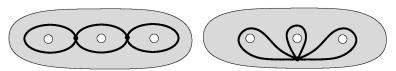
Université Claude Bernard Lyon 1 M1G – Topologie Agébrique Contrôle partiel - 1er avril 2025 - durée 2h

Les documents sont autorisés mais les calculettes et les portables sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Vrai-Faux. – Pour chacune des assertions suivantes, préciser si elle est vraie ou fausse. Justifier votre réponse au moyen de brefs arguments et/ou d'un dessin éclairant.

1-[2pts] Soient X une chaîne de trois cercles et Y un bouquet de trois cercles. On affirme que X et Y sont homotopiquement équivalents.



L'espace X (à gauche) et l'espace Y (à droite) représentées comme sous ensemble d'un troisième espace topologique Z homéomorphe à un disque privé de trois points.

2.— [**2pts**] On note $X = \mathbb{S}^2 \setminus \{N, S\}$ la sphère privée des pôles nord et sud, et $A = \mathbb{S}^1 \times \{0\}$ l'équateur de \mathbb{S}^2 . On désigne par $i: A \to X$ l'inclusion naturelle et on considère l'application

$$r: X \subset \mathbb{R}^3 \longrightarrow A \subset \mathbb{R}^3$$
$$(x, y, z) \longmapsto \frac{1}{\sqrt{1 - z^2}} (x, y, 0).$$

Pour montrer que $i \circ r$ et id_X sont homotopes dans $C^0(X,X)$, on envisage deux candidats h_t et H_t , $t \in [0,1]$, comme homotopies potentielles :

$$h_t = t i d_X + (1 - t) i \circ r$$
 et $H_t(x, y, z) = \begin{pmatrix} \frac{\sqrt{1 - t^2 z^2}}{\sqrt{1 - z^2}} x \\ \frac{\sqrt{1 - t^2 z^2}}{\sqrt{1 - z^2}} y \\ tz \end{pmatrix}$.

Parmi les quatre assertions

- a) h_t et H_t conviennent également
- b) h_t convient et H_t ne convient pas

- c) h_t ne convient pas et H_t convient
- d) ni h_t , ni H_t ne conviennent on affirme que c) est valide.
- 3.— [2pts] On considère le groupe unitaire $(\mathbb{S}^1,\cdot)\subset\mathbb{C}$ des nombres complexes de module 1, la loi interne étant la multiplication complexe. Soient $\gamma_1, \gamma_2 : [0,1] \to \mathbb{S}^1 \subset \mathbb{C}$ deux lacets basés en $1 \in \mathbb{S}^1$. On considère le lacet $\gamma := \gamma_1 \cdot \gamma_2$ obtenu par multiplication complexe. On affirme que

$$[\gamma] = [\gamma_1] + [\gamma_2] \in \pi_1(\mathbb{S}^1, 1) = \mathbb{Z}.$$

4.– [2pts] On considère l'union X d'un cylindre et d'un ruban de Möbius (cf. la figure ci-dessous). Soit $x \in X$. Parmi les quatre assertions

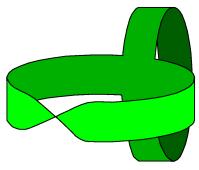
(a)
$$\pi_1(X,x) = \mathbb{Z} * \mathbb{Z}$$
,

(b)
$$\pi_1(X,x) = \mathbb{Z} * \mathbb{Z}_2$$

(c)
$$\pi_1(X,x) = \mathbb{Z}^2$$

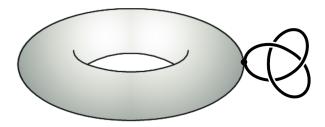
(a)
$$\pi_1(X,x) = \mathbb{Z} * \mathbb{Z}$$
, (b) $\pi_1(X,x) = \mathbb{Z} * \mathbb{Z}_2$,
(c) $\pi_1(X,x) = \mathbb{Z}^2$, (d) $\pi_1(X,x) = \mathbb{Z} \times \mathbb{Z}_2$,

on affirme que d) est valide.



L'espace X, union d'un cylindre et d'un ruban de Möbius.

5.- [2pts] On considère dans \mathbb{R}^3 le bouquet $X = T^2 \vee K$ constitué d'un tore de révolution T^2 et d'un nœud de trèfle K (voir la figure ci-dessous). On note x le point d'attache. On affirme que $\pi_1(X,x) =$ $\mathbb{Z}^2 * (\mathbb{Z}/3\mathbb{Z}).$



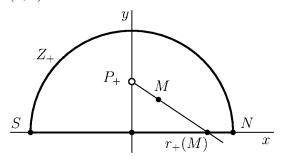
Le bouquet $X = T^2 \vee K$.

Problème.— Le but du problème est de déterminer les groupes fondamentaux de l'espace complémentaire à un cercle ou à deux cercles enlacés.

Partie 1 : Groupe fondamental de $\mathbb{R}^3 \setminus \mathbb{S}^1$.— On note

$$E_{+} = \{(x, y) \mid 0 \le y\} \setminus \{P_{+}\}$$

le demi plan supérieur fermé privé du point $P_+ := (0,1)$ et $Z_+ = C_+ \cup [SN]$ le sous-espace de E_+ constitué du demi-cercle supérieur $C_+ = \{(x,y) \mid x^2 + y^2 = 4, 0 \le y\}$ et du segment d'extrémités S = (-2,0) et N = (2,0).



L'application r_+ . On prendra garde que l'énoncé ne définit pas r_+ pour les points M(x,y) tels que y<0.

- 1) On considère l'application $r_+: E_+ \to Z_+$ qui a tout point M(x,y) de E_+ fait correspondre l'intersection du rayon $[P_+M)$ avec Z_+ .
 - a) Montrer que $r_+(x,y)$ s'écrit sous la forme

$$r_{+}(x,y) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda_{+}(x,y) \begin{pmatrix} x \\ y-1 \end{pmatrix}$$

où λ_+ est une fonction strictement positive qu'on ne cherchera pas à déterminer.

- b) Que vaut λ_+ si $(x,y) \in Z_+$.
- c) Pour tout $t \in [0, 1]$, on pose $H_t := t i d_{E_+} + (1 t) r_+$. Montrer que pour tout $t \in [0, 1]$, l'image de H_t évite P_+ .
- d) On admet que λ_+ est continue. Déduire de c) que E_+ a le type d'homotopie de Z_+ .
- e) Donner une structure naturelle de CW-complexe de dimension 1 sur $\mathbb{Z}_+.$
- f) Déterminer le groupe fondamental $\pi_1(Z_+, N)$ puis celui de E_+ au point N.

- 2) Soit $P_- := (0, -1)$. On note $\mathbb{S}^0 := \{P_-, P_+\}$ et on s'intéresse maintenant à l'espace $\mathbb{R}^2 \setminus \mathbb{S}^0$.
- a) Construire une rétraction par déformation T de \mathbb{R}^2 sur $\mathbb{R}^2 \setminus D(2)$ où D(2) est le disque de centre l'origine et de rayon 2.
- b) Soient $C_- := \{(x,y) \mid x^2 + y^2 = 4, y \leq 0\}$ le demi-cercle inférieur et $Z := Z_+ \cup C_-$. Déduire de la question 1) et de 2a) une rétraction par déformation r de $\mathbb{R}^2 \setminus \mathbb{S}^0$ sur Z.
- c) Montrer que $\mathbb{R}^2 \setminus \mathbb{S}^0$ a le type d'homotopie d'un CW-complexe de dimension 1.
- d) Déterminer le groupe fondamental de ce CW-complexe en un de ses sommets, puis celui de $\mathbb{R}^2 \setminus \mathbb{S}^0$ au point N.
- 3) On considère $E_+ \subset \mathbb{R}^3$ comme le sous-espace

$$\{(x, y, 0) \mid 0 \le y\} \setminus \{P_+\}$$
 avec $P_+ = (0, 1, 0)$.

On note Rot_{θ} la rotation de \mathbb{R}^3 d'angle θ et d'axe (Ox). On a ainsi

$$\mathbb{R}^3 \setminus \mathcal{C} = \bigcup_{\theta \in [0,2\pi[} Rot_{\theta}(E_+)$$

où \mathcal{C} est le cercle $\bigcup_{\theta \in [0,2\pi[} Rot_{\theta}(P_{+}).$

a) Reconnaître la nature géométrique de

$$\mathcal{S} := \bigcup_{\theta \in [0,2\pi[} Rot_{\theta}(C_{+}).$$

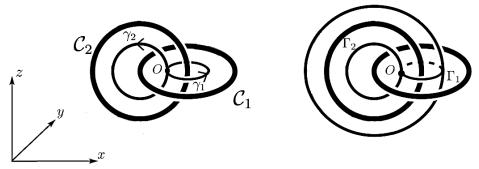
- b) Soit $\widetilde{Z}=\bigcup_{\theta\in[0,2\pi[}Rot_{\theta}(Z_{+})$. Faire un dessin de \widetilde{Z} faisant apparaître $Z\subset\widetilde{Z}$.
- c) Décrire une structure de CW complexe de dimension 2 sur \widetilde{Z} qui étend celle de Z.
- d) On définit une application continue $\tilde{r}: \mathbb{R}^3 \to \mathbb{R}^3$ au moyen des rotations Rot_θ en posant pour tout p = (x, y, z):

$$\tilde{r}(p) = \begin{cases} Rot_{\theta} \circ T \circ Rot_{-\theta}(p) & \text{si} \quad p \in Rot_{\theta}(E_{+}) & \text{et} \quad x^{2} + y^{2} + z^{2} > 4 \\ Rot_{\theta} \circ r_{+} \circ Rot_{-\theta}(p) & \text{si} \quad p \in Rot_{\theta}(E_{+}) & \text{et} \quad x^{2} + y^{2} + z^{2} \leq 4 \end{cases}$$

L'application \tilde{r} est-elle une rétraction par déformation de $\mathbb{R}^3 \setminus \mathcal{S}$ sur \tilde{Z} ? Justifier.

- e) Utiliser le théorème de Van Kampen pour déterminer le groupe fondamental $\pi_1(\widetilde{Z}, N)$. On choisira des voisinages convenables U et V, respectivement de S et du cercle topologique $[SN] \cup C_+$, dans \widetilde{Z} . On fera un dessin soigné pour les représenter.
 - f) En déduire le groupe fondamental $\pi_1(\mathbb{R}^3 \setminus \mathcal{C}, N)$.

Partie 2 : Groupe fondamental de l'entrelacs de Hopf.—



À gauche : les cercles C_1 et C_2 (en gras) et les lacets γ_1 et γ_2 (en fin). Pour ne pas surcharger la figure, le repère n'est pas centré en O. À droite : le tore T_2 . Un méridien est donné par l'image Γ_1 de γ_1 tandis que le cercle de gorge est l'image Γ_2 de γ_2 .

On considère les cercles \mathcal{C}_1 et \mathcal{C}_2 définis ci-dessous :

- le cercle C_1 est inclus dans le plan (Oxy), de rayon 2 et de centre (1,0,0).
- le cercle C_2 est inclus dans le plan (Oxz), de rayon 2 et de centre (-1,0,0).

On dit que C_1 et C_2 forment un entrelacs de Hopf. On s'intéresse à l'espace $X = \mathbb{R}^3 \setminus (C_1 \cup C_2)$. On note O l'origine et on introduit deux lacets $\gamma_1, \gamma_2 : [0, 1] \to X$ basés en O et définis par

$$\gamma_1(s) := (1 - \cos 2\pi s, -\sin 2\pi s)
\gamma_2(s) := (-1 + \cos 2\pi s, \sin 2\pi s).$$

Il découle de la partie 1 que le lacet γ_1 est un générateur du groupe fondamental $\pi_1(\mathbb{R}^3 \setminus \mathcal{C}_2, O)$ et que le lacet γ_2 est un générateur du $\pi_1(\mathbb{R}^3 \setminus \mathcal{C}_1, O)$. Enfin, on introduit les tores T_1 et T_2 tels que :

- T_1 a pour méridien l'image Γ_2 de γ_2 et pour cercle de gorge, l'image Γ_1 de γ_1 .
- T_2 a pour méridien l'image de γ_1 et pour cercle de gorge, l'image de γ_2 .
- 4) a) Montrer que ni le lacet γ_1 , ni le lacet γ_2 ne sont homotopes au lacet constant c_O dans $X = \mathbb{R}^3 \setminus (\mathcal{C}_1 \cup \mathcal{C}_2)$.
- b) Pour quelle raison le lacet $\gamma_1 * \gamma_2 * \bar{\gamma}_1 * \bar{\gamma}_2$ est-il homotope dans X au lacet constant c_O ?
- c) Décrire une structure de CW complexe de dimension 2 sur $W:=T_1\cup T_2.$
- d) On admet que $T_1 \cup T_2$ est un rétract par déformation de X. Calculer $\pi_1(X, O)$.