Convexité et entropie
Considérons un systeme d’équations aux dérivées partielles de la forme
(1) Ou + A(u) d,u = 0,
ou l'inconnue u est a valeurs dans R" et A € €°(%; #,(R)), % étant un ouvert de R™.

Definition 1 Une entropie (mathématique) pour le systeme (1) est une application E €
C>°(%;R) telle qu’il existe F € €°(% ;R) (appelé flux d’entropie) et

dF(u) = dE(u) A(u) Yu € % .
On notera que si u € €1 (R x [0,T); %) est solution de (1) alors
O(Fou) + 0(Fou) =0.

Definition 2 Un symétriseur pour le systéme (1) est une application S € €°°(% ; ;T (R))
telle que S(u) A(u) est symétrique pour tout u € % .

(La notation .F"(R) ci-dessus désigne 1'espace des matrices carrées n x n symétriques
définies positives.) La notion de symétriseur est intéressante lorsque A(u) n’est pas elle-
méme symétrique (sinon, un symétriseur trivial est S : u +— I,). L'existence d’un
symétriseur est cruciale pour I'analyse de (1). Pour s’en convaincre, on pourra vérifier
que le systeme linéarisé autour de u = u (constant),

(2) Ou + A(u) dyu = 0,
vérifie Uestimation a priori dans L*(R;R"),

lu Ollz = [lul 0)lr2

lorsque R™ est muni de la norme définie par ||v]|> = (v, S(u)v) (ou (, ) est le produit
scalaire usuel). En Pabsence de symétriseur, on ne sait pas controler la norme L? des
solutions de (2).

Théoreme 1 On suppose le systéme (1) conservatif, ¢’est-a-dire qu’il existe f € € (% ;R")
tel que
A(u) = df(u) Yue .

Si U est convexe et si E est une entropie strictement conveze sur % (i.e. *E(u) > 0
pour tout u € % ) pour le systéme (1), alors la Hessienne de E définit un symétriseur.

La démonstration utilise la notion de fonction convexe conjuguée. On note E* la
fonction convexe conjuguée de E, définie par

E*(q) = 31615(@, u) — E(u)).

Notons ¢ : ¢ — dE*(q), et g = fo¢@. Alors on a

g=4dG, G:qw (q,9(q) — (Fog)(q).
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En effet, avec cette définition de G,

dG(q)-h = (h, g(q)) + (g, df(¢(q)) - do(q) - h) — dF(¢(q)) - deé(q) - h,

et

dF(o(q)) - dolq) - h = dE(¢(q)) - df(é(q)) - ¢(q) - h = (g, df(¢(q)) - dp(q) - h) .
Par suite, f = dG o ¢! donc
df(u) -k = *G(¢7"(u)) - do™'(u) - k,
et ¢~ 1(u) = dE(u). Donc finalement,
d*E(u)df(u) = ¢*E(u) *G(¢™" (u)) *E(u),

ce qui est symétrique d’apres le lemme de Schwarz. O

Application a la dynamique des gaz Les équations de la dynamique des gaz s’écrivent
sous forme conservative

( atu + axf(u) = 07

et f(u) = (pv, pv* + p(p, e), <%pv2 + pe + p(p, 6))@)
= (m 2+ 5), (c+w)2) avee Fu) = p(p. s - 1%

\

(Dans ces équations, p représente la masse volumique du gaz, v sa vitesse, e son énergie
interne par unité de masse, p sa pression, que I’'on suppose reliée par une loi d’état a p et
e.) Le systeme (3) rentre donc dans le cadre précédent avec n = 3,

U ={u= (p,m,e);p>0,e >0},

lorsque la fonction p est €*° sur R™ x R™. (Le calcul de A(u) = df(u) n’est pas ni
« amusant » ni utile ici, comme on va le voir.)

Proposition 1 On suppose qu’il existe des fonctions s et T, € sur RT™ x R™*, telles
que

P
Tds = de — Edp.

3 1m

Alors Uapplication E = u — — ps(p, - ——2> est une entropie mathématique de (3), de
flur F = u — E(u)m/p.

(Les fonctions s et T représentent respectivement ’entropie par unité de masse et la
température du gaz.)
11 suffit de vérifier que les solutions de (3) satisfont

(4) O(Eou) + 0(Fou) =0.
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C’est un petit exercice de calcul différentiel : on vérifie successivement que les solutions
de (3) satisfont les équations

1
0w + vOv + —0p(p,e) = 0,
p

oe +voge + poyv =0,
Os(p,e) + voys(p,e) =0,
8ups(p,€)) + ulps(pe)v) = 0,

cette derniere équation n’étant rien d’autre que (4).
L’étude de la convexité de E peut étre grandement simplifiée en utilisant quelques
arguments simples :
e une fonction convexe est ’enveloppe supérieure d’une famille de fonctions affines;
e la réciproque d’une fonction croissante convexe est concave.
Ainsi, F est fonction convexe de u si et seulement si il existe un ensemble A tel que

E(p,m,e) = sup (ap+ Bpv+ye+0)
(a,B,7,0)EA

1 1
=p sup (a+ﬂv+7(—v2+e)+5—)
(@,8,7,6)€A 2 p
pour p > 0. Autrement dit, £ est convexe si et seulement si £/p = —s est fonction
convexe de (7 :=1/p,v, %112 + €). Or, puisque

1
Tds = d(§v2 -+ e) — vdv + pdr,

si T > 0, 'application (7,v, %1)2 + e) — (7,v,s) est un difféomorphisme local, et I'on
vérifie aisément que la Hessienne de s dans les variables (7, v, %vz + e) est définie négative
si celle de e dans les variables (7, s) est définie positive. D’otu le résultat suivant.

Proposition 2 On suppose qu’il existe des fonctions s et T, € sur RT™ x R™*, telles
que
Tds = de + pdr,

avecT' > 0 et e fonction strictement convexe de (T = 1/p, s). Alors Uapplication E : u

— ps(p, = — ——;) est une entropie strictement convezxe de (3).

Exercice Montrer que la fonction convexe conjuguée de E est donnée par

* p

pour

1

1
¢= % <—§v2+e—sT+pT,v,—1>.



