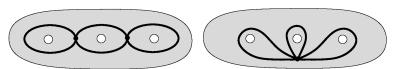
Université Claude Bernard Lyon 1 M1G – Topologie Agébrique Corrigé du contrôle partiel du 1er avril 2025 - durée 2h

Les documents sont autorisés mais les calculettes et les portables sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Vrai-Faux. – Pour chacune des assertions suivantes, préciser si elle est vraie ou fausse. Justifier votre réponse au moyen de brefs arguments et/ou d'un dessin éclairant.

1.— [2pts] Soient X une chaîne de trois cercles et Y un bouquet de trois cercles. On affirme que X et Y sont homotopiquement équivalents.



L'espace X (à gauche) et l'espace Y (à droite) représentées comme sous ensemble d'un troisième espace topologique Z homéomorphe à un disque privé de trois points.

Rép.— VRAI. La figure aide à la réponse en introduisant l'espace Z. Visiblement, cet espace se rétracte par déformation à la fois sur X et sur Y. Ils sont donc homotopiquement équivalents (cf. TA2, Exemple d'application 2).

2.— [**2pts**] On note $X = \mathbb{S}^2 \setminus \{N, S\}$ la sphère privée des pôles nord et sud, et $A = \mathbb{S}^1 \times \{0\}$ l'équateur de \mathbb{S}^2 . On désigne par $i: A \to X$ l'inclusion naturelle et on considère l'application

$$r: X \subset \mathbb{R}^3 \longrightarrow A \subset \mathbb{R}^3$$

 $(x, y, z) \longmapsto \frac{1}{\sqrt{1 - z^2}} (x, y, 0).$

Pour montrer que $i \circ r$ et id_X sont homotopes dans $C^0(X,X)$, on envisage deux candidats h_t et H_t , $t \in [0,1]$, comme homotopies potentielles:

$$h_t = t i d_X + (1 - t) i \circ r$$
 et $H_t(x, y, z) = \begin{pmatrix} \frac{\sqrt{1 - t^2 z^2}}{\sqrt{1 - z^2}} x \\ \frac{\sqrt{1 - t^2 z^2}}{\sqrt{1 - z^2}} y \\ tz \end{pmatrix}$.

Parmi les quatre assertions

- a) h_t et H_t conviennent également
- b) h_t convient et H_t ne convient pas
- c) h_t ne convient pas et H_t convient
- d) ni h_t , ni H_t ne conviennent on affirme que c) est valide.

Rép.- VRAI. L'homotopie h_t n'est pas à valeurs dans X. On vérifie en effet que la norme $h_t(x,y,z)$ ne vaut pas 1 dès que $t \notin \{0,1\}$. Elle n'est donc pas valide. En revanche H_t convient, sa norme vaut 1 pour tout $t \in [0,1]$ et en tout point $(x, y, z) \in X$.

3.— [2pts] On considère le groupe unitaire $(\mathbb{S}^1,\cdot)\subset\mathbb{C}$ des nombres complexes de module 1, la loi interne étant la multiplication complexe. Soient $\gamma_1, \gamma_2 : [0,1] \to \mathbb{S}^1 \subset \mathbb{C}$ deux lacets basés en $1 \in \mathbb{S}^1$. On considère le lacet $\gamma := \gamma_1 \cdot \gamma_2$ obtenu par multiplication complexe. On affirme que

$$[\gamma] = [\gamma_1] + [\gamma_2] \in \pi_1(\mathbb{S}^1, 1) = \mathbb{Z}.$$

Rép.– VRAI. Supposons $[\gamma_1] = n_1$ et $[\gamma_2] = n_2$. Ainsi γ_1 (resp. γ_2) est homotope à extrémités fixées à $s \mapsto e^{2i\pi n_1 s}$ (resp. $s \mapsto e^{2i\pi n_2 s}$). Par simple multiplication des homotopies il en résulte que $\gamma = \gamma_1 \cdot \gamma_2$ est homotope à $s \longmapsto e^{2i\pi(n_1+n_2)s}$. Ceci montre que

$$[\gamma] = [\gamma_1] + [\gamma_2].$$

4. [2pts] On considère l'union X d'un cylindre et d'un ruban de Möbius (cf. la figure ci-dessous). Soit $x \in X$. Parmi les quatre assertions

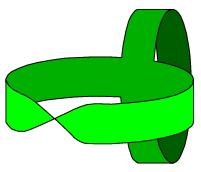
(a)
$$\pi_1(X,x) = \mathbb{Z} * \mathbb{Z}$$
, (b) $\pi_1(X,x) = \mathbb{Z} * \mathbb{Z}_2$,

(b)
$$\pi_1(X,x) = \mathbb{Z} * \mathbb{Z}_2$$

(c)
$$\pi_1(X,x) = \mathbb{Z}^2$$
,

(c)
$$\pi_1(X,x) = \mathbb{Z}^2$$
, (d) $\pi_1(X,x) = \mathbb{Z} \times \mathbb{Z}_2$,

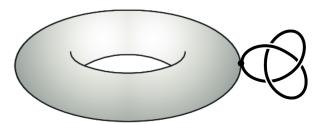
on affirme que d) est valide.



L'espace X, union d'un cylindre et d'un ruban de Möbius.

Rép.– FAUX. L'espace X se rétracte par déformation forte sur $\mathbb{S}^1 \vee \mathbb{S}^1$, son groupe fondamental est donc $\mathbb{Z} * \mathbb{Z}$.

5.— [**2pts**] On considère dans \mathbb{R}^3 le bouquet $X = T^2 \vee K$ constitué d'un tore de révolution T^2 et d'un nœud de trèfle K (voir la figure ci-dessous). On note x le point d'attache. On affirme que $\pi_1(X,x) = \mathbb{Z}^2 * (\mathbb{Z}/3\mathbb{Z})$.



Le bouquet $X = T^2 \vee K$.

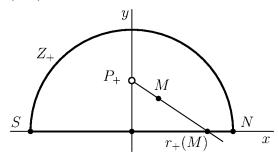
Rép.— FAUX. En effet, en appliquant le théorème de Van Kampen il vient $\pi_1(X,x)=\pi(T^2,x)*\pi_1(K)$. D'après le cours, $\pi(T^2,x)=\mathbb{Z}^2$ et $\pi_1(K,x)=\mathbb{Z}$ puisque K est homéomorphe à \mathbb{S}^1 . Ainsi $\pi_1(X,x)=\mathbb{Z}^2*\mathbb{Z}\neq\mathbb{Z}^2*(\mathbb{Z}/3\mathbb{Z})$.

Problème.— Le but du problème est de déterminer les groupes fondamentaux de l'espace complémentaire à un cercle ou à deux cercles enlacés.

Partie 1 : Groupe fondamental de $\mathbb{R}^3 \setminus \mathbb{S}^1$.— On note

$$E_{+} = \{(x, y) \mid 0 \le y\} \setminus \{P_{+}\}$$

le demi plan supérieur fermé privé du point $P_+ := (0,1)$ et $Z_+ = C_+ \cup [SN]$ le sous-espace de E_+ constitué du demi-cercle supérieur $C_+ = \{(x,y) \mid x^2 + y^2 = 4, 0 \le y\}$ et du segment d'extrémités S = (-2,0) et N = (2,0).



L'application r_+ . On prendra garde que l'énoncé ne définit pas r_+ pour les points M(x,y) tels que y<0.

- 1) On considère l'application $r_+: E_+ \to Z_+$ qui a tout point M(x,y) de E_+ fait correspondre l'intersection du rayon $[P_+M)$ avec Z_+ .
 - a) Montrer que $r_+(x,y)$ s'écrit sous la forme

$$r_{+}(x,y) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda_{+}(x,y) \begin{pmatrix} x \\ y-1 \end{pmatrix}$$

où λ_+ est une fonction strictement positive qu'on ne cherchera pas à déterminer.

- b) Que vaut λ_+ si $(x,y) \in Z_+$.
- c) Pour tout $t \in [0, 1]$, on pose $H_t := t i d_{E_+} + (1 t) r_+$. Montrer que pour tout $t \in [0, 1]$, l'image de H_t évite P_+ .
- d) On admet que λ_+ est continue. Déduire de c) que E_+ a le type d'homotopie de Z_+ .
- e) Donner une structure naturelle de CW-complexe de dimension 1 sur $\mathbb{Z}_+.$
- f) Déterminer le groupe fondamental $\pi_1(Z_+, N)$ puis celui de E_+ au point N.

Rép.— a) Le rayon a pour origine $P_+ = (0,1)$ et il est dirigé par le vecteur non nul $\overrightarrow{P_+M}$. Une équation paramétrique du rayon $[P_+M)$ est donc

$$\lambda_+ \longmapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda_+ \begin{pmatrix} x \\ y-1 \end{pmatrix}$$

où $\lambda_+ > 0$. Pour tout M(x,y), il existe une unique valeur de λ_+ , que l'on note $\lambda_+(x,y)$, pour laquelle le point

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda_{+}(x,y) \begin{pmatrix} x \\ y-1 \end{pmatrix}$$

est à l'intersection avec \mathbb{Z}_+ . Ceci prouve a).

- b) Si $(x,y) \in \mathbb{Z}_+$ alors $r_+(x,y) = (x,y)$ ce qui signifie que $\lambda_+(x,y) = 1$.
- c) Pour cela, on définit $H_t := t i d_{E_+} + (1-t) r_+$ pour tout $t \in [0,1]$. Il s'agit de montrer que l'image de H_t évite le point P_+ . Or on a

$$H_t(x,y) = t \begin{pmatrix} x \\ y \end{pmatrix} + (1-t) \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda_+(x,y) \begin{pmatrix} x \\ y-1 \end{pmatrix} \right)$$

et donc $H_t(x,y) = (0,1)$ est équivalent à

$$\begin{cases} tx + (1-t)\lambda_{+}(x,y)x & = 0 \\ ty + (1-t) + (1-t)\lambda_{+}(x,y)(y-1) & = 1 \end{cases}$$

c'est-à-dire

$$\begin{cases} (t + (1-t)\lambda_{+}(x,y)) x = 0 \\ (t + (1-t)\lambda_{+}(x,y)) (y-1) = 0 \end{cases}$$

Puisque $t \in [0,1]$ et $\lambda_+(x,y) > 0$, le facteur $t + (1-t)\lambda_+(x,y)$ est strictement positif. Le système est donc équivalent à

$$\begin{cases} x = 0 \\ y - 1 = 0 \end{cases}$$

autrement dit à $M = P_+$, ce qui est impossible puisque $M \in \mathbb{E}_+$. Ainsi l'image de H_t évite P_+ pour tout $t \in [0, t]$ et H_t est une homotopie joignant r_+ à id_{E_+} .

- d) Puisque la fonction λ_+ est continue, cela implique que r_+ est continue et donc que H_t est une homotopie joignant id_{E_+} et r_+ . Ainsi r_+ est une rétraction par déformation et Z_+ est un rétract par déformation de E_+ . Il s'en suit que cet espace a le même type d'homotopie que E_+ .
- e) L'espace Z_+ a une structure de CW-complexe naturelle. La strate Z_+^0 est constituée des deux points S et P. La strate $Z_+^1 = Z_+$ est constituée de deux 1-cellules toutes deux attachées à S et P.
- f) On a $\pi_1([SN], N) = \{0\}$ car un segment est contractile. D'après le théorème sur le groupe fondamental d'un CW-complexe (TA6) et puisque Z_+ s'obtient en ajoutant une 1-cellule à [SN] on a

$$\pi_1(Z_+, N) = \pi_1([SN], N) * \mathbb{Z} = \mathbb{Z}.$$

On en déduit

$$\pi_1(E_+, N) = \pi_1(Z_+, N) = \mathbb{Z}.$$

- 2) Soit $P_- := (0, -1)$. On note $\mathbb{S}^0 := \{P_-, P_+\}$ et on s'intéresse maintenant à l'espace $\mathbb{R}^2 \setminus \mathbb{S}^0$.
- a) Construire une rétraction par déformation T de \mathbb{R}^2 sur $\mathbb{R}^2 \setminus D(2)$ où D(2) est le disque de centre l'origine et de rayon 2.
- b) Soient $C_- := \{(x,y) \mid x^2 + y^2 = 4, y \leq 0\}$ le demi-cercle inférieur et $Z := Z_+ \cup C_-$. Déduire de la question 1) et de 2a) une rétraction par déformation r de $\mathbb{R}^2 \setminus \mathbb{S}^0$ sur Z.
- c) Montrer que $\mathbb{R}^2 \setminus \mathbb{S}^0$ a le type d'homotopie d'un CW-complexe de dimension 1.
- d) Déterminer le groupe fondamental de ce CW-complexe en un de ses sommets, puis celui de $\mathbb{R}^2 \setminus \mathbb{S}^0$ au point N.

Rép.— a) L'application

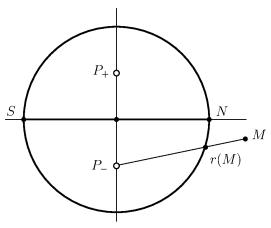
$$T(x,y) = \begin{cases} (x,y) & \text{si } x^2 + y^2 \le 4\\ \frac{2}{\sqrt{x^2 + y^2}}(x,y) & \text{si } x^2 + y^2 > 4 \end{cases}$$

convient.

b) Sur D(2), on construit r partir de r_+ au moyen de la symétrie σ par rapport à l'axe (Ox). Hors de D(2), on choisit T. Précisément, on pose

$$r(x,y) = \begin{cases} T(x,y) & \text{si } (x,y) \notin D(2) \\ r_{+}(x,y) & \text{si } (x,y) \in D(2) \text{ et } 0 \le y \\ r_{-}(x,y) & \text{si } (x,y) \in D(2) \text{ et } y \le 0 \end{cases}$$

avec $r_-(x,y) := \sigma \circ r_+ \circ \sigma(x,y)$. D'après ce qui a été fait aux questions précédentes, l'application r est une rétraction de $\mathbb{R}^2 \setminus \mathbb{S}^0$ sur Z.



L'application r.

- b) L'espace Z porte une structure en CW complexe naturelle où $Z^0 = \{S, N\}$ et où $Z = Z^1$ s'obtient en attachant les extrémités de trois 1-cellules au deux points S et N. Puisque r est une déformation par déformation, $\mathbb{R}^2 \setminus \mathbb{S}^0$ et Z ont le même type d'homotopie.
- c) D'après le théorème sur le groupe fondamental d'un CW-complexe (TA6) et

puisque Z s'obtient en ajoutant une 1-cellule à Z_+ , on a

$$\pi_1(Z,N) = \pi_1(Z_+,N) * \mathbb{Z} = \mathbb{Z} * \mathbb{Z}.$$

On en déduit

$$\pi_1(\mathbb{R}^2 \setminus \mathbb{S}^0, N) = \pi_1(Z, N) = \mathbb{Z} * \mathbb{Z}.$$

3) On considère $E_+ \subset \mathbb{R}^3$ comme le sous-espace

$$\{(x, y, 0) \mid 0 \le y\} \setminus \{P_+\} \text{ avec } P_+ = (0, 1, 0).$$

On note Rot_{θ} la rotation de \mathbb{R}^3 d'angle θ et d'axe (Ox). On a ainsi

$$\mathbb{R}^3 \setminus \mathcal{C} = \bigcup_{\theta \in [0,2\pi[} Rot_{\theta}(E_+)$$

où \mathcal{C} est le cercle $\bigcup_{\theta \in [0,2\pi[} Rot_{\theta}(P_{+}).$

a) Reconnaître la nature géométrique de

$$\mathcal{S} := \bigcup_{\theta \in [0,2\pi[} Rot_{\theta}(C_{+}).$$

- b) Soit $\widetilde{Z} = \bigcup_{\theta \in [0,2\pi[} Rot_{\theta}(Z_{+})$. Faire un dessin de \widetilde{Z} faisant apparaître $Z \subset \widetilde{Z}$.
- c) Décrire une structure de CW complexe de dimension 2 sur \widetilde{Z} qui étend celle de Z.
- d) On définit une application continue $\tilde{r}: \mathbb{R}^3 \to \mathbb{R}^3$ au moyen des rotations Rot_θ en posant pour tout p = (x, y, z):

$$\tilde{r}(p) = \begin{cases} Rot_{\theta} \circ T \circ Rot_{-\theta}(p) & \text{si} \quad p \in Rot_{\theta}(E_{+}) & \text{et} \quad x^{2} + y^{2} + z^{2} > 4 \\ Rot_{\theta} \circ r_{+} \circ Rot_{-\theta}(p) & \text{si} \quad p \in Rot_{\theta}(E_{+}) & \text{et} \quad x^{2} + y^{2} + z^{2} \leq 4 \end{cases}$$

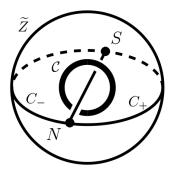
L'application \tilde{r} est-elle une rétraction par déformation de $\mathbb{R}^3 \setminus \mathcal{S}$ sur \widetilde{Z} ? Justifier.

- e) Utiliser le théorème de Van Kampen pour déterminer le groupe fondamental $\pi_1(\widetilde{Z}, N)$. On choisira des voisinages convenables U et V, respectivement de S et du cercle topologique $[SN] \cup C_+$, dans \widetilde{Z} . On fera un dessin soigné pour les représenter.
 - f) En déduire le groupe fondamental $\pi_1(\mathbb{R}^3 \setminus \mathcal{C}, N)$.

Rép.— a) L'espace S est engendré par la rotation d'un demi-cercle dont les points extrémaux S et N sont sur l'axe de rotation. Il s'en suit que S est une sphère de centre l'origine et de rayon 2.

b) L'espace \widetilde{Z} est donc l'union d'une sphère et du segment

$$\bigcup_{\theta \in [0,2\pi[} Rot_{\theta}([NS]) = [NS].$$



L'espace \widetilde{Z} et le cercle \mathcal{C} . L'espace Z est constitué du segment [SN] et des demi-cercles C_+ et C_- .

c) Les strates $\widetilde{Z}^0 = \{N,S\}$ et $\widetilde{Z}^1 = [SN] \cup C_+ \cup C_-$ sont celles de Z. Pour reconstituer \widetilde{Z} on ajoute deux 2-cellules avec des applications d'attachement identiques faisant un tour sur $C_+ \cup C_-$.

d) Soit $(x, y, 0) \in E_+$, on définit une rétraction par déformation de E_+ sur Z_+ par

$$r_0(x, y, 0) = \begin{cases} T(x, y) & \text{si} \quad x^2 + y^2 > 4 \\ r_+(x, y) & \text{si} \quad x^2 + y^2 \le 4 \end{cases}$$

La famille d'application $H_t = (1-t)id_{E_+} + tr_0$ est une homotopie joignant id_{E_+} à r_0 . C'est immédiat pour les points tels que $x^2 + y^2 > 4$, pour les autres cela découle de la question 1c). Ainsi

$$\tilde{H}_t(p) = Rot_{\theta} \circ H_t \circ Rot_{-\theta}(p)$$

est une homotopie joignant $id_{\mathbb{R}^3 \setminus \mathcal{S}}$ à \tilde{r}

e) On fait le choix décrit dans l'illustration

Les voisinage U (gauche), V (centre) et $U \cap V$ (droite).

On constate que :

- U se rétracte sur la sphère S qui est simplement connexe,
- V se rétracte sur le cercle topologique $[NS] \cup C_+$
- $U \cap V$ est contractile,

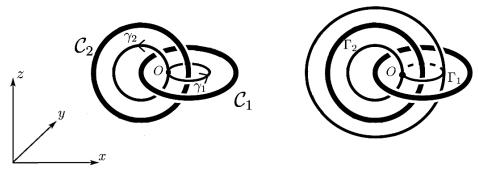
L'application du thèorème de Van Kampen montre donc que

$$\pi_1(\widetilde{Z}, N) = \pi_1([NS] \cup C_+, N) = \mathbb{Z}.$$

f) L'espace \widetilde{Z} étant un rétract par déformation de $\mathbb{R}^3 \setminus \mathcal{C}$, on en déduit

$$\pi_1(\mathbb{R}^3 \setminus \mathcal{C}, N) = \pi_1(\widetilde{Z}, N) = \mathbb{Z}.$$

Partie 2 : Groupe fondamental de l'entrelacs de Hopf.—



À gauche : les cercles C_1 et C_2 (en gras) et les lacets γ_1 et γ_2 (en fin). Pour ne pas surcharger la figure, le repère n'est pas centré en O. À droite : le tore T_2 . Un méridien est donné par l'image Γ_1 de γ_1 tandis que le cercle de gorge est l'image Γ_2 de γ_2 .

On considère les cercles \mathcal{C}_1 et \mathcal{C}_2 définis ci-dessous :

- le cercle C_1 est inclus dans le plan (Oxy), de rayon 2 et de centre (1,0,0).
- le cercle C_2 est inclus dans le plan (Oxz), de rayon 2 et de centre (-1,0,0).

On dit que C_1 et C_2 forment un entrelacs de Hopf. On s'intéresse à l'espace $X = \mathbb{R}^3 \setminus (C_1 \cup C_2)$. On note O l'origine et on introduit deux lacets $\gamma_1, \gamma_2 : [0, 1] \to X$ basés en O et définis par

$$\gamma_1(s) := (1 - \cos 2\pi s, -\sin 2\pi s)
\gamma_2(s) := (-1 + \cos 2\pi s, \sin 2\pi s).$$

Il découle de la partie 1 que le lacet γ_1 est un générateur du groupe fondamental $\pi_1(\mathbb{R}^3 \setminus \mathcal{C}_2, O)$ et que le lacet γ_2 est un générateur du $\pi_1(\mathbb{R}^3 \setminus \mathcal{C}_1, O)$. Enfin, on introduit les tores T_1 et T_2 tels que :

- T_1 a pour méridien l'image Γ_2 de γ_2 et pour cercle de gorge, l'image Γ_1 de γ_1 .
- T_2 a pour méridien l'image de γ_1 et pour cercle de gorge, l'image de γ_2 .
- 4) a) Montrer que ni le lacet γ_1 , ni le lacet γ_2 ne sont homotopes au lacet constant c_O dans $X = \mathbb{R}^3 \setminus (\mathcal{C}_1 \cup \mathcal{C}_2)$.
- b) Pour quelle raison le lacet $\gamma_1 * \gamma_2 * \bar{\gamma}_1 * \bar{\gamma}_2$ est-il homotope dans X au lacet constant c_O ?
- c) Décrire une structure de CW complexe de dimension 2 sur $W:=T_1\cup T_2.$
- d) On admet que $T_1 \cup T_2$ est un rétract par déformation de X. Calculer $\pi_1(X, O)$.

Rép.— a) Si le lacet γ_1 était homotope à c_O dans $\mathbb{R}^3 \setminus (\mathcal{C}_1 \cup \mathcal{C}_2)$, il le serait a fortiori dans $\mathbb{R}^3 \setminus \mathcal{C}_2$. Or γ_1 est un lacet générateur de $\pi_1(\mathbb{R}^3 \setminus \mathcal{C}_2, O) = \mathbb{Z}$. Contradiction.

b) Une structure naturelle en CW-complexe de T_2 est donnée par

$$T_2^0 = O, \quad T_2^1 = \Gamma_1 \vee \Gamma_2, \quad T_2^2 = T_2$$

et où l'application d'attachement $\varphi: \partial e_2 \to \Gamma_1 \vee \Gamma_2$ est $\varphi = \gamma_1 * \gamma_2 * \bar{\gamma}_1 * \bar{\gamma}_2$. Pour cette raison, ce lacet est homotope à c_O (cf. TA6).

c) Une structure de CW complexe naturelle sur $W = T_1 \cup T_2$ est donnée par

$$W_2^0 = O, \quad W_2^1 = \Gamma_1 \vee \Gamma_2, \quad W_2^2 = W$$

et où W_2^2 est obtenu en attachant deux 2-cellules e_2 avec la $m\hat{e}me$ application $\varphi:\partial e_2\to \Gamma_1\vee\Gamma_2$ donnée par $\gamma_1*\gamma_2*\bar{\gamma}_1*\bar{\gamma}_2$. d) On a

$$W = T_2 \cup_{\varphi} e_2$$
.

D'après le théorème de TA6,

$$\pi_1(W, O) = \pi_1(T_2, O)/N$$

où N est le sous groupe normal engendré par l'application d'attachement. Or cette application est homotope à c_O d'après b), donc N est trivial et

$$\pi_1(W, O) = \pi_1(T_2, O) = \mathbb{Z}^2$$

un système de générateur étant $[\gamma_1]$ et $[\gamma_2]$. Puisque W est un rétract par déformation de X, on en déduit

$$\pi_1(X, O) = \pi_1(T_2, O) = \mathbb{Z}^2.$$