”) is as close.to 1 as we wish. It follows that o is distillable. O

Prooror LEMMA [[2.6]l By conjugating with local unitaries, we may assume
that s(p)={1~|p|¢p~). The twirling channel T : B(C? ® C?) — B(C? ® C?) is
defined-as Y(p) = E(U® U)p(U ® U)" where U € U(2) is Haar-distributed. This
is.an OCC channel (it belongs to the convex hull of the set of product channels)
and moreover (see Exercise

T(p) = s(p)lv )}Xv~ | + %M (le™ XTI+ o™ X7 |+ [T XyH]) .

The result follows since 1)~ can be transformed into ¢+ by local unitaries. O

PRrROOF oF LEMMA [[2.7]1 We write p for py p 4. It will be convenient to con-
sider p as a state on Ha ® Hp and p® p as a state on Hy @ Hp @ H'y @ H'z (all
the spaces Ha, Hp, H'y, Hs being equal to C?). When an operator X on C?® C?
is thought of as acting on Ha4 ® H'; (resp., Hp ® H’z), we denote it by X 4 (resp.,
by Xp). The same convention will be used for superoperators ¥ whose domain is

B(C?® C?).
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Denote by P = ]00)00] 4+ [11){11] and @ = I—P = |01){01| + |10){10| the
complementary rank 2 projectors acting on the space C?> @ C2. Next, consider
II = P4® Pp + Q4 ®Qp as an operator acting on Ha @ Hg @ H)y @ H3. A
simple computation shows that II is the orthogonal projection onto the subspace
generated by the 8 vectors

PR TRV, R T ® YT WY YT ®YT YT @YY YT @Y.
Consider also the quantum channel ¥ : B(C? ® C?) — B(C?) given by ¥(p) =

Try UpUT, where Try denote the partial trace over the second factor, and U is the
“CNOT” unitary transformation on C2 ® C? defined by

U(]00)) = 100, U(|01)) = [01), U([10)) = [11), U(|11)) = [10).

A direct calculation shows that, for e,7 = + and with the usual rules, for sign
multiplication,

(Va®¥B)(l¢° ®@p"Xe" ®@¢") = | Xe™"|),
(Ta®@VUp)([¢° @YW @) = [ {h™):

(We emphasize that, in the above formulas, not all occurrences of the symbol ®
refer to the same bipartitions; for example in ¢ ® ¢7 we have ¢ € Ha ® Hp
and ¢ € H'y ® H'3.) Tt follows (using first local filtering, then the LOCC channel
V4 ® ¥Up and a tedious but straightforward computation) that

., pep)l N5
TrII(p @p)IL o

as asserted. O

12.2.4. Some reformulations of distillability. We start with a criterion
for distillability.

LEMMA 12.8. A state p eD(Ha ® Hp) is distillable if and only if there exists
an integer n and operators A: C? — H%n, B:C?— H(E" such that the operator
(A® B)'p®"(A® B), isnon-PPT.

PROOF. Assume that there exist n, A and B with the above properties. Then,
by local filtering, we have p v~ o, where
.. (A®B)®"(AQ B)
T((A® B) /" (A® B))
is a.nen-PPT state on C? ® C2. By Proposition o (and hence also p) is
distillable.

Conversely, if p is distillable, there exists, for some n, an LOCC channel @ :
B((HA4)®" ® (Hp)®") — B(C? ® C?) such that ®(p®") is non-PPT. Since & is
separable, it has the form

(X)) = Z(Az ® B;)' X (4; ® B;)

7

and therefore at least some couple (4;, B;) satisfies the desired conclusion. (|

There is also a connection between distillability and 2-positivity. Fix an or-
thonormal basis (e;) of H4 and denote x = Ye; ®e; € Ha ® Ha. We recall
(see Section that the Choi matrix associated to a completely positive map
¢ e CP(Hp,Ha) is defined as C(®) = ( ® Idpes,)) ([X){x])-
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PROPOSITION 12.9. Given a state p € D(Ha @ Hp), let ® € CP(Hp,Ha)
be such that p = C(®). Denote by T € P(Ha) the transposition map. Then the
following are equivalent

(1) p is distillable,
(2) there exists an integer n such that the map (T®)®™ is not 2-positive.

PrOOF. We apply the result of Exercise (for k = 2) to the superoperator
(T®)®". We note that C(T®) = (T® @1d)(|x)Xx|) = (T®1d)(p) = p*.

It follows that (T'®)®" is 2-positive iff the operator (A ® B)'(p")®" (A ® B)
is positive for any A : C> — HE" and B : C*> — H$". This condition is-also
equivalent to the operator (A ® B)'p®"(A ® B) being PPT, and the result is now
immediate from Lemma 2.8 O

Problem reduces therefore to the following.

PROBLEM 12.10. Let ® be a completely positive map such that (T®)®" is 2-
positive for every n (where T denotes the transposition). ~Is.T® necessarily com-
pletely positive?

A remarkable result is the fact that in order to solvé Problem it is enough
to search among Werner states.

PropoOSITION 12.11. Fix d = 3. The following are equivalent
(i) Every non-PPT state on C*® C? is distillable,
(ii) Every entangled Werner state on CL® C2 is distillable.

PRrROOF. Since PPT Werner states aresseparable (see Proposition [2.16)), (i) im-
plies (ii). Conversely, let p € D(C? ® C%) be a non-PPT state. In other words,
there is a unit vector » € C?® C% such that (x|p"|z) < 0. By applying the
same argument as in the proof of Proposition we deduce that there is a state
o € D(C?® C?) such that g wa'g and (Plo’|p) < 0, where ¥ = ﬁ Zle e ®e; is
a maximally entangled vector. Equivalently (cf. Exercise 7 Tr(Fo) < 0, where
F is the flip operator on-C? ® C?. Consider now T : B(C? ® C%) — B(C?® C?),
the twirling quantumn, _channel, defined by Y(p) = E(U @ U)p(UT @ UT) where U
is Haar-distributed on the unitary group. This channel is an LOCC channel and
maps any state o to a Werner state w = Y(o) satisfying Tr(Fo) = Tr(Fw) (see
Exercise . It follows (see Proposition that p v~ w for some entangled
Werner state w, so (ii) implies (i). O

Aconsequence of Lemma [12.8 and Proposition [I2.11] is that Problem [12:4] can
bereduced to the following question, where 1) denotes a maximally entangled vector
on C* @ CF: for every k = 3 and € > 0, do there exist an integer n and vectors
a,b,c,d e (CKY®" such that

(12.6) <a®b+c®d((1_(1 +g)|¢><¢|)®"\a®b+ c®d> <07

Notes and Remarks

Section The distinguishability norms associated to POVMs were in-
troduced in [MWWO09]. The observation behind Exercise is due to Helstrom
|Hel69] and Holevo [Hol73|. The connection between POVMs and zonoids (Propo-
sition was noticed in [AL15b], where Theorem was proved (and where
improvements for specific examples of POVMs are also discussed). Volume and
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mean width estimates for norms associated to a family of POVMs on a bipartite
state can also be found in [AL15al.

Section For a precise description of the class of LOCC transformations
we refer to Section XI| and [Wat, Chapter 6] (see also [CLM™14]).

A basic reference on the distillability problem is [HHO1] (see also the survey
ICla06], and the website [[@5])). The relationships between distillability, the PPT
property, and teleportation have also been studied in [HHH98, [LP99, HHH99|.

The protocol described in Lemmas and appeared in [BBPT96| (seé
also [BDSW96]). Proposition [12.5 appears in [HHH97] and Proposition [12.11}is
from [HH99).

Proposition[I2.9] and the equivalence between Problem[12.4]and Problem{I2.10]
are from [DSS*00|. For numerical attempts to solve Problem @l in\its\formula-
tion (12.6), see [DSS*00, DCLBOO).

There is a quantitative version of the distillability problem, which asks for the
asymptotic rate of Bell states production via LOCC channels from many copies of a
given state; the supremum of achievable rates is called the distillable entanglement.
Entanglement that is not distillable is often referred to as bound entanglement, and
the states that exhibit it are called bound entangled.

If one uses operations preserving PPT instead.of LOCC, then every non-PPT
state can be “distilled” [EVWWO01]|. Note that someécare is needed when analyzing
this issue because the class in question is not-clesed under tensoring.




APPENDIX A

Gaussian measures and Gaussian variables

This appendix serves as a brief general reference for Gaussian random variables,
both scalar and vector-valued. It addresses terminology, basic propertiessand var-
ious elementary but useful identities and inequalities. More specialized properties
are included elsewhere in this book, most notably in Chapter [6}

A.1. Gaussian random variables

The standard Gaussian distribution N(0,1) is the probability measure on R
(denoted by 1) with density \/% exp(—x?/2) dx. The standard complex Gaussian
distribution N¢ (0, 1) is the probability measure oti G with density + exp(—|z[?)dz.
(Occasionally we will write Ng(0,1) for N (0, 1) to'emphasize the distinction.) The
word “standard” refers, in particular, to the unit variance normalization: if Z has

distribution either N (0, 1) or N¢(0,1), then E[Z|? = 1. We note also that if Z;, Z5
are independent random variables with“distribution N (0, 1), then %(Zl +1iZ5) has
distribution N¢(0,1).

If X has N(0,1) distribution (resp., N¢(0,1) distribution) and o > 0, the
distribution of 0 X is denoted by IN(0, o2) (resp., by Nc(0,0?)).

The moments of the Gaussian standard distributions can be computed explic-
itly: if Z has N(0, 1) distribution, then, for any p > 0,

202 (p+ 1Y pooo p\P/2
p _ - ~ =
(A.1) E|Z| ﬁr( : ) \/i(e) .

Similarly, if Z-has N¢(0,1) distribution, then for any p > 0,
(A.2) E|ZP =T (g + 1)

(indeed, [Z|? follows an exponential distribution with parameter 1).
We also need some fine estimates on the cumulative distribution function of a
standard Gaussian variable, denoted by

(A.3) ®(z) =7 ((—o0,2]).
For large z, we have 1 — ®(z) ~ (27)"/2z'exp(—22/2). This is refined by the

Komatu inequalities which assert that for every z > 0,

2 2 ° 2 2
A4 7<6m/2‘[ e‘t/zdtgi.
(A4) T+ Vr2+4 = T+ V2 +2

A further refinement is provided by the inequalities (where = > 0)

™ 2 © 2 4
A5 <e” /QJ et At § —r.
(A.5) (m— 1)z + Va2 + 27 . 3z + Va2 +8

307
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EXERCISE A.1 (A simple bound for the normal tail). Show the inequality (6.6)):
if Z is a standard normal variable (i.e., distributed according to the N(0,1) law),
then P(Z > t) = 3P(|Z] > 1) < %e‘tQ/Q for t = 0. This bound motivates the
definition of subgaussian processes, see and subsequent comments.

EXERCISE A.2 (Komatu inequalities). Prove the Komatu inequalities by
arguing as follows:

(i) If f_(z), f(z) and f(x) denote respectively the left, middle and right member of
the inequality to be proved, show that for z > 0 we have f. > zf_—1, f' =zf =1
and fi <zfy —1.

(ii) Show . The same argument proves the upper bound in .

A.2. Gaussian vectors

A family of real-valued centered random variables (X;) is jointly Gaussian
if any linear combination of the variables has distribution N(0;¢?) for some o.
A jointly Gaussian family is also called a Gaussian process~(see’ Section . A
crucial property of jointly Gaussian families, or Gaussian processes, is that the
joint distribution of (X;) is uniquely determined by the covariance matrix (a;;) =
(EX;X;).

When V is a real (resp., complex) finite-dimensional space equipped with a
Euclidean (resp., Hilbertian) norm, we call the standard Gaussian vector in V a
V-valued random variable such that, in any orthonormal basis, the coordinates of V'
are independent standard real (resp., complex) random variables. More concretely,
the distribution of a standard Gaussian vector in R™ (denoted by =, ) has density

1
W exp(—|z[*/2) dz
whereas the distribution of a stanidard Gaussian vector in C" (denoted by 7<) has
density

(A.6) Wl—nexp(f|x|2) dz.

In all these cases the respective distribution will be referred to as the standard
Gaussian measure on the corresponding space V. Note that if C" is identified with
R?", the distributions 4$ and 72, do not coincide: they differ by a scaling factor of
V2.

While we are mostly interested in standard Gaussian vectors and measures,
the(joint distribution of any jointly Gaussian sequence X1, Xo, ..., X, is referred
to‘as”a Gaussian measure on R"™. Sequences or measures that are not centered
are also considered. However, this does not add a lot to generality: any such
measure is a pushforward of the standard Gaussian measure via a linear (or affine,
as appropriate) map.

Let G be a standard Gaussian vector in R™. Rotational invariance of -y, implies
that the random variable % is uniformly distributed on sphere S™~!; moreover |G|

and % are independent. This can be used to relate Gaussian averages and spherical

averages. For any function f : R"™ — R, satisfying f(tz) = tf(x) whenever z € R"
and t = 0, we have

(A7) [y =Ef(G) = f fdo,

R S'n, —1
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where o is the uniform measure on S®~! and ,, is the constant

V2U((n +1)/2)

I'(n/2)

In particular, (A.7)) can be applied when f is the gauge associated to a convex body.
(See also Exer )

The constant k,, appears in probability and statistics as the mean of x(n), the
chi distribution with n degrees of freedom. (See Exercise for bounds for he
median, which is necessarily smaller than x,, by Proposition ) The first values
are K1 = 4/2/m, ko = \/7/2, k3 = 24/2/7. Note also the formula K, k1 = naFer
large n, we have K, ~ 4/n. More precise estimates are gathered in the following
proposition.

PROPOSITION A.1 (see Exercis and[AF} (iv) and (v) are not'proved here).
A5

Let K, be the constant defined in | . Then
(i) vVn —1 < K, < 4/n,

(i) the sequence kn/+/n is increasing,

o[ n
(1) A/ — 5 < K <\ /70— 507,

(iv) the sequence \/n — Ky, is non-increasing.
(v) as n tends to infinity, we have k,, = /n(1 — 1/4n—+ 1/32n% + O(1/n?)).

The complex analogue of (A.7) is as follows: if f : C™ — R, satisfies f(tz) =
tf(xz) whenever z € C"™ and ¢t > 0, we have

(A.8) kn = E|G| =

(A.9) fdyS = wE fdo

n

cr Sen
with £€ = ko, /v/2.

EXERCISE A.3. Let n >. 2. "Prove the following result sometimes known as
the Herschel-Maxwell theorem: up to scaling, v, is the only rotationally-invariant
probability measure on R™ , which is also a product measure.

EXERCISE A.4."Using the fact that the function logI' is convex, show parts (i)
and (ii) of Proposition

EXERCISE "A.5. Prove part (iii) of Proposition by showing that the corre-
sponding ratios are monotone along even and odd subsequences.

EXBERCISE A.6. State and prove a variant of (A.7]) for a-homogeneous functions,
i.ewerifying f(tx) = t* f(z) for z € R" and t > 0.

Notes and Remarks

The Komatu inequalities appeared in [Kom55|. The upper bound in
(A.5) was proved in [Sam53l, [SW99| and the lower bound in [RWO00]. A sur-
vey paper on related inequalities is [Duel0Q]. Part (iii) from Proposition is
from [Chu62|. Part (iv) follows for example from the refined inequality k, >

AT — % + == from [Boy67]. Another derivation appears as Lemma C.4 in

8(n+1)
[FR13|.
For many characterizations of the Gaussian measure in the spirit of Exercise

see [Bry95].






APPENDIX B

Classical groups and manifolds

This appendix contains an overview of the classical groups and manifolds that
appear in this book, and of the natural structures, such as metrics and measures,
which they carry. Most of the facts included here have been known for 100 years
or more, but the precise statements are often difficult to find in~the literature,
mostly because presentations of these topics usually focus on more general and
more abstract settings. Again, more specialized features of these-objects are studied
elsewhere in this book, primarily in Chapter [}

B.1. The unit sphere S"~! or Sgu

We denote by S"! = {z € R" : |z| = 1} the unit sphere in R™. There are
two natural distances on the sphere: the (intrinsic) geodesic distance (“as the crow
flies”) denoted by ¢ and the extrinsic distanee (“as the mole burrows”), i.e., the
restriction to S"~1 of the Euclidean distance| - | on R™. Since they are related
by the formula |z — y| = 2sin(g(z,y)/2), statements about | - | have immediate
translations involving ¢ and vice versa. Note also that, for any =,y € S !, we
have

2
(B.1) ;g(x7y) Lz -yl < g(x,y).

We denote by ¢ the uniform-measure on S"~!, normalized so that o(S""1) = 1.
We note for the record that the non-normalized (n — 1)-dimensional “surface area”
of S"~1 equals

27rn/2

r'(s)

However,“ag can be also induced by the Lebesgue measure vol,, on R™ as follows:
for any'Borel set A = S"71,

(B.2) vol,_y (5"71) =

vol, {tx : t€[0,1],x € A}

o(4) = vol,, By
We note for the record the formula for the volume of the unit ball By
. 7.rn/2
(B.3) vol (BQ) = m

If G is a standard Gaussian vector on R"™, then G/|G| is distributed according to
o. This is an efficient procedure to simulate the uniform measure on the sphere.

We denote by Sca the unit sphere in C?. Since C?¢ identifies with R?? as a
real vector space, and Sca with S2?~1 as a metric measure space, the preceding
discussion is also valid for Sca. Note also the formula, for x,y € Sca,

(B.4) g(x,y) = arccos Re (z, y).

311
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EXERCISE B.1. Show that vol(By)Y/™ ~ /2me/n as n tends to infinity, and
that vol(B3)'/" < +/2me/n for every n > 1.

B.2. The projective space

We denote by P(C?) the complex projective space on C* (more commonly de-
noted by CP4~1), i.e., the quotient of Sca under the identification of unit vectors
©,1p which differ only by their phase; in other words, if ¢ = €*1) for some 6 € R.
When v € Sca, we will occasionally denote by [¢] its class in P(C?). We equip
P(C?) with the following metric (called Fubini-Study metric, or Bures metric)

(B.5) d([¥], [x]) = arccos [(4h, x)I.
The quantity |{¥, x)| is called the overlap of the vectors ¢ and x or, more\properly,
of [¢] and [x].

We also introduce the Segré variety on the bipartite Hilbert space C* @ C%,
defined as

(B.6) Seg = {p®v : @€ Spa;, ¥ € Sga, }-
As defined in , Seg is a subset of the unit sphere S¢a, gce, With real dimension
2(dy + d2) — 3. Alternatively, one could define the Segrérvariety as a subset of the
projective space P(C% ® C92). In that case it has complex dimension d; + dy — 2.
The real projective space P(R™) is defined and endowed with metric mutatis
mutandis starting from the sphere S™~% However, the real setting generally ap-
pears in quantum theory only as a toy"medel.” Note that the more standard (and
more general) definition of the projective space P(V') associated to a vector space
V over an arbitrary field K is by identification of vectors w,v € V\{0} such that
u = kv for some k € K\{0}. However, the equivalent approach starting from the
sphere S™~1 or Sca fits better the'standard setup of quantum theory.

EXERCISE B.2. Check that the Fubini—-Study metric is obtained as the quotient
metric from the geodesic metric on the unit sphere.

EXERCISE B.3 (Bures vs. Fubini-Study, fidelity vs. overlap). The Bures metric
is usually defined fornot-necessarily-pure states o, 7 € D by

(B.7) d(o,T) = arccos F' (o, 7),

where F(0y,7) = Tra/+/074/0 is the fidelity between o and 7. (Note that some
texts define fidelity as the square of this quantity.) (i) Verify that if 7 = |x){x/|,
then E(o,7) = /{x|o|x). (i) Deduce that if o = [))}¢|, 7 = |x)x|, then
and yield the same value (in other words, the Fubini-Study metric is the
restriction of the Bures metric to pure states and similarly for the fidelity vs. the
overlap). (iii) Verify that d(o,7) is indeed a metric.

B.3. The orthogonal and unitary groups O(n), U(n)

We denote by O(n) = {O € M,(R) : OOT = I} the orthogonal group and
by U(n) = {U € M,(C) : UU' = I} the unitary group. Their dimensions, as
real Riemannian manifolds, are dim O(n) = n(n — 1)/2 and dim U(n) = n?. We
also recall the standard notation SO(n) = {O € O(n) : det(O) = 1}, SU(n) =
{UeU(n) : det(U) =1}, and PSU(n) for the quotient of U(n) under the relation

U~V <= U=V for some A € C. Note that O(n) is a disjoint union of two
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copies of SO(n), so all statements about SO(n) transfer mutatis mutandis to O(n).
We also point out the classical isomorphism PSU(2) <> SO(3) (see Exercise [B.4).

It what follows G will stand for either SO(n), SU(n) or U(n). There are many
metric structures one may consider on G. Each norm | - | on M,, induces two
distances on G: the extrinsic distance (simply |U — V|, for U,V € G) and the
geodesic distance (the length of a shortest path in G joining U to V', where length
is measured with respect to || - ). For p € [1, 0], we will denote by g, the geodesic
distance induced by the Schatten p-norm.

Among these choices we single out the standard Riemannian metric go, which
can be expressed for U,V € G as

N 1/2
(B~8) 92(U7 V) = (Z 912>

01
S

where e’ .,e% are the eigenvalues of U1V, and 0; € [—m)a]. (See Exercise

B3

PROPOSITION B.1 (not proved here). Let 1 < p < oo, Let UV € G, and
A e M52 with | Al < T such that exp(iA) = UV, Then the map t — U exp(itA),
defined fort € [0,1], is a geodesic joining U to V for the distance g,. If |[U—V |0 <
2 and 1 < p < o0, this is the unique path of minimal length.

The above result is very well-known for pi= 2, but it is also valid, with the
stated caveats, for other values of p. As a‘consequence of Proposition [B.1] extrinsic
and geodesic distances are easy to calculate-and they are comparable, see Exercise
Note that if ||[U — Vs = 2, then A (which necessarily verifies |Al|, = 7) is no
longer uniquely determined and neither are the geodesics. See also Exercise [B.6]

We point out that while Proposition appears to be stated in the complex
setting (i.e., G = SU(n) or G = U(n)); it makes sense just as well when G = SO(n):
the matrix B = iA is then(real skew-symmetric (see Exercise . Moreover, it
follows then that SO(n) is a geodesically convex submanifold of U(n), i.e., that the
shortest curve in U(n) connecting any two points in SO(n) is entirely contained in
SO(n) (or at least that-there exists such curve, if the shortest curve is not unique).

As compact groups, O(n) and U(n) carry a Haar measure: the unique proba-
bility measure,which is invariant under right and/or left multiplication. The Haar
measure can_also be generated more in a concrete fashion. For example, start from
a vector-g uniformly distributed on S™~! (resp., Sc»), and construct inductively
a random’ orthonormal basis (z1,...,z,) by choosing xj uniformly on the unit
sphere-in the subspace {z1,...,2x_1}*. Then the random matrix with columns
(%1,)...,2y) is Haar-distributed on O(n) (resp., U(n)). A slightly different scheme
is outlined in Exercise [B.14l

EXERCISE B.4 (PSU(2) and SO(3) are isomorphic). The group U(2) acts on the
(real, 3-dimensional) hyperplane of trace zero matrices by the formula X — UXUT.
This action preserves the Hilbert—Schmidt inner product. Check that this action
induces an isomorphism between PSU(2) and SO(3).

EXERCISE B.5 (Equivalence of metrics on G). Let 1 < p < o0, G be either
SO(n),U(n) or U(n), and U,V € G.
(i) Denote by €1, ..., e denote the (complex) eigenvalues of U~V with |¢;] < 7.
Show that
gP(Ua V) = ”(91, s gn)”Pa



314 B. CLASSICAL GROUPS AND MANIFOLDS

where the norm on the right hand-side is the p-norm on R™.
(ii) Check that the geodesic and extrinsic metrics satisfy the inequalities

2
;gP(Ua V) < ”U - V“P < gP(Ua V)
for any U,V € G.

EXERCISE B.6 (All the geodesics in G). Show that it follows formally from
Proposition that all paths of the form ¢ — We#4, A e M3 W e G, and t € R
are geodesics in the sense that all their “sufficiently short” arcs are the shortest
curves connecting their endpoints (unique if 1 < p < o). Moreover, for 1 < p*<‘so
all such shortest curves are unique and hence all geodesics are of that form.

EXERCISE B.7 (Geodesical convexity of SO(n)). Show that for any U, € SO(n)
there is a real skew-symmetric matrix B with |B|l,, < 7 such that U = ef and
9p(L,U) = ||B|p. Conclude that SO(n) is a geodesically convex submanifold of U(n)
with respect to any metric g,.

EXERCISE B.8 (Bi-Lipschitz estimates for the exponential map).
(1) Show that || exp(iB) — exp(i4)|op < |B — Aop for every A, B € M3,
(i) Consider, for 6 € (0, 7),

L(@) — inf { H exp(l|BB) _ZTP(ZAHOP . A, BeM? HAHOP <0, HBHOP <O,A# B} )
— Allop

Show that for 6 € (0,27/3) we have L(6) > E(0/2)(1 — |1 — ¢%/2|). Conclude that
(for example) L(w/4) = 0.4.

PROBLEM B.2. What is the pretise value of L(0) in Ezercise[B.§? We did not
find an answer in the literature\(but we did not look very hard). An easy upper
bound is sin(6)/0 (check).

B.4. The Grassmann manifolds Gr(k,R™), Gr(k,C")

Let V be a finite-dimensional real or complex vector space. For 0 < k <
dim V', we denote by Gr(k, V') the family of all k-dimensional subspaces of V. The
set Gr(k,V) is\called the Grassmann manifold or the Grassmannian. Since its
properties effectively depend only on the dimension of V', in what follows we consider
only the conerete situations Gr(k,R") and Gr(k,C"). (See, however, Exercise[B.15] )
Further, since the map E <> E* is a bijection between Gr(k,R™) and Gr(n — k, R"™)
preserving all the structures we will be interested in (and similarly for C™), the
reader may always concentrate on the cases when k < n/2, which we will often
tacitly assume.

Before discussing metrics on the Grassmann manifold we introduce the concept
of principal angles. Given E,F € Gr(k,R™) or Gr(k,C"), consider the singular
value decomposition of the operator Pr P (recall that Pg denotes the orthonormal
projection onto E), which we will write in the form given by

k
(B.9) PpPr =) silei)yil
i=1
with s; € [0,1], 1,...,2x € E, and y1,...,yx € F (the latter inclusions are auto-
matic for x;, y; corresponding to coefficients s; # 0 and can be arranged otherwise).
The principal angles between E and F are the numbers 61, ..., 0 € [0, 7/2] defined
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by cosf; = s;. The unit vectors z1,...,z; and y1,...,y, are called principal vec-
tors. It is easily checked that we have {x;,z;) = (@i, y;) = {¥i,y;) = 0 for i # j
and that s; = (x;,y:); the equality means that 6; is actually the angle between x;
and y; and, at the same time, the angle between Rz; and Ry; (or the Fubini-Study
distance between [z;] and [y;]—given by (B.5)—in the complex setting).

The principal angles quantify how close two subspaces are to each other. As
we shall see, a natural Riemannian metric on Grassmann manifolds is as follows: if

E,F € Gr(k,R™) or Gr(k,C"), then

% 1/2
(B.10) d(E,F) =2 (Z 93)
i=1

where 64, ..., 0 are the principal angles between E and F. The readermay wonder
why we included the factor v/2, which may appear redundant, both geometrically
and esthetically. Indeed, as noted above, the natural metric on thé prejective space
(Fubini-Study in the complex case), which corresponds to ‘the-case k = 1 of the
Grassmannian does not have that factor. However, as we shall see, there are sound
functorial reasons for using the normalization : it shows up in two canonical
constructions of the Grassmann manifold.

Another very natural way to define the distance\in terms of principal angles is
(B.11) do(E, F) = max 6;.

1<i<k

However, the metric dy, is not Riemannian; animportant (and obvious) inequality
relating the two metrics is

(B.12) do(E,F) < 27Y24(E, F).

Fix 0 < k < n and consider-the canonical action of O(n) on Gr(k,R™). Let
R* = R™ be the canonical inclusion, so that R* € Gr(k, R™). We now note that the
stabilizer subgroup of O(n) 'that fixes R¥ consists of block-diagonal matrices of the

form

0O, O

% 6l
where O; € O(k) and Oz € O(n — k), and so it can be naturally identified with
O(k) x O(n =k&)r Since the action of O(n) on Gr(k,R™) is transitive, it follows
that Gr(k,R7)"is a homogeneous space for O(n) and can be identified with the
quotient space O(n)/(0O(k) x O(n — k)). It follows in particular that the dimension
of Gr(k;R™) equals dim O(n) — (dim O(k) + dim O(n — k)) = k(n — k).

For a more concrete description of this correspondence, consider the map
O{n) — Gr(k,R™) that associates to an orthogonal matrix O the subspace spanned
by its first k& columns, i.e., OR¥. The preimage of E € Gr(k,R") under this map,
i.e., the set {O € O(n) : O(RF) = E} is a (left) coset of O(k) x O(n — k). Sim-
ilarly, Gr(k,C™) identifies with the quotient space U(n)/(U(k) x U(n — k)). Note
that Gr(k,C™) is a complex manifold (of complex dimension k(n — k)), although
U(n) is not. As pointed out earlier, Gr(1,V’) identifies with the projective space
P(V), except that the metric differs from the Fubini—Study metric by
a factor of v/2 when V = C". We explain the reasons for this factor further below,
particularly in the paragraph containing . (The same formulas and the same
caveats apply to the case V' = R™.) On the other hand, the metric dy, defined by
coincides, for k = 1, with the Fubini-Study distance.
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Whether we use the high-tech or simple-minded point of view, there is a canon-
ical procedure that allows to transfer metric structure(s) from O(n) to Gr(k,R™)
(and from U(n) to Gr(k,C™)). We will exemplify that procedure in the case of the
(extrinsic) Schatten p-norm for 1 < p < 0. We set, for E, F € Gr(k,R"™),

hy(E,F) = min{|U~-V|, : U,V eO(n), URF = E, VR* = F}
(B.13) = min{|[W -1, : WeO(n), WE = F}
and similarly for E, F' € Gr(k,C™). The definition “:=" works mutatis mutandis for

any quotient map on (or, equivalently, for any family of “cosets” in) a metric space;
but the second equality requires that space to be a group with invariant metric (see
also Exercise .

The same scheme can be applied to the geodesic metric g, on O(n) or, U(n). In
particular, if p = 2, we obtain the standard Riemannian structure on Gr(k,R™) or
Gr(k,C") and the resulting metric is (B.10]), while p = o0 yields the metric dy from
(B.11)) (see Exercise. Moreover, it doesn’t matter whether we first define the
geodesic metric and then pass to a quotient, or whether we reverse the order of
these operations (see Exercise .

It is instructive to specify the calculations implicit(in the above paragraph to
the simplest nontrivial setting, that of the real projectivespace P(R?), or Gr(1,R?).
If the angle between two lines E, F = R? (i.e., theix Fubini-Study distance (B.5))
is 0 € (0,7/2], then the eigenvalues of the rotation W mapping F to F are e and
e~ and so W = ¢4, where A € M§* has eigenvalues  and —6 (cf. the calculation in
the hint to Exercise . It follows that the.intrinsic Riemannian distance induced
by g2 and the quotient map O(2) — Gr(1,R?) verifies

(B.14) A(E, F) = (WD) < |A]> = (6 + %) = V20,

which explains the factor v/2 appearing in (B.10). Observe that the second equality
in is a straightforward~application of Proposition the first one requires
noting that if R € O(2) is thereflection swapping E and F', then (again by Propo-
sition [B.1) go(R, 1) = 7' A/27/2 = go(W, ).

And here is a slightly different approach to endowing a Grassmann manifold
with a metric. Thesmap E — Pg allows one to consider (for example) Gr(k, R™)
as a submanifold of M?? so any norm of M,, also induces two metrics (extrinsic
vs. geodesic) ‘on Gr(k,R™). As it turns out, the geodesic metric obtained from the
Hilbert=Schniidt norm is again . For an analysis of this situation via principal
angles; see Exercise

Finally, let us note that since SO(n) acts transitively on Gr(k, R™), the Grass-
mann manifold can be likewise represented as a quotient of SO(n), and similarly for
Gr(k,C™) and SU(n), a point of view that can be occasionally useful (cf. the proof

of Theorem [7.15)). This circle of ideas is explored in Exercises and

Each Grassmann manifolds carries a natural probability measure which can be
constructed in two different but equivalent ways
e as the normalized Riemannian volume induced by the metric
e as the pushforward of the Haar measure on O(n) via the quotient map O(n) —
O(n)/(O(k) x O(n — k)).
The latter construction can be described more tangibly as follows: fix E € Gr(k,R"™)
and consider a Haar-distributed O € O(n); then O(F) is a random element in
Gr(k,R™) whose distribution does not depend on the choice of E. Either way,
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we will call the resulting measure the standard Haar measure on Gr(k,R™). The
same construction (using U(n) instead of O(n)) defines similarly the standard Haar
measure on Gr(k,C"). For an even more concrete realization of the standard Haar
measure, see Exercise

Since O(n) consists of morphisms of the corresponding space that preserve the
inner product, the Haar measure on Gr(k,R™) may be seen as depending on the
choice of a Euclidean (i.e., inner product) structure on R™. Using another Euclidean
structure on R™ leads to a different measure on Gr(k,R™), as illustrates Exercise
IB.15] The same caveat applies to the complex case.

To complete the discussion of Grassmann manifolds, we will mention, briefly
their “cousins,” Stiefel manifolds. For 1 < k < n, denote

St(k7Rn) = {(mh e ,xk) e R" : <£Ei,£fj> = 52'7]'}
the set of k-tuples of orthonormal vectors in R™. We have the canonical equivalences
St(k,R") < O(n)/O(n — k) and Gr(k,R™) < St(k,R™)/O(k). The.complex version
is defined similarly; as for Grassmann manifolds, Stiefel manifelds/naturally inherit
metrics and a Haar measure from the orthogonal group.

For simplicity, Exercises[B.9HB.15 are stated in the-real case, but the statements
are also valid in the complex case.

EXERCISE B.9 (Induced metrics on spaces of cosets). Fix 0 < k <n, 1 < p < o0,
and denote H = O(k)xO(n—k) < O(n). Let UgHand VoH be two left cosets of H and
let Uy € UpH. Show that min{|U; — V|p—: Ve VoH} = min{|Uy -V, : V € VoH}
and that a similar equality holds for the corresponding geodesic distance g,.

EXERCISE B.10 (Geodesics in Gr(k,R™) and in O(n)). Fix 0 < k < n and
1 < p < o0. Denote by g, the metric'on Gr(k,R™) obtained as the quotient metric
from the geodesic metric g, on'O(n). Show that any geodesic in (Gr(k,R™), g,) can
be lifted to a geodesic in (O(n), g,), which is of the form given by Exercise and
on which the quotient map acts as an isometry. If p = 1 or oo, any two points in
Gr(k,R™) can be connected by a geodesic with this property.

EXERCISE B.11(Gr(k,R™) vs. Gr(n—k,R™)). Let E, F' € Gr(k,R™). Show that
the nonzero principal angles between E and F' coincide with the nonzero principal
angles between 'E+ and F-.

EXERCISE B.12 (Equivalence of metrics on Gr(k,R™)). Let h, the metric on
Gr(k{R") given by (B.13)) and let g, be the geodesic metric defined in Exercise
Show that for E, F' € Gr(k,R™)

hy(E,F) = 27| (2sin6,/2,...,25in04/2)|,, Gp(E,F) =2Y7|(61,...,01)|p,

where || - |, is the £,-norm on R¥ and 61, .., 0 are the principal angles between E

and F. Conclude that 2¥2 Jp < izp < gp and that o coincides with the metric dy

from (B.11). "

EXERCISE B.13 (Equivalence of metrics on Gr(k, R™), take #2). Show that the
metric on Gr(k,R™) induced from the Schatten p-norm on M,, via the embedding
E — Pg is equivalent to the metrics g, and l~1p from Exercise @ Show that the
geodesic metric induced by it coincides with gp,.
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EXERCISE B.14 (Simulating the Haar measure on Gr(k,R")). For 1 < k < n,
let (x;)1<i<k be independent standard Gaussian vectors in R™. Show that the
subspace span{z; : 1< i < k} is almost surely k-dimensional and distributed with
respect to the standard Haar measure on Gr(k, R™). Prove also that the same holds
when (x;) are uniformly distributed on the unit sphere.

EXERCISE B.15 (About the choice of the Euclidean structure). Given a k-
dimensional subspace E < R™, show that there is a sequence of Euclidean structures
on R™ such that the corresponding Haar measures on Gr(k,R™) converge towards
the Dirac mass at F.

EXERCISE B.16. Does Gr(k, R™) identify with SO(n)/(SO(k) xSO(n—k))? Does
Gr(k,C") identify with SU(n)/(SU(k) x SU(n — k))?

EXERCISE B.17 (Another representation of Gr(k,R™) as a coset space). Since
the stabilizer of R¥ under the canonical action of SO(n) on Gr(k,R?)is’'H = SO(n)n
(O(k) x O(n — k)) (and since the action is transitive), Gr(k,R") can be likewise
identified with SO(n)/H. Are the metrics induced this way by-the Schatten p-norms
the same as g,’s and in’s? What about the analogous question for Gr(k, C™)? Note
that there are no subtleties as far as the induced probability measure is concerned:
all reasonable constructions lead to the same object by uniqueness of the Haar
measure.

B.5. The Lorentz group O(1,n — 1)

Just as the orthogonal group O(n) preserves the Euclidean norm on R™, the
Lorentz group O(1,n — 1) consists oflinear transformations preserving the quadratic

form q(z) = ngzz;l z7, whered =\(zo, x1,...,2n—1) € R". Let J be the diagonal
matrix with diagonal entries (1;=<1}. +., —1), i.e., the matrix inducing ¢ in the sense
that q(z) = {(z|J|z) for x € R™% "Then

(B.15) MeO(l,n—1) «— M'JM = J.

This immediately shows that M € O(1,n — 1) verifies det M = +1 and motivates
the definition,of of the proper Lorentz group

(B.16) SO(1,n—1):={M e O(1,n—1):det M = 1}.

Let £, ={2¢ R™ : 29 > 0 and ¢(x) > 0} be the Lorentz cone. If M € O(1,n — 1),
then cleatly M (L, u (—L,)) = L, U (—L,) and so there are two possibilities:
either M(ﬁn) =L, or M(ﬁn) = —L,,. Again, this motivates the definition of the
arthochronous subgroup of the Lorentz group (the transformations that preserve
the direction of time, identified with the coordinate ()

(B.17) Of(l,n—1):={MeO(l,n—1): M(Ly,) = Ly}
and
(B.18) SO*(1,n—1):=S0(1,n—1) n O (1,n — 1),

the restricted Lorentz group. Actually, we will see later (Exercise that the
condition M ([,n) = L, (i.e., M being a linear automorphism of £,,) implies that
M is a positive multiple of an element of O*(1,n—1) and so an alternative definition
of OT(1,n — 1) is {M € SL(n,R) : M(L,,) = L,}. More generally, the structure of
the cone of linear maps M verifying M (En) c L, is studied in Appendix
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The instance that is of most immediate physical significance is n = 4, with
R* being identified with the Minkowski spacetime of the theory of special rela-
tivity. Another special feature of the case n = 4 is that the Lorentz cone L4 is
isomorphic to the positive semi-definite cone PSD(C?) (see Section and so
its group of automorphisms can be identified with the group of automorphisms of
the latter cone described in Proposition 2:29] In particular, the fact that a lin-
ear map & : M$ — M¥ satisfying ®(PSD) = PSD is either completely positive
or co-completely positive corresponds—for d = 2—to the dichotomy O*(1,3) vs,
0(1,3)\0"(1,3). When restricted to SO* (1, 3), that identification induces an iso=
morphism of that group with PSL(2,C), or the so-called spinor map, see Exercise
1B.19

EXERCISE B.18 (Examples of automorphisms of the Lorentz cone).

n coshf sinhf|

() Show that SO*(1,1) = { [smho COSM] {0cR |.
(b) Deduce that if ¢ > 0, then SO*(1,1) acts transitively. on ‘the (branch of the)
hyperbola {(zg,z1) : xo >0, 23 — 2% = c}.

EXERCISE B.19 (A spinor map). Let ¥(x) = x:0 = X be the map from (2.4)—
implementing the isomorphism between the(cones, £, and PSD(C?).
(a) Show that if V € SL(2,C), then ¥y (x) = V(W ¥(x)VT) is an automorphism
of £4 which belongs to SO (1,3), and that ’every element of SO*(1,3) can be
represented that way.
(b) Show that the map SL(2,C) 3 V > Wy~e SO™(1,3) is a group homomorphism
whose kernel is {Id, — Id} and deduce that it induces a group isomorphism between
PSL(2,C) = SL(2,C)/{Id, — Id} and‘SO*(1,3) (an example of the so-called “spinor
map”).

Notes and Remarks

Proposition appears in [Sza98]. For p € (1,), p # 2, the assertion—but
not the argument—is_exactly the same as in the classical Riemannian case (p = 2).
If p € (1,2), the Riemannian proof can be tweaked as it fits in the framework of
Finsler geometry [CS05|. For p € (2,0), the metric structure induced by the p-
Schatten normrdoes not satisfy the usual hypotheses of Finsler geometry and so a
more specialized argument is needed.

Proposition can be extended to other bi-unitarily invariant norms (i.e.,
nornis-défined via singular values, see Exercise .

For more information and alternative definitions for principal angles, see the
book [GVL13|.






APPENDIX C

Extreme maps between Lorentz cones and the
S-lemma

The focus of this appendix is the Lorentz cone
n—1
(C.1) L, = {(mo,xl,...,xn,l):xOZO, ingggg}c]&n
k=1

and particularly the cone P(L,) == {®: <I>(£n) c L,} of linear.maps that preserve
it. We have the following

ProrosiTION C.1. Let & : R®™ — R"™ be q.linear,map which generates an
extreme ray of P(L,). Then either ® is an automorphism of L, or ® is of rank
one, in which case ® = |uy(v| for some u,v\e OLN{0}. If n > 2, the converse
implication also holds.

In view of the isomorphism between the cones PSD(C?) and L4 (see ([2.4)),
Proposition 2.38—characterizing extreme rays of the cone of positivity-preserving
linear maps on M3*—is really a spécial case of Proposition Note that every
element of 0PSD(C?)\{0} is of the form |p)(p|, ¢ € C2\{0}, so |¢){¢| and [¢){1)|
of Proposition play the same’role as u,v in Proposition However, the
true reason why they appear in’the statements is that they generate extreme rays
respectively in PSD(C?).and L,, (cf. Corollary . The following simple obser-
vation completely characterizes extreme rays generated by rank one maps in a very
general setting (we only need the “only if” part, which is easy).

LEMMA C.2 (see Exercise [C.1)). Let C = R™ be a nondegenerate cone and let
P(C) be the'cone of linear maps preserving C. A rank one map ® : R® — R
generates*anyextreme ray of P(C) iff it is of the form ® = |u)(v|, with v and v
generating extreme rays of respectively C and C*.

While not as simple as the case of rank one maps, the structure of the set
of automorphisms of £,, is very well understood: they are of the form ¢®, where
t>0and ® € Of(1,n — 1) (see Appendix , the orthochronous subgroup of
the Lorentz group O(1,n — 1) of transformations preserving the quadratic form
q(x) = 2% — 22;11 x3. This follows easily from the so-called S-lemma, a well-
known fact from control theory and quadratic/semi-definite programming. (This
and similar issues are explored in Exercises ) The same lemma underlies
the proof of Proposition We first state the simplest version of the Lemma.

LEMMA C.3 (S-lemma). Let M,N be n x n symmetric real matrices. The
following two statements are equivalent:
(i) {x e R" : (z|M|z) >0} u{xeR"” : (z|N|z) >0} =R"
(1) there exists t € [0,1] such that the matriz (1—t)M +tN is positive semi-definite.

321
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We apply the S-lemma in the following form, which is an easy consequence of
Lemma [C.3] applied with M = F and N = —G.

LeEMMA C.4 (S-lemma reformulated). Let F,G be n x n symmetric real matri-
ces. Assume that there is an T € R™ such that (Z|G|Z) > 0. Then the following two
statements about such F,G are equivalent:

(i) if x € R™ verifies (x|G|z) = 0, then {x|F|z) = 0,
(i) there exists p = 0 such that F — puG is positive semi-definite.

We postpone the proof of the Lemma until the end of this appendix and, show
how it implies the Proposition.

Proor or ProrosITION [C 1] In view of Lemma we may assume that
rank® > 2. Let J be the diagonal matrix with diagonal entries (1,<1)...,—1),
i.e., the matrix inducing ¢ in the sense that ¢(x) = {(z|J|x) for x &R?." The map
® preserving £,, (and hence —L,,) means that the hypothesis (i)(of Lemma [C.4] is
satisfied with G = J and F = ®*J®. Since clearly —J is not(pesitive definite, it
follows that there is u > 0 and a positive semi-definite operator () such that

(C.2) O*JD = pJ + Q.

We now notice that since rank ® > 2, there is y(=(®x # 0 such that yo = 0. In
particular, (z|®*J®|z) = (y|J|y) < 0. Given that(z|Q|z) = 0, it follows that
cannot be 0. Next, if @ = 0, (C.2|) means precisely that pl2d e O(1,n—1) and so
® is an automorphism of L,,.

To complete the argument, we will'show.that if @) # 0, then there is a rank one
operator A such that ® + A € P(L,). Since ® and A have different ranks, they
are not proportional. Hence ® + Aand ® — A do not belong to the ray generated
by @, which implies that the ray.is not extreme.

Let |v)(v|, v # 0, be one of the terms appearing in the spectral decomposition
of @; then @ = Q' + |v){v|, where @’ is positive semi-definite. Next, let u € R™\{0}
be such that ®* Ju = dv,.where ¢ is either 1 or 0. Such wu exists: if ®* is invertible,
then u = J(®*) v satisfies ®* Ju = v, while in the opposite case the nullspace of
®*J is nontrivial. We will show that, for some € > 0,

(C.3) D + sluy(v| € P(Ly,) if [s] <e,
thus supplying the needed A = e|u){v|. We have, by and by the choice of u,

(® A+sludo))* J(@ + s|udlv]) = pJ + Q + 2s6|v)v| + s2|v){u|J|u)v]

(C.4) = puJ+Q + (1+ 258 + s*Cul|J|u))|v)v|.
Siniceclearly 1 + 258 + s2(ulJ|u) = 0 if |s| is sufficiently small, it follows that, for
such s, (@ + slu)v|)*J(® + s|u)v|) — uJ is positive semi-definite. Thus we can
deduce from the easy part of Lemma[C.4] that ® + s|u)(v| € P(L,), as needed. (To
be precise, we need to exclude the possibility that ® + s|u)v| € —P(L,), but this
is simple.)

For the converse implication, Lemma [C.2] takes care of the rank one maps,
so we just need to show that every automorphism & of £, generates an extreme
ray of P(L,) if n > 2. To that end, notice that the map ¥ — ® o ¥ is a linear
automorphism of the cone P(L,,) sending Id to ®. Since linear maps preserve faces
and their character, the ray R, ® is extreme iff R, Id is extreme. This means that
either all automorphisms of £,, generate extreme rays of P(L,,), or none of them
does, and we just have to exclude the latter possibility.
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Indeed, suppose that all extreme rays of P(L,) are generated by rank one
maps. It then follows in particular (see Section [1.2.2) that Id = 1~ |u;)(v;| for
some u;,v; € 0L,. Since u,v € L, implies that Tr (J|u)(v|) = (v[J|u) = 0, we
obtain

1>2-n=TrJ=Tr (JZ |ui><vi|) = 2T (Ju) i) > 0,

which yields a desired contradiction. (See Exercise for the discussion of thé
case n = 2.) O

Proor oF LEMMA [C3l To show that (i) = (ii), we argue by contradiction.
Denote My = (1 —t)M + tN and assume that, for every ¢ € [0, 1], the, smallest
eigenvalue \; of M, is strictly negative. For t € [0, 1], let

Ay ={ze€ S Myx = At}

Note that ¢t — A; is continuous and t — A; is upper semicentinuous, i.e., t,, — t,
Zp € Ay, and x,, —  imply x € Ay, and of course all A; # .

Consider the sets A = {x e R" : (z|M|z) > 0} and B = {x e R" : (z|N|z) >
0}. We have Au B = R"™ by hypothesis. Since My = M} it follows that Agn A = &
and so Ag ¢ B. Similarly, A; ¢ A. Set

T =sup{t € [0,1] : Ag"B # I}

We now note that A, n B # (J; this is immmediate if 7 = 0 and follows from upper
semicontinuity of ¢t — A; if 7 > 0. For essentially the same reasons, A; N A # &F.

We now claim that A, n A nB # . This is clear if the eigenvalue \, is
simple (note that all three sets, Ay, A and B, are symmetric by definition). On the
other hand, if the multiplicityof*\); equals k > 1, then A, is a (k — 1)-dimensional
sphere and hence is connected’y Consequently, the closed nonempty sets A, n A and
A, n B, the union of which is A, must have a nonempty intersection.

To conclude the argument, choose x € A, " A n B # (. Then, since x € A,

x|Ar]z)y = A < 0.
On the other-hand, since x € A n B,
(@[Ar|z) = (1 —7)Xz|M|z) + 7(x|N|z) > 0,
a contradiction. 0
EXERCISE C.1. Prove Lemma

EXERCISE C.2. Use the S-lemma to show that every linear automorphism of
L., is of the form ¢®, where ¢ > 0 and ® € O*(1,n—1). In other words, there exists
t > 0 such that (x|®*J®|z) = t3(x|J|z) for all z € R™.

EXERCISE C.3. Show that maps of the form of t®, where ¢ > 0 and ® €
SO*(1,n — 1), act transitively on the interior of £,,.

EXERCISE C.4. Show that the all extreme rays of the cone P(L2) consist of
maps of rank one.
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Notes and Remarks

The fact that statements similar to Proposition [C.1] imply Stgrmer’s theorem
was apparently folklore for some time; it appears explicitly in [MO15]. Proposi-
tion was proved in [LS75] and then rediscovered (apparently independently) in
[Hil05], where its relevance to the entanglement theory was also noted. The sub-
sequent paper [Hil07b] by the same author contains a stronger result, a complete
classification of elements of P(L,). Our proof of Proposition follows roughly
that of [Hil05], but is substantially simpler. In turn, the argument from [Hil07b]
was similar to, but simpler than [LS75]; all proofs seem to use either a variant of the
S-lemma (Lemma or closely related facts. The papers [Hil05), [Hil07b} actu-
ally characterize (for any m,n > 2) extreme rays of maps that satisfy ® (L, N Ly,
but this slightly more general fact is easy to derive from Proposition [C{] ¢ombined
with (for example) Exercise



APPENDIX D

Polarity and the Santalé point via duality of cones

The goal of this appendix is to explore the dependence of polarity on transla-
tion, which is otherwise not very transparent, by exploiting the duality~of‘cones.
We believe that this approach deserves to be better known. Besides recovering the
characterization of the Santal6 point of a convex body, we are able to easily explain
other somewhat mysterious facts such as, for example, the polar of amellipsoid with
respect to any interior point being also an ellipsoid.

We start with a reformulation of Lemma from SectionI.2.1] in a manner
not appealing to the concept of scalar product. Let V' be a-real vector space and
V* its dual. To make the analogy with Lemma more apparent, we will write
(z*, x) for the evaluation z*(z) whenever x € V and\z® e V*. If C  V is a closed
convex cone, the dual cone C* < V* is now defined by (cf. )

(D.1) C*={xeV* : Yyellz,y) =0}
We then have

LEMMA D.1. Let e € C and e* € C* be such that {e* e) = 1. Let H, = {y €
V* o (y,e) = 1}, Hex = {ne V. ¢ (e*,z) = 1}, and let C°* = C n Hox and
(C*)P = C* n H, be the corresponding bases of C and C*. Then

(D.2) (C*P ={yeH,” YreC® (—(y—e*),z—e)<1}.

In other words, if we think of H.x as a vector space with the origin at e, of He as
a vector space with the origin at e* and as a dual of H.x, and of C® and (C*)" as
their respective subsets, then (C*)P = —(CP)°.

The proof.of \Lemma fully parallels that of Lemma and so we relegate
it to Exercise [D-1}

The-formula in suggest a definition of polarity in the affine context that
is a taddifferent than the one usually used. Namely, if K and L are (say, closed
and\convex) subsets of two affine spaces whose underlying vector spaces are dual
te each other, and if a € K and b € L, then L is a polar of K with respect to the
pair (a,b) if L —b= (K —a)° (in the sense indicated in Section [1.2.1]).

This definition, and Lemma [D.I] allow for a nice way to visualize polars of
translates of a convex body. Indeed, let K be an n-dimensional closed convex set.
We can represent K as a subset of H = {(zg,21,...,7,) : 7o = 1} < R**! and
consider the cone C < R"*! generated by it (i.e., C = R, K, with the closure
not needed if K is compact). Then K is the base of C with respect to ey =
(1,0,...,0) and automatically eqg € C*. Now, if ¢ € K, then Equation shows
that (K —a)° can be identified (up to a reflection with respect to ep) with the base
of C* corresponding to a, that is, with the section C* n {y € R*"*! : (y,a) = 1}
of the cone C*. This point of view is pictured in Figure where C and C* are
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(K- e
—(K —a)°

H,-

FIGURE D.1. If K is a base of C, then the polars of K with respect
to different points (defined in the way implicit in Lemma
correspond to different sections of the cone C*. It is possible to
superimpose the two pictures and even to assume that e =.¢*, but
that obscures the dependence of (K — a)° on a.

separately represented in two copies of R"*! with e and e* being two copies of eg.
(Note that while necessarily eq € C*, it is a priori.possible that eq ¢ C.)

Such approach has a number of nice immediate consequences, for example the
fact that the polar of a not-necessarily-centered ellipsoid is an ellipsoid as long as
0 is an interior point (see Exercise . Note, however, that we cannot directly
compare (say, the volumes of ) (K —a)° for different values of a since they do not live
in the same hyperplane of R**!. However,’a simple trick permits such comparisons
(cf. the comments following Theorem in Section [4.3.4)).

PropPOSITION D.2. Let K< R".be a convex body. Then there exists a unique
interior point s € K such that. (I — s)° has centroid at 0. Moreover, if a # s, then
the volume of (K — a)° is strictly larger than the volume of (K — s)°.

The point s appearing in the statement of Proposition[D.2]is called the Santald
point of K.

Proor. We start with the construction outlined in the paragraph preceding
the statement( of the Proposition. Note that since K is a convex body (hence n-
dimensional and compact), the cones C and C* are both nondegenerate and eq is
an interior point of C* (see Lemma and Exercise [1.32). We now consider the
following auxiliary optimization problem: among the solid cones of the form

T, ={zxeC*:{(x,a)y <1},

where a varies over the interior of K, find one for which vol,,1(7},) is the smallest.
Note that the restrictions on a ensure that each T, is indeed a (bounded) solid cone
with the base {z € C* : {x,a) = 1} =: B, (this happens whenever a belongs to the
interior of C) and that ey belongs to B, (this happens whenever a € C n H). The
sets T, and B, are pictured in the first drawing in Figure

It is easy to see that inf, vol,41(T,) > 0, and that both the diameter and the
volume of T, tend to +00 as a — JK. Since vol,41(Ty) is a continuous function of
a, this implies that the infimum is attained. On the other hand, if a — vol,+1(T%)
has a local extremum at s, then an elementary variational argument shows that
e is the centroid of By (see Exercise , which—according to Lemma is
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PyB, = —(K — a)°

H

FIGURE D.2. The first drawing illustrates the calculation of
the volume of the solid cone T,. The second drawing illustrates
the calculation of the volume of (K — a)°, the polarof K —a
constructed inside H. The minus sign in front of (K ~a)° indicates
a reflection inside H with respect to eg.

affinely equivalent to (K —s)°, the polar of K — s inside’ H. More precisely, one sees
directly from (D.2) that, for every a, (K —a)*)i$ (up to a reflection with respect to
ep) the orthogonal projection of B, onto«H { as pictured in the second drawing in

Figure [D.2

Now comes a simple but crucial observation (illustrated in the two drawings of
Figure [D.2). On the one hand,

1
vol, (Bg) X —

(D.3) voly,+1(T, )= al

1
n+1
because \%I equals the cosine of the angle between a and eg (denoted by «), and
hence is the same as the height of the cone T,. On the other hand, since (K — a)°,
the polar of K — acoustructed inside H, is a reflection of Py (B,), and since the
angle a between By.and H is the same as between a and ey, it follows that

(D.4) vol, ((K — a)°) = vol,(B,) x ‘%|.

This shiowsthat vol, 41 (T, ) and vol, ((K —a)°®) differ only by a factor independent of
a, and-so they achieve their minima simultaneously. This concludes the argument,
exeept for the uniqueness part (which is easy, see Exercise [D.2)). O

EXERCISE D.1. Prove Lemma [D.1l

EXERCISE D.2. Let K < R™ be a convex body with 0 in the interior and such
that K° has centroid at the origin. Then, for any point a # 0 in the interior of K,
the centroid of (K — a)° is not 0.

EXERCISE D.3. This exercise supplies “soft” proofs of the facts derived previ-
ously via tedious calculations in Exercise Let & = R" be an ellipsoid.
(i) Show that if & contains 0 in its interior, then &° is also an ellipsoid.
(ii) Show that if 0 € 0&, then &° is an elliptic paraboloid.
(iii) Show that, among translates of &, the volume of the polar is minimal iff the
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translate is 0-symmetric. Give a proof that does not use the uniqueness part of
Proposition [D.2]

EXERCISE D.4. Show that if (in the notation from the proof of Proposition
D.2) the function a — vol,;1(7T,) has a local extremum at b € K, then eg is the
centroid of By.



APPENDIX E

Hints to exercises

Exercise We may write |21 ® 22 + y1 @ y2 Xx1 ® 22 + y1 ® y2| as
lz1)(@1| @ |22) @2 + [y1){y1] @ [y2){y2|

+

=

3
Z (=1)¥|zy + Py Wy + Py | @ |an, +2Fya g + 2P yal.
k=0
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Exercise If (z;) are affinely dependent, then ) u;x; = 0 for some (not
identically zero) real numbers (;) adding to zéro. Then x = > (\; +ep;)x; and for
a well-chosen ¢ this is a strictly shorter convex 'decomposition.

Exercise By Carathéodory’s Theorem [1.2] conv A is a continuous image of
A, x AnTL

Exercise By the Hahn—-Banachtheorem, any boundary point of a convex
body K admits a supporting hyperplane, whose intersection with K is an exposed
face.

Exercise If y € L\{z},then x is an interior point of some segment [y, z] with
ze L.

Exercise (a) and (b) follow fairly directly form the definitions. (c¢) Consider
a supporting -hyperplane to K at a point in the relative interior of the face and
apply Proposition to the functional defining that hyperplane. (d) For the first
assertion, také K to be the Minkowski sum of a disk and a segment (see Figure
[E.1)), or-of.a”disk and a square. For the second assertion, appeal to part (c).
(e) Let "L 'be the Minkowski sum of an n-dimensional cube and Bj. Consider a

X

FIGURE E.1. An example of an extreme point which is not exposed
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hyperplane supporting to K which is parallel to one of the facets of the cube, and
let F' be the corresponding exposed facet. Show that F' is a translate of that facet
(hence an (n — 1)-dimensional cube) and consider any k-dimensional face of F. (f)
For sufficiency, use part (a) and part (b). For necessity, use part (c) to argue by
induction with respect to the dimension. (g) Assume K is full-dimensional. If a
supporting hyperplane does not isolate a point, then the boundary of K contains
a segment.

Exercise Proceed by induction with respect to dim K. The base cases (di-
mension 0 or 1) are simple. For the inductive step, let z € K and assume first
that x belongs to the relative interior of K. Next, note that every convex body
admits at least one extreme point (for example, the smallest element with respect
to the lexicographic order) and let y be one such point. There is a (unique) point
z € 0K (the relative boundary) such that z belongs to the segment*|z,y]. Let H
be a supporting hyperplane for K which contains z. We may apply.the induction
hypothesis to K n H and produce a decomposition of z as a.convex-combination of
extreme points of K n H (hence of K, by Exercise [1.5(b))x Finally, if z € 0K, we
may perform the dimension reduction immediately.

Exercise For necessity, appeal to the spectral theorem. For sufficiency, use
the following fact: If p1, p2 are positive operatorssand p = p1 + p=2, then the range
of p contains the ranges of p1 and ps. Alternatively, note that either all rank one
projections |¢){(1)| are extreme or none of them is; and appeal to the Krein-Milman

Theorem (See also Section [2.1.3])

Exercise If K =conv{zy,...,xn}and F is a face of K, then F' = conv{z; :
x; € F}.

Exercise Prove that if F' is.an-exposed face of a polytope P, and G an exposed
face of F', then G is an exposed-fage of P. Then use Exercise f).

Exercise [I.10} The extreme points of B} are the n vectors from the canonical
basis in R™ and their opposites. The extreme points of B are elements of {—1,1}".
For 1 < p < 400, any.boundary point is extreme (to show this, use the fact that
the function z — |2P718 strictly convex; another “high level” argument is given in

Exercise iv)).

Exercise [I.11] (i) We may assume 0 < b < a. Check that

d

T.(e®)a” + a(l/)F) = (p = 1)(a” = /) (1 + )72 = [1 = 1"?)

so that the maximum is achieved for ¢t = b/a < 1. (ii) Use (i) and the inequality
Yk psupyoof- o} = supg i {--}. For p = 2, the proof goes along the same

lines except that the supremum in the variational formula is replaced by an infimum.
(iii) To deduce (1.6)) from ([1.5]), use the following inequalities

(P=1),_ A+ + 0t

t* < )

2 2

valid for ¢t € [—1,1] and applied with ¢ = |y|,/|z|, (we may assume that |y|, <
|x|lp). The second inequality in can be proved by a Taylor expansion of the
right-hand side. (iv) For p > 2, use (ii). For p < 2, use (iii) applied to the pair
(T’ ty,T— y)
Exercise [I.12] We may assume that K contains the origin in its interior. One
possibility is to define ©(x) = Ok (x) as the (unique) element of minimal Euclidean

(E.1) 1+ @-1)"?<1+2
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norm in the set (denoted F) of points where -, ) is maximal on K. To see that this
choice is Borel, define a sequence (K,,) of convex bodies approximating K from the
inside by the relation |||k, = ||k + =|:|. One checks that (i) for each z € R™\{0},
the linear form (-, z) achieves its maximum on K, at a unique point, denoted ¢,, (z),
(ii) for each m, the map ¢,, is continuous, and (iii) the sequence (¢,,) converges
pointwise to O . To see the last point, write ¢y, (z) = (1 + |x,,|/m) 12, for some
Tm € 0K. If y € F, then (by definition of ¢,,) we have

(14 lyl/m) ™y 2) < (1 + Jwml/m) ™ @m, ) < (1+ |2m]/m) "y, ),
which implies that |, (2)| < |zm| < |y|. Deduce that (¢, (r)) must converge ‘to
the point of minimal Euclidean norm in F'.

Exercise If h,h' : R® —> R, are positively homogeneous, then {i <"1} =
{h' < 1} implies h = h'. What may fail here is that sup,. 4{(x, -) may.be negative.
Exercise Use the fact that K ¢ RBY <= R™'B} < K°.

Exercise m (K°)° is a closed convex set containing both-K~ and 0, so one
inclusion is clear. For the other inclusion, argue by contradiction using the Hahn—
Banach separation theorem.

Exercise If K does not contain 0 in the interior,then | - | takes the value
-+0o0 which forbids the application of Hahn-Banach theorem. For an illustration of
the importance of the assumptions consider K = I°, where L = {(z,y) € R?
2-y)(2—2)=1, x <2}

Exercise is simple and can-be deduced from it using the bipolar
theorem. The example K = —L = {0,0} u(—00,0) x [—1, 1] shows that closedness is
needed. The example K = {0,2}, L .= [—1, 1] shows that convexity is needed. The
example K = [1,2], L = [3,4] shows that containing the origin is needed. Finally,
taking K° = (—00,0) x {0} and £° = {(z,y) : =—1>0, (zx—1)(y—1) = 1}
shows that taking the closure. is needed (it is clearly not needed if K° and L° are
both compact).

Exercise Let K'= conv{V} < R™ containing 0 in the interior with V finite.
For any extreme poiut.2 € K° there is a subset U — V such that spanU = R" and
x is the (unique) vector satisfying (z,u) = 1 for every u € U. It follows that K°
has only finitelyxmany extreme points.

Exercise [I.20] The hypotheses ensure that every supporting hyperplane to K is of
the form-Hy, = {z : (y,z) = 1} for some y € 0K°, so v (F') # &. To establish that
vi (F) is-an exposed face, show that if 2y belongs to the relative interior of F' and
H={y: {y,zoy = 1}, then vi (F) = H n K° (use the fact that for any x € F' there
exist t € (0,1) and 2’ € F such that xg = (1 — t)z’ + tx). To establish injectivity,
show that if F, F» are exposed faces of K with Fy ¢ Fy and Fy = Hy, n K, then
Yo € vic(F1)\vk (F2). With regards to the last property, F' < vgo (vi(F)) is easy;
if we had a strict inclusion, injectivity and order reversing would imply the strict
inclusion vg (yKo (VK (F))) < vk (F), which is a contradiction since we just noted
that the reverse inclusion always holds.

Exercise Show that the interior of K is disjoint with F, (always) and that,
under our hypotheses, F,, # ¢J. Deduce that H, = {z : (y,x) = 1} is a supporting
hyperplane and F, an exposed face. For the second statement, if F' is a maximal
exposed face of K, show that F' coincides with F},, where y is an extreme point of
v (F) (appeal to the Krein-Milman theorem and use maximality).
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The same argument works in the general case with the caveat that, for some y, the
set Fy, (as defined by ) may be empty.

Exercise The polars of the examples from Exercise [I.5[(d) will work.
Exercise Consider K = (Bf n{z < 0}) u (B3 n{z > 0}), where z is the
first coordinate in R2.

Exercise If a1 < -+ < ag,_1 denote the principal semi-axes of &, produce
an n-dimensional section which is a Euclidean ball of radius a, by pairing each
small semi-axis (ay, for k < n) with a large semi-axis (ay, for k > n).

Exercise If e € C* is such that the functional (e, -) doesn’t vanish identically
on C, then it doesn’t vanish identically on the relative interior of C and se, by
Proposition (applied with K = R, and F = {0}), {e,-) is strictly positive on
the relative interior of C. Show that this implies that the relative interior of C
is contained in R, CP and deduce the assertion. For an example where closure is
needed, take C = R% and e = (1,0).

Exercise By the bipolar theorem, C* = Ct <= C.=C+)* = span(C), so
whenever C is not a linear subspace, any vector e € C*\C induees a base.
Exercise Try C = {(z,y,2) e R® : 2 > 0,9.> 0,2 > 0,2y > 22} and
Co =R~ x {0} x {0}.

Exercise We may assume after rotation thatyy = tey with ¢ > 1. Note that
C /3¢, is the Lorentz cone £, and is therefore self-dual. For the general case, define
a linear map T\ by Thy = Ay and Thz.=x for x L y. For A = +/t2 — 1, we have
Cic, = ThL,, and therefore Cf = (T;l)TEn = TinLn = Cmeo = Cye, for

u=t/\vEz—1.

Exercise [1.32] Prove for exaniple that (a) = (c) = (e) = (f) = (b) = (g) =
(d) = (a). The first implicatien is straightforward, the next two are Corollary
Other implications are simple.\If C has a compact base, Lernma implies that C*
has a (n — 1)-dimensional base, so dim C* = n. If C contains a line L, then C* < L+
and spanC*  L*.

Exercise Let\V' be a maximal vector subspace contained in C, then use
Exercise [[.32

Exercise If « € C, then the map ¢(z) = (z,z) verifies $(C*) < Ry and {0}
is a face of R, .

Exercise [1.35] Show that if F’ is a face of C then R{F’ = F’. Deduce that
F’ F" ~ CY is the inverse to the correspondence defined in the Proposition.
Exercise Let y € C1ynCy define the common isolating hyperplane. The proof
of the implication (a) = (d) from Exercise shows then that the corresponding
bases of Cf and C§ are compact and hence so is their convex hull, which generates
C¥ +C¥ (cf. (1.23)).

Exercise In (ii)—(iv) this is easy; in (v) consider ¢ tending to +00 and to
—00.

Exercise [1.38] The “if” direction is easy. For “only if,” use induction on n. Let
x,y € R™ such that z <,, y. Assume for notational simplicity that z = x*, y = y*.
Let § =min{y; + - +yr — (x1+---+x) : 1<k <n} (>0) with the minimum
achieved for k = kg. Show that (z1 + 0, z2,...,2k,) < (Y1,---,Yk,) and (if kg < n)
apply the induction hypothesis to the vectors (zgy+1,...,2Zn) and (Yko+1,-- - Yn)-
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Exercise The statement and the proof are the same (simply replace every-
where “unitary” by “orthogonal”).

Exercises and Apply Proposition [L.15

Exercise We may check strict concavity on lines; for A positive definite and
B # 0 self-adjoint, we have log det(A+tB) = logdet(A)+ >, log(1+t\;) where ();)
are the eigenvalues of A~Y2BA"? which is strictly concave wherever it is defined.
Alternatively, use Klein’s lemma and analyze the proof for equality conditions.

Exercise [1.43| This follows from the fact that, for any X € M, diagX =
Ave D, X D,,, where v varies over {—1,1}" endowed with normalized counting mea-
sure and D, denotes the diagonal matrix made from the coordinates of a’vector
v.

Exercise Extreme points of S7"" are of the form |z){y|, whére 'z and y are
unit vectors. Similarly, extreme points of S are of the form |#)(|. Extreme
points of Sip'" are (if, say, m > n) the isometric embeddings 0f. R™ into R™, in
particular, for m = n, orthogonal matrices (resp., C" inte.C"';unitary matrices).
Extreme points of Si** are reflections and have m + 1(connected components
(eigenvalues are 1), each of which can be identified with the Grassmann manifold
Gr(k,R™) for the appropriate k € {0,1,...,m}.

Exercise If X e K = S% (real or complex case); let X = UXVT be the polar
decomposition with U,V € O(n) (or U(n) in the complex case) and ¥ a diagonal
matrix with diagonal entries belonging te [0, 1}. “Consider the diagonal of ¥ as an
element of B! and apply Exercise and. Carathéodory’s theorem in R™. Other
instances of K are handled in similar way:

Applying Carathéodory’s theorem directly leads to a convex combination of m + 1
extreme points, where m = O(xn*)-is the (real) dimension of the corresponding
space of matrices.

Exercise m The set Sf % 15 a cylinder (whose base is the real version of the
Bloch ball) and the set $%°* is a double-cone over a disk (see Figure [E.2).
reflections _ [1)(1] = [0){0]

—10)(0]

10){0 = [1)(1]

FIGURE E.2. Schatten unit balls in 2 x 2 real self-adjoint matrices

Exercise The delicate point is the triangle inequality. For M, N € My, ;,
consider M, N € M7, as in Lemma By mimicking the proof of Proposition
we obtain spec(M + N) < spec(M) + spec(N), and therefore s(M + N) <,,
s(M) + s(N). Using the result from Exercise this implies that |s(M + N)| <
Is(M) + s(N)| < [s(M)| + ||s(N)||. For the second statement (and, say, m = n)

consider the restriction of the norm to diagonal matrices with real entries.
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Exercise Mimic the explanation of the equality in (|1.34]), or use the bipolar
theorem.

Exercise Use Exercise [1.43] For the second statement, analyze the proofs
for equality conditions.

Exercise Since S,(c) = H,(spec(0)), it is enough to settle the commutative
case. Calculate the derivative dd—pHp(q) and show that it equals — ), 7;log(ri/¢;)
for some classical state r = (r;) (depending on p). The quantity », r; log(r;/q;) is
called the Kullback—Leibler divergence (or relative entropy) between r and q and
is always nonnegative by concavity of the logarithm.

Chapter

Exercise Boundary states are states having 0 in their spectrum.

Exercise Prove the statement by induction on d. Use the intermediate value
theorem to show that the operator p— % |1)(1)| is on the boundary-of the PSD cone
for some unit vector 1.

Exercise Use (2.6).

Exercise (i) Each o, is a self-adjoint isometry, ‘so its eigenvalues are +1.
The assertion also follows formally from Exercise (ii) It is enough to verify
directly just one of the rules; the remaining ones follow then via simple algebra by
repeatedly using (i).
Exercise Hyperplanes in H; aresdescribed by the equation Tr(A -) = ¢ for
some A € M which is not a multiple of the identity (and which can be assumed
to be of trace 0) and some ¢t € R. For such A € M3, we first note that

Bt Tr(Ap) = A1 (A),
so the value t = A\ corresponds to supporting hyperplanes (here \;(A) denotes
the largest eigenvalue of A). Let E be the eigenspace of A corresponding to the
eigenvalue \(A). Givenp'e D(C?), the condition Tr(Ap) = A1 (A) is equivalent to
p having its range.in F, and the result follows.
Exercise This is an immediate consequence of the fact that D(C?) is linearly
isometric to the umit ball of R? (see Section .

Exercise @ For U € U(d), denote by ®; the map p — UpU' and by ¥y the
map p > \UplUT. Check that the relations & o ®y = Sy, Py o Uy = Uy,
Uy 0@y = Vg, and ¥y o Uy = Oy, hold for any U,V € U(d).

Exercise The statement is that isometries of the real projective space P(R™)
are of the form [¢p] — [Oy] for some O € O(n). This can be proved by induction
on n since the set of points at largest distance from [/] identifies with P ().

Exercise [2.9] The hypothesis implies that the matrix of p in any orthonormal
basis has real entries. Since this property remains true when one multiplies each
basis element by a complex number with modulus 1, it follows that the matrix of
p in any orthonormal basis is diagonal, and therefore p = p..

Exercise For (i), work in the affine hyperplane of trace one self-adjoint
operators, whose real dimension is d* — 1. For (ii), let Seg  Sgagca be the set of
product unit vectors (see ) and consider the map ¥ : A,_; x Seg® — Sep de-
fined as W(\, 1, ..., %) = > N )(¥;|. Then prove that a necessary condition for
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the surjectivity of ¥ is that dim(Ag_1) +k dim(Seg) > dim(Sep) for an appropriate
notion of dimension. One possible notion is the covering dimension of a compact
metric space (X,d) defined as dim(X) = liminf. ,olog N(X,¢)/log(1/e) where
N(X,¢) is the covering number defined in Section We have dim(A,_1) = k,
dim Seg = 4d — 3 and dim Sep = d* — 1.

Exercise Consider first the case d; = da = 2 and let E = span(]00), |11))
C2®C?. Since the only product vectors contained in E are |00) and [11), it follows
that the intersection of Sep(C? ® C?) with the hyperplane {4 : Tr(AE) = 1} is
the set of states of the form A|00)(00| + (1 — A)|11)11]| for A € [0,1]. This set i§ a
1-dimensional face. Deduce the case of arbitrary dy, ds.

Exercise Expand all the objects with respect to the canonical bases, i.e.,
|1, 1) ® [7), |1){j| etc., as appropriate.

Exercise Verify that dist(¢,Seg) = 2 — 2A1(¢p) and note” that A\ (¢) is
minimal when 1 is a maximally entangled vector.

Exercise [2.14] The statement about the antisymmetrie.space follows from the
relation Asym, = {¢ — F(¢)) : ¢ € C?® C%}. For the symmeétric space, what it
clear is that Sym, = {¢ + F(v) : ¢ € C? @ C?} = span{z ® y + y @ x}; then use

the polarization formula z ® y + y ® z = 1 (2 + y)®* = Lz — y)®2.

2
Exercise (i) Write Pg ® Pg as

1
1 [(Pg + Ppe)® + (Pg + iPp.)®* + (Pp,~Pg.)®* + (Pg — iPp.)®?].

(ii) By Exercise there are unit vectors r,y € C? such that (p,r ® z) # 0 and
D,y ®yy # 0. Let W e U(d) be such that x = Wy. By (i), ly ® y){y ®y| € &,
and V = (W@ W)(|ly ® yXy ®y|)_satisfies the desired conclusion. (iii) There are
vectors Y = 1@y —y®x and Y. =2 ®y' —y' ®z' (with z,y, 2,y € C?) such that
(Y, x) # 0 and {x/, vy # 0. Denote E = span{z,y} and E’ = span{z’,y'} and show
that necessarily dim £ = dim B’ = 2. Let W € U(d) be such that E' = WE and use
V =WQW)(Pg® Pg)> As before, V € &7 by (i). To verify that {¢|V|¢) # 0 use
the fact that (Pg ® Pg), x are all collinear (since dim Asym, = 1) and nonzero,
and similarly for Vo (W ® W)y, x’. (iv) First, by Exercise both Sym, and
Asym, are invariant under the U ® U action of U(d) and hence «7-invariant. To
show that they are o/-irreducible (and hence “U ® U-irreducible”), prove and use
the following,

A semigroup of < B(H) acts irreducibly on H if and only if for any ¢, € H\{0}
there-ezists V € o such that {p|V]) # 0.

Exercise (i) Apply Proposition to eigenspaces of p. (ii) Use (i) and
the fact that VU is Haar-distributed for any fixed V' € U(d). (iii) Apply (ii) to
p = |r®x)x® x|, where z is a fixed unit vector in C.

Exercise Convexity is easy. If p = > \;jo; ® 75 is separable (with A\; > 0,
0; € D(H1) and 7; € D(Hz)), then Y \io; ® &' is an l-extension of p. If py is a
k-extension of p and [ < k, taking partial trace over k — [ copies of Ho gives an
l-extension.

Exercise (i) Write p = > N\i|xi>{x;| for A; > 0 and unit vectors y; €
H1 ® Ha. Necessarily Try, [xiXxi| = [¥){#| for all 4, and by considering the
Schmidt decomposition of y;, one sees that y; = ¥ ® ¢; for some ; € Hso, hence
the result. (ii) Let p € D(H1 ® Ha ® Ha) be a 2-extension of [¢)(3)|. By (i), p has
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the form |¢){(1)| ® o for some o € D(Hz). Taking partial trace over the first copy of
Ho shows that |1)(y)| is a product state.

Exercise If ¢ = Z;j:l Aie; ® f; is the Schmidt decomposition, show that

d
[T = D5 Aidjle; ® fiXei ® S
ij=1
and that its spectrum is {A\? : 1 <i<d}u{EtN); : 1<i<j<d}.
Exercise What are the operators p on H; ® Hs, for which we can be surée
that p!' = (V®I)Tp(V ®I)? (Note that V depends on X.)
Exercise Note that ['? = Id. Take E = {A € B*(H; ® Ha) : AV .=A}.

Exercise pg = gF—i—(l—ﬁ)d%, and therefore pg is PPT if and only.if § < ﬁ.

It follows that pg is entangled for 8 > ﬁ. Next, verify that pg = wg, where w) is
the Werner state (2.2I)) with A = (8(d? — 1) +d +1)/2d. For — 5 < 8 < T we
have % < A < 1, so wy is separable by Proposition Sitiece the partial transpose

of a separable state is a separable state, the result follows.

Exercise (i) For v € Sca, and ¢ € Sga,, we_have | @ o)XY ® ¢|F =
|1 ® 1) ® |; in particular [[|¢ @ )1 ® p|%|; = 1. Using the triangle inequality
for || - ||1, it follows that | pf|; < 1 for any separable'state p. (ii) Let p = |x)(x| for
X € Scaigedz- Consider a Schmidt decomposition x = > At ® ;. We have
P = i e @5 i ® 951
i,

Since the families (1; ® ¥;);.; and (¢ ® p,); ; consist of orthonormal vectors, it
follows that |p®||; = i NN =2 )2, so ||p?| > 1 unless p is separable.

Exercise Use the self-dual property (see Section for more on this) of
the positive semi-definite cone of operators: A > 0 if and only if Tr(AB) > 0 for
all B > 0.

Exercise QY= (d®Id) o (IdQT).

Exercise Write the Choi matrix of ® as the difference of two positive
operators.

Exercise When dim H; < dim Hs, this follows from the proof of Theorem
2.21] Otherwise, consider ®* to switch the roles of H; and #Hs, and use Exercise
2.25| @and-the fact that ® is completely positive if and only if ®* is completely
positive.

Exercise To show that the map @ is not (k + 1)-positive, consider the input
operator [¢)(1| for ¢ = Zfill iY®|iy e C* ® C**1. To establish k-positivity of @,
write any ¥ € C" ® C* as Zle Xi ® @; with (¢;) an orthonormal basis in C*, and
argue that

(@@ Tdm,) ([0 = Y i ® @i = x5 ® )X ® pi — X5 ® 5] = 0.

i<j

Exercise The unit ball in (M$, | [«) is an “order interval” {7 : —I < 7 < I}
(where 0 < 7 means that 7 — o is positive semi-definite) and positive maps are
exactly those that preserve this order.
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Exercise Use the preceding exercise and duality. Alternatively, use the
fact that any 7 € M3 can be written as 71 — 7o with 71,7 positive and |7|; =
I7alx + 21

Exercise (i) The “only if” part follows from the preceding exercise (note
that ® ® Id is trace-preserving if ® is). In the opposite direction, if o is positive
and ®(o) is not, then ||o|; = Tro = Tr®(o) < |®(o)|1. This takes care of k = 1,
and the general case follows formally. (ii) The norm equals 2; note that the norm
is necessarily attained on a pure state and use Exercise 2.19] Essentially the same
argument gives k for the norm of ® ® Id on (B**(C™ @ C*),| - [l1). (iii) Use part
(ii) and duality.

Exercise The case rankp = n follows from Proposition (the\trace-
preserving hypothesis is not needed). In the general case, argue by. contradiction:
let E = range(o), E' = range(®(0)), and assume that r := dim E > = dim F’.
Next, use Propositions and to infer that ®(D(F)) < D(E’) and note that
r = TrPp = Tr&(Pg) < r'|®(Pg)|w, hence [|®(Pg)|g =5 > 1 = |Pgleo.
Conclude by appealing to Exercise [2.30

Exercise (i) A channel is an affine map from the. Bloch ball to itself; such a
map is necessarily a contraction and preserves the center if and only if the channel
is unital. We are allowed to compose the channel'with maps X — UXUT for
U € U(2), which correspond to rotations of the Bloch ball. This yields the desired
form with |al,|b|,|c| being the singular values of the contraction. We may have
a, b, ¢ negative since we are only allowed proper’rotations (from SO(3)). (ii) follows
from Theorem after we compute explicitly the Choi matrix. For (iii), note
that the inequalities for (a,b, ¢) obtained in part (ii) describe a tetrahedron whose
vertices are (1,1,1) (corresponding to the identity channel) and permutations of
(1,—1,—1) (corresponding to conjugations with Pauli matrices).

Exercise Apply Carathéodory’s theorem in the space of unital and trace-
preserving superoperators.

Exercise Check'that R(X) = EUXU' with U Haar-distributed (see also
Exercise8.6), and that-D(X) = EV XV where V is a uniformly distributed among
diagonal matrices with +1 on the diagonal.

Exercise [2.38l »The condition is that Tr M; = 1, which implies in particular
N = dim H>One checks then directly that ®*(p) = > M;{(i|p|).

Exercise2:39] The implication (i) = (ii) is immediate from (2.32). Assuming (ii),
write-C(®) = > |z; ® yi){z; ® y;| for z; € HOU! y; € H'™. Repeating the proof of
Theoremwith this decomposition instead of gives (iii). Finally, assuming
(iii), there are positive semi-definite operators A; € B(H") and B; € B(H°"*) such
that ®(Y) = >, Tr(B;Y)A; for any Y € B%*(H™). Consequently, for any d and
any positive operator X € B(H™" ® C?),

(@ ©1dw,)(X) = 3 A @ Trpn [(Bj/z ®I) X (Bj/2 ®I)]

belongs to the separable cone, hence ® is entanglement-breaking.

Exercise If @ is entanglement-breaking, write ® ® ¥ = (Id®V¥) o (® ® Id)
and use the fact that the product superoperator Id ¥ maps the separable cone to
the separable cone.
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Exercise By (2.32), C(®)' is positive whenever @ is PPT-inducing. Con-
versely, assume that C(®)! is positive. It is enough to show that (® ®Idwu,)(p) has
positive partial transpose for every pure state p = [¢)(3|, with ¢ € H"®C?. Denot-
ing x =Y e;®e; € H"Q@H™, we may write 1) = (I®B)y for some B € B(H™,C%).
It follows that

(@®Id)(p) = (2@ 1) [I®B))XI(1®B")] = 1@B)C(2)(I®B)
has positive partial transpose.
Exercise Prove that A, B > 0 implies A@ B = 0 (A ® B is a submatrix of
A® B). Use also the fact that © 4 ® Idu, = Oags where J is the matrix with all
entries equal to 1.
Exercise Observe that if a € C" and D = D, (i.e., the diagonal matrix with
Dj; = a;), then DX D' = Oay(a) (X) for any X € My.
Exercise [2.44] The map @ is completely positive, and trace-preserving because
ZAIAZ- = Ic2ge2. It is also obvious from the definition that-® is a separable
channel. Assume now that ® can be written as a convex cembination of product
channels of the form Y \;¥,; ® =; with A; > 0 and >, \; = 1. The pure product
states [0)(0|®|0){0] and |1){1|®|1)(1| are mapped to thiemselves under ®. It follows
that for every 7, U;([0)0]) = Z;(10)0]) = 0)(0) and) W (11]) = Z([11]) =
|1)(1]. This leads to a contradiction since ®(]0){0] ®11){1]) = |0)0] ® [0)<0|.
Exercise If {Al(-l)} are Kraus operatorsfor'®; and {A;z)} are Kraus operators
for @5, the family {Agl) T} u {I@Ag-z)} are. Kraus operators for ®1 @ P@-.
Exercise Prove that @ is co-completely positive iff T'o® is completely positive
iff ® o T" is completely positive, where T' denotes the transposition superoperator.
Exercise Prove that, for ®.€ B(M?, M??) and ¥ € B(M?*, M%), we have

Tr(¥ 0,0) = Tr(C(®)FC(V)F™)

where F : C"" @ C" — C* @ C™ is the flip, and use self-duality of PSD.
Exercise A superoperator ® : M2 — M is k-positive if @®Idy, is positive,
ie., if (y|(® ® Id)([2){x|)|y) = 0 for any z € C™ ® C* and y € C* ® C*. Writing
x=>Yr;®|iyand y = > y; ® i) for 2; € C™ and y; € C", this condition becomes

k
(E-2) > wil® |z ly;» = 0.

ij=1
If weexpand x; as z; = Y, {e;, z;)e;, where (e;) is the basis in C™ used in the
definition of the Choi matrix, (E.2|) becomes

k

D W ®T|C(D)|y; @T5) = 0,

=1
which is equivalent to (|C'(®)[p) = 0 for any ¢ € C* ® C™ with Schmidt rank at
most k. This shows that (1) is equivalent to (2). The equivalence between (2) and
(3) follows from the fact that a vector z € C™ ® C™ has Schmidt rank at most k iff
it can be written as = (A ® B)y, where y € CF® C*, A € My ,,, and B € My, .
Exercise [2.49] The “only if” part follows from Proposition 2.29] For the “if”
part, argue first that if ® is rank-preserving, then it maps the interior of PSD into
itself. Next, if there was a positive definite operator 7 that was not in the image
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of the interior of PSD under ®, then some point of the segment connecting 7 and
®(I) would be of the form ®(o) for some o € OPSD, in particular ranko < n =
rank ®(o). Infer that ® is a bijection of the interior of PSD onto itself and conclude
that it is an automorphism of PSD.

Exercise Start by showing that if & belongs to the interior of P, then
®(D) n 0PSD = . Next, consider )\, (the smallest eigenvalue) as a function on
o(D).

Exercise The condition is equivalent to (®(p),o)us = d TrpTro for all
p,o € PSD.

Exercise (a) In the language of the second proof of Theorem [2.36] if |R| "=
1, then R(S?) n S? consists of at least 2 points. On the other hand, there are
nontrivial ellipsoids contained in B3 that intersect S? only at one point. For a
concrete example, consider p — £ (p +]0)0|) for a state p € D(C?) (b)*Any unitary
channel (even the identity channel!) will do.

Exercise Same example as in Exercise (a).

Exercise If p e D(C™ ®C"™) is an entangled state, let ® be given by
Theorem Note that for € > 0 small enough, the map ® : X — ®(X) +
e(Tr X) T also satisfies the conclusions of Theorem Finally consider ¥ : X +—
CD/(I)_l/2(I)’(X)<I>I(I)_1/2.

Exercise (i) Let A = ®*(I); then Tr ®(p) = Tr(Ap) for all p € M2, (ii) We
may assume that A = ®*(I) is positive definite and satisfies ®*(I) < I. (iii) Set
B = (1-A)Y2, define ® : M — M2 by ®(p) = BpB® ®(p) and verify that ®
is trace-preserving. (iv) Verify that ®(p) = 0 if and only if ®(p) > 0, and that the
same is true for any extensions ® ® Idx and ® ® Idc. (v) Deduce form (iv) that ®
preserves positivity and that it detects entanglement of a state p (in the sense of
Theorem iff ® does.

Exercise Let 0 € BR\PSD, and 7 € BP such that E(c) < E(r). We may
apply Lemma [C-4 with(F = —7 and G = —o and conclude that uo — 7 € PSD for
some 1 = 0 (in fact, f>0). Since we may write puo = (uo —7) + 7, the assumption
that o lies on an extreme ray forces 7 to be proportional to o.

Chapter

Exercise 4,11 Write B = K n H = L n H and take a unit vector v | H. After
applying to K and L linear transformations fixing H, we may assume that v € K
and that max{(u,z) : x € K} = 1, and similarly for L. Under these hypotheses,
we have

conv{B, tu} ¢ K c 2B x [—u,u] < 3conv{B, +u}
(same for L) which gives the result with C' = 9. The result appears in [Las08] and
we are not aware of a known better value for C.

Exercise [4.2] The inclusion K < —nA is shown by a variational argument. To
prove the other inclusion we show that every point ¢ (n+ 1)A would form, together
with one of the faces of A, a simplex of volume larger than that of A.

Exercise Let (K}) a sequence of convex bodies in R”. By Exercise we may
assume (applying invertible affine transformations if necessary) that A, ¢ K <
(n +1)A,,. Then apply Ascoli’s theorem to extract from (| - |k, ) a subsequence
converging uniformly on S™~1.
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Exercise We have (K — K) =« K, « K — K and K — K does not depend
on the choice of the origin.

Exercise We know from that (Kg)° = K° n (=K°). Then check that
r€eK° — x—@e—c*.

Exercise i = D01 |1l 0y, | (replace 65 by 3(65 + 6_) to obtain an even
measure).

Exercise [4.7] If P is a polygon whose edges are the segments +S51, ..., £S5k, then
P is a translate of S; + --- + Sk. (This can also be checked by induction.) The
result for zonoids follows by approximation.

Exercise [4.8] Prove that every face of a zonotope is a zonotope.

Exercise No. For every partition of S ! as A; U Ay, the convex-bodies
K1, K5 defined for x € R™ by

fel, = | [o.0)] o)

are such that Ky + K5 is a multiple of a Euclidean ball.
Exercise For the first statement, use Exercise[I.2} For the second statement,
try K =[0,1] c R and K’ = {(z,y) e R? : >0, y =0, 2y > 1} (cf. the hint to
Exercise [1.30)).
Exercise Straightforward from the definitions.
Exercise Start by noticing that if {;})c K is a basis of V and {7} is a
basis of V', then {+x; ®x;} cK®V.
Exercise Let d = dim(V; ® V). If 0 € V; and 0 € Vo, then Vi® Vs = Vi@ Vs
and d = dim V; dim V5. If; sayp04€ Vi and 0 ¢ Vs, then d = dim Vi (dim Va + 1).
If 0 ¢ Vs and 0 ¢ V3, then d = (dimV; + 1)(dim V, + 1) — 1. The first is easy;
the second follows, e.g., from. Exércise [4.12] For the third, consider first the case
when V; = e, + R™~! and‘then appeal to Exercise (or, alternatively, use the
approach from the pardgraph following )
Exercise The part that is not obvious is that conv{z®a2’ : z€C,2’ € C'} is
closed. Consider first the case when C,C’ are pointed and hence admit (by Exercise
1.32) compact_bases, which allows appealing to Exercise Next, use Exercise
1.33 and Exercise £.121
Exercise Use Exercise and then (to show full-dimensionality) the po-
larization formula

S+ ®E +y)+ ) B ~ 1) =@ +y®Y.
To show full-dimensionality in the affine setting use the same ideas as in Exercises
and to establish that the relative interior of K7 ® K> is nonempty.
Exercise m (i) The unit ball in ¢¥(X), where X is the normed space whose
unit ball is K. (¢§(X) is the space X* equipped with the norm ||(z1,...,2)| =
|lz1|x + -+ |@k| x.) (i) Use the formula vol(L) = & §.., exp(—|z|.) dz, valid for
any symmetric convex body L < R™.

Exercise [4.17] It is clear that any extreme point must be of the claimed form.
Conversely, given extreme points x € K, 2’ € K’, let ¢ and ¢’ be supporting func-
tionals, i.e., » < 1 on K with ¢(z) = 1 (and similarly for ¢'). Given a decomposition
r®a = \z; ® 2}, show that we may assume that ¢(x;) = ¢/(z}) = 1. Now if
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x; # x for some ¢, consider a linear functional ¢ such that ¥ (x) > sup{y(x;)
x; # x}, and obtain a contradiction by computing (¢ ® ¢')(z ® z’).

Exercise Straightforward from the definitions.

Exercise Calculate Tr(T'1,,) by using (4.16).

Exercise If (x;,¢;) is a resolution of identity, then for any x € R™, we have
Melr,x)? = |2|? and Y ¢; = n, thus max; |(z, ;)| = |x|//n.

Exercise If (z;, ¢;) is an unbiased resolution of identity, then for any = € R™,
we have Y ci(w, z:)? = |2]?, Y iz, ;) = 0, {x,x;) = —|z| and Y] c; = n. All this
together implies max;(x, x;) = |z|/n.

Exercise [4.22] Use Carathéodory’s theorem.

Exercise We have John(B,) = By and Léw(Bl) = v/nBy. If & & Bl
aé for some ellipsoid &, the extremal volume property implies « > /n:

Exercise Gl .. consists of all diagonal matrices. If A is'a diagonal matrix
and P a permutation matrix, what are AP and PA?

Exercise m (i) B, is permutationally symmetric. (ii) Isometries of Sp*"
include maps X — UXV for U,V orthogonal /unitary matriees; it follows that S}
has enough symmetries. (iii) Any isometry of S}** preserves R1 (indeed, +n =P
can be characterized as isolated points in the set of*élements of largest (for p > 2) or
smallest (for p < 2) Hilbert-Schmidt norm in 65;°*)’s0 S;-** does not have enough
symmetries. (iv) Isometries include X +, +U XU for U orthogonal /unitary, there
are enough symmetries. (v) Isometries-of the regular simplex are obtained from
permutations of its vertices; it has enough symmetries. (vi) See Theorem
D(C%) has enough symmetries.

Exercise m (i) Choosing forK-aregular p-gon fails since the isometry group is
a dihedral group. However it is possible to slightly modify K to obtain the required
isometry group, for example %= conv({RF(1,0) : 0 < k < p— 1} U {RF(1,¢)

0 < k < p—1}) for & >0 small enough. (ii) Consider L = K ® B} where
K is the convex body\from (i). We claim that isometries of L have the form
Y1 Ui ® leq iy e for some o € &, and Ui,...,U, € Iso(K), (e;) being the
canonical basis of R”. Indeed an isometry of L induces an isometry on the set
M = {RF(l,e)®e; : 0 <k < p—1,1 < i < n} (the set of points in K
farthest from (the origin) and one checks that it must be of the announced form.
It follows that L does not have enough symmetries (since U ® I commutes with
Iso(L)-for/any U € SO(2)). On the other hand, there is no invariant subspace (if
T =22 Re € R?2® R™, one checks that for any 4 the vector x; ® e; belongs to
the span{Vx : V €Iso(L)}, and therefore the orbit of x spans R? @ R" whenever
x # 0).

Exercise Isometries of K & L include the maps A® B for A € Iso(K) and
B € Iso(L). We claim that a linear map S € B(R™ ® R™) which commutes with
all such maps is a multiple of identity; this follows from the fact that, for every
v,y € R”, the map S, . defined by the relation (S, ,/(z),z') = (S(z®y), 2’ ®Y")
(for z,2’ € R™) commutes with Iso(K), and similarly with the role of both factors
exchanged.

Exercise We have John(y/nB}) = BY. The John ellipsoid of v/nB} ®+/nB}
(which identifies with n.B}") is & = BF®,BY. The John ellipsoid of B¥@ B (which
identifies with S7"") is ﬁéa
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Exercise |4.30 By “globally equivalent” we mean that the validity of all in-
stances of (4.22) implies the validity of all instances of(4.21)), and wvice versa.
To derive (4.21) from (4.22)), appeal to the arithmetic mean/geometric mean in-

equality. To recover ([#.22)), apply (#21) to K/vol(K)Y™ and L/vol(L)"/™ with
£ — vol(K)1/n /(vol(K)l;" T vol(L)1/m)

Exercise [4.31] Given convex bodies K, K> € R™, consider K = conv(K; x
{0}, K2 x {1}) € R""1. Then K n (R"™ x {\}) corresponds to AKz + (1 — \) K.
Exercise Use the formula det(A ® B) = det(A)™ det(B)™ for A € M,,, and
BeM,,.
Exercise If f = exp(y) is the density of p, take (1 4 ¢/s)% as the, density
of .
Exercise To show that 1. implies 2., define

K= |J fa}xf@"L,

TESUPP [

where L is any convex body of volume 1 in R?. Conversely, apply Brunn—Minkowski
inequality in R® to deduce that the function 2 — vol,(({z} XR*) n K)!/* is concave.

Exercise Is p is log-concave, take (us) as-in Tiemma and show (4.28)
for i, instead of u by using Lemma and (4.21)) “applied in R"***. Conversely,

apply with K and L being balls of radiug tending to 0 to prove that u is log-
concave. Note that the density f satisfies f(m) = lim._o p(B(z,¢€))/vol(B(z,¢))
for almost all x € R™ (see Chapter 3, Theorem-1.4 in [SS05]).

Exercise If the origin is not an interior point of K, then w(K°) = oo.
Otherwise, for every u € S~ we have 1 < (w(K,u)w(K°,u))"?. Integrate over u
and use the Cauchy—Schwarz inequality.

Exercise Inradii and eutradii are easy to compute. To compute vol(B7),
note that it is the union of 2" ‘essentially disjoint simplices, each with volume 1/n!.

Exercisem Show and use B, < nl/pBg c nB} and (Vol(nB{l)/vol(Bg‘o))l/n =

n/(n/" ~ e.

Exercise Integrate in Cartesian and polar coordinates, and appeal to (4.26)).
Exercise Observe if z # y, then B(z,7) n B(y,r) < B(X:¥,r’) for some
<.

Exercise Consider rectangles of height 1 and width € with ¢ — 0.

Exercise K contains a segment I with length ¢ = diam K, so k,w(K) =
wa(K) = we(I) = 4k1l. It is an interesting question whether we always have
w(K) > 7+ outrad(K). In other words, we are asking whether among all sets of
given outradius R the segment of length 2R has the minimal mean width, which
doesn’t readily follow from the known results on sets for which—under certain
constraints—the mean width is extremal (see, e.g., [Bal91, [Sch99, [Bar98|). The
above question is equivalent to the following inequality (see Appendix for def-
initions): If X1, Xa,..., Xy are jointly Gaussian N (0, 1)-distributed random vari-
ables such that, for some positive scalars ti,ts,...,txy we have Y, t, Xy = 0, then
Emaxy, X > E |X1‘

Exercise Show the inequality for symmetric polygons by induction on the
number of edges, then use symmetrization K — K — K and approximation.
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Exercise If G is a standard Gaussian vector in R”, then Ew(K, PrG) <
Ew(K,G) by Jensen’s inequality.

Exercise We can assume A linear. Use the classical fact ([Hal82], Problem
177) that any A € M,, with |A|, < 1 can be written as the top left block of
an orthonormal matrix O € My, to reduce to the case where A is an orthogonal
projection, which is covered by Exercise

The same assertion holds in fact for any contraction (i.e., not necessarily affine), see
Proposition and the comments following it. However, this change of generality:
makes the result much more subtle.

Exercise[4.47] By translation invariance, assume 0 € KN L, so that the functionals
w(K, ) and w(L,-) are nonnegative. Then w(K u L,-) = max(w(K, ), w(D,)) <
Exercise [4.48] By modifying the proof of Proposition show that

1
(f ol do(0)) "vrad(K) =1 for any 50,
Sn—l

then let p — 0. The inequality and the argument appear.in Appendix A of [Sza05],
but were likely known earlier.

Exercise (i) When the measure p is purely-atomic with N atoms, the
result can be proved by induction on IV, the case N = 2 being exactly the Brunn—
Minkowski inequality . The continuous case can then be derived by approx-
imation. Minkowski integrals of convex-bodies are defined via their support func-
tions, so that inequality makes sense whenever the map ¢ — w(Ky,0) is
measurable for any 6 € R™. (ii) In that case, vol(K;) = vol(K) for any ¢t € O(n).
By invariance of the Haar measure.(see Appendix , the convex body L :=
So(n) t(K) du(t) is necessarily a~Euelidean ball centered at the origin. By comput-
ing the width of L in a fixed/direetion, we obtain that L is a Euclidean ball of radius
w(K), showing the result.

Exercise We have vrad(K) < vrad(K°)~! < w(K).

Exercise In the symmetric case, combine the results from Proposition [£.15]
Proposition and Theorem In the general case, sufficient conditions are
that (i) 0 is the center of the largest Euclidean ball contained in K and (ii) 0 is the
centroid of K (for Santald’s inequality to hold). These conditions are both satisfied
whenever'0’is the unique fixed point under Iso(K).

Exercise [4.53] By Fubini theorem, we have

vol(K) < volp(PrK) ngcvolE(K N (E + 1))
e

and the convexity and symmetry of K imply that the maximum is achieved for
z=0.

Exercise Apply Lemma to the convex body K x K < R?" and to the
pair of orthogonal subspaces E = {(z,z) : € R} and F = {(z,—z) : e R"}.

Exercise The lower inequality follows from (4.21)). For the upper inequality,
assume h = 1 and apply Lemma to the convex body

L={Mz,(1-XMNy,\) : ze K, ye K, Ae[0,1]} c R*"*!
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and to the pair of subspaces F = {(z,2,1/2) : z e R"}, F = {(z,—z,t) : x €
R™ t € R}. We have vol(L) = (Qgifl)!vol(K)z, vol(K n E) = 272 vol(K) and
vol(PrK) = 272 vol(Ky).

Exercise Apply Lemma m to the convex body L = (K x {1})p < R"*!
with F the line generated by (0,...,0,1).

Exercise [4.57] Use Theorem [£.211

Exercise Consider f,g,h : R™ — [0, 0] verifying ([£.46). For s € R, define
fs : Rt — [0,0] by fs(2) = f(s,2) and similarly for gy, hs. If t = \u + (1 =
A)v, check that he, f,,, and g, verify the (n — 1)-dimensional instance of \(4.46)).
Deduce that f(s) = §gn—1 fs(z) dz and similarly defined g, h verify the 1-dimeénsional
instance of , and conclude by appealing to that instance.

Exercise (i) Let o = f£(0). Write §2?f(z)dz = 2§ 2tP(Y" > t) dt where
Y is a random variable with density f. Show that the log-concavity hypothesis
implies that P(X > t) < P(Y > t) < P(Z > t), where X is uniformly distributed
on [—1/2a,1/2a] and Z has a symmetric exponential distribution with density
aexp(—2alt|)dt. (ii) Reduce to A = 1 by considering L = A"!1K. Assume that
H = u' for a unit vector w. For A = 1, the function

[t (vol, K)"*vol, 1 (K NG uy = t})

satisfies the hypotheses from (i); log-concavity is given by Lemma and Exercise
134

Exercise W Use the inclusions %K c BY ¢ K for K = Bf x BS’_k and
L c By c V2L for L = K° =.conv{B5 x {0},{0} x By~*}, which correspond to
equality cases/extreme cases of Lemmas and

Chapter

Exercise To obtain’ some of the strict inequalities, consider K = {0,1}
[0,1].

Exercise This is an immediate consequence of Cauchy’s integral formula for
surface area ((see”[Sch14]|, Chapter 5.3). Alternatively, an elementary argument
can be givenas follows: consider the map ¢ : R — K which maps x to the closest
point t6 2yin K. It is easy to check that (i) ¢ is a contraction (ii) ¢ maps 0L onto
0K Tt follows that ¢ decreases the surface area.

Exercise Let K = conv(C(z,t)). We have outrad K = sint. Let L be the
n-dimensional half-ball with center « and radius sin ¢, such that K < L (see Figure
. Comparing the areas of K and L using Exercise gives the result. To prove
the second part, check the inequality cosu < e/ for |u| < /2 (take logarithm
of both sides and then differentiate).

Exercise Use Exercise with L = BY and K = B\ conv(C(z,t)). This
gives area(S" 1)V (t) = sin(t)" ! vol,_;(By '), which is equivalent to the lower
bound in . To get the upper bound, compare the solid cap with the circum-
scribed solid cone whose base is the same as that of the cap. For the strengthened
lower bound, consider an inscribed cone. See Figure [E-3]
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FIGURE E.3. Upper bound (dashed) and lower bounds (dotted)
on the volume of a spherical cap.

Vr)
V(r)
ing. After some elementary manipulations, the inequality te_verify becomes

is nonincreas-

Exercise The problem is equivalent to showing that r = "r

EJ'T (s.in(ut)>"*2dt < EJT (s-int)””dt

r Jo \sin(ur) r Jo \sine

for 7 € (0,7) and u € (0,1). It can then be checked than the inequality :11;183 < sint
holds pointwise if 0 < ¢t < r < 7w. The argument actually shows strict concavity in
the “nontrivial” range (i.e., when e* < 7) forn > 2.

For the second part, note that Proposition implies the inequality V (Ar)/V (r) >
V(\s)/V(s) for A > 1 and r < s, and we recover when 7 tends to 0.

Exercise If n = 2 and € is slightly smaller than 1, we need at least 4 arcs to
cover St.

Exercise Argue by contradiction using the Hahn—-Banach separation theorem:;
this is mostly planar geometry.

Exercise Use~Proposition with @ + 7 = £ and n = ¢/n, and . This
choice gives C' = e;Dbut (as in the original Rogers’s argument) optimizing over n
leads to C' = 1, at the expense of additional lower order terms.

Exercise We know from Exercise that N(S""!,g,e) = n + 1 for any
e < /2

Exercise Write N' = {[¢)] : v € N} for some set N7 = Sca. Take now
T %o be an e-net in the unit circle {¢ € C : |¢| = 1} and check that the set
No = {Cyp : CeT,e N}isa2enetin (Spa,g) (in fact even a v/2e-net).
Note that card Ny = card T card A. Since we can ensure that card 7 = [7/¢], the
result follows from the bound (5.7). For the upper bound, argue similarly that
P(Sca,e) = P(P(C%),¢e) x P(St,¢), and then appeal to (5.1)).

Exercise Rough two-sided estimates of the form (Ce)??~2 follow from Exer-
cise and ([5.2)), but the precise value requires a careful integration. First show
that the question is a special case (with n = 2d) of the problem of calculating the
spherical volume of the e-neighborhood (in the geodesic distance) of S! considered
as a subset of S"~1. Next, observe that the (non-normalized) volume of that neigh-
borhood equals vol; (S*) vol,—3(S"~?%) {7 costsin™ ®¢dt. Conclude by evaluating
the integral and using repeatedly the formula (B.2).
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Exercise (i) Expand |x1 + -+ + xn|?. (ii) Prove by induction on n that at
most 2n nonzero vectors in R™ can have pairwise nonpositive inner product.
Exercise (i) Consider the Gram matrix G = ({(z;,2;))1<i,j<n and write
N = |G]1 < v/n|Gll2 < v/n(N + N?t2)1/2. (ii) Observe that the vectors (&%) span
a space (the symmetric subspace) of dimension at most ("Zf;l) < eF(1 + n/k)k.
Then choose k = log(n)/21log(1/t) and apply (i) to the vectors (z¥¥). See Theorem
9.3 in [Alo03]. (iii) Consider a maximal set of points verifying the condition from
the exercise with ¢t = 1/r.

Exercise This is even simpler than the case of the sphere. Let (z;)1<i<n be
chosen uniformly and independently on {—1,1}" and let A = Ufil B(x;,e). Then,
by (5.13)), Ecard A° < 2"(1—V (¢)/2")" < exp(nlog2— N2n(HE=1) [(n4 1)) This
is less than 1 (and therefore the event {A = {—1,1}"} has positive probability)
provided N > n(n + 1) log(2) - 2"'=# (=) The matching lower botnd ‘on covering
numbers is .

Exercise [5.15] We have V,(t) = X ()(a — 1* < Xp (e — ke =
q"Ha® for o = t/((1 —t)(¢ — 1)) < 1. For the lower bound,just keep the last term
and write q*"Hq(t)Vq(t) > g "Ha (;) (g —1)i" = (t’;)tt”(l — )=t > n%rl The
last inequality follows from the fact that (})¢*(1 %2)"7* is maximal for k = tn.
Exercise Consider L = B} and let K be a facet of L, then N'(K,L) =1 <
N(K,L). To obtain an example with K symmetric, let K be a rhombus made of
two opposite faces of L. Then N'(K, L).=2"but two central sections of L (which
are hexagons) cannot cover K. If we insist on having K with nonempty interior,
that example can be modified by slightly enlarging K and L.

Exercise [5.17] If 2 € K, then K ~(z + L) < z + (¢L n (K — K)).

Exercise [5.18 If K, = K n(—K), then N(K,K,e) < N(K,Kn~,e) < (2+4/e)".
The argument from Lemma [5:9applies then mutatis mutandis.

Exercise [5.19] One may be tempted to say that the statement follows from
Exercise by duality;-but this fails since K has centroid at the origin iff K°
has Santal6 point-atithe origin. However, a variant of the preceding hint gives a
correct argument: by Lemmas and Proposition we have N(0K,—K,¢) <
N(OK,Kn~,e) <2 + 4/e)™ =1 N. Let now z1,...,zy in 0K such that the sets
x; — eK cover-0K. For each i, let f; be a linear form such that f;(x;) = 1 and
fi < 1ion K, and let that Q@ = (), ,cn{fi < 1}. Show that y € 0K satisfies
fi(y)>-1= e for some 4, and conclude that (1 —¢)Q c K.

Exexcise Use relations from Section to show that (K,)° < K° — K°
and, subsequently, Theoremto deduce that vrad(K ) < 4 vrad(K°). Next, use
the hypothesis to conclude that vrad(/K.) > ;- vrad(K), where c is the constant
from Theorem Then argue as in Exercises and

Exercise If T is a linear map such that .# = T(BY), then B} = T(.%°).
Exercise (i) Let L = [0,e/4/n]™. The cubes {x + L : = € N} have disjoint
interiors and lie inside BY + L, so card N < % = (g/y/n) " vol(BY + L).
Then use Urysohn’s inequality to bound the volume radius of By + L.

Exercise By the results of Exercise it M = SO(n) (resp., M = U(n),
M = SU(n)), then N(FK, | [w,2.56) < N(M, |- |ew,€) < N(7K, | - |0, €), where
K denotes the operator norm unit ball in the space of real skew-symmetric (resp.,
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complex skew-Hermitian, complex skew-Hermitian with zero trace) matrices. The
result follows then from Lemma [E.8

Exercise Let 61,...,0; € [0,7/2] be the principal angles between E, F' €
Gr(k,R™), as defined in (B.9). By Exercise the distance between E and F
equals [[(£2sin6;/2)[, < v/2(2k)"?.

Exercise Use . Modulo the values of the constants C, ¢, the estimates
are reciprocals of the bounds from .

Exercise [5.26] First observe that the extremal cases are when K is a cap and
L = K¢. Then prove, as a consequence of Proposition @ that the function
t — V(t)V(m —t — ¢) increases on the interval [0, 5 — 5] and decreases ‘on- the
interval [§ — 5,7 —¢].

Exercise Consider f(z) = dist(x, A).

Exercise We may arrange by translation that K and L are‘inside RBg, so
that the functions w(K,-) and w(L, -) are R-Lipschitz on S"~!. Then use the union
bound and Lévy’s lemma.

Exercise Realize the normalized uniform measure on v/ NSV—! as the dis-
tribution of ayGy, where Gy is a standard Gaussiani vector in RY and ay =
VN/|Gx|, and use the law of large numbers to(conclude that ay tends almost
surely to 1.

Exercise By approximation, it is enough.to show that ~,(A4) > v ((—w0, a])
implies v, (A:) > 71((—0,a + £]). Consider the orthogonal projection (restricted
to the sphere) mn p, : VNSN-1 _ R™. For N-large enough, we know from Theorem
that the set T := w&}n(A) has larger mieasure than the cap C := 7TR,,11((—OO, al).
It follows that o(T.) = o(C.)~ Finally observe that 7T;[,1n<A€) > T. while C, =

w]}}l((—oo, a + en]) for some en tending to € as N tends to infinity; this follows

from the (geodesic) radius of € being /N arccos (—ﬁ) and a similar formula for
the radius of C..

Exercise Show-that log ® is concave by computing second derivative and
appealing to (A.4)s. Alternatively, use Proposition and Poincaré’s lemma, and
the fact that the function u — log(arccosu) is concave near 0.

Exercise The nontrivial part is to show that, for fixed n and § > 0, and for
r large enough, we have =1 (v, (rB%)) > (1 — §)r or, equivalently, v, ((rB})¢) <
Y1 ([(1.5 0)r,00)). Now choose a finite set T < S"~! such that (rBy)¢ < {z €
R™¢ maxyer{z,uy > (1 — 6/2)r} and use the fact that vy ([6r, oo% 71 ([r,0)) as
1= ¥o0 (with 6 € (0,1) fixed). The last fact follows, e.g., from (A.4)

Exercise To recover Ehrhard’s inequality for convex bodies A, B < R",
consider the convex body K = conv{({1} x A) u ({0} x B)} € R x R™.

Exercise h(t) = Cexp (—(% — 3)(log(t?) — t*)) for some constant C (de-
pending on n). The same argument shows that the median of the gamma distribu-
tion with parameter p is greater than p — %

Exercise Use the exponential Markov inequality and optimize over s = 0.
Exercise We may assume b —a = 1. Write X as the convex combination
X = (b—X)a+(X—a)b, use Jensen’s inequality and the convexity of the exponential
function to reduce to the inequality bexp(sa) — aexp(sb) < exp(s?/8). The latter
follows since ¢” < 1, where g(s) = log (bexp(sa) — aexp(sb)).
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Exercise Use the exponential Markov inequality for £X with s = 555,
and the bound 1+¢ < exp(e — (¢2 —€3)/2). Checking the last inequality is a tedious
but elementary computation.

Exercise Argue as in the proof of Lemma and Exercise then set
Yo = A2(Y —a).

Exercise Easy.

Exercise Reduce the problem to A = 1, then choose § = 1/log(kA).
Exercise Assume A = 1. For the median, check that if 0 < ¢t < 4/log(24);
then 242 exp(—t%/2) > 3. For the 3rd quartile, check that 3v/2A% exp(—t?/2) > 32
for 0 < t < 4/log(4A), but that similar inequality holds with 34/2A42% replaced by
4A? only if A = 3%3/4. For other quantiles, recalculate the bound on“ M\~ a| and
then show analogous inequalities. The only verification that is not straightforward
is establishing the bound 4A2 exp(—At?/2) when M is the mean ander the original
hypothesis A > % (i.e., without assuming that A > e~'/3);(itcan be done by
identifying a family of extremal c.d.f. of Y that are of the form

0 if t<0
Fit)=< 1-p it 0<tSito
1—Aet if 5%

where to = /log(A/p) is the solution to p = Ae<*, and then using the calculation
from the proof of Lemma [6.16] together_with'some numerics.

Exercise The bound is A(kA)*/ (= exp(—alt?).

Exercise [5.43] To show (5.38), note that if A = {f < M} and B = {f > M + ¢},
then dist(A, B) > ¢/L. For the first assertion and M = M4, the 1st quartile,
consider A = {f < M4} and B-=A{f > M;}, and similarly for the other quantiles.
Exercise If we try to{maximize E f among 1-Lipschitz functions with median
0, we may assume f > 0 {replace f by its positive part f*). Writing Ef = Sé o({f =
t}) dt, we know from the solution of the isoperimetric problem that the extremal
case is when fy(x) =-dist(z, A) for some half-sphere A (the distance being the

geodesic distance). And then Efy = g/2 V(t)dt < /7/8n from (5.5).

Exercise It follows from the solution of the isoperimetric problem (and
from the formula Ef? = §’ 2to(|f| > t) dt) that among 1-Lipschitz functions with
median\0,) Ef? is maximal for fo(x) = arcsin{(z,u) for some u € S"~!. For any
Lipschitz function f, we have therefore Var f < E(f—M/)? < Var f;. We compute

)

/2 /2 2

Ef2— J sto(|fo] > t)dt — 4j W2 —t)dt < 2

0 0 n
where we used (5.5). An example with variance 1/n is the function z — (x,u).
Note: The estimate 2/n is not quite sharp; it follows from Poincaré inequality
(5.54) that the variance is at most —, since n — 1 is the first nontrivial eigenvalue

of —A (the Laplacian) on S™"~!. Numerical evidence suggests that the optimal

bound is of the form %,wheren—1+ﬁ<B<n—l+ﬁ.

Exercise Let m = Ef. It follows from Exercise that Var f < 2/n.

Consequently, m < ¢ < v/m? +2/n and ¢ — m < 4/2/n. In what follows, use
the values from Table 5.2 The first inequality is then immediate since m < gq.
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The second one is trivial if t < 4/2/n or if ¢t > q. If t € (\/2/n,q] (which implies
t > q—m), then

P(f<q-1)=P(f<m—(t—(qg—m)) <emamm)/2co /2,

To derive the last inequality, use t < g < 4/m?2 + 2/n. A very ambitious reader may
try to come up with a better estimate based on the sharper bound Var f < ﬁ
(see the hint for Exercise [5.45)).

Exercise Apply the hypothesis to f(z) = min{dist(x, A),e}.

Exercise Consider A = X\B..

Exercise The concavity of g is a consequence of Ehrhard’s inequality (The-
orem . Since g(My) = 0, we conclude that the inequality g(t)~< a(t.~ Mjy)
holds for some o > 0 and every real t. This is equivalent to the.statement
Yo ({f < t}) < P(Z < t) where Z is an N(My, o ?) random variable. The conclu-
sion follows since stochastic domination allows comparison of the‘expectations.
Exercise The distribution of (X)1<r<n is the image of v under an affine
map.

Exercise Consider the function f defined on 8”~' by f(z) = inf{f(y) +
Lg(z,y) : yeQ}. Show that f is L-Lipschitz, coincides with f on € and that My
is a central value for f. Then apply Corollary

Exercise Use the fact that for B ¢ Yand' e > 0, ¢~ 1(B.) o ¢~ 1(B).. The
statement about median is an immediate.consequence of . For the statement
about expectation, restrict the supremum on the right-hand side to functions of
the form g o ¢. 1If ¢ is L-Lipschitz, one needs to replace A. by A./r in ,
w(f —Ef >t) by u(f — Ef > t/L)in (5.40), and similarly for the median.
Exercise If n = 1, thefunction z — ®(x) (the c.d.f. of the N(0,1) dis-
tribution, ) pushes forward 77 to the Lebesgue measure on [0, 1] and is
Lipschitz with constant (27)='/2, which allows to transfer the results on Gaussian
concentration to [0, 1]: ‘For general n € N, consider the surjection ¢ : R* — [0,1]"
given by ¢((z;)) ={(2(z;)).

Exercise [5.55] (i) = — sup{t : v(F(z,.) > t) > 1/2} is 1-Lipschitz, and similarly
for the other~term. (ii) If f(z,y) > My + t, then either ¢(z) > My + t/2 or
f(z,y) > ¢la)+t/2. (i) (3)? = 1. (iv) Argue as in (ii).

Exercise (ii) For f : X3 x Xo — R 1-Lipschitz, z; € X; and z2 € Xo,
introduce the functions f,,(z1) = f(z1,22) and g(x2) = § fz, dp1, and show that
theyare 1-Lipschitz.

Exercise Let B be an orthonormal basis of My, ,,_, as a real space. We claim
that for any X € My 5,

(E.3) % D IXYT =YX i + [ XTY — VX |fs = o X[

YeB
where o = n — 2 in the real case and o = 2n in the complex case. The sum in
does not depend on the choice of the orthonormal basis since it is the trace of a
quadratic form. Write the singular value decomposition of X as X = ) s;le;){f;]
where (e1,...,ex) and (fi,..., fn—k) are orthonormal bases. For 1 < a < k and
1<b<n—k,set Eqgp = leqXfo| and Fyp := i]eq {fp| and consider the orthonormal
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basis of My, ,,—j formed by (E,;) (in the real case) or (Eqp) U (Fyp) (in the complex
case). We compute

1 1 s2 452 ifa#b
§HXE¢T15 — EapXT|fs + §“XTEab ~El X|}s = {Oa I fa i b

s2+st ifa#b

452 ifa=5

and follows by summing over a,b. In the above formulas it is tacitly assumed
that s; = 0 for j > min{k,n — k}.

Exercise [5.59] For U(n), note that u, (= the skew—Hermltlan matrices) “con-
tains a central element uy := i1 /4/n, and so it follows from ) and - ) that
Ricy(u1) = 0. In the case of SO(n), consider the orthonormal bas1s of s0,, of ma-
trices of the form S;; = %(|z><‘7| —17)¢i|) and reduce to the case X = Si». The
argument for SU(n) is similar; note that u; = iI/y/n ¢ su,_For details of the
computations for both SO(n) and SU(n), see Proposition E:15\in [AGZ10].
Exercise Test the log-Sobolev inequality on the, funetion = — exp(Az) for
some A # 0. Alternatively, consider the function F : z.+— z in and let t — 0.
Exercise |5.61] - ) There is a contraction ¢ : S % [0, 7] which pushes forward o
to the normahzed Lebesgue measure. (ii) Consider the Fourier series of the function
f from (5.54). (iii) Consider f(z) = cos(mz),

Exercise Use Jensen’s inequality-in the form |Pf|P < P; (|f|"), and the
relation § P,gdv, = §gdv, (justify!) applied for g = |f|P. Note that the argument
is much easier when p = 2, the contractivity following right away from .
Exercise Use the fact that Bexp(AZ) = exp(\?/2) when Z has an N(0,1)
distribution. The result is Pufa= exp(A*(1 — e™2")/2) fye—+. Since | falL,(y.) =

ePX*/2 , the statement about\sharpness follows by taking A — oco.

Exerc1se- Write Ay, = {y € {—1, 1}” s (I4+e)yr+yes+-+yp, < m+s+e}
for small ¢, use Hoeffding’s inequality (5.43) and take £ — 0.

Exercise [5.65| “ If &< 1/n, then A, = A, and so in that case we may have
1(As) = 4. Positive results follow from and from Exercise

Exercise [5.66)Try NV = 9, and consider a Hamming ball of radius 1 plus any 4 of
the 6 elements of its boundary.

Exercise The second assertion of Theorem [5.54] can be restated as follows:

If K, Lc R" satisfy dist(K,L) > t and one of K, L is convex, then u(K)u(L) <
—t%/2

e )

1 1
5 IXEL, = FunX s + 51X Fuy — FJ, X s = {

Exercise Consider the supremum of all 1-Lipschitz affine functions that are
smaller than f on K.

Exercise We have for y € {—1,1}"
1

= —inf{ly — z| : ze{-1,1}", 2z <0

Iw) = Z5 nf{ly — 2| {-1,13", ]

(this formula is valid for n even and has to be slightly modified for n odd), so f is

%—Lipschitz. The bound on the probability follows from the central limit theorem.

Exercise Write E |f(G)|P = So ptP'P(|f(G)| > t) dt and use the Gaussian
isoperimetric 1nequahty in the form given in Theorem
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Exercise First note that clearly |X|7, = Y, [a;]*. Next, for p > 2, use
Proposition and the fact that |e;]ly, = 1 (this gives B, = O(,/p) which is the
correct order of magnitude). The case p = 1 (and hence p € (1, 2)) follows then from
the inequality E|X| > (E X?)%2/(E X*)'/2. An alternative approach is to appeal
to Theorem to upper-bound higher moments of X (or to Theorem and to
the fact that, for any nonnegative variable W, we always have EW > 5 My ).

Exercise By change of variables, reduce the problem to comparing the
moments of a norm (or a seminorm) | - | on R™ calculated with respect to the
normalized counting measure p on {—1,1}". Next, follow the last strategy from the
hint to Exercise[5.71] combined with Theorem[5.54] The only difference is that while
previously we got “for free” the fact that the Lipschitz constant of the linear function
(ti) — >, a;t; was exactly the same as || Y}, a;€i|1,, this is no longer ‘automatically
true for the function for (¢;) — |(¢;)|. However, the Lipschitz constant and the
median of | - || can still be related: if K = {(t;) : |[(t;)| < My}, then the
Euclidean inradius of K cannot be too small. This follows from ‘the scalar case:
if the Euclidean inradius of K was small, then K would be.contained in a narrow
band {t : [{t,a)| < 1} and, consequently, the median of function (¢;) — |, at;|
would be at most 1, much smaller than its Le-norm (equal to |a|), contradicting
the argument from the hint to Exercise

Exercise (i) We have EX™ = 0 if n_is odd; compare both Taylor series
using the inequality k*k!/(2k)! < (e/4)*. (ii) Use Jensen’s inequality.

Exercise Use the bound on the Laplace transform obtained in Exercise
5.73|(ii) to upper-bound the moments.

Exercise @ The equality |Z]y, = +/2/7 is equivalent to |Z], < /p|Z]1
for p > 1. Unless p is small, ‘this-follows from Stirling’s formula (on which the
asymptotic formula is based). For small p one can verify the inequality
numerically. The inequality f-{}y, < |- [y, follows similarly from ||T'[, > \/p for
p = 2. (This is a very simple-minded approach, we will be grateful to a reader who
supplies a nice rigorous\argument.)

Exercise (iif)Choose A to be the minimum of 1/2|a| and ¢/4 > a?.

Chapter [6]

Exercise Let T =[0,1] = Q and let f : [0,1] — Ry be an arbitrary function.
Define X;(t) = f(¢) and X;(w) = 0 if w # t.

Exercise Define ¢y > 0 by the formula exp(t%,/2) = N/log®? N and check
using” (A.4)) that P(M < ty) = O(1/N°¢) for some constant ¢ > 0, where M =
max{Xy : 1<k < N}. Conclude that EM > 4/2log N — O (k\’/g%v) (handle
EM™ and E M~ separately). See [DLS14] for more precise bounds.

Exercise The suggested inequality follows from the formula

0
EY :J P(Y > t)dt,
0

valid for any nonnegative random variable Y.

Exercise By Carathéodory’s theorem (Theorem[1.2)), K equals the union of a
family of simplices, each of which has vertices of the form xy,, ..., zx,, T, . Next,
upper-bound the number of such simplices (simple combinatorics) and the volume
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of each simplex (Hadamard’s inequality). Note: If N » n, however, this argument
does not yield the logarithmic dependence on N/n from Remark

Exercise [6.5| Proceed as in Proposition [6.3| using Lemma [6.2] instead of Lemma
In the nontrivial range 21log(2N) < n, use the inequality k, > +/n — 1.
Exercise We compute the Gaussian mean width wg(-) = kpw(-). We have
by linearity of expectation that wg(BY) = nE|Z| = ny/2/m where Z is an N(0,1)
random variable. It follows from Lemmas and that (1 — o(1))v/2logn <
wa(An—1) < wg(BY) < +/2logn.

Exercise With the assumption that EX? = EY? this is immediate by
integration (take A, = t for all k). Without this assumption, let Z be an./N\(0,1)
random variable independent of (X),(Ys). For 0 < ¢ < 1 and R large enough,
define new processes (Xy) and (Y3) by Xi, = tX; + . Z and Y, = Yy + 3,7, where
the positive numbers oy, 85 are adjusted so that E X2 = E}_/If = R?Check that
for R large enough, the second part of Slepian’s lemma can be applied to (X}) and
(Y3). Check also that Esup X;, = R + t Esup X, + O(1/R)_and similarly for (Yy),
so that letting R — oo and then ¢t — 1 yields .

Exercise Any centered Gaussian measure is the pushforward of the standard
Gaussian measure by a linear transformation.

Exercise Without loss of generality, L = {(x7y...,x,) € R" : |z1| < ¢} for
some ¢ > 0. Define f(s) = v,—1 ({y e R"™ :’(s,y) € K}), an even function of s.
By , the function log f is concave,“and therefore decreasing on [0, +0). It
follows (differentiate) that

t o0
f f >2v1([0,t]>j fdo,
0 0

which is equivalent to the statement 7, (K n L) = v, (L)v,(K).

We now prove Proposition Without loss of generality we may assume that
X = (G, xp), where G-is a standard Gaussian vector in R? (for some d < N),
and z1,...,7y € R4 We apply to L = {z e R* : [{w,z1)| < t1} and
K ={zeR? : [(a m>| <ty for 2 <k < N} in order to obtain

P(| Xk <tpfor 1<k<N) = P(|X1| <t1)P(|Xi| <tp for2<k < N).

The resultfollows by induction on N.

Exercise Slepian’s lemma, supplies candidates for the extremal config-
uration:, The worst case is when X contains only two elements.

Exercise We have wg(K) = wg(K1) + - - + we(K,) = ©(n) regardless of
the choice of the sequence (d;). Now choose d;j = 27. Given 1 < j < k < n, let
N, be a minimal 29~ % -net in K; and My = Njq X -+ x N x {0} x -+ x {0}.
Check that M, is an O(27%/?)-net of K and that log card M, = O(2F).

Exercise The only case that is not straightforward is applying the volumetric
bound when € » 1: the upper bound requires subtle estimates on vol(B} +
dBY), where § = 2\%. However, it is not hard to see that, in any case, the upper
bound is not tight: replace B} by the smaller set BY /+/n and deduce that the ratio
of volumes is greater than e/¢. The approach via Sudakov’s inequality is much
simpler and yields, for that range of €, optimal or nearly optimal results.
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Exercise If inrad(K) < r, then K is contained in a symmetric band of
width 2r. For the second part, we use Markov’s inequality to write v, (] |% > €) <
w(K)/e < .317, which implies v, (¢ K°) > .683 and therefore N(Bg,cK°) = 1.
Exercise Apply Proposition to the convex function | - | Lo.

Exercise Since we are covering a Euclidean ball with translates of another
body, it is the dual Sudakov inequality (Proposition that is relevant. Use the
value of the appropriate mean width from Table [I.1]

Exercise The optimal 6 equals 1 + /2.

Exercise The worst case is when the random variables Y; are non-negative
and disjointly supported.

Exercise Use the union bound to estimate P(max; Y; > t) and argue as in
the proof of Lemma [6.16}

Exercise This is again similar to the proof of Lemma First use
and the union bound to estimate P(maxy X > t); this leads(as-n — o) to an
expression involving Riemann zeta function ((s). Then just\use the fact that if
s = 2, then ((s) < ((2) = %2. The best bound for E maxy X that can be obtained
by this line of argument is about 1.724. On the other(hand, it is not hard to see
that Emaxy X > /2 for n large enough. The true value of E sup,, X seems to be
between 1.45 and 1.5. To get a lower bound on the-Dudley integral, note that for
k < n the elements X, ..., X}, are e-separated‘with € = 4/2/(1 + log k).

Exercise Use Lemma [6.1] and (6.17).
Exercise [6.21] For k <[ < n, we compute | X; — X;|2 = 4/2 — 24/k/I. Since the

family (Xo))j<logn is V2 — V/2-separated, the lower bound follows from Sudakov’s
inequality. For the upper bound, use Dudley’s inequality and the fact that, for
a > 1, the family (X|q4s)) U (X[ai) gives a /2 — 2/4/a-net with at most 2logn/log a
elements.

Exercise Define  a sequence (ax) by ap = inf{n >0 : N(T,n) < 22k} for
k > 1, ag being the radius of . The right-hand side of is exactly Y5, 2%/2a.
To compare with thé*left-hand side, use the bound 22" < N(T,n) < 22"
n € [ags1,ar], B> 1.

Exercise Consider the sets Ty, = {X1,..., Xpor |, X5}

Exercise If | X =YL, <e, then f(V) = g(X).

Exercise6.26] The direction that is not entirely straightforward is showing that
do(X,Y) does not exceed the infimum in (6.32). If X = F¢': (0,1) — R (the
inverse function) exists, then, when considered as a random variable with respect
to the Lebesgue measure, its law is the same as that of X. With care, such X
can be defined also if Fx is not strictly increasing and/or discontinuous. Given
X,Y, what is | X — Y]|? This argument shows also that the infimum in is
attained.

Exercise Case 1° (the bounded case). If |V,[s < M for some finite M
and all n, then also |Z|, < M. Now approximate f on [—M, M] by a Lipschitz
function and apply @ Case 2° (the general case). Let € > 0 and choose M
so that P(|Z] > M) < e. Then, for all sufficiently large n, P(|Y,| > M + 1) <e.
Apply Case 1° to Y,,’s and Z truncated at the level M + 1, and then let ¢ — 0.
(The last step uses the hypothesis that f is bounded.)

for
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Exercise See the hint to Exercise [6.27} note that under the present hypothe-
ses Case 1° always holds. For an example, consider Z with distribution N(0,1),

1 em2/2
Y,=Z+ and f(z) =
1

T+a2"
Exercise [6.29, The measures (5 + %)(50 + (% - %)61 converge weakly but do not

converge in co-Wasserstein distance, as n tends to infinity.

Exercise The function A — A (A) is 1-Lipschitz with respect to the oper-
ator norm. It is remarkable that a similar inequality (with an additional mul-
tiplicative constant C' < 3 on the right hand side) holds for normal matrices
[BDMS3l, BDKS89].

Exercise For (2), use the fact that the image of a standard Gaussian vector
under the orthogonal projection onto a subspace is the standard Gaussian-vector
in that subspace.

Exercise Show that if a random matrix X € M$? is unitarily invariant, then
U Diag(X)U' (where U is a Haar-distributed random unitary matrix independent
of X) has the same distribution as X.

Exercise If MV is an e-net in (S, |- |), show (argue as-in the proof of Lemma
5.9) that for any A € M,,,

1
Al = sup [lAlp)| <~ i KelAls)]
x,yeScn T A€ zyeN

Then use Proposition [6.3}

Exercise Use Exercise with A a GUE(n) matrix and B = A — % L
Exercise Show that the function (z — 24 )(z —z_) admits an analytic square
root gy : C\[z_,z;+] — C such that ‘gr(x) > 0 for z € (x4,0), gr(z) < 0 for
z € (—oo,2_), and lim, o+ gx(x Hiy) = +iy/(z —2_)(z; —2) for v € [z_,z].
It follows that if M := {7 fx;then Sv @ dz = 2iM for any closed path v which
circles [z_,z4] once in the clockwise direction, but does not wind around 0. To
evaluate the path integral over v we choose R > z; and set I'(t) = Re',0 < t < 2,
and note that

(i) Sv g*T(z) dz+ § QAT(Z) dz = 2migx(0) by the Cauchy integral formula, or by the
residue theorem,

(i) §- g*T(Z) dz-can be related to the constant term of the Laurent expansion of gy,
which inturn can be found by subtracting the dominant (as z — o) term z and
considering the limit of gx(z) — z as * — +c0.

Al alternative argument is to perform successive substitutions x = y+ (1+ A),
Y= 2vAu, u = cost, and to recognize the resulting expression as an integral
involving the Poisson kernel P,(t) for 7 = v/A.

Either approach allows to find also the expected value and the variance of
MP(A), the calculation being in both cases simpler than the one sketched above.

Exercise The equality is easily verified. To extend Theorem [6.28 to A < 1,
let W1 and W5 be as in the paragraph following , and note that for s > n,
pisp(W2) = (1 = n/s)0 + n/s psp(W1).

Exercise Couple W and X, defined as and , by realizing v; as
G;/|G;|. Using Exercise m it follows that du, (psp(n ™' W), psp(X)) < sup{|1 —
n~1G;|?] : 1 <i< s}. This tends to zero in probability, by Corollary
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Exercise By Theorem [6.28] the eigenvalue distribution of BBT approaches
a MP(1) distribution, therefore the singular value distribution of B approaches the
law of vV X2, where X ~ pugc.

Exercise For (a), use Lemma[6.20] The argument from (b) does not justify
changing the order of the limits. A separate question (to which the authors do not
know the answer) is whether we do actually have uniform convergence of W, s/n
to X/, in o0-Wasserstein distance as n, s — 0.

Exercise If W = BB, then 2Tr W = ¥, 2|Re B;|? + 2|Im By;|? is thé
sum of 2ns squared independent N (0, 1) variables.

Exercise Let ¢ € Scn be uniformly distributed, A = |¢)){¢)| — I /n, and "B
be a GUEy(n) random matrix. By symmetry, the covariances of A _and“B*(con-
sidered as M$2-valued random vectors) are proportional, i.e., there exists 5 > 0
such that ETr(AM)? = B2ETr(BM)? for every M € M52, We compute that
B = 1/4/n(n —1), and the result follows from the multivariate .central limit theo-
rem.

Exercise Use Proposition and Proposition i)

Exercise (i) This is more transparent if we think of Scrgces as the Hilbert—
Schmidt sphere Spys = M,, 5, and identify p and AAT{ with A uniformly distributed
on Sys. The function becomes f(A) = |ATy| and is 1-Lipschitz for | - |, hence for
| - lus. To apply Exercisewe identify Sug'with S27s~1. (ii) Given x € Scn, let
y € N with |z — y| < § and write

[CzAl2)] < [KylAly)] + Kz = ylAly)l + [CelAlz — y)l < [KylAly)] + 26 Ao,

then take supremum over z. (iii) Choose for example 6 = 1/4. Using Lemma
the union bound and (ii), we have

P(|A] = 48/v/ns) < 8*"P([f2 > 1/n| > 24/v/ns) < 8"P(|f — 1/v/n| = 4/V/s).
(The last inequality is valid-whenever s = n.) By (i), it follows that P(|A]| =
48/4/ns) < 64™(1 + e) exp(—16n) which tends to 0 as n tends to infinity.
Exercise [6.44] Combine the results from Exercise 2.19 and Exercise [6.38
Exercise (i)-Expand ETrGG'GGT = 37, 335 ) B[Gy;Gr;GriGi] and
notice that by.independence E[G;Gr;jGruGa] = 14—k + 1(j—;y (using the value
E|Z|* = 2 for-N ~ N¢(0,1)). The second computation is similar. (i) Write GGT
as the product of independent random variables T&?TGQJT x Tr GG and use (i).
Exercise Notice that for fixed ¢t € R", Emax,c{(Bt,uy = |[tjwg(L), and
similarly with K and L switched.

Exercise The inequality from (i) can be rewritten as

(2llyl = [2/11y')* + 2 (j2lla’| = <z,2) (lylly'| = <y, 9)) = 0.
Part (ii) is proved similarly. For (iii), this fails already in dimension 1: if z =
2 =1and y =y = €%, then as ¢ tends to zero, |zt @ ' — y ® y'| ~ 2¢ while
[(z,2") = (y,4)] ~ V2e.
Exercise If Ais a GOE(n) matrix and G is a standard Gaussian vector
in R", consider the processes Xy = (t, Aty = Tr (A[t)(t]) and Y; = (G,t), both
indexed by t € S”~!. Check that for s,t e S"7!,

|Xs = X[, = 2l1s)(s] = )3 < 4fs — t* = 4], = Vi,
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and conclude by Slepian’s lemma that E A;(A) < 2k,. The reason for a factor 2
in the first equality is that A is a standard Gaussian vector in the space M$? times
v/2. The argument for the inequality is a special case of that from Exercise m
but using the bra-ket notation makes it easier to rewrite it when A is a GUE(n)
matrix, in which case we get E A1 (A4) < v/2k2,

Exercise Let G1, G2, G5 be standard Gaussian vectors in R™, R*, R @ R"
respectively. Compare the processes X(; ) = (G3,t ® u) and Y, ) = rr.(G1,t) +
rk{(Ga,u) (indexed by (¢,u) € K x L) via Slepian’s lemma. To deduce the inequality
for the usual mean width, use Proposition ii).

Exercise Here is an outline of the complex case, the real case being similar.
Proceed inductively as follows. Choose a (random) unitary matrix Vp € U(s) with
the property that the matrix BV, has a zero entry at position (1, 5) foryj > 1, while
the (1,1)-entry « is positive (note that a follows a x(s) distribution). Then choose
a (random) unitary matrix Uy € U(n) with the properties that Uj1) = |1) and that
the matrix Uy BV} has a zero entry at position (i, 1) for ¢ > 1, while the (2, 1)-entry
B is positive (note that g follows a x(n — 1) distribution), “Repeat the procedure
with the (n — 1) x (s — 1) bottom right block of UyBVj, ‘which has independent
N¢(0,1) entries and is independent of a, 5.

Once the Lemma is proved, the second part.of.the exercise follows formally
from the facts that (a) B has the same distribution as WBX where W € U(n)
and X € U(s) are Haar-distributed and independent of B and (b) if U is a random
or deterministic unitary matrix and W_is Haar*distributed and independent of U,
then UW is Haar-distributed and independent of U.

Exercise [6.51] (i) Write R = UAV as in Lemma use Jensen’s inequality to
obtain E|A| = |ER| = | M| (ii) Write | M| > |Mz|/|x| where x is the vector
(1,...,1,0,...,0) with k& occurrences of “1”, and use the lower bounds ks41-; =
vs—kand knp1-; = v/n—k for 2 < i < k. The whole argument applies to the
complex case (with 5 in place of ;).

Exercise It is enough to show that the relation (Q|P(a; + aj)|Q> = {Pdusc
holds for every polynomial P. We reduce to the case P(X) = X™ and check by

expansion that (Q|(a; + a})™|Q) is the number of Dick paths of length 2n, which is
the nth Catalan number, and also §z" dusc(z), see (6.34).

Chapter [7]

Exercise[7.1] First, even if K is not symmetric, {x (—T) = {x (T) due to symmetry
of ’G'» The only part that is not straightforward is (ii). By homogeneity we may
assume ||T'||op = 1, and using (i) we may also assume that T is an extreme point of
57 (the operator norm unit ball). This means that T € O(n) (see Exercise [1.44)),
and then it follows from the rotational invariance of the Gaussian measure that
L (ST) = £k (S). Note also that the second inequality in (v) is .

Exercise No. Choosing T being a rank 1 operator, and S a rotation, one
would get from Proposition v) that all 1-dimensional projections of K° have
the same length.

Exercise (i) Note that || - || gy is the Euclidean norm associated to the inner

product (7.2), and so K(BY) is the norm of R, as an element of B(% ), which
equals 1 since it is an orthonormal projection. (ii) First prove that K(K) = K(TK)
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for any T € GL(n,R); this follows from the formulas [|©|7x = [|© o T~ x and
Ri(©oT™ ') = Ri(©)oT ! for © € 5 ,,. Then show K(K) < d,(K, BY) using
(i). (iii) Use Exercise
Exercise Use and the fact that Rl is self-adjoint in 7 ,,.
Exercise Let f : R¥ — R be the indicator function of Rﬁ_, and z be the vector
(1,...,1)/vk. We compute, for = = (z1,...,x;) € R¥,

Rif(z) = [E f(G)XG, 2)]{x, z) = \/%Z*k(zl + et T).
It follows that

~ 1
Rl((—))(xlv"'axk) = E2ik Z <1‘7€>66-
ee{—1,1}F

Since E (G, )| = Vk+/2/7 for any € € {—1,1}*, we obtain H|R~1(®)H|B{V = Lk,
while [|©]]px = 1. For the last equality, appeal to Exercise

Exercise The version on S is: if f: S — C is an holomorphic function on
S such that |[f| < Aon S and |f| <1 on R, then |f'(0)] < elogA. Reduce to the
case f(0) = 0 by considering z — (f(z) — f(—=))/2. Use the three-lines lemma to
conclude that |f(z)] < A'™= Write f(z) = zg(2z).and use the maximal principle
(with 0 < ¢ < 1) to show that |g(z)] < Af/t\for |Imz| < ¢. The optimal choice
t =1/log A gives |f/(0)| < elog A.

Exercise (i) We have T,, = {f K Mp}a N {f = My}a; use Corollary
(ii) For z € S, use w((Bg)%,z) < cosfB when x € B and w((Bs)¢,z) < 1
otherwise. (iii) Check numerically<that ¢ — a = (1 — 4/log(2)/6) > 0.66c and
1rcos0.66e < /1 —£2/6 for € € (0,1): Apply (ii) with B = T,, and 8 = € — a to get

w6 (A4) = raw(A) < Vi =P
Exercise Let E be'a.random ce2n-dimensional subspace. Since g is 1-Lipschitz
and circled with mean-uf, we can choose ¢ > 0 such that osc(g, Sg, ) < ¢/3
with high probability, by Theorem Moreover we can write h(z) < 2F +
max{|f(e??*"/g)— f(z)] : 1 < k < n}. Using the union bound and Lévy’s
lemma shows‘that M, = O(+/logn/y/n), where M} is a median of h. We can
choose Csuch that Mj, < /3. Another application of Theorem (the function
h is 2-Lipschitz and circled) gives that osc(h, Sg, Mp,) < £/3 with high probability,
for 'some choice of c. We conclude by using the triangle inequality in the form
osc(f, Sg, py) < osc(g, Sg, i) + My, + osc(h, Sg, M) < e.

Exercis We have inrad(K)inrad(K°) > 1/A4 and w(K)w(K°) > 1 (see
4.37)

<A/m—ne2/6 <A/n—(k+1) < kn_p.

Exercise . The second statement follows from Exercise

Exercise Without loss of generality we may assume that inrad(K n E) > 1
and outrad(K n E) < A. For x € E and y € E*, define T\(z + y) = = + \y.
As X tends to +oo, the inradius of ThK tends to 1 and wg((THhK)°) tends to
wa((K n E)° n E) > A~ 'ky. Therefore, for \ large enough, one has ky(ThK) =
(ki/kn)?n/A? = (k — 1)A~2. Compare also with Exercise

Exercise (i) Let A be the maximum of || - || on S"~!. Prove that A <
14+ 8+ A, yielding the upper bound in ; the lower bound follows. (ii) Adjust



358 E. HINTS TO EXERCISES

the values of d, o, 8 such that (7.14)) implies 1 — e < || < 1 + ¢ for any z € S"~1;
then use Lemma [5.3] and the union bound.
Exermse - ) Let R™ = @@ E; be an decomposition of R™ as the direct sum of
= [n/k| Subspaces, with dim E; < k, and O € O(n) Haar-distributed. Using the
union bound, show that the decomposition R” = P O(E;) has the desired property
with positive probability. (ii) If x; is the projection of x onto the i-th subspace in
a decomposition from (i), write ||z|| < 3 ||z:]| < 2M Y. |2i| < 2M+/N|z|. (iii) Use
(ii) and the fact that ||z|| = b|x| for some x # 0.
Exercise Let K. < R? by a disk of radius 1 centered at (r,0). “Then
lim,_,; dimy (K,.) = o0, or otherwise one would find a polytope P with K; <€ P,c
4K, which is not possible.
Exercise The n?-dimensional convex body B x - -+ x B} has (2n)" vertices
and n2" facets.
Exercise Mimic the proof of Theorem [7.29] replacing the use of Lemma
by the inequalities dimp (K, A)a(K)? = (n—1)/242, and-dimy (K, B)a(K)? >
(n—1)/2B2%
Exercise If the codimension of F is k, then E montrivially intersects R**1
(seen as a subspace of R™), on which |- ||; < vk 4 1.
Exercise For p < oo, mimic the proof of Theorem [7.31] For p = oo, use
Lemma
Exercise (i) is equivalent to the existence of a linear map A : R¥ — R”
such that (1 + ¢)7 Y| < |A(z)|n < |2f for any z € S¥~1. The map A has the
form x — ((z,21),...,{z,2,)) for x1,... 2, € RE. We have |z;| < 1 and may
assume |z;| = 1 by replacing z; with z;/|z;|. On the other hand, since K < L is
equivalent to the inequality w(K5.) € w(L,-) between widths, the inclusion
means precisely that (1 + &) Mah< [A(z)]| for 2 € R*, hence the equivalence.
Exercise |7 ) Denote S = (T~')*. We have wg((TB}})°) = E|T~'G|,,
where G is a standard Giaussian vector in R™. The ith component of the random vec-
tor T~'G has variance o7 = [Se;|* and therefore E [T'G||, < (E|T-'G|5) Ve _

my (3 a?)MP < n'/Puyy max o;, where m,, denotes the L,-norm of an N (0, 1) Gauss-
ian variable. On.the other hand,

inrad(T'(B}))) < inrad(T'(BY,)) = outrad(SB}) ™' = (max ;)"

It follows (cf. - ) that ks (T'By) < Cpn?/?

Exercise [7.20) - ) Since | - | = (1 + 2£)| - | we have (1 4+ 2¢) < A(1+ ¢), so
A>2T1+¢/2. Slmllarly | -] <2|-|implies A < 2 and therefore A > 1+ cA/4. To
get (i), subtract |z| from (7.24).

Exercise We have inrad(K) = 1/y/m and E |G| kg = mk, if G is a standard
Gaussian vector in R™".

Exercise By Theorem there is a subspace E < RY of dimension
n = c¢Ne? such that P := E n BY¥ is (1 + ¢)-Euclidean. The polytope P has at
most 2V facets (since taking sections of polytopes cannot increase the number of
facets). The polytope P also has at most 3%V vertices, since every vertex of P is the
intersection of E with some face of BYY, and BY¥ has 3" faces.

Exercise |7.23] - ) Let B : & — M, s be a standard Gaussian vector and let
W=W,,:= BBf be the corresponding Wishart matrix. Consider first p € [1, o).
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As in the proof of Theorem the problem is reduced to showing that E || B|, =
E(Tr WT’/Q)l/p ~ a, n/P*1/2 or| equivalently, that

1 1/p
E (nfl Tl"(nflw)pﬂ) '-E <J [P/ dﬂsp(nlw)) ~ Qp-

(Above and in what follows all expected values E are calculated on the probabil-
ity space 2, and all integrals are over R, often with respect to empirical spectral

measures depending on w € €2.) Recalling that o, = (S |2|P/? duMP()\))l/p, we seé
that we need to exploit the convergence psp(n™'W) — pmp(x) explained in Seetion
[6:2:3:2] However, there are a few technical points that need to be resolved.“First,
it is not enough to work with the weak convergence of measures since (by ‘defini-
tion) v, — v weakly iff { fdv,, — { fdv for every bounded continuous function, and
f(z) = |z|P/? is not bounded. To address this problem, appeal to co*Wasserstein
convergence and argue as in Exercise (i.e., using Theorem and Lemma
to conclude that n=! Tr(n='W)P2 — {|z[P/? dpnpe) = a? in probability,
and similarly after raising all quantities to the power 1/p.

Next, as every student of real analysis knows, the convergence X,, — Y in
probability does not generally imply convergence.in mean E X,, — EY: one only
knows from Fatou’s lemma that liminf,, E X,, > E ¥.” However, we do have con-
vergence in mean under some tightness assumptions, for example when the second
moments E X2 are uniformly bounded. (Prove.this if it sounds unfamiliar.) In our
setting, we have

1/p
X = (el wy2) & WL = B

To conclude, verify that Proposition (or Corollary in the real case) im-
plies E [n~1/2B|% < \. This-s"a sithple instance of upper-bounding L,-norms in
presence of ¥y estimates explained in Section [5.2.6} actually it easily follows that
E [n2BJ2 ~ (1+ VA2

The case p = oo is"easier since the quantities in question are more tangible;
it follows from Propesition (or Corollary and Exercise Note that
the lower bound also follows formally from the case p < oo by using the facts that
| oo = n=YP| Y, and lim, o o, = 1+ /A, while the upper bound is implicit in
the last caleulation above.
(ii) Argue in ‘a similar way by using the analogous results from Section con-
cerning GUE/GOE matrices.
Exercise The bounds on the mean width appear in (7.25). The bounds on
the volume radius follow from the inequalities vrad(S;"") < w(S;"") (Urysohn’s
inequality) vrad(S;"") vrad(Sy*™) > c (the inverse Santalé inequality). The con-
stants C, ¢ are independent of p € [1,2] (in addition to being dimension indepen-
dent).
Exercise (i) Let M and N be g/4-nets in (S™1,|-]) and (S™1,]|-|) respec-
tively, and take P = conv{|z)(y| : = € M,y € N} (cf. the proof of Lemma [9.2).
Use Lemma 5.3| to upper-bound the size of the nets. (i) If dgas (E 0 Sy, BE) < 2,
(i) implies that dpa(F n P°,BY) < 4. Since E n P° is a 4-Euclidean poly-
tope with CJ**™ faces, Remark implies that & = O(n), as needed. (iii) If
dpm(E n Sp=", BY) < 2, then by dpm(E n S", BE) < 2m'/P. By Re-
mark k«(E n S") = km~%P/4. This implies (Theorem [7.19) that S
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has a 2-Euclidean section of dimension ckm =%, hence we conclude from (ii) that
kE < Cnm?/P.

Exercise Identifying C" with R?", the ellipsoid John(K) is circled (as a
consequence of its uniqueness, it inherits all the symmetries from K'), and therefore
we may reduce to the case where K is in John position. It suffices to check that
Lemma [7.41] transfers verbatim to the complex case.

Exercise [7.27] - i) By the result from Exercise we have either ky(K) = \/n
or ky(K°) = f Assuming the latter without loss of generality, it follows from
Corollary that there exists a subspace F' of dimension cy/n such that PrK is
2-Euclidean. Conclude by applying Corollary to K n F. (ii) Yes, since we can
choose a position for which the Haar measure on Gr(k,R™) concentrates near E,
see Exercise [B
Exerc1se [7.28] (a) Without loss of generality, one may assume that\John(K) =
Set A = Vrad(K) = (vol(K)/vol(B%))/™. From Lemma we obtain that
N(K7 BY) < vol(K + BYy)/vol(By) < vol(2K)/vol(BY) < (2A)". It follows that
K N E is covered by (2A)™ translates of B N E, hence vol(K nF) < (24)™ vol(B2n
E) which is the claimed estimate. (b) Consider K =.B’x BY and check that
vrad(K') is bounded by an absolute constant whenever, N > Cnlogn, whereas
vrad(BL) = O(y/n).
Exercise The arguments in parts (i) and (ii) of the Exercise are identical,
the key observation being that the intersection, of two (or three) events with large
probability also has large probability. <For the first statement, use the fact that
if £ is Haar-distributed on Gr(k,R?¥), so is E+. For the second statement, fix
an orthogonal decomposition R** = F| @ F, @ F3 and consider E; = O(F, ) for
O € O(3k) Haar-distributed.

Exercise [7.30] Follows from.Theorem [7.44] by duality.
Exercise Both sets equal E n (K + G).
Exercise [7.32] Use the example from Exercise and Proposition

Exercise [7.33] (i) It-follows from Lemma that vol(K) = 27" vol(K n (E1 &
Es)) vol(K3) and that vol(K n (E1 @ Eg)) > 2_" Vol(Kl)Vol(Kg) To obtain in-
equalities for K°, proceed similarly using and (| - ) Use ( . (iii)

Follows easily from part (ii).

Exercise Apply Corollary [7.24] with K = BZ. Using the fact that k,(B}) =
Q(n), it-follows that there exists a subspace E < R" of dimension (ne?) such that
PpBli.is (1+¢)-Euclidean. Then note that Pg By can be written as the Minkowski
sum of n segments. Observe that an isomorphic version of the statement follows

from Exercise [T.300
Chapter

Exercise Show that P(Seg nU(Seg) # ) = 0 by arguing as in the proof of
Theorem

Exercise This follows by restricting the minimum to product states, since
Sp(p® ) = Sp(p) + Sp(o).

Exercise (i) Use concavity of S,. (i) Define ® and ¥ as ®(p) = ®(p)®7 and
\Tl(p) =0 ® ¥(p), where o (resp., 7) is a state minimizing the output entropy of ®
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(resp., ¥). Let = = @ U; then SP"(282) = SUn (@@ T) < S (B) + Swin(F) =
25min (=),

Exercise The right-hand side of (8.11) is achieved on extreme points, i.e.,
+|)(y| for ¢ € Sg2. An immediate computation shows that |®(£[¢)¥|)|, =
21/p/2. On the other hand, if 1 L @, then [()), = [l = 1> 21/7/2.

Exercise (i) Show that nonzero eigenvalues of anti-symmetric matrices come
in pairs. (ii) Argue as in the proof of Proposition using (i) instead of Lemma
B

Exercise (i) The Choi matrix of R is C(R) = I Icagea. (ii) Use direct
computation, or argue that G = {B7A* : 1< j <d, 1 <k < d} is a group
(with the counting measure as Haar measure) which generates My as a vector
space and therefore the argument used in the proof of Proposition 2.1 yields
& Yeec GXGT =Tr X L.

Exercise The idea is to follow carefully the proof of Lemma{812] to come up
with an exact calculation instead of an estimate.

Recall that the argument shows that Ly, the Lipschitz constant of the function
¥ — E(1), is the same as that of the function f from and, in particular,
independent of d (as long as d > k, which we assume). Next, compute w, the
tangent (to S*~!) component of the gradient of f; the supremum of the Euclidean
norm of w will be equal to Lj. By direct calculation, show that |w|? = 4F with

(E.4) F =Y p;(log(1/p)))" - H?,
J

where p; = 23 (in the notation of (8:17)) and H := > pjlog(1/p;). To find the
maximum of F' over the set {(p;)“+\p; = 0, Zj p; = 1}, use Lagrange multipliers
and deduce that the extremal sequences (p;) take only two values, namely such that
log (1/p;) = (1 + H) + «, forsome a > 0. By analyzing the constraints, show that
the maximum of the objective function F' equals to o® — 1, and that it is achieved
when the smaller value'\of jp; is repeated k& — 1 times, in which case o = ay, is the
positive root of the-equation

(E.5) 2 a—1)/(a+1)=Fk—1,

which implies/that o ~ %logk (as k — o0). Since the argument shows that
Ly, = 24/ = 1, deduce the conclusion.

For any. given value of k, Lj can be found numerically by solving equation ;
nunierical evidence suggests that log k < Ly < log(2k) for all k£ > 2.

Exercise Fix an orthonormal basis (p;)i1<j<s of F' and define y € R™ by

yi = (3_1 (. )[2) . Then check that

2| >1||\/§
sup  |Z]loo = [¥leo = —=y| =1/ —.
zeF : |z|=1 * “ T n n

Exercise (i) Use Exercise to show that W contains a unit vector ¢ with
largest Schmidt coefficient greater than /a. This uses the identification of bipartite
states with matrices (see Section and the fact that the operator norm of a
matrix is at least as large as the absolute value of the largest matrix element. (The
latter seems very rough, but works; it is conceivable that refining the argument at
this point could lead to closing the gap between the lower and the upper bound
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on the dimension of “very entangled subspaces,” at least for some ranges of the
parameters.) Then appeal to concavity of entropy to show that under this constraint
the von Neumann entropy is maximized when the spectrum of p = Trem [¢){¥)] is
(,(1—a)/(k=1),...,(1 —a)/(k—1)). (ii) This is a tedious but straightforward
consequence of part (i); use the fact that if y = ¢(z) = O(x(1 + logz)) for z > 1,
then ¢~ (y) = ©(y/(1 + logy)).
Exercise Let 0 : (R%,|-|) — (E, |- |us) be an isometry. Fori,j e {1,..., N},
consider the linear form ¢; ; : (R)* — R defined by

(z)i,j(xh ‘e ,J?k) = <’L|(9(.Z‘1) [SPN 9($k)|j>

K

Show that |¢; (21, ..., %) < N7*2|a1] - [a| and that 33, |lléi]l12 = 39
so that |||¢; ;||| = d*?/N®*+D/2 for some indices (i,j). Then use\Proposition
[8-25(iii).

Chapter [9]

Exercise Use Proposition [6.3]
Exercise Consider A = |0)0] — [1)1| and N =.{t) € Scz : ¢ < cosa}.
Then N is an a-net in (Sca, g) and (| Alw)| < cos(2a) for any o € N.

Exercise [9.3] For the first part, mimic the argument used in the proof of Propo-
sition 8.28L The second part is straightforwards.see (6.15]).

Exercise [9.4] This is a reformulation of the statement from Lemma (4.3

Exercise [9.5] The statement about the mean width is proved similarly as in the
qubit case. For the lower bound, one may notice that since Sep((C?)®¥)) is a
section of Sep((C%)®*), its Gaussian mean width is smaller. For the volume, to
be able to generalize the argument from the proof of Theorem [9.11] one needs to
find Léw(D(C%)e). To that end, use Proposition to show that it has the form
&4 = (aP + bQ))Bus, where P is the projection onto the hyperplane of trace zero
matrices and @ = I —P Check that D(C%)p < &, = a 2(1-1/d)+b"2/d < 1.
Minimizing vol &, .= adz_lbvol(BHs) under this constraint gives a = /d/(d + 1)
and b = +/d.

Exercise For the bound on w(PPT?), argue as in the proof of Theorem
but in the last step use Exercise[5.28] In the displayed formula, the first inequality
is Urysohn’s ihequality. For the second one, use the bound on w(PPT) and appeal
to the-dual Urysohn inequality (Proposition .

Exercise This follows from the fact that the measure pi42 42 on D(C? ® C9)
iscproportional to the Lebesgue measure (see the discussion following ), and
from Proposition [6.34]

Exercise (i) The operator whose norm has to be estimated is A = )., B; with
B; =Y, Aij ® [i)(j|. Since Bf B;, = 0 for iy # iy, it follows that

|AJ* = [ATA] = | Y, BIBi| < 3 IB{Bil.

Next, using B;B] = (3, A;Al;) ® [iXi|, conclude that |B[B;| = |B:B]| =
12 AijAIj I< 2 ||AijA;-rj|| =2 1A |2, as needed. (ii) It is enough to prove (see
the comment following Theorem [9.15) that every matrix A € B*(C% ® C%) with
|Alus < 1 satisfies I+A € SEP. By Theorem and Remark it suffices to



CHAPTER [0 363

show that for every unital positive map ® : My, — Mg,, we have I +(P®Id)(A4) = 0.
Writing A as Y A;; ® |1){j|, we have

[(@@IA)(A)]5 = | Y, ®(Ai) @105 < D I®(Ai)I% < D11 As
from which the result follows. In the chain of inequalities we used successively (i),
Exercise and | - Jop < || - |ms-

Exercise Note that P(D(C?)) is the shifted Bloch ball (a 3-dimensional real
Euclidean ball with radius 1/4/2). For the last inequality, argue as in the proof of
Proposition 828

Exercise [9.10] Use Stirling’s formula.

Exercise m (i) The fact that the projection contains the section is-a_general
obvious fact. For p = [1)(1|®|1){1], we have Pyp = - Icmgen +|1{HQ)([1)(1] —
L1¢n), which is not positive. (i) Use (.13). (iii) We have Ppp =L ® Trem p for
every state p.

Exercise Use the fact that D has enough symmetries: The argument sug-
gested in the hint to Exercise [0.14] also works.

Exercise We have vrad(P) > 1vrad(D(C?)) = ¢/+/d (see Table . If
P has N vertices, Proposition implies that viad(R)"= O(+/log N/d), and the
result follows. We point that the result can also be proved by arguing as in the
proof of Proposition

Exercise Argue that the smallest \\>)0 such that (—1) e Sep < X e Sep
equals d> — 1 by considering a pure product state.

Exercise Denote by E ¢ C? the range of ®(I) (which is a positive opera-
tor) and consider b X ®(X )4+ Prpi X Pgi. The map ® is clearly positivity-
preserving and has the property that, for any state p on C¢ ® C%, we have

(® ®Id)(p)&PSD «— (P ®Id)(p) € PSD.

(The key point in inferring the latter is that positivity of ® implies then that, for
any X € My, the range-of ®(X) is contained in F.) Finally, define ¥ : X —
B(1)~128(X) P (1) 12,

Exercise (i) is an immediate consequence of Exercise [7.15] applied with
B = 4. For (ii)y proceed exactly as in the proof of Theorem @Fl

2
ooélﬂ

Chapter

Exercise Check that m ¥ at <min(k,n —k) < ufﬁ DTS
Exercise First remark that the unitary invariance of A implies that A and
VAVT have the same distribution when V is a random unitary matrix independent
of A (V is not assumed to be Haar-distributed). Now, let W be a (random) unitary
matrix W such that Diag(spec A) = WAWT (W is not unique but can be chosen as
a measurable function of A). If U is a Haar-distributed random matrix independent
of A, then UW is independent of A (this follows from the translation-invariance of
the Haar measure). Finally, we may apply the initial remark with V"= UW.

Exercise Argue as in the proof of Proposition using the event E —
{|B|1 = cin}, and Lemma [10.2}

Exercise Consider the random vector Z defined by P(Z = ¢;) = P(Z =
—e;) = 5= where (e;) is the canonical basis of R”. We show separately that (i)
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E|X|x < C1E|Z||x and (ii) E||Z|x < C2E|Y| k. Writing X as a positive
combination of +e; gives (i) with C; = 2nE || X|;. For (ii), denote A = {E[Y14] :
A measurable}. Note that for any x € conv A, we have ||z|x < E|Y|x. The convex
hull of A has nonempty interior (otherwise ¥ would be almost surely contained in
some hyperplane) and therefore contains the 2n vectors tee; (1 <14 < n) for some
e > 0. It follows that eE ||Z|x < E|Y| k.

Exercise This is obvious since pg2 s has a density with respect to the
Lebesgue measure.

Exercise Consider the set Ly = {(¢1,...,%,) € (CQCH)* : 377 |1 Xabil.€
SEP}. Since SEP is convex, we have the following fact: if (¢1,...,%s_1, @) € L
and (¢1,...,%s-1,X) € Ls, then (¢1,...,1¥s_1, %gp, %X) € Lgiq. It follows that

whenever (1, ...,1;) is a Lebesgue point for L, then (¢1,...,%s_1, %1#3, \%Wg)
is a Lebesgue point for Lg11. (A point z is a Lebesgue point for A € R™if the ratio
vol(A n B(z,¢€))/vol B(x,¢) goes to 1 as € goes to 0.) The result-follows from the
fact that almost every point of L is a Lebesgue point (see ‘Chapter 3, Corollary
1.5 in [SS035]).

Exercise Realize p as Tres |¢0)(3)] for ¢ uniformly distributed on Scigcagcs
(i) For d; < da, identify C% as a subspace of C% and let P : C% — C% be the
orthogonal projection. Show that the map
 (POP)(ERP)
Tr(P.Q.P)p(P ® P)

pushes forward g,z , onto g2 o, and preserves separability. (ii) Identify C?? with
C?®Ce Let @ : B(C* ® C??) — B(C!® CY) be the partial trace over C¢ ® C9.
Then ® pushes forward f1442 s onto fig> 45, and preserves separability.
Exercise [10.8] We use the same notation as in Exercise Theorem I0.12]
applied for ¢ = 1/2 gives, with' ¢ := 2exp(—a’) for some a > 1:
o if k, N are such that 2V—2F < %50(2]‘3), then mok ov—26 < 0,
e if k, N aresuch that 272k > 35,(2%), then mor ov-2t > 1 — 4.
Set py 1= mor sy -2k Exercise m(u) implies that (py) is non-increasing. Define ky
as the smallest_kysuch that p, < 1 —§. It is clear from the estimates that
ky ~ N/5~0Our definition of ky implies that 2NV =2k~ < 25,(2%~), and therefore
N 72N =2 < T50(28N), s0 that myry gn-2ey—2 < 6. By Exercise i), this implies
that pry+1 < 0 and the Corollary follows.
Exercise (i) We have Tr(p?) = = + Tr(Wp). The value of ETr(p?) was
computed in Exercise To obtain concentration use the fact that Trp? is
related to the Schatten 4-norm of M when p = MM with M distributed on the
Hilbert-Schmidt sphere in Mgz 4. (ii) Let IT be the orthogonal projection onto the
subspace Cz ® C°. The function |IIyp| = 4/{x|p|z) is 1-Lipschitz as a function of v
and satisfies E [[Iy|? = 1/d?; use Exercisem (iii) Use Lemma and the union
bound.

Exercise [10.10] It follows from (the proof of) Carathéodory’s theorem (see Ex-
ercise|1.1)) that the infimum in ((10.15)) can be restricted to convex combinations of
length at most d*. Then use a compactness argument.

<
=
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Exercise|10.11} The inradius of PPT is the same as that of Sep (see Table9.1)), so
the argument that led to (10.14) carries over to the present setting. For the bound
in (i), the relevant range of s is ©(d?).

Chapter

Exercise [I1.1] If n > 3 is odd, argue as in the comment following Lemma [TT.1
If n = 2k, identify R™ with R? ®Rk and consider E = F ® Iy, where F' < My(R) is
the subspace spanned by the two real Pauli matrices.
Exercise[I1.2] This can be seen directly from the definition. Alternatively, weanay
use the description from Proposition Let A € (0,1) and (ai;), (a};) € QCyln-
We have a;; = (z;,y;) and a;; = <xi,yj>. Defining #; = v z; @ /1 >)#, and
;= \/ij ® V1 — Ayj leads to Aaj; + (1 — Naj; = (Zi,7;). We then argue as in
the end of Proposition m to ensure that vectors live in R™in(m.n),
Exercise For vectors z;,y; of norm at most 1, the wunit veetors z; = x; +
V1= lzil?uand ¥ = y; + /1 — y;[? v satisfy (z;,y;) = (&}, y}) provided u, v are
unit vectors in {yj cl<j<nitnfz; : 1<i<m}t suchthat u L v.
Exercise When considered as elements of R?, the.8 distinct matrices A%" =
(fmj)l j—1 are elther 0pp0$1te or orthogonal. A less explicit argument goes as
follows: use Proposition | the fact that 32 is congruent to /2 B?, and that
B ® B} identifies with an (cf. Exercige .
Exercise Given & € {—1,1}™ and-p.€ {71,1}", let I ={i : & =1} and
J =1{j : n; =1} and split the overall sum }’b;;&;n; into 4 sums according to
whether ¢ € I or not, j € J or not; then use the triangle inequality.
Exercise m For the ﬁrst statement, note that {—1,1}* is exactly the set of
extreme points of BY, . The second statement is even more straightforward
from Propos1t10n ‘ { xz :x; € H,|zi| < 1} is exactly the unit ball of
l5,(H) = (f’f(
Exercise Choose c=1=0,, X; = X;®|0X0], and Y; = Y; ® |[0)0|.
Exercise [11.8, First observe that Proposition [11.7] generalizes to the present
context, with the same proof: LCa, o identifies with (B2)®*. Next use the facts
that B2 is congruent to v/2B7, and that (Bf)&)k identifies with Bfk. It follows that
LCy, . o is congruent to Qk/QBfk, a polytope with 25+1 vertices and 22" facets.
Exercise The answers are most conveniently deduced from the characteriza-
tions given by Propositions and The outradius is in both cases easily seen
to_be y/mn. It is a little more delicate to establish that the inradii are 1. For the
lower bound on the inradius of LC,, ,, = B7'®B!, note that it is in Lowner position
by Lemma and then appeal to Exercise For the remaining conclusions,
use LC,, , < QC,,,, © B
Exercise Since LC,, ., = B2 ® B2, this follows from Exercise and
the fact that a cube has enough symmetries (Exercise . More concretely,
symmetries of LC are generated by permutations and sign flips of rows and columns.
Since these operations are also symmetries for QC, it follows that QC has likewise
enough symmetries.
Exercise Taking into account Remark it is enough to check that for
every self-adjoint operators Xi, Xo,Y1,Ys with X? = X7 = [ and Y2 = Y = 1,
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we have TrpB < 2v/2, where B= X, V1 + X1 @ Y2 + Xo @Y, — X, ® Ys. To
that end, show that B? = 41 —(X; X, — X2X;) ® (Y1Y2 — Y2Y7) and conclude that
|B?|op < 8. For an example giving violation v/2, appeal to Proposition and
consider the case where z1, 91, 2,72 € R? are unit vectors separated by successive
45° angles.

Here is an alternative argument which allows to arrive at an example without
guessing. First, observe that

1
sup{pcrsn(A) © A€ QCop}t = gsup{lys +yof + [y — ol = yjeH, |ysl <1}
(cf. Exercise [11.6]). Next, note that for such yq, yo,

1/2 1/2
lya + el + Iy — vl < V2(y1 + 1l + [y = 2?) " = 2(|wn P + 1) 2 <'2v2
and verify when equalities occur.

Exercise [11.12] By Exercise and its hint, every normal to"a facet is propor-
tional to the sum of four vertices of that facet, which in turn-aré of the form A$".
All such sums can then be listed and classified: there are & that exhibit the CHSH
pattern and another 8 with only one non-zero entry. Alternatively, one may notice
that every such sum is a matrix of Hilbert-Schmidt nerm 4, whose entries are even
integers that sum up to +4. Finally, the functionals’ corresponding to matrices
with only one non-zero entry cannot distinguish between classical and quantum
correlations.
Exercise If m > n, the set LC,,5-can be seen in a canonical way as a section
of LCyy, n, which in turn is a section of LC;, ., and similarly for QC,, ,,, QC,, ,, and
(2) , .
QC,,,m- The fact that K5 > V2 follows from Exercise and the opposite
inequality by combining Exercises [[T.11] and [T1.12}
Exercise We have LCy = BZ ® Bl. Since B2 is congruent to v2B%, it
follows that %LCg,n is congruent to B} ®ng, which identifies with B} @ Bl =
conv ({(x,0) : ze By} {(0,z) : xe BY}). The facets of BJ, ®; Bl are of the
form conv(F x {0}, {0}xG), where F, G are facets of Bly. (This can be easily seen
by identifying (B%@1-B2)° with B x B.) It follows that LCy ,, has (2n)? facets:
4n facets express the fact that each entry of a correlation matrix belongs to [—1, 1],
and 8(3) = 402 ¥ 4n are equivalent to the CHSH inequality.

Exercise Fix 1 <4, j < 3 and denote E < R? x R? the subspace of matrices
for which the ith row and the jth column are zero. It is clear from the definition
that PgLCs 3 = LCq 2, where E is identified with R? x R?. Tt follows that whenever
{@(-)>< 1} is a facet-defining inequality for LCy o, then {¢(Pg(-)) < 1} is a facet-
defining inequality for LC3 3. A careful counting (cf. Exercise shows that this
construction produces 18 facets of the kind +a;; <1 and 9 x 8 = 72 facets defined
by inequalities equivalent to CHSH up to symmetries. The information that LCs 3
has 90 facets implies that LCs 3 is the intersection of the half-spaces associated to
these 18 + 72 = 90 facets. Since PgQC33 = QCyy \/§LC272, it follows that

QC3’3 (e \/§LC3’3.

Exercise If M= (mij), then

|M : 2(C) — £3(C)| :maX{E‘Emijzﬂ c 2z €C, |z <1, j=1,...,m}.

i=1 j=1
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Since, as a real normed space, (C, |-|) coincides with (R?,|-|), it remains to appeal
to Exercise m (Note that we are concerned here with the case m = n = 2, but
a similar argument works if min{m, n} = 2.)

Exercise Let a,b,c,d € C and let ¢ : C — R, be defined by ¢(z) =
laz + b] + |cz + d|. Then ¢ is convex and, in particular, its maximal value over the
(closed) unit disk is attained on its boundary T. Next, note that for 71,72 € T we
have

lany + bnz| + |eny + dnz| = ¢(mn2)
and, similarly, for y1,ys € C? with |y1| = |y2| =1

lay1 + bya| + |cy1 + dya| = ¢((yaly2)).

By the first observation, the maxima of these two expressions (over 7)1;m9 €T and
over unit vectors yi,ys € C? respectively) coincide and it remains_to hotice that
these maxima represent the expressions on the two sides of the inequality (11.37)

for [mi;] = [Z Z]

Exercise The polytope LC,, ., is a symmetric polytepe with 227! vertices
and dimension n? (see Proposition [11.7)), so the result“follows. For the “moreover”
part, combine Exercise[7.15|and, if needed, Theorem [I1:12} Note that, from general
principles (see Exercise 4.20), a(LC, ) < n and a(QC, ) < n (in fact we have
equality by Exercise

Exercise [I1.19] Via Santal6 inequality and-its reverse, Proposition [I1.15] implies
that vrad(LC,, ,,) = ©(1/4/n). Since outrad(LC, ,,) = inrad(LC, ) = 1 (see Exer-
cise, Propositionimplies that LC,, , has exp(Q(n)) vertices, or equivalently
that LC,,,, has exp(€2(n)) facets.

Exercise (a) The value-of the game is 3, ; w(d, j)mi; §m;, where (7(4, j)) is
the distribution on the set of inputs. If 7 (4o, jo) < 1, choose &, so that (&;7;) agrees
with (m;;) except for the (ig; jo)th entry. (b) First, replacing (£,n) by (=&, —n)
does not change the outcome, so for each such pair of strategies only the sum of
their probabilities matters. Next, there are four pairs of that kind that saturate
(11.4) and (11.12)), with each pair leading to a mismatch in exactly one of the four
entries of the 2 %2 matrices (§7;) and (m;;). If one of these four pairs entered into
the random strategy with a weight strictly larger than i, the referee could use as
the setting\(#;7) the index of the corresponding mismatched entry.

The combination of (a) and (b) describes the von Neumann—Nash-type equilibrium

forsthe. CHSH game.

Exercise Alice and Bob have a quantum strategy which gives the value of
at least g independently of the distribution (7 (4, 7)) on the set of inputs; moreover,
if that distribution is not uniform, they have a quantum strategy yielding a value
strictly larger than ? For the universal strategy, use the same x;,y; as those
implicit in the hint to Exercise[11.11} it follows from the argument there that, when
expressed in terms of x;,y;, such strategy is unique up to isometries of the Hilbert
space in question. If (m(i,7)) is not uniform, then either |7(1,1)y; + m(1,2)ys| +
|7(2,1)y1 — w(2,2)y2| or |w(1,1)xy + m(2,1)aa| + |7(1,2)x1 — 7(2,2)x2] is strictly
larger than 2+/2.

Exercise Extreme points of the set Ky, ,, defined in (11.23]) are deterministic

distributions that are of the form p({|i) = J¢ ¢(;) for some function f. It follows
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from the Krein—-Milman theorem that any conditional probability distribution is a
convex combination of deterministic distributions. Since LB = K, ® K;,, the
result follows.

Exercise Consider A € (0,1) and two boxes P, P € QB. Represent P =
{p(&.nli. )} as {(Tr p(Bf @ F})} and P = {p(&,nli. )} as {Tx p(E; @ F}')}, where the
operators Ef7 F}, Ef,F‘j" act respectively on the Hilbert spaces Ha, Hp, Ha, Hp.
Verify that

Aol nlin ) + (1= V(& nlisg) = Tr (o ((BS @ ES) @ (F) @ F))) ),

where 0 = Ap @ (1 — A\)p is a state acting on the diagonal subspace H4 ® Hp @
HaQ@Hp < (Ha®HA)® (Hp ®HB).

Exercise Replace p by its appropriate purification (see Section{3.4), i.e.,
represent p € Ha @ Hp as p = Try || for some ¢ € Hy @ Hp,® He. Then
write Trp(Ef ®F)) = <1/)|Elf ®FZ|’(/J>, where Fg = F/ @Iy

Exercise (i) By Exercise it is enough to show'that RB < QB, which
is easy. Note that a product box P € RB can be represented-in a trivial way: take
Ha=Hp=C, p=Icgc and Ef = p(€li)Ic, F}! = p(ylg) Ic. (i) Consider a local
box of the form . By Carathéodory’s theorem, we may assume that the index
set A is finite. To obtain a representation as a guantum box with a separable state,
consider Hy = Hp = C* and let (|[A\))yea be the canonical basis in C*. Define
p = S BN @ AL, ES = 3, pheli WA and F = 3, p(nlj, )N
One checks then that the representation holds. Note that this construction
is essentially the argument used in Exercise[I1.23]to prove convexity of QB, specified
to the present (simpler) setting:

Exercise [11.26] Since LB ig convex it suffices to prove the result when p is a
product state, in which case¢ it is almost immediate.

Exercise [11.27] Use ({11.24) in combination with Exercises and Note
that the affine space Vi ;- 'generated by Ky, ,,, does not contain 0 and similarly for
Ki .

Exercise If pa(-|?) € Kg,m and pg(-|j) € K, the dimension of the set of
boxes P = {p(&nli, 7)} verifying for inputs ¢, j and for that particular choice
of pa,ppis (k—1)(I—1). Consequently, dim NSB < mn(k—1)(I —1) + dim Ky, ,,, +
dim K f,, ‘which coincides with the value of dim LB calculated in Exercise
Since-LB < QB < NSB, all dimensions must be the same. They are all convex
bodies in the affine space Vj p, ® Vi,n analyzed in Exercise

Exercisem Let P = {Tr ,O(E§®F;-7)} eQBand P = {Trp*(Ef®F;’)}, where
px 1s the maximally mixed state. Since p, is an interior point of Sep, it follows from
Exercise that the intersection of the segment [P, P] with LB is a segment of
nonzero length, in particular P belongs to the affine subspace generated by LB.
Since P € QB was arbitrary, we conclude that QB is contained in that subspace
and, in particular, dim QB < dim LB. (The converse inequality is trivial.)
Exercise If H c RY is an affine subspace not containing 0 and if V is
an affine functional on RY, then there exists v € RY such that (v,z) = V(z) for
re H.
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Exercise [11.31] The first part is straightforward from the definitions. For the
second part, note that we cannot have LBy < bQBy if |b| < 1, and then appeal to
the first part.

Exercise (i) By Exercise we can use affine functionals to exhibit
violations. Given such functional V', the largest violation among functionals of the
form Vi = s + V (where s € R) occurs when V,(LB) is an interval of the form
[—a,a]. Hence if V yields the maximal quantum violation, then

[—a,a] = V(LB) € V(QB) < [—aw, (V), aw, (V)]

and the last two intervals share (at least) one of the endpoints. In particular; the
ratio of the lengths of the intervals V(QB) and V(LB) is between (1 + wg(V))/2
and w,, (V). (ii) Replace everywhere QB by NSB.

Exercise First, the PR-box yields value 4 (in the normalization’given by
(11.29))). In the opposite direction, use the fact that, for each 4,7, (&, nli,j) is a
joint density to deduce that ’25,77 p(&, |4, ])} < 1. The second statement follows
then from Exercise [I1.15 and the proof of Proposition [I1.19]

Exercise [I1.34] Reverse engineer the proof of Proposition{IT.8] starting from the
configuration x1,y1,x2,y2 € R? from the hint to Exefcise This leads (for
example) to p being the maximally entangled state on C? ® C?, the isometries
X, = 04, X2 = 0, (the Pauli matrices), Y; = 2-Y?(o, + 0.), Yo = 272(0, — 0.)
and, finally, to the POVMs consisting of spectral projections of X;’s and Y;’s (as in
the formulas following ) The last step.is' somewhat tedious, but instructive.

Exercise (i) The composition rules for Pauli matrices are in Exercise
(ii) Multiply all the numbers in the matrix. (iii)(a) Use part (ii); it follows that
the probability of winning under -any classical strategy is at most 8/9. (b) First,
the product of the elements of-Alice’s output string must be an eigenvalue of the
composition of the corresponding operators, and similarly for Bob, and therefore
by (i)(b) their answers are valid. Next, we can compute (as in Section [3.8) the joint
probability distribution( of outcomes when Alice and Bob measure a single shared
©t in the eigenbasis‘ef a Pauli matrix: for o, and o, both outcomes are always
equal, and for o, beth-outcomes are always different. It follows that for each of the
entries in Table the outcomes of Alice’s and Bob’s measurements on ¢, ® ¢
always coincide:

Chapter

Exercise [12.1] For the first part, use the triangle inequality. For the second part,
consider the POVM (P,I —P) where P is the projection onto the range of (p—o)™.

Exercise Show that separability and PPT properties are preserved under
the action of a separable channel.

Appendix [A]
Exercise Use simple calculus (differentiation) for small ¢ and (for example)
the upper Komatu inequality (A.4) for large ¢.

Exercise (i) is elementary calculus. (ii) Let d(x) be either fi(z) — f(x) or
f(z) — f-(x). We have ¢'(z) < zd(z). Since §(0) = 0, and ¢ vanishes at +o0, the
result follows (otherwise consider a local minimum of 9).
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Exercise Let u be such a probability measure. The Fourier transform i :
u — §o, exp(ide,uy) dp(z) satisfies fi(u + v) = fi(u)fi(v) for u L v. Moreover
i is radial. If f(t) denotes the value of [i on the sphere of radius t?, we have
f(t+u) = f(t)f(u). Since f is continuous and real-valued (p is even by assumption),
this implies f(t) = exp(—to?/2) for some o > 0, and therefore u is a Gaussian
measure.

Exercise We have , = E|G| < (E|G|?)'/? = \/n. For the lower bound, use
the functional equation I'(¢ + 1) = tI'(t). Note also that ki, 1/k, = n/k2.

Exercise [A.5| If a, = 4/n—1/2 and B, = ,/n— 57, it is elementary ‘to

check that the sequences Koy, /Qon, Kon+1/Q2n+1, Ban/Kon and Bay+1/Kon+1 arenon-
increasing. The result follows since all these sequences converge to 1+

Exercise Express SRn fdv, in polar coordinates. The factor is k,(a) =
E|G|* = 2°?T((n+a)/2)/T'(n/2) and, under some minimal regularity assumptions
on f, the formula is valid a > —n.

Appendix

Exercise Use Stirling’s formula and the bound»!'> (n/e)".

Exercise This is immediate from .

Exercise (i)—(ii) Easy. (iii) Use the non‘commutative Holder inequality and
the fact that ATA and AAT (and hence VAT and v/ AAT) have the same non-zero
eigenvalues.

Exercise [B.4] The argument is essentially included in the proof of Theorem [2.3]

Exercise (i) follows from Preposition and from the formula Sé [/ (t)] dt
for the length of an absolutelycontinuous curve « : [0,1] — G. (ii) The singular
numbers of U — V are the samesas those of I —U 1V and hence (in the notation of
part (i)) equal |1 — % | = 2sin(0;/2).

Exercise By resecaling the parameter ¢ we can achieve ||A[y, < w. Next,
if s,t € R with |s ={[.< 1, apply Proposition with U = €4 and V = 4.
Finally, use the fact-that the map X — WX is an isometry with respect to any
Schatten p-norm.

The last assertion follows from the uniqueness part of Proposition [B:1}

Note that allowing right (or two-sided) cosets does not increase generality since
AT Sy ot W T AW

Exercise |B.7| Use the formula exp <2

o) = (G o) and the fuc
that R™ can be decomposed as an orthogonal direct sum of subspaces of dimension
at most 2 that are invariant for U. For the last equality apply Exercise i).
Exercise (i) For an integer n, write e'® — ¢4 = Zz;é etRAm (etB/n
e A/ ein=1=k)B/n Tt follows that [e'f — et < n|e’P/™ — '4/"|. Conclude by
using the bound [eX — e¥|| < | X — Y| exp(max(| X|, |Y]|)) which follows from the
series expansion, and take n — co. Alternatively, consider ¢(t) = et1=t)BeitA and
show that ¢'(t) = ie’(="9B(A — B)e® . These arguments work for any unitarily
invariant norm. (ii) The functional inequality for L(-) follows from

eiB _ eiA _ 2(eiB/2 _ eiA/Q) + (eiB/2 _ I)(eiB/Q _ eiA/Q) + (eiB/Z _ eiA/Q)(eiA/Q _ I)
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Iterating (and using the simple fact that L(#) tends to 1 as 6 goes to 0) gives that
LO) = [T ,1—11— eif/2")) = [T, (1 — 2sin(6/2%)), which is easy to estimate
numerically.

Exercise Let V € VyH, then V = Vyh and U; = Uphy for some h,h; € H.
Now note that ”UO — VH;U = ”UO — Voh”p = HUOhl — Vohthp = ||U1 - Vohthp and
Vohhy € VoH; taking infimum over V' shows one inequality and the other follows by
symmetry. Similarly, if [0, 1] 3 ¢ — Upe™ is a geodesic connecting Uy to V € Vo H,
then t — Upet4hy = Upe*™AM is a curve of the same length connecting U; t6
Vhe V()H

Exercise In the notation from Exercise and its hint, we may, assurhe
that g, (U, Vo) equals the distance between UgH and VyH (in the sense of.gyy note
that the distance is attained, for example by compactness). Next, consider the
geodesic connecting Uy to Vp, whose length is equal to that distance, and deduce
from Exercise that the quotient map O(n) — O(n)/H is an isometry when
restricted to that geodesic.

Exercise In the notation of let E; = span{a}4;}. The subspaces
Fq, ..., By are pairwise orthogonal and invariant under Pr and Pg; they are 2-

dimensional for s; < 1 (which is equivalent to x; #-y;)and 1-dimensional otherwise.
We now note that the eigenvalues of |z;)}x;| — [9:)¢y;| are £sin6;; since Pg =
D lzi{z;| and Pr = 3, |yi){yi|, the principal,angles 6; # 0 can be retrieved from
the eigenvalues of Pp — Pp. It remains to usethe relation Pr — Pp = Pp1 — Ppo.
Exercise Show first the inequalities “<”. In the notation of and of
the hint to Exercise define Wy € O(n) to be a rotation on each 2-dimensional
space E; such that Wyz; = y; (i.e.,<a rotation by 6;) and to be an identity on the
orthogonal complement of the union:of such E;’s. The nonzero singular values of
Wy — 1 are then |e?% — 1| = 25 0;/2, each repeated twice, which combined with
shows the needed upper”bound on ﬁp(E, F). For an upper bound on the
geodesic distance g,(E, E), consider a family W (t), ¢t € [0, 1], where W (¢) acts as a
rotation by t6; on E;and calculate the length of the path t — W (¢) with respect
to the Schatten p-riorm. (Alternatively, you may note that W(t) = €4 for the
appropriate A M$*-and refer to the calculation from Exercise )

For the oppositeinequality, show the following claim: If W € O(n) verifies WE =
F, then the singular values of W — 1 dominate those of Wy — 1, in the sense that
s;(Wo —IN< s;(W —1) for 1 < j < n. The lower bound on h,(E, F) follows
then dimmediately from ; to get the lower bound on g,(E,F'), observe that,
by Exercise the optimal geodesic is of the form W (t) = Upe*4, t € [0, 1], and
that its length—which is | A, by Exercise [B.5|(i)—depends in a straightforward
way on the singular values of W (1) — 1.

To show the claim, fix s € (0,1) and let § € (0,7/2) be such that s = cos#.
Next, consider Fy = span{y; : s; < s}. If y € F, is a unit vector, show that
ly — 2| = | — 1| for all z € S"~! N E and deduce that whenever WE = F, then
there are at least dim F singular values of (V — I)g that are at least le?® — 1].
Since, by Exercise the same is true for (V' —I);g1, the claim follows.
Exercise It follows from the argument sketched in the hint to Exercise
that the (nonzero) eigenvalues of Pg — Pp are +sinf; and so |Pg — Pr|, =
21/P|(sin by, ...,sinf)|,. Comparing with the formulas from Exercise gives
%gp(EvF) < HPE _PFH;D < gp(EaF) and %hp(EaF) < HPE —PFHp < hp(EvF)'
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Finally, since |Pg — Pr|, and g, differ only in terms of the 3rd order and higher,
they both induce the same geodesic distance.

Exercise Let (z1,...,2,) be independent Gaussian vectors in R™. Since the
set of singular matrices has measure 0 in M,,, these vectors are almost surely linearly
independent. Moreover, the orthonormal matrix obtained by applying the Gram-—
Schmidt procedure to the matrix with columns x4,...,z, is Haar-distributed on
O(n). It follows that the subspace span(x, .. ., zx) is Haar-distributed on Gr(k, R™).

Exercise Let g1,...,gk (resp., h1,...,h;) be independent standard Gauss*
ian vectors in E (resp., in E+). For every ¢ > 0, the random subspace span{g; +ch;_ :
1 <4 < k} is distributed with respect to some Haar measure on Gr(k, R™) and con-
verges to E almost surely as ¢ goes to 0.

Exercise The answer to both questions is “no.” The reason is that)SO(k) x
SO(n — k) is a proper subgroup of the stabilizer of R* under the canonical action of
SO(n) on Gr(k,R™), and similarly in the complex case. In the complex case, even
the dimensions do not add up, we have dim SU(n) — ( dim SU(k)«dim SU(n—k)) =
2k(n — k) +1 > 2k(n — k) = dim Gr(k,C™) (note that these are real dimensions).

A more complete answer is that SO(n)/(SO(k) x SO(n"— k)) identifies with
the set of oriented k-dimensional subspaces of R™ and.is, in a canonical way, a
two-fold cover of Gr(k,R™). (A particular example of this phenomenon is S"~1 =
SO(n)/SO(n — 1) being a two-fold cover of Gr(1,R™) = P(R™).) Similarly, the set
SU(n)/(SU(k) xSU(n—k)) identifies, in a way, with the set of “signed” k-dimensional
subspaces of C". See also Exercise

Exercise There are two fine points; first, the cosets of H are subsets of the
cosets of O(k) x O(n — k) and so the distances (extrinsic or geodesic) between the
former may be larger than betweén.the latter. Next, geodesics connecting cosets
(as in Exercise may a priow furn out to be longer if we insist that they
are entirely contained in (SO(n),gp) (as opposed to the larger space (O(n)7gp)).
Similar issues arise in the complex case.

To address these concerns, check that W and W (t) suggested in the hint to Exercise
are minimizers, that work simultaneously for O(n) and for SO(n) (resp., for
U(n) and for SU(n)).

Exercise [B.19](a) (i) By Proposition automorphisms of £4 are maps of the
form x — ¥ L(V¥(x)VT) or x — \I/_%I/(X)TVT). (ii) Use to show that
automorphisms from (i) preserve g and hence belong to 07 (1, 3) iff | det V| = 1. (iii)
Check that if V = I, then the two maps from (i) belong respectively to SO*(1,3)
and.O+(1,3)\SO" (1, 3), and appeal to connectedness of SL(2,C).

(b) V +— Wy being a homomorphism is straightforward; for the part about the
kernel note that if x = W=1(|¢)(¢]) for some £ € C?, then ®y(x) = x can be
rewritten as V|[EXE|VT = [€)(¢]; this means that Uy = Igs implies that every
¢ € C?\{0} is an eigenvector of V, which is only possible if V' is a multiple of I.

Appendix [C|

Exercise Start by showing that ® = |u)(v| # 0 belongs to P(C) iff u € C
and v € C* (or u € —C, v € —C*); necessity easily follows. For sufficiency, start
by observing that if v and v generate extreme rays in the respective cones and if,
for some A, ® + A € P(C), then A(C) € Riu and A*(C*) < Ryv. To show that
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(for example) A(z) € Riu for « € C, consider separately the cases ®(z) = 0 and
O(z) # 0.

Exercise If ¥ is the automorphism in question, then ¥*J¥ = uJ + Q and
similarly (¢~1)*J(U~1) = vJ + Q" with u,v > 0 and Q, Q' positive semi-definite
(justify). Next, show that this implies that (1 — pv)J = vQ + ¥*Q’¥, which is only
possible if uyy =1 and Q = Q' = 0.

Exercise If n = 4, this follows from Corollary modulo identifying com-
pletely positive automorphisms of PSD(C?) with SO (1, 3) (see the hint to Exercise
[B-19(a)). Deduce the conclusion for n > 4: when looking for an automorphism, ¥
such that ¥(u) = v, consider any 4-dimensional subspace E — R™ containing egyu
and v, and define ¥ separately on E and E*.

A similar line of argument allows to derive the full statement (n > 2) from Exercise

B.I8

Exercise [C.4 ‘“Reverse engineer” the failure of the proof of<therconverse im-
plication from Proposition when for n = 2. Alternativelyynotice that Lo is
isomorphic to the positive quadrant Ri and that the structuresof the cone P(R?)
is particularly simple.

Appendix

Exercise One fine point is in verifying that the bases are nontrivial and that
they generate the respective cones, but this is assured by the hypothesis (e*,e) = 1
(cf. Exercise [1.28).

Exercise Start by noticing that |@|(x_q)> < [2|ke if (x,a) = 0 while
|7)(x—aye = |2 Ko if {x,a) < 0 (this may be more obvious if instead of the gauges
we consider the support functions w(-,-), see Section [£.3.3)), and that for some z
(e.g., = *a) the inequalitiesiare strict. Deduce that K° n H* < (K —a)°n HT,
where HT = {z € R™ : {(@3a) > 0}, with the reverse inclusion for the other
halfspace, and show that_thisimplies S(K_a)o<x, bydz > 0.

Exercise[D.3| (i) and(ii) By linear invariance, we may assume that & is a translate
of By. Identify it with the base of the Lorentz cone L£,,+1 and apply Lemma
(iii) This is immediate if we use the full force of Proposition For a
proof that does 1ot use the uniqueness part, note that if K is centrally symmetric
and has centroid at the origin, then it is O-symmetric. Apply this observation to
K = (£ =0a)° and use the bipolar theorem.

Exereise Let u be such that the segment [b — u, b + ] lies in the interior of
K> We now consider a = a(t) := b+ tu for t € [-1,1] and the corresponding solid
cones T,. The first-order variation as t — 0 is, for some constant C(b, u) > 0,

Vol 11(Ty) = voly11(Tp) + C(byu)t | (u,x —egydz + o([t]).
By

If b is a local extremum, it follows that SBb rdx = eg.
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APPENDIX F

Notation

We list below mathematical symbols that appear in the book, particularly
those that are subfield-specific or not generally accepted throughout mathematics,
or just potentially ambiguous. We grouped them by theme /subfield; since‘any such
classification is necessarily imperfect, it may sometimes be necessary to. check more
than one category. Within each category, we tried—to the extent(it was possible—
to arrange the symbols in the alphabetic order. The numbers following each brief
description refer to the pages on which the corresponding symbol is defined, or at
least appears in a context.

General notation

(x|, |z) Dirac bra-ket notation,

{x|y) scalar product, alternative notation to (x,y),

|2y ket-bra, the rank-one operator mapping z to {y, z) - z,
|| Euclidean or Hilbertian norm, or modulus of a scalar,
1 weight of a multi-index a € N™, [135]

14 indicatotfunction of a set A, [I01]

<, 2, x> Landaumnotation (alternative form),

card A cardinality of a set A,

log natural'logarithm,

0(),Q(),06() Landau notation,

o(+),~, « asymptotic notation,

G group of permutations of {1,2,...,m},

vol, vol,,, volg Lebesgue measure on R™, on the subspace F,

Convex geometry

(% gauge of a convex body K,

I -1» p-norm on R™

K° polar of a set K < R™, [15]

C* cone dual to of a cone C,

cP base of a cone C,

K intersection symmetrization of a convex body K,
K, union symmetrization of a convex body K,

Ko cylindrical symmetrization of a convex body K,
(yoe scalar product associated to an ellipsoid &,

By unit ball of £},

Bx unit ball of a normed space X, [T1]

conv A convex hull of a set A,

A, n-dimensional simplex,
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hie ()
inrad(K)
Iso(K)
John(K)
I

Ly,
Low(K)
VK
outrad(K)
S Sen, Sy
vrad(K)
w(K, ")
w(K)

wag (K)

d(A)
diag A

Diag(v), Dy

Gr(k{R™), Gr(k,C")

H
Hy
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support function of a convex body K,
inradius of a convex body K,

group of isometries preserving K, |89

John ellipsoid of a convex body K,

space R™ equipped with the p-norm,
Lorentz cone in R,

Lowner ellipsoid of a convex body K,

map which implements duality of faces, [I7]
outradius of a convex body K,

unit sphere in R™, in C™, in Hilbert space H,
volume radius of a convex body K,
support function of a convex body K,
mean width of a convex body K,

Gaussian mean width of a convex body K,

Linear algebra

non-increasing rearrangement of a vector x € R™,
majorization, [22]

submajorization, 23]

adjoint of a matrix (or operator) A,
absolute value of A (eqtials (ATA)1/2),

Schatten p-norm on matrices,

Hilbert—Schmidt norm (equals | - |2),

operator norm (equals | - |4),

equivalence, class of a unit vector v in the projective space,
012

bounded linear operators on a Hilbert space H,

bounded linear self-adjoint operators on a Hilbert space H,
4

veetor formed by diagonal entries of a matrix A,

matrix obtained from A by setting non-diagonal entries to
zero, [25]

for a vector v = (v;), the diagonal matrix whose #i-th entry
is v,, (265} B33

operator |e; X f;|, where (e;), (f;) are specified bases,
Grassmann manifolds, [314

conjugate of a Hilbert space H,

often (but not always) the hyperplane of trace one matrices
in M2,

identity matrix or identity operator,

identity superoperator, [§]

diagonal matrix with diagonal entries (1,—1,...,—1),[318
eigenvalues of a matrix A, usually arranged in the nonin-
creasing order if A is Hermitian, [I60]

Schmidt coefficients of a vector ¥ € Hi ® Ha,

space of m x n (real or complex) matrices,

equals M, , [7]

space of self-adjoint matrices (subspace of M,,), |Z|



M%a,O

O(n)
o(1,n—1)
O*(1,n—1)
P(C)

PSD
PSU(n)

GUE(n)
GUEo(n)
GOE

H(p)
x(n), x*(n)
iid.
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subspace of M5? consisting of trace zero matrices,
orthogonal group, |312

Lorentz group, J

orthochronous subgroup of the Lorentz group, [318

cone of linear maps preserving the cone C, or preserving the
order induced by the cone C,

orthogonal projection onto the subspace E, [f

cone of positive-semidefinite matrices, [I9]

projective special unitary group, [312

quadratic form of the Minkowski spacetime,

the hyperplane of R™ consisting of vectors whose coordinates
add up to 0, 263

singular values (arranged in non-increasing order) of a ma-
trix A, 24]

the vector (s;(A)) of singular values of a matrix A,
unit sphere for the Hilbert—Schmidt\norm | - |us,

unit ball for | - ||, in Mm,n
unit ball for | - ||, in M3,
singular value decomposition, [36]
special orthogonal group,
proper Lorentz group,
restricted Lorentz<group,
spectrum (arranged-in non-increasing order) of a self-adjoint
matrix A, 24]

special unitary group, [312

transposition-with respect to a specified basis, [47]

unitary group;

Probability

subexponential norm,

subgaussian norm,

free additive convolution, [I77]

oo-Wasserstein distance, [161

expected value of the random variable f, also referred to as
the mean, the expectation, or the first moment,
continuous entropy of f (with respect to u),[132
cumulative distribution function of a random variable X,
16Tl

cumulative distribution function of an N(0,1) variable,
a standard Gaussian vector, [308

standard Gaussian measure on R™, C",

Gaussian Unitary Ensemble, m

Gaussian Unitary Ensemble conditioned to have trace 0,
Gaussian Orthogonal Ensemble,

Shannon entropy of a probability mass function p,

chi, chi-squared distribution with n degrees of freedom, m
independent, identically distributed, [L60]
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Kn

Ky,
My

Usp(A)
HMP(N)

Hsc

osc(f, A, )
(Pr)
Wishart(n, s)
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expected Euclidean norm of a standard Gaussian vector in
R"™, [309]

expected Euclidean norm of a standard Gaussian vector in
cn,

median of the random variable f,

empirical spectral distribution of a self-adjoint matrix A,
Marcenko—Pastur distribution with parameter \, @
semicircular distribution, [I63]

oscillation of f around g on the subset A,
Ornstein—Uhlenbeck semigroup, {135

Wishart distribution with parameters n, s, m

Geometry and asymptotic geometric analysis

\¥]

R ®

=
=

K)

Qs s
>

A
>
=

N(K,e), N(K,d,e)
N(K,L),N(K,L,e)
LS(X, p)

LSI

P(K,¢), P(K,d,¢)

P(V)

P(X, p)
R7 Rla Rl
Ric,

sec

o

Euclidean /Hilbertian tensor product,
projective tensor product,
injective tensor product,
c-enlargement of a set A,
norm on %, ,, associated to K {183
asphericity of a convex body K,
minimum of Ricci curvatures.of the manifold X,
spherical cap of angle #"with center at x,
Banach—Mazur distance)between normed spaces X and Y,
103
Banach—Mazur distance between convex bodies K and L,
geometric distance between convex bodies K and L,
diameter of a'set in a metric space,
facial dimension of a convex body K,
verticial dimension of a convex body
geodesic distance on the sphere,
the space Lo(RF, ), [182
4, @ R, or R-valued functions on (R¥, ), [182
(real) Grothendieck constant,
295

complex Grothendieck constant,

other variants of Grothendieck constant,
Dvoretzky dimension of a convex body K,
K-convexity constant of a convex body K,
£-norm associated to a convex body K,
covering number (metric space),

covering number (convex bodies), [114
logarithmic Sobolev constant of the space X,
logarithmic Sobolev inequality, [I3]]

packing number,

projective space associated to a vector space V,
Poincaré constant of the space X,

Rademacher projection,

Ricci curvature at point p, [129

sectional curvature,

normalized Lebesgue measure on a Euclidean sphere, [4]
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measure of the spherical cap of angle 6,
volume ratio of a convex body K,

Quantum information theory

homotheties with respect to the maximally mixed state, 230]
partial transposition of p,

diamond norm,

1 — p norm of a quantum channel,

distinguishability norm associated to the POVM M,
state o can be obtain from copies of p by an LOCC pratocol,
00 1]

antisymmetric subspace of C? ® C?,

cone of block-positive operators, [50]

Choi matrix of a superoperator ®,

cone of co-positive semidefinite operators, IB_EI

cone of completely positive superoperators, [9]

set of states on a Hilbert space H, @,

cone of decomposable superoperators, [57]

entropy of entanglement of a (pure state 1,

p-entropy of entanglement ofta pure state v,
entanglement of formation of a state p, 272

cone of entanglement-breaking superoperators, [57]

set of k-extendible states,

flip operator, 39

geometric méasure of entanglement of a pure state 1,
extremal geometric measure of entanglement for #,
partial“transposition, 2]

set of local boxes, [280]

set of local correlations,

set-of non-signaling boxes, [286

set of non-signaling correlations, [288

cone of positivity-preserving superoperators,

local, non-local fractions, 292]

Bell vectors,

completely positive map X — VXVT,

antisymmetric state, [0]

symmetric state, [A0]

set of states with positive partial transpose, [43|

cone of PPT operators, [55]

cone of PPT-inducing superoperators, [57]

set of quantum boxes, 286

set of quantum correlations,

robustness of a state p, [247

maximally mixed state, 32]

threshold for separability, @

von Neumann entropy of a state p,

p-Rényi entropy of a state p,

minimum output (p-)entropy of a quantum channel @, m



404

Seg

Sep(H)
SEP

Oy 0y, 02
Symyg

Try Py Tra P
wx

wr(V)

wns (V)
wq(V)
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Segré variety, [312]

set of separable states on a multipartite Hilbert space H,
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