
Convexité et entropie

Considérons un système d’équations aux dérivées partielles de la forme

(1) ∂tu + A(u) ∂xu = 0 ,

où l’inconnue u est à valeurs dans Rn et A ∈ C∞(U ; Mn(R)), U étant un ouvert de Rn.

Definition 1 Une entropie (mathématique) pour le système (1) est une application E ∈
C∞(U ; R) telle qu’il existe F ∈ C∞(U ; R) (appelé flux d’entropie) et

dF (u) = dE(u) A(u) ∀u ∈ U .

On notera que si u ∈ C 1(R × [0, T ]; U ) est solution de (1) alors

∂t(E ◦ u) + ∂x(F ◦ u) = 0 .

Definition 2 Un symétriseur pour le système (1) est une application S ∈ C∞(U ; S ++
n (R))

telle que S(u) A(u) est symétrique pour tout u ∈ U .

(La notation S ++
n (R) ci-dessus désigne l’espace des matrices carrées n × n symétriques

définies positives.) La notion de symétriseur est intéressante lorsque A(u) n’est pas elle-
même symétrique (sinon, un symétriseur trivial est S : u 7→ In). L’existence d’un
symétriseur est cruciale pour l’analyse de (1). Pour s’en convaincre, on pourra vérifier
que le système linéarisé autour de u ≡ u (constant),

(2) ∂tu + A(u) ∂xu = 0 ,

vérifie l’estimation a priori dans L2(R; Rn),

‖u(·, t)‖L2 = ‖u(·, 0)‖L2 ,

lorsque Rn est muni de la norme définie par ‖v‖2 = (v , S(u) v) (où ( , ) est le produit
scalaire usuel). En l’absence de symétriseur, on ne sait pas contrôler la norme L2 des
solutions de (2).

Théorème 1 On suppose le système (1) conservatif, c’est-à-dire qu’il existe f ∈ C∞(U ; Rn)
tel que

A(u) = df(u) ∀u ∈ U .

Si U est convexe et si E est une entropie strictement convexe sur U (i.e. d2E(u) > 0
pour tout u ∈ U ) pour le système (1), alors la Hessienne de E définit un symétriseur.

La démonstration utilise la notion de fonction convexe conjuguée. On note E∗ la
fonction convexe conjuguée de E, définie par

E∗(q) = sup
u∈U

( 〈q , u〉 − E(u) ) .

Notons φ : q 7→ dE∗(q), et g = f ◦ φ. Alors on a

g = dG , G : q 7→ 〈q , g(q)〉 − (F ◦ φ)(q) .
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En effet, avec cette définition de G,

dG(q) · h = 〈h , g(q)〉 + 〈q , df(φ(q)) · dφ(q) · h〉 − dF (φ(q)) · dφ(q) · h ,

et

dF (φ(q)) · dφ(q) · h = dE(φ(q)) · df(φ(q)) · φ(q) · h = 〈q , df(φ(q)) · dφ(q) · h〉 .

Par suite, f = dG ◦ φ−1 donc

df(u) · k = d2G(φ−1(u)) · dφ−1(u) · k ,

et φ−1(u) = dE(u). Donc finalement,

d2E(u) df(u) = d2E(u) d2G(φ−1(u)) d2E(u) ,

ce qui est symétrique d’après le lemme de Schwarz. 2

Application à la dynamique des gaz Les équations de la dynamique des gaz s’écrivent
sous forme conservative

(3)



∂tu + ∂xf(u) = 0 ,

où u = (ρ, m, ε) =
(
ρ, ρv, 1

2
ρv2 + ρe

)
,

et f(u) =
(
ρv, ρv2 + p(ρ, e),

(
1
2
ρv2 + ρe + p(ρ, e)

)
v
)

=
(
m, m2

ρ
+ p̃(u), (ε + p̃(u))m

ρ

)
avec p̃(u) := p

(
ρ, ε

ρ
− 1

2
m2

ρ2

)
.

(Dans ces équations, ρ représente la masse volumique du gaz, v sa vitesse, e son énergie
interne par unité de masse, p sa pression, que l’on suppose reliée par une loi d’état à ρ et
e.) Le système (3) rentre donc dans le cadre précédent avec n = 3,

U = {u = (ρ, m, ε) ; ρ > 0 , ε > 0 } ,

lorsque la fonction p est C∞ sur R+∗ × R+∗. (Le calcul de A(u) = df(u) n’est pas ni
« amusant » ni utile ici, comme on va le voir.)

Proposition 1 On suppose qu’il existe des fonctions s et T , C∞ sur R+∗ × R+∗, telles
que

T ds = de − p

ρ2
dρ .

Alors l’application E : u 7→ − ρ s
(
ρ, ε

ρ
− 1

2
m2

ρ2

)
est une entropie mathématique de (3), de

flux F : u 7→ E(u) m/ρ.

(Les fonctions s et T représentent respectivement l’entropie par unité de masse et la
température du gaz.)

Il suffit de vérifier que les solutions de (3) satisfont

(4) ∂t(E ◦ u) + ∂x(F ◦ u) = 0 .
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C’est un petit exercice de calcul différentiel : on vérifie successivement que les solutions
de (3) satisfont les équations

∂tv + v ∂xv +
1

ρ
∂xp(ρ, e) = 0 ,

∂te + v ∂xe + p ∂xv = 0 ,

∂ts(ρ, e) + v ∂xs(ρ, e) = 0 ,

∂t(ρ s(ρ, e)) + ∂x(ρ s(ρ, e) v ) = 0 ,

cette dernière équation n’étant rien d’autre que (4).
L’étude de la convexité de E peut être grandement simplifiée en utilisant quelques

arguments simples :
• une fonction convexe est l’enveloppe supérieure d’une famille de fonctions affines ;
• la réciproque d’une fonction croissante convexe est concave.
Ainsi, E est fonction convexe de u si et seulement si il existe un ensemble Λ tel que

E(ρ, m, ε) = sup
(α,β,γ,δ)∈Λ

(α ρ + β ρ v + γ ε + δ )

= ρ sup
(α,β,γ,δ)∈Λ

(
α + β v + γ (

1

2
v2 + e) + δ

1

ρ

)
pour ρ > 0. Autrement dit, E est convexe si et seulement si E/ρ = −s est fonction
convexe de (τ := 1/ρ, v, 1

2
v2 + e). Or, puisque

T ds = d
(1

2
v2 + e

)
− v dv + p dτ ,

si T > 0, l’application (τ, v, 1
2
v2 + e) 7→ (τ, v, s) est un difféomorphisme local, et l’on

vérifie aisément que la Hessienne de s dans les variables (τ, v, 1
2
v2 + e) est définie négative

si celle de e dans les variables (τ, s) est définie positive. D’où le résultat suivant.

Proposition 2 On suppose qu’il existe des fonctions s et T , C∞ sur R+∗ × R+∗, telles
que

T ds = de + p dτ ,

avecT > 0 et e fonction strictement convexe de (τ = 1/ρ, s). Alors l’application E : u 7→
− ρ s

(
ρ, ε

ρ
− 1

2
m2

ρ2

)
est une entropie strictement convexe de (3).

Exercice Montrer que la fonction convexe conjuguée de E est donnée par

E∗(q) =
p

T
,

pour

q =
1

T

(
− 1

2
v2 + e − s T + p τ , v , −1

)
.
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