
V B(R)

Introduction

Soit u unefonctiondéfinie surR à valeurs dansR ouC (ou plus ǵeńeralement dans un espace
de BanachE). On lui associe l’application:

Tu : R −→ [0,∞]

définie par

Tu(x) = sup{
N∑

j=1

|u(xj) − u(xj−1) | ; N ∈ N∗ , −∞ < x0 < · · · < xN = x }

C’est une application croissante. D’où la

Définition 1 On dira queu est à variation borńee siTu est borńee. Dans ce cas on notera
u ∈ V B(R) et

V T (u) := sup
x∈R

Tu(x) = lim
x→+∞

Tu(x)

Remarque 1

• L’ensembleV B(R) ainsi d́efini des fonctions̀a variation borńee est un espace vecto-
riel sur lequel la variation totaleV T définit une semi-norme (noter que toute fonction
constante est de variation totale nulle).

• Afin de pŕeciser l’espaceE d’arriv ée deu, on noteraéventuellementV B(R; E).

• On peut aussi d́efinir V B(I), où I est un intervalle quelconque deR, en imposant aux
suites(xi) d’êtreà valeurs dansI.

On a imḿediatement le

Lemme 1 Siu ∈ V B(R), alors pour tout(x, y) ∈ R2 on a:

( x < y ) =⇒ | u(x) − u(y) | ≤ Tu(y) − Tu(x)

Démonstration. soit ε > 0. Par d́efinition, il existex0 < · · · < xN = x tels que

N∑
j=1

|u(xj) − u(xj−1) | ≥ Tu(x)− ε

Et l’on a

Tu(y) ≥ | u(x) − u(y) | +
N∑

j=1

| u(xj) − u(xj−1) |

D’où Tu(y) ≥ |u(x) − u(y) | + Tu(x)− ε, ∀ε > 0.

Ce lemme permet de donner une caractérisation tr̀es simple des fonctions̀a variation borńee
qui sontà valeurs ŕeelles.
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Théorème 1

V B(R;R) = { u : R −→ R ; u = u1 − u2 , avecu1 etu2 croissantes borńees}

Démonstration. Soit u ∈ V B(R). Soientu1 :=
Tu + u

2
et u2 :=

Tu − u

2
. Alors u =

u1 − u2 et le lemme 1 exprime queu1 etu2 sont croissantes. Elles sont bornées carTu l’est par
définition deV B(R) etu l’est aussi d’apr̀es le lemme 1:

∀x ∈ R , |u(x)| ≤ |u(0)| + V T (u)

par exemple.
Réciproquement, on remarque que toute fonction croissante bornéev està variation borńee:

en effet,V T (v) = sup v − inf v. Donc toute diff́erence de fonctions croissantes bornées est̀a
variation borńee, puisqueV B(R) est un espace vectoriel.

Remarque 2 Pour tout u à variation borńee, l’applicationTu est croissante et bornée par
définition. Elle est donc aussià variation borńee.

Corollaire 1 Siu ∈ V B(R;C), alors

• elle est borńee,

• elle admet une limitèa gauche en tout point de]−∞, +∞] et une limiteà droite en tout
point de[−∞, +∞[,

• elle est continue sauf sur un ensemble au plus dénombrable,

• elle est mesurable et localement intégrable surR.

Démonstration. Le premier point provient directement du lemme 1, comme on l’a noté
ci-dessus. Pour le reste, onécrit u = v1 − v2 + i(w1 − w2), avecvk, wk croissantes et bornées
(si u ∈ V B(R;C) alors ū ∈ V B(R;C) et donc<(u), =(u) ∈ V B(R;R)). Or, si v est une
fonction croissante bornée, elle admet une limitèa gauche (= sup

x<x0

v(x)), respectivement une

limite à droite (= inf
x>x0

v(x)), en tout pointx0 de ] −∞, +∞], respectivement en tout pointx0

de [−∞, +∞[. De plus l’ensemble de ses points de discontinuité (c’est-̀a-dire les pointsx0 où
inf

x>x0

v(x) > sup
x<x0

v(x)) est au plus d́enombrable. En effet, pour tout(n, p) ∈ Z× N∗:

#

{
x0 ∈]n, n + 1[ ;

(
inf

x>x0

v(x) − sup
x<x0

v(x)

)
>

v(n + 1)− v(n)

p

}
≤ p

Enfin, v est mesurable. On remarque en effet que l’image réciproque de tout intervalle est un
intervalle et que par suite l’image réciproque de tout borélien est un boŕelien. Etant borńee,v
est donc localement intégrable.

Remarque 3 Le corollaire 1énonce que toute fonctionà variation borńeeà valeurs complexes
est borńee et localement intégrable. Il faut prendre garde cependantà ne pas en d́eduire que
V B(R;C) s’injectedansL∞(R) ou dansL1

loc(R). Par exemple,

f : x 6∈ Z 7→ 0
n ∈ Z 7→ 1

n2+1

est unélément non nul deV B(R) (sa variation totale vautπ
thπ

+ 1).
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Pouréviter ce genre d’ennui on se restreint souvent aux fonctions continuesà gauche (on
pourrait prendrèa droite mais il faudrait modifier en conséquence l’́enonće du th́eor̀eme 2 ci-
dessous):

Ṽ B(R) := { v ∈ V B(R) ; v est partout continuèa gauche}
Ceci est justifíe par la

Proposition 1 Pour toutu ∈ V B(R), il existe une et une seule fonctionv ∈ Ṽ B(R) telle
queu et v cöıncident partout sauf peut-être aux points de discontinuité deu. De plus on a
V T (v) ≤ V T (u).

Démonstration. Nécessairement, on doit avoir, pour toutx ∈ R, v(x) = lim
δ

>→0

u(x− δ) (ceci

a bien un sens d’après le corollaire 1). Ŕeciproquement, l’applicationv ainsi d́efinie convient:
elle est par construction continueà gauche et, six0 < · · · < xN = x, alors

N∑
j=1

| v(xj) − v(xj−1) | = lim
δ

>→0

N∑
j=1

|u(xj − δ) − u(xj−1 − δ) | ≤ V T (u)

Dérivation au sens des distributions

Nous avons vu que les fonctionsà variation borńeeétaient localement intégrables. Elles peuvent
doncêtre vues commes des distributions surR: à chaque fonctionu ∈ V B(R;C) on associe un
uniqueU ∈ D′(R) (l’applicationu 7→ U n’est cependant injective que sur̃V B(R;C)). On a va
voir que les fonctions̀a variation borńee sont caractériśees en un certain sens par leur dérivée
au sens des distributions.

Théorème 2 Soitu : R → C. Alors u ∈ Ṽ B(R;C) si et seulement s’il existe une mesure de
Borelµ et une constantec ∈ C telles que

∀x ∈ R , u(x) = c + µ( ] −∞ , x [ )

De plus,c etµ sont uniques et l’on a:

∀x ∈ R , Tu(x) = |µ| ( ] −∞ , x [ )

En particulier,
V T (u) = |µ| (R )

Démonstration.
1) Commençons par vérifier qu’une fonctionv de la forme

v(x) = c + µ( ] −∞ , x [ ) , ∀x

appartient bieǹa Ṽ B(R;C), lorsqueµ est une mesure de Borel complexe etc ∈ C.
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• elle est continuèa gauche. En effet, pour toute suite croissante(xn)n∈N tendant versx,
on a

] −∞ , x [ =
∞⋃

n=0

] −∞ , xn [ ,

la réunionétant croissante et doncµ( ] −∞ , xn [) → µ( ] −∞ , x [) d’apr̀es les pro-
priét́esélémentaires d’une mesure.

• elle està variation borńee. En effet, six0 < · · · < xN = x alors

N∑
j=1

| v(xj) − v(xj−1) | =
N∑

j=1

µ( [ xj−1 , xj [) ≤ |µ| ( ] −∞ , x [ )

Donc
Tv(x) ≤ |µ| ( ] −∞ , x [ ) ≤ |µ| (R ) < +∞

par d́efinition d’une mesure complexe.

• on remarque de plus quec = lim
x→−∞

v(x). En effet, pour toute suite décroissante(xn)n∈N
tendant vers−∞, on a

∅ =
∞⋂

n=0

] −∞ , xn [ ,

l’intersectionétant d́ecroissante. Comme de plus

|µ( ] −∞ , x0 [ ) | ≤ |µ| (R ) < +∞

on peut en d́eduireµ( ] −∞ , xn [→ 0 d’apr̀es les propríet́esélémentaires d’une mesure.

2) L’unicité dec provient alors de l’unicit́e de la limite. L’unicit́e deµ provient du fait que
toute mesure de Borel surR est ŕegulìere et que deux mesures régulìeres cöıncidant sur tous les
intervalles de la forme] −∞ , x [ cöıncident sur tous les intervalles de la forme[ α , β [ et donc
sur tous les ouverts (qui sont réunions d́enombrables d’intervalles disjoints de la forme[ α , β [)
et par suite sur tous les boréliens.

3) Soit maintenantu ∈ Ṽ B(R). Quitteà remplaceru paru − c, où c := lim
x→−∞

u(x), on

supposera d́esormais lim
x→−∞

u(x) = 0. On cherchèa construireµ telle que:

∀x ∈ R , u(x) = µ( ] −∞ , x [ )

a) On va se ramener au cas où u est croissante (à valeurs ŕeelles). Pour cela il suffit d’écrire
u = v1 − v2 + i(w1 − w2), avecvk, wk croissantes et bornées, continues̀a gauche et tendant
vers 0 en−∞. Ceci est possible en précisant ce qui áet́e fait dans le corollaire 1: ońecrit
v := <(u) = Tv+v

2
− Tv−v

2
et w := =(u) = Tw+w

2
− Tw−w

2
et on montre de plus queTv et Tw

sont continues̀a gauche et tendent vers 0 en−∞. Par exemple pourTv: soit ε > 0 et soient
x0 < · · · < xN = x tels que

N∑
j=1

| v(xj) − v(xj−1) | ≥ Tv(x)− ε
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• Si δ > 0 est tel quexN−1 < x − δ < x, par d́efinition deTv et puisqu’elle est croissante
on a:

N−1∑
j=1

| v(xj) − v(xj−1) | + | v(x− δ) − v(xN−1) | ≤ Tv(x− δ) ≤ Tv(x)

D’où, par continuit́e à gauche dev enx:

Tv(x)− ε ≤
N−1∑
j=1

| v(xj) − v(xj−1) | + | v(x) − v(xN−1) |

≤ lim inf
δ

>→0

Tv(x− δ) ≤ lim sup
δ

>→0

Tv(x− δ) ≤ Tv(x)

D’où la continuit́e à gauche enx deTv.

• Si t0 < · · · < tn = x0, alors

Tv(x) ≥
n∑

i=1

| v(ti) − v(ti−1) | +
N∑

j=1

| v(xj) − v(xj−1) |

d’où
n∑

i=1

| v(ti) − v(ti−1) | ≤ ε

On en d́eduitTv(x0) ≤ ε. D’où lim
x→−∞

Tv(x) = 0.

Une fois construites les mesuresµk, νk assocíees respectivementàvk, wk il suffira de poser
µ = µ1 − µ2 + i(ν1 − ν2).

b) Supposons donc désormaisu croissante, borńee, continuèa gauche et tendant vers 0 en
−∞. Pour toutx ∈ R, on noteu(x+) la limite à droite deu en x. A toute partieA deR,
associons

Φ(A) :=
⋂
x∈A

[u(x), u(x+)]

Montrons que pour tout borélienB, Φ(B) est encore un borélien. Par construction et puisque
u est monotone continuèa gauche, siI est un intervalle alorsΦ(I) est un intervalle. Donc
l’ensemble des parties deR:

Σ := {A ⊂ R ; Φ(A) est un boŕelien}
contient les intervalles. Si l’on montre que c’est une tribu (uneσ-algèbre) alors il contient
nécessairement les boréliens.

• par d́efinition Φ(∅) = ∅ donc∅ ∈ Σ, et Φ(R) est un intervalle d’extŕemit́es 0 etV T (u)
doncR ∈ Σ.

• pour toutA ⊂ R alorsΦ(R\A) = (Φ(R)\Φ(A))
⋃ {yκ}κ∈K où yκ sont des valeurs

telles que l’intervalleu−1(yκ) n’est pas ŕeduità un singleton. Au m̂eme titre que l’ensemble
des points de discontinuité deu, l’ensemble de ces “valeurs-palier” est au plus dénombrable.
Donc {yκ}κ∈K est boŕelien. SiA ∈ Σ alorsΦ(A) et doncΦ(R)\Φ(A) sont boŕeliens.
DoncΦ(R\A) est boŕelien c’est-̀a-dire queR\A ∈ Σ.
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• si An ∈ Σ alorsΦ(
⋃
n

An) =
⋃
n

Φ(An) est boŕelien car lesΦ(An) le sont.

DoncΣ est bien une tribu. Pour tout borélienB, on peut maintenant définir:

µ(B) := m(Φ(B))

où m désigne la mesure de Lebesgue. Montrons queµ estσ-additive. Si(Bn)n∈N est une
famille dénombrable de boréliens disjoints deux̀a deux alors, pour tout(m,n) ∈ N2, m 6= n,
Φ(Bn)

⋂
Φ(Bm) ⊂ {yκ}κ∈K , qui est au plus d́enombrable, doncm(Φ(Bn)

⋂
Φ(Bm)) = 0. Par

suite,
µ(

⋃
n

Bn) =
∑

n

m(Φ(Bn)) =
∑

n

µ(Bn)

Doncµ est une mesure de Borel, positive. Vérifions qu’elle est la mesure cherchée. Pour tout
x ∈ R, Φ( ] −∞ , x [ ) est un intervalle d’extŕemit́es0 etu(x) ≥ 0, donc

µ( ] −∞ , x [ ) = u(x)

Il resteà vérifier l’égalit́e Tu(x) = |µ| ( ] −∞ , x [ ). D’après la partie directe (1) on a déjà
l’in égalit́e:

Tu(x) ≤ |µ| ( ] −∞ , x [ )

Pour montrer l’ińegalit́e oppośee, introduisons la mesureλ assocíee comme ci-dessusà la fonc-
tion Tu (qui croissante, borńee continuèa gauche et tend vers 0 en−∞). D’après le lemme 1
on a, pour tout(α, β) ∈ R2, si α < β:

|µ( [ α, β[ ) | = | u(β) − u(α) | ≤ Tu(β) − Tu(α) = λ( [ α, β[ )

On en d́eduit
|µ(Ω) | ≤ λ(Ω)

pour tout ouvertΩ, d’où aussi|µ(B) | ≤ λ(B) pour tout boŕelienB. Ceci montre que|µ|(B) ≤
λ(B) pour tout boŕelienB. En particulier,

|µ| ( ] −∞ , x [ ) ≤ λ ( ] −∞ , x [ ) = Tu(x)

Remarque 4 Par construction deµ on voit queu est continue enx si et seulement siµ({x}) =
m([u(x), u(x+)]) = 0.

Corollaire 2 Soitu : R → C, mesurable et localement intégrable. Siu ∈ V B(R;C) alors la
dérivéeU ′ deu au sens des distributions est une mesure de Borel complexe. Réciproquement,
si la dérivéeU ′ de u au sens des distributions est une mesure de Borel complexe et siu est
continueà gauche, alorsu ∈ Ṽ B(R;C).

Démonstration. Soit u ∈ V B(R;C). On lui associev ∈ Ṽ B(R;C) comme dans la
proposition 1. Alorsu et v cöıncident presque partout: elles ont donc la même imageU dans
D′(R). Soit alorsµ la mesure associéeàv par le th́eor̀eme 2. Pour toutφ ∈ D(R), on a:

< U ′ , φ > = −
∫

R

∫ x

−∞
dµ(y) φ′(x) dx
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= −
∫

R

∫ +∞

y

φ′(x) dx dµ(y)

d’apr̀es le th́eor̀eme de Fubini. On peut l’appliquer car:

∫

R

∫ +∞

y

|φ′(x)| dx d|µ|(y) ≤ C |µ|(R) < +∞

où C = m( suppφ ) sup
R
|φ′|. Ainsi

< U ′ , φ > =

∫

R
φ(y) dµ(y)

Réciproquement, siU ′ est une mesure de Borel complexeµ alors l’applicationv définie
parv(x) = µ( ] −∞ , x [ ) està variation borńee et donc localement intégrable: son imageV
dansD′(R) est de plus, d’après le calcul pŕećedent, telle queV ′ = µ. DoncU − V est une
distribution constantec (sa d́erivée est nulle). D’òu

u = v + c , presque partout

et en faitu = v + c partout puisqu’elles sont toutes deux continuesà gauche.

Remarque 5 On ne peut se d́epartir de l’hypoth̀ese suppĺementaire “u continueà gauche”
dans la ŕeciproque. En effet, sans cette hypothèse, rien n’emp̂eche que la diff́erenceu − v − c
soit nulle presque partout et de variation totale infinie. C’est le cas par exemple de:

f : x 6∈ Z 7→ 0
n ∈ Z 7→ 1

|n|+1

Notons que le th́eor̀eme 2 permet aussi de démontrer (voir Rudin):

Théorème 3 Si u ∈ V B(R) alors u est d́erivable presque partout et sa dérivée est int́egrable
surR.

Il faut bien voir que cet́enonće n’est pas incompatible avec le corollaire 2. Dans le théor̀eme
3, la d́erivée consid́eŕee est ausens usueldes fonctions tandis que dans le corollaire 2 il s’agit
de d́erivéeau sens des distributions. D’ailleurs, siu : R → C, est mesurable et intégrable sur
R et si la d́erivéeU ′ deu au sens des distributions est intégrable, alorsu appartient̀a l’espace
de SobolevW 1,1(R) (voir Brézis). OrW 1,1(R) n’est constitúe que de fonctions continues (dont
la restrictionà tout un intervalle borńe est m̂emeabsolument continue). Ce n’est pas le cas de
V B(R), qui autorise pŕeciśement des sauts.

Autre caractérisation deV B

Lemme 2 Siu ∈ V B(R) alors

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx ≤ V T (u) < +∞
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Démonstration. Commeu est mesurable (corollaire 1), l’intégrale de la fonction positive
x 7→ | u(x + h) − u(x) | a toujours un sens. On a de plus

∫

R
|u(x + h) − u(x) | dx =

∑

k∈Z

∫ (k+1)h

kh

| u(x + h) − u(x) | dx

=
∑

k∈Z

∫ h

0

|u(x + (k + 1)h) − u(x + kh) | dx

=

∫ h

0

∑

k∈Z
|u(x + (k + 1)h) − u(x + kh) | dx

d’apr̀es le th́eor̀eme de Fubini. D’òu
∫

R
|u(x + h) − u(x) | dx ≤ h V T (u)

par d́efinition deV T .
Ce lemme permet de voir facilement que la dérivée au sens des distributions deu ∈ V B(R)

est une forme lińeaire continue surC′(R) (espace des fonctions continues tendant vers 0à
l’infini).

Proposition 2 Si u ∈ V B(R) alors la d́erivéeU ′ au sens des distributions deu se prolonge
contin̂umentà C′(R).

Démonstration. D’après le lemme 2, on a pour touth 6= 0 et pour toutϕ ∈ CK(R) (continue
à support compact):

∣∣∣∣
∫

R

u(x + h) − u(x)

h
ϕ(x) dx

∣∣∣∣ ≤ V T (u) sup
R
|ϕ|

On en d́eduit, pour touth 6= 0 et pour toutϕ ∈ C∞K (R):
∣∣∣∣
∫

R
u(x)

ϕ(x) − ϕ(x− h)

h
dx

∣∣∣∣ ≤ V T (u) sup
R
|ϕ|

d’où, par le th́eor̀eme de convergence dominée de Lebesgue:
∣∣∣∣
∫

R
u(x) ϕ′(x) dx

∣∣∣∣ ≤ V T (u) sup
R
|ϕ|

puisque
∣∣∣ u(x) ϕ(x)−ϕ(x−h)

h

∣∣∣ ≤ supR |ϕ′| χsupp ϕ(x) |u(x)|, fonction int́egrable d’apr̀es le

corollaire 1. En particulier on a donc, pour toutφ ∈ D(R):

| < U ′ , φ > | =

∣∣∣∣
∫

R
u(x) ϕ′(x) dx

∣∣∣∣ ≤ V T (u) sup
R
|ϕ|

ce qui permet de prolongerU ′ par densit́e àC′(R).

Cependant pour retrouver le résultat du corollaire 2 il faut avoir recours au théor̀eme de
Riesz (voir Rudin, chap. 2 et 6), qui est un théor̀eme beaucoup plus difficile que le théor̀eme 2.

On peut maintenant se demander si l’inégalit́e du lemme 2 n’est pas en fait uneégalit́e. La
réponse est affirmative, moyennant la restriction habituelle “u continueà gauche” (bien ŝur, la
continuit́e à droite conviendrait aussi).
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Théorème 4 Siu ∈ Ṽ B(R) alors

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx = V T (u)

Démonstration. Puisque
∫
R

∣∣∣ u(x+h)−u(x)
h

∣∣∣ dx =
∫
R

∣∣∣ u(x)−u(x−h)
h

∣∣∣ dx, le probl̀eme

revientà montrer que

sup
h>0

∫

R

∣∣∣∣
u(x) − u(x− h)

h

∣∣∣∣ dx = V T (u)

Afin de montrer l’ińegalit́e oppośeeà celle du lemme 2, on va essayer d’introduireà nouveau
une suite croissante de points distants deh, pourh assez petit.

Soit ε > 0. Par d́efinition, il existey0 < · · · < yN tels que

N∑
j=1

| u(yj) − u(yj−1) | ≥ V T (u)− ε

2

Commeu est continuèa gauche, il existeδ ∈ ] 0 , min
j∈{1,··· ,N}

(yj − yj−1) [ tel que

∀j ∈ {0, · · · , N}, ∀x ∈ [yj − δ, yj], |u(x)− u(yj)| ≤ ε

4N

Soient alorsa ∈ R, b ∈ R, n ∈ N, (xi)i∈{0,··· ,n} ∈ Rn+1 tels que:

a < y0 − δ < x0 < · · · < xn < yN < yN + δ < b

avecxi − xi−1 = h, i = 1, · · · , n.

On a
∫ b

a

|u(x) − u(x− h) | dx ≥
∫ xn

x0

|u(x) − u(x− h) | dx =
n∑

i=1

∫ xi

xi−1

|u(x) − u(x− h) | dx

=

∫ h

0

n∑
i=1

|u(xi − s) − u(xi−1 − s) | ds

Si on impose de plus

h ≤ δ

3
, y0 − h < x0 ≤ y0 , et n =

[
yn − y0

h

]

alors,∀s ∈ [0, h]:
y0 − δ < y0 − 2h < x0 − s ≤ y0

et:
y0 − δ < y0 − 3h < xn − s = x0 + nh− s ≤ yN

Il existe donci0 < i1 < · · · < iN−1 < iN tels que∀j ∈ {0, · · · , N}, ∀s ∈ [0, h]:

yj − δ < yj − 3h < xij − s ≤ yj
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En effet, on vient de voir quei0 = 0 et iN = n convenaient. Et, pour toutj ∈ {1, · · · , N − 1},
l’intervalle [yj − 2h, yj] contient au moins uńelément de la suite(xi) puisque lesxi ne sont
distants que deh.

On peut donćecrire∀s ∈ [0, h]:

n∑
i=1

| u(xi − s) − u(xi−1 − s) | ≥
N∑

j=1

∣∣ u(xij − s) − u(xij−1
− s)

∣∣

≥
N∑

j=1

|u(yj) − u(yj−1) | −
N∑

j=1

∣∣ u(xij − s) − u(yj)
∣∣ −

N∑
j=1

∣∣ u(xij−1
− s) − u(yj−1)

∣∣

≥
N∑

j=1

|u(yj) − u(yj−1) | − ε

2

Finalement, on a obtenu:

∀ε > 0 , ∃h0 > 0 ; h < h0 =⇒
∫

R

∣∣∣∣
u(x) − u(x− h)

h

∣∣∣∣ dx ≥ V T (u) − ε

On d́eduit un ŕesultat m̂eme un peu plus fort que celuiénonće:

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx = lim
h
6=0→0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx = V T (u)

En fait on a comme dans le corollaire 2 uneéquivalence:

Corollaire 3 Soitu : R → C, mesurable, localement intégrable et continuèa gauche. Alors
u ∈ Ṽ B(R;C) si et seulement si

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx < +∞

De plus, on a:

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx = V T (u)

Démonstration. La partie directe est donnée par le lemme 2. Ŕeciproquement, si

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx < +∞

on effectue, pour toutε > 0, la même construction que dans la preuve du théor̀eme 4, avec
y0 < · · · < yN = y quelconques. Il existe alorsh0 > 0 (= δ

3
, qui d́epend desyj) tel que:

∫

R

∣∣∣∣
u(x) − u(x− h0)

h0

∣∣∣∣ dx ≥
N∑

j=1

|u(yj) − u(yj−1) | − ε

2
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(ici le facteur1
2

n’apporte rien). On en d́eduit:

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx ≥
N∑

j=1

|u(yj) − u(yj−1) |

puis

sup
h6=0

∫

R

∣∣∣∣
u(x + h) − u(x)

h

∣∣∣∣ dx ≥ Tu(y) ,∀y ∈ R

d’où u ∈ Ṽ B(R;C).

L’espace fonctionnelV B

Définition 2 On munit l’espace vectorielV B(R) indifféremment de la norme:

N(u) := V T (u) + |u(0) |
ou

||u|| := V T (u) + sup
R
|u |

Proposition 3 Les normesN et || · || sontéquivalentes. L’espace vectoriel ainsi norméV B(R)
est un espace de Banach.

La preuve (́elémentaire) de cette proposition est laissée au lecteur.
Cet espace est́evidemment de dimension infinie, ce qui pose problème pour obtenir un

critère de compacité. Toutefois, on a le

Théorème 5 (Helly) L’image dansL1
loc(R) de tout ensemble borné deV B(R) est relativement

compacte, c’est-à-dire que:
pour toute suite(uε)ε>0 bornée dansV B(R), il existe une sous-suite(uε′) et u ∈ L1

loc(R) tels
que

lim
ε′ >→0

||uε′ − u||L1(I) = 0 , pour tout intervalle borńe I.

Démonstration. C’est une application imḿediate du th́eor̀eme de Riesz-Fréchet-Kolmogorov
(voir Brézis). En effet, si(uε)ε>0 est borńee dansV B(R) alors il existeM > 0 tel que
|uε| ≤ M , pour toutε > 0. Donc, pour tout intervalle borné I, (uε|I)ε>0 est borńee dans
L1(I) . Et, d’apr̀es le lemme 2, pour touth ∈ R:

∫

I

|uε(x + h) − uε(x) | dx ≤ V T (uε) |h| ≤ C |h|

avecC indépendant deε par hypoth̀ese. Donc les hypothèses du th́eor̀eme de Riesz-Fréchet-
Kolmogorov sont satisfaites. Par suite,à chaque intervalleI borńe on peut associer une sous-
suite convergente. CommeR est ŕeunion d́enombrable d’intervalles bornés, le proćed́e diagonal
permet d’extraire une sous-suite indépendante deI, convergente dansL1(I) quel que soitI.

Remarque 6 Au besoin, on pourrait extraire une nouvelle sous-suite afin que la convergence
ait lieu presque partout.
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En pratique, on peut avoir besoin d’un critère de compacité pour des fonctions dépendant
d’une autre variablet.

Théorème 6 Soit(vε)ε>0 bornée dansL∞(0, T ; V B(R)). On suppose de plus qu’il existeK >
0 tel que

(∗)
∫

R
| vε(x, t)− vε(x, s) | dx ≤ K ( |t− s| + ε ) , ∀(t, s) ∈ [0, T ]2

Alors (vε)ε>0 adment une sous-suite convergente dansL1
loc(R×]0, T [).

Démonstration. Comme pour le th́eor̀eme de Helly, on commence par montrer que la suite
des restrictions̀a I×]0, T [, où I est un intervalle borńe, admet une sous-suite convergente et on
conclut gr̂ace au proćed́e diagonal.

Soit doncI un intervalle borńe. Le th́eor̀eme de Helly et le proćed́e diagonal permettent
d’extraire une sous-suite(vε′)ε′>0 telle que

∀ t ∈ Q :=]0, T [∩Q , ∃ v(t) ∈ L1(I) ; lim
ε′ >→0

||vε′(t)− v(t)||L1(I) = 0

En passant̀a la limite on a donc
∫

I

| v(x, t)− v(x, s) | dx ≤ K |t− s| , ∀(t, s) ∈ Q2

Par suitev se prolonge, de façon unique,à ]0, T [ en une fonction lipschitziennèa valeurs dans
L1(I), encore not́eev. Alors on a:

∀ t ∈]0, T [ , lim
ε′ >→0

||vε′(t)− v(t)||L1(I) = 0

En effet, pour toutη > 0, pour toutt ∈]0, T [, il existes ∈ Q tel que2K|t− s| < η. D’où:

||vε′(t)− v(t)||L1(I) ≤ 2K|t− s| + K ε′ + ||vε′(s)− v(s)||L1(I) ≤ 3η

pourε′ ≤ ε′0 assez petit.

Grâce au th́eor̀eme de convergence dominée on montre de plus que

lim
ε′ >→0

||vε′ − v||L1(I×]0,T [) = 0

Remarque 7 L’estimation en temps(∗) est évidemment essentielle. Le théor̀eme est encore
vrai si l’on remplaceε par un terme quelconque tendant vers 0 avecε.
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