V B(R)

Introduction

Soitu unefonctiondéfinie surR a valeurs dan® ou C (ou plus gréralement dans un espace
de BanachF). On lui associe I'application:

T, :R — [0, 0]

définie par
N
Tu(z) = Sup{z |u(z;) — u(zj—1) | ;NeN", —o0o < g <--- < azy =2}
j=1

C’est une application croissante. r'ta

Définition 1 On dira queu esta variation borree siT, est borrge. Dans ce cas on notera
u € VB(R) et
VT(u) := sup T,(x) = lim T,(z)

z€R T—+00
Remarque 1

e L'ensemblelV B(R) ainsi céfini des fonctions: variation borree est un espace vecto-
riel sur lequel la variation totalé/T" définit une semi-norme (noter que toute fonction
constante est de variation totale nulle).

e Afin de pEciser I'espace d’arrivée deu, on noteraéventuellement B(R; E).

e On peut aussi éfinir V B(I), ou I est un intervalle quelconque d& en imposant aux
suites(z;) d'étrea valeurs dand.

On a imnediatement le
Lemme 1 Siu € V B(R), alors pour tout(z, y) € R* on a:
(z <y) = |ul@) —uly)| < Tuly) — Tulx)

Démonstration. soite > 0. Par cfinition, il exister, < --- < zy = x tels que

Z |u(z;) — w(wj-1)| > Tu(z) —¢

Etl'on a N
Tu(y) = |u(z) — u(y)| + Z |u(z;) — wlzj1)|

DouT,(y) > |u(z) — uly)| + Tu(z) —&,Ve > 0. m

Ce lemme permet de donner une cagasttion tes simple des fonctiorisvariation borge
qui sonta valeurs eelles.



Théoreme 1
VB(R;R) = {u :R — R; u = u; — uy, avecu, etu, croissantes borees}

Démonstration. Soitu € VB(R). Soientu; := ;u etuy = 5 Y Alorsu =

u; — ug etle lemme 1 exprime que etu, sont croissantes. Elles sont bees caff, I'est par
définition deV' B(R) etwu I'est aussi d’apes le lemme 1:

Ve e R, |u(z)| < |u(0)] + VT'(u)

par exemple.

Réciproquement, on remarque que toute fonction croissant@boesta variation borge:
en effet,VVT'(v) = supv — inf v. Donc toute diférence de fonctions croissantes l&es est
variation bor@e, puisqué’ B(R) est un espace vectoriels

Remarque 2 Pour toutw a variation borrée, I'application”, est croissante et boée par
définition. Elle est donc ausaivariation borréee.

Corollaire 1 Siu € VB(R;C), alors

e elle est borge,

e elle admet une limité gauche en tout point de- oo, +0oc] et une limitea droite en tout
point de[—oo, +00],

e elle est continue sauf sur un ensemble au pkrsomnbrable,
¢ clle est mesurable et localementégtable surR.

Démonstration. Le premier point provient directement du lemme 1, comme on I'& not
ci-dessus. Pour le reste, éaritu = v; — vy + i(w; — wy), avecv, wy, croissantes et boees
(siu € VB(R;C) alorsu € VB(R;C) et doncR(u), (u) € VB(R;R)). Or, siv est une
fonction croissante boée, elle admet une limita gauche£ sup v(x)), respectivement une

x<xo
limite a droite & igf v(x)), en tout pointry, de| — oo, +00], respectivement en tout poing
T>T0
de [—o0, +00[. De plus I'ensemble de ses points de disconté(itesta-dire les points;, ou
inf v(z) > sup v(z)) estau plus @nombrable. En effet, pour tot, p) € Z x N*:

T>x0 <z
1) —
# {xo Eln,n+1[; ( iilf v(x) — Supv(z)) < v(n + ])) v(n) } <p
T=T0 r<xo

Enfin, v est mesurable. On remarque en effet que I'imagdproque de tout intervalle est un
intervalle et que par suite I'imagé@ciproque de tout bétien est un bdrlien. Etant borae,v
est donc localement iagrable.m

Remarqgue 3 Le corollaire 1&€nonce que toute foncti@variation borréea valeurs complexes
est borree et localement iggrable. Il faut prendre garde cependanne pas en @duire que
V B(R; C) s'injectedansL>(R) ou dansL; (R). Par exemple,
frx2eZ — 0
1

est unélement non nul d& B(R) (sa variation totale vaut— + 1).
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Pouréviter ce genre d’ennui on se restreint souvent aux fonctions contingaache (on
pourrait prendrex droite mais il faudrait modifier en comguence Enon& du tteoreme 2 ci-
dessous):

ﬁ(R) = {v € VB(R) ; v est partout continua gauche

Ceci est justife par la

Proposition 1 Pour toutu € V B(R), il existe une et une seule fonctione X7§(R) telle
quewu etwv coincident partout sauf peutre aux points de discontinéitdeu. De plus on a
VT(v) < VT(u).

Démonstration. Nécessairement, on doit avoir, pour taut R, v(z) = lim u(z — 0) (ceci
(5—>0
a bien un sens d’aps le corollaire 1). Bciproquement, I'application ainsi cefinie convient:

elle est par construction continaggauche et, sty < --- < xy = =z, alors

N
Z v(z;) —vlel—hmzm §) — u(zj_1 —06)| < VT(u)

5%0]1

Deérivation au sens des distributions

Nous avons vu que les fonctioavariation borgeétaient localement ibgrables. Elles peuvent
doncétre vues commes des distributions Bui chaque fonction € V B(R; C) on associe un
uniquelU € D'(R) ('applicationu — U n’est cependant injective que sﬁ@([&; C)). Onava
voir que les fonctions variation borge sont caraétises en un certain sens par le@ridée
au sens des distributions.

Théoreme 2 Soitu : R — C. Alorsu € VE(R; C) si et seulement s'il existe une mesure de
Borel ;. et une constante € C telles que

Ve eR, u(z) = ¢+ p(] —oo, z])
De plus,c et 4 sont uniques et I'on a:
Ve e R, Tu(z) = |p[(] —o0, z])

En particulier,
VI(u) = |p[(R)

Déemonstration.
1) Commencons parérifier qu’une fonctiorv de la forme

v(z) = c+ p(] —o0, (), Vo

appartient bierﬁiff\é(R; C), lorsquey est une mesure de Borel complexe et C.



e elle est continué gauche. En effet, pour toute suite croissamtg,y tendant vers,
ona

| —o0, z[= U] — 00, Ty [,
n=0
la réunionétant croissante et dong| — oo, x,[) — (] — oo, z[) d'apres les pro-
prietesélémentaires d’'une mesure.

e elle esta variation borge. En effet, sky < --- < zxy = z alors

Z’ij — v(zj-1) Z [zj—1, 2;[) < [pl(] —o0, z])

Donc
To(x) < [pl(] —oo, z[) < |u[(R) < +o0

par cefinition d’'une mesure complexe.

e onremarque de plus que= lim o(z). En effet, pour toute suiteadroissantéz,, ) ,en

r——00

tendant vers-oo, on a

@ = ﬂ ] — 00, ITn [a
n=0
I'intersectionétant @écroissante. Comme de plus

(] =00, 20])] < |u|(R) < 400
on peut en 8duireu(] — oo, =, [— 0d'apres les propétesélementaires d’'une mesure.

2) L'unicité dec provient alors de I'unicé de la limite. L'unicié deu provient du fait que
toute mesure de Borel sirest Eguliere et que deux mesuresgulieres ciéncidant sur tous les
intervalles de la formé — oo, x| coincident sur tous les intervalles de la forfre, 5 | et donc
sur tous les ouverts (qui sorgunions @nombrables d'intervalles disjoints de la forfre, 3 |)
et par suite sur tous les ligiens.

3) Soit maintenant. € X//\B(R). Quittea remplacew paru — ¢, ol c := lim wu(z), on

T——00

supposera&sormais lim wu(z) = 0. On chercheé construire. telle que:

VeeR, u(z) = p(] —o0, x])

a) On va se ramener au caswest croissantea(valeurs eelles). Pour cela il suffit écrire
u = v, — vy + i(w; — wy), avecwy, wy Croissantes et boees, continuea gauche et tendant
vers 0 en—oo. Ceci est possible en @cisant ce qui &t fait dans le corollaire 1: oacrit
vi=Rw) = B — Ltetw = (u) = Tt — Tuz¥ et on montre de plus quE, et7,
sont continues gauche et tendent vers 0 emo. Par exemple pour,: soite > 0 et soient

T9 < --- < xy = xtelsque

Z v(z;) — (@) | > Ty(z) —e



e Sio > 0esttelquery_; < z — 0 < z, par cefinition deT,, et puisqu’elle est croissante
on a:

=

- [v(z;) = v(z) | + [v(z =0) —v(ena)| < To(z —0) < To(2)

J

D’ou, par continuié a gauche de enz:

v(r;) — v(zia) | + |v(x) — v(zn-)|

IIM

< liminf 7, (1:—5) < limsup T,(x — §) < T,(x)
5550 630

D’ou la continuie a gauche en deT,.

e Sitg <---< t, = xo, alors

Z|U —o(tic) | + Y |v(zy) — v(j) |
d’ou
Z lv(t;) — v(tisg)| < e

On en é&duitT,(zy) < e. Dou lim T,(z) = 0.

r——00

Une fois construites les mesures v, assockes respectivementyy, wy, il suffira de poser
o= pin — pig +i(v1 — va).

b) Supposons doncgdormais: croissante, bome, continuex gauche et tendant vers 0 en
—oo. Pour toutz € R, on noteu(z+) la limite a droite deu enz. A toute partieA de R,

associons
O(A) = ﬂ[u(x),u(x—i—)]
z€EA
Montrons que pour tout bélien B, ®(B) est encore un bétien. Par construction et puisque
u est monotone continu& gauche, si est un intervalle alor®(7) est un intervalle. Donc
I'ensemble des parties d&

= {ACR; ®(A) estun boelien}

contient les intervalles. Si I'on montre que c’est une tribu (ar@lgebre) alors il contient
nécessairement les liiens.

e par cEfinition ®()) = () donch € 3, et ®(R) est un intervalle d’exémites 0 etV T'(u)
doncR € X.

e pour toutA C R alors®(R\A) = (P(R)\P(A)){vx}xex OU y, sont des valeurs
telles que l'intervalle; ! (y,.) n'est paséduita un singleton. Au idme titre que I'ensemble
des points de discontinéitleu, 'ensemble de ces “valeurs-palier” est au pléadmbrable.
Donc {y. }xcx est boelien. SiA € X alors®(A) et donc®(R)\®(A) sont bokliens.
Donc®(R\ A) est boélien c’esta-dire queR\ A € ¥..
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o siA, € Salors®(|_JA,) = | J®(A,) est boklien car lesb(4,) le sont.

DoncX est bien une tribu. Pour tout ldien B, on peut maintenantadinir:
u(B) = m(®(B))

ou m désigne la mesure de Lebesgue. Montrons guest o-additive. Si(B,,).en €St une
famille denombrable de béliens disjoints deua deux alors, pour toutn,n) € N?, m # n,
®(B,) N P(Bn) C {yxtrex, qui est au plus@ombrable, dono.(®(B,,) () ®(B,,)) = 0. Par

suite,
p(JBa) = > m(®(B,) = > u(By)

Donc . est une mesure de Borel, positiveénfions qu’elle est la mesure cheagh Pour tout
r € R, ®(] — oo, z[) estun intervalle d’exémites0 etu(z) > 0, donc

p(] —oo, x[) = u(z)
Il restea \erifier 'égalie T,,(z) = |u|(] — oo, z[). D’apres la partie directe (1) on &jh
I'in égalié:
Tu(x) < [ul(] =00, 2])

Pour montrer l'iregali€ oppoge, introduisons la mesuieassoote comme ci-desssla fonc-
tion T,, (qui croissante, bo&e continuex gauche et tend vers 0 emxo). D’apres le lemme 1
on a, pour toufa, 8) € R?, sia < 3

[u(fe, BT = [u(B) = w(@)| < Tu(B) = Tule) = A([e, B)

On en cduit
| ()] < AQ)

pour tout ouverf), d'ou aussi u(B) | < A(B) pour tout boelien B. Ceci montre quéu|(B) <
A(B) pour tout boelien B. En particulier,
|l (] =00, z]) < A(] =00, 2[) = Tulx)

Remarque 4 Par construction de: on voit queu est continue e si et seulement gi({z}) =
m([u(z), u(z+)]) = 0.

Corollaire 2 Soitu : R — C, mesurable et localement &grable. Siu € V B(R; C) alors la
dériveeU’ dewu au sens des distributions est une mesure de Borel complé&cgppréguement,
si la dérivee U’ de v au sens des distributions est une mesure de Borel complexe: edssi

continuea gauche, alors; € VB(R; C).

Démonstration. Soitu € VB(R;C). On lui associew € VB(R;C) comme dans la
proposition 1. Alorsu etv caincident presque partout: elles ont donc lame imagd/ dans
D'(R). Soit alorsu la mesure assoeea v par le tleoeme 2. Pour toup € D(R), on a:

<U,¢>= —/R/; du(y) ¢'(x) dx
6



(/Q/%&) v) dz du(y)

d’'apres le tleoreme de Fubini. On peut I'appliquer car:

+o0
l// o) dedpl(y) < C |ul(R) < +oo

ou C' = m(suppb) sup |¢’|. Ainsi
R

lﬂ¢>=4ﬂ@@@

Réciproquement, si/’ est une mesure de Borel complexelors I'applicationv définie
parv(z) = u(] — oo, x[) esta variation borge et donc localement igrable: son image
dansD’'(R) est de plus, d'ags le calcul pecedent, telle qué”’ = . DoncU — V est une
distribution constante (sa cerivée est nulle). D’'a

u = v + ¢, presque partout
eten faitu = v + ¢ partout puisqu’elles sont toutes deux continagguche.m

Remarque 5 On ne peut se @partir de I'hypotlese supg@mentaire . continuea gauche”
dans la Eciproque. En effet, sans cette hypstl, rien n’em@che que la difrenceu — v — ¢
soit nulle presque partout et de variation totale infinie. C’est le cas par exemple de:

f:rxdZ — 0

nert — L

[n|4+1

Notons que le thoreme 2 permet aussi déhontrer (voir Rudin):

Théoreme 3 Siu € V B(R) alors u est ceérivable presque partout et s&rdvée est inégrable
surR.

[l faut bien voir que ceEnon& n’est pas incompatible avec le corollaire 2. Dans éoime

3, la cerivée consiérée est asens usualies fonctions tandis que dans le corollaire 2 il s’agit
de ceriveeau sens des distribution®’ailleurs, siu : R — C, est mesurable et iagjrable sur

R et si la ceriveeU’ deu au sens des distributions estégtable, alors, appartien& I'espace
de SobolevV ! (R) (voir Brézis). Oriv}(R) n’est constité que de fonctions continues (dont
la restrictiona tout un intervalle borm est némeabsolument continje Ce n’est pas le cas de
V B(R), qui autorise pecigment des sauts.

Autre caractérisation deV B
Lemme 2 Siu € VB(R) alors

u(x +h) — u(x)
h

sup
h£0

dr < VT(u) < 400




Démonstration. Commeu est mesurable (corollaire 1), l'iagjrale de la fonction positive
x +— |u(x + h) — u(z)| atoujours un sens. On a de plus

(k+1)h
/R|u(x+h)—u(x)|dx:z:/k |u(z +h) — u(z)| dz

h

:Z/ lu(z + (k+ 1)h) — (e + kh) | da
kez 0
= /hz|u(x+(k+1)h)—u(x+kh)|dx

d’apres le tieoeme de Fubini. D’'a
/ lu(z+h) — u(z)| de < hVT(u)
R

par cefinition deV'7T. m

Ce lemme permet de voir facilement que &idée au sens des distributions«de V B(R)
est une forme ligaire continue su€,(R) (espace des fonctions continues tendant veés 0
I'infini).
Proposition 2 Siu € VB(R) alors la deriveeU’ au sens des distributions dese prolonge
contimimenta C,(R).

Démonstration. D’apres le lemme 2, on a pour tolut# 0 et pour toutp € Cx.(R) (continue
a support compact):

/]R u(x—i—h;L— u(zx) olx)dr | < VT(u) S%p|90|

On en eduit, pour tout: # 0 et pour toutp € CP(R):

/R u() £le) _;Lp(x_h) dv | < VT(u) s%plwl

d’ou, par le tlieoeme de convergence dorgimde Lebesgue:

/R u(x) @' (z) dx

< VT(u) sup|e|
R

puisque’ u(z) 2= p=h) ’ < supg |¢'| Xsupe(2) |u(z)], fonction inégrable d'apes le
corollaire 1. En particulier on a donc, pour taut D(R):

/]R u(z) ¢'(z) dx

ce qui permet de prolongéf’ par densiéacC,(R). m

| <UL 9> =

< VT'(u) sup|p|
R

Cependant pour retrouver lésultat du corollaire 2 il faut avoir recours aletieme de
Riesz (voir Rudin, chap. 2 et 6), qui est ugtieme beaucoup plus difficile que lecitreme 2.

On peut maintenant se demander sid@ali€ du lemme 2 n’est pas en fait uagali€. La
réeponse est affirmative, moyennant la restriction habituelledhtinuea gauche” (bien@, la
continui€ a droite conviendrait aussi).



Théoréme 4 Siu € VB(R) alors

sup / wz+h) - uz) de = VT(u)
h£0 JR h
Démonstration. Puisquef, |“&HhW=u@ | gp = [ W‘ dz, le probBme
revienta montrer que
sup / u) = ul = h) ‘ dz = VT (u)
h>0 JR h

Afin de montrer l'iregalie oppogea celle du lemme 2, on va essayer d’introd@mouveau
une suite croissante de points distantdidpourh assez petit.

Soite > 0. Par cfinition, il existey, < --- < yy tels que

> fuly) — uly)| = VI() - 5

Commeu est continuéx gauche, il existé €0, {minN} (y; —y;—1) [ tel que
je 17"'7

. 15
VJE{O, 7N}7 V.TE[yj_é,yj], |u(ac)—u(yj)| S m
Soientalors: € R, b € R, n € N, (2;)icq0,.. oy € R tels que:

a <yYy—0< a9 < < Ip, <Yn < Yyn-+96 <b

avecr; —x;_ 1 =h,i=1,--- n.
Ona

b Tn n z;
/|u(x)—u(:z:—h)|dx2/ |u($)—u($—h)|dx:Z/. |u(z) — u(zx —h)| dz

— /Oh i |u(x; —s) — u(wi_1 — s)| ds

Si on impose de plus

h <

Wl >

Yn — Yo
h

) yo_h<x0§y07 etn:|:
alors,Vs € [0, h):
Yo—0 < yo—2h < x29—5 < Yo

et:
Yo—0 < yo—3h < x,—s=x9g+nh—s < yy

Il existe donciy < i; < -+ <in_y <iytelsquevj e {0,--- ,N}, Vs € [0,h]:

yj—0 < y;j—3h < xy, —s <y
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En effet, on vient de voir qug = 0 etiy = n convenaient. Et, pour toyte {1,--- , N — 1},
I'intervalle [y; — 2h, y;] contient au moins u@lément de la suitéz;) puisque less; ne sont
distants que dé.

On peut don&crireVs € [0, h):

Z |u(z; —s) — u(xiy —s)| > Z |u(3vZJ —5) — u(zi;_, —s) ’

> > lulys) = wly) | = 3 Julwy =) = uly) | = 3 Jul@, —s) = uly-)|

j=1 j=1

€

> Z luly;) — w(yj—1)| — 5

Finalement, on a obtenu:

u(z) — u(x —h)
h

v5>0,3h0>0;h<h0:>/
R

‘dw > VT(u) — ¢

On déduit un Esultat néme un peu plus fort que celenoné:
sup /
h#0 JR

En fait on a comme dans le corollaire 2 wguivalence:

u(z +h) — u(x) u(x 4+ h) — u(x)

- de = VT(u)

dr = lim
W20 JR

Corollaire 3 Soitu : R — C, mesurable, localement igrable et continu@ gauche. Alors
u € VB(R; C) si et seulement si

sup / ez +h) - uz) dr < +oo
h£0 JR h
De plus, on a:
sup / uzth) = u) de = VT(u)
h£0 JRr h

Démonstration. La partie directe est doge par le lemme 2. &iproguement, si

sup /
h#£0 JR

on effectue, pour tout > 0, la méme construction que dans la preuve dectbme 4, avec
Yo < --- < yny = y quelconquesll existe alorshy > 0 (= g qui depend deg;) tel que:

/.

u(x +h) — u(x)

. dr < +oo

3

u() = w(e—ho) | , > luly) = uly )| = 3

ho
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- - 1 y - ya H.
(ici le facteur; n’apporte rien). On enatluit:
sup /

h#0 JR

sup /

h#0 JR

dotiu € VB(R;C). m

u(x +h) — u(x)
h

dr > Z luly;) — u(y;j—1) |

puis
u(x +h) — u(x)
h

dr > T,(y) ,Vy € R

'espace fonctionnelV' B

Définition 2 On munit I'espace vectoriél B(R) indifferemment de la norme:
N(u) :== VT (u) + |u(0) |

ou
Jul| == VT'(u) + Sup ||

Proposition 3 Les normesV et|| - || sontéquivalentes. L'espace vectoriel ainsi n@mB(RR)
est un espace de Banach.

La preuve élementaire) de cette proposition est lassu lecteur.
Cet espace egtvidemment de dimension infinie, ce qui pose peal pour obtenir un
critere de compadt Toutefois, on a le

Théoreme 5 (Helly) L'image dansZ;. (R) de tout ensemble boerdel B(R) est relativement
compacte, c’es&-dire que:
pour toute suit€u. )., bornée dans/ B(R), il existe une sous-suite:./) etu € L (R) tels
que

lir>n ||uer — ul|py = 0, pour tout intervalle boré [.

e’ =0

Démonstration. C’'est une application imédiate du tbome de Riesz-echet-Kolmogorov
(voir Brézis). En effet, si(u.).~o est boree dansV’B(R) alors il existeM > 0 tel que
luc| < M, pour touts > 0. Donc, pour tout intervalle bo&n/, (u.;)->o est bore dans
LY(I) . Et, d'apes le lemme 2, pour tout € R:

/I|ua(1’+h) — us(x)|de < VT(u:)|h| < C|h|

avecC' indépendant de par hypotlese. Donc les hypodises du thoeme de Riesz-Echet-
Kolmogorov sont satisfaites. Par suitechaque intervallé borré on peut associer une sous-
suite convergente. Comnieest Eunion énombrable d’intervalles boes, le proéde diagonal
permet d’extraire une sous-suite @mendante dé, convergente dans' (1) quel que soitl. m

Remarqgue 6 Au besoin, on pourrait extraire une nouvelle sous-suite afin que la convergence
ait lieu presque partout.
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En pratique, on peut avoir besoin d’'un en¢ de compadit pour des fonctionségpendant

d’une autre variable.
Théoreme 6 Soit(v. ).~ bornée dang.>° (0, 7'; V B(R)). On suppose de plus qu’il exisié >

0 tel que
(%) /R\vg(x,t)—vs(x,s)\dx < K(lt—s|+¢2), Y(ts) e [0, T

Alors (v.).~o adment une sous-suite convergente dahgR x]0, 7).

Démonstration. Comme pour le taoreme de Helly, on commence par montrer que la suite
des restriction& 7 x]0, T'[, ou I est un intervalle bor® admet une sous-suite convergente et on

conclut gace au proeck diagonal.
Soit donc/ un intervalle borg. Le tteoeme de Helly et le prazk diagonal permettent
d’extraire une sous-suite. ).~ telle que

Vi€ Q:=]0,TNQ, 3v(t) € LN(I); lim [jo(t) — v(t)|[ry) = 0

e’ =0

En passana la limite on a donc
/ |v(z,t) —v(z,s)|de < K |t—s|, Y(ts)eQ?
I

Par suitev se prolonge, de fagcon uniquee|0, 7’[ en une fonction lipschitzienrée valeurs dans

L(I), encore natewv. Alors on a:

V€D, T, lim [lus(6) = vl = O

e'=0

En effet, pour tout) > 0, pour toutt €]0, T'[, il existes € @ tel que2K |t — s| < n. D’'ou
e (t) — o)y < 2Kt —s| + K& + |[va(s) —v(s)||leay < 3n

poure’ < g assez petit.

Grace au tboreme de convergence doramon montre de plus que

lim H’UE/ _UHLl(IX]O,T[) =0

e’ =0

n
Remarque 7 L'estimation en tempéx) estévidemment essentielle. Leethieme est encore

vrai si 'on remplaces par un terme quelconque tendant vers 0 avec
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