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Un complexe simplicial.
Image extraite du livre Topology de Klaus Janich.
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• On travaille dans R∞, c’est-à-dire, dans le plus “petit
espace affine de dimension infini” :

R∞ =
⋃

n∈N∗

Rn.

Choisir un point p ∈ R∞ c’est choisir un point d’un certain
Rn. et donc, de tous les RN , N ≥ n, via l’inclusion Rn ⊂ RN .

• Pour se fixer les idées, on peut penser R∞ comme R[X ],
les deux espaces étant affinement isomorphes.
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Définition.– Soit n ∈ N∗. On appelle simplexe affine de
dimension n tout sous-ensemble σ ⊂ R∞ tel qu’il existe
(n + 1)-points {p0, ...,pn} affinement indépendants dont
l’enveloppe convexe soit égale à σ :

σ = Conv(p0, ...,pn)

• Les points pi sont appelés les SOMMETS de σ.

• Soit 0 ≤ k ≤ n. On appelle FACE DE DIMENSION k de σ,
toute enveloppe convexe de n’importe quel sous ensemble
de k points de {p0, ...,pn}.
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Le 2-simplexe standard ∆2

Exemple de simplexes : le n-SIMPLEXE STANDARD défini
par

∆n := {O +
n+1∑
i=1

λiei |
n+1∑
i=1

λi = 1} ⊂ Rn+1

où
−→
R n+1 = Vect(e1, ...,en+1).
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Définition.– On appelle COMPLEXE SIMPLICIAL K une
collection de simplexes

K = {σα}α∈A

telle que
1) σα ∈ K =⇒ toutes les faces de σα sont dans K

2) σα, σβ ∈ K =⇒


σα ∩ σβ = ∅
ou
σα ∩ σβ = une face de σα et de σβ.

La réalisation géométrique de K est le POLYÈDRE |K | de
R∞ définit par

|K | =
⋃
α∈A

σα.
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Un exemple de polyèdre |K | (Image : Wikipédia)
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Exemples d’ensembles qui ne sont pas des polyèdres de
complexes simpliciaux (Image : Bredon)

Définition.– Si supα∈A dimσα = k < +∞ on dit que K est
un complexe simplicial de dimension k .

• Un complexe simplicial de dimension 0 est espace
topologique discret

• Un complexe simplicial de dimension 1 est un graphe
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Une triangulation de la sphère où |K | est un icosaèdre

Définition.– Une TRIANGULATION d’un espace
topologique X est un homéomorphisme entre |K | et X où K
est un complexe simplicial de dimension 2.
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• Dans toute la suite, on considère un espace
topologique Y SÉPARÉ.

• Rappelons qu’un espace topologique est dit SÉPARÉ si
tout couple de points distincts admet des voisinages
disjoints.

• Rappelons également qu’un espace topologique compact
est un espace séparé tel que de tout recouvrement on peut
extraire un sous-recouvrement fini.

• Soit ∼ une relation d’équivalence entre les points de Y .
On note

p : Y → Y/∼

la surjection canonique de Y sur son espace quotient.
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• On définit une topologie sur Y/∼ en décrétant que

U ⊂ Y/∼ est ouvert si p−1(U) est ouvert dans Y .

• L’espace quotient Y/∼ n’est pas nécessairement séparé.

• Un espace topologique est dit SÉPARÉ si tout couple de
points distincts admet des voisinages disjoints.

• Le SATURÉ d’un ensemble F ⊂ Y est l’ensemble
p−1(p(F )), c’est-à-dire tous les points de Y qui sont en
relation par ∼ à un point de F .

• La relation d’équivalence ∼ est dite FERMÉE si le saturé
de toute partie fermée est fermée.
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Propriété.– Si Y est compact et la relation d’équivalence ∼
fermée alors Y/∼ est séparé.

Démonstration.– Soient [y1] ̸= [y2] deux points distincts de
Y/∼ . Puisque Y est compact, les ensembles

F1 = p−1({[y1]}) et F2 = p−1({[y2]})

sont des compacts de Y (pré-images de fermés dans un
compact).

• Les espaces compacts sont des ESPACES NORMAUX,
c’est-à-dire des espaces pour lesquels, pour tous fermés
disjoints F1 et F2, il existe deux ouverts disjoints U1 et U2
tels que F1 ⊂ U1 et F2 ⊂ U2.
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• On pose C1 = Y \ U1 et C2 = Y \ U2, puis

V1 = (Y/∼ ) \ p(C1) et V2 = (Y/∼ ) \ p(C2).

Par construction [y1] ∈ V1 et [y2] ∈ V2.

• Reste à montrer que V1 et V2 sont ouverts. Ceci est une
conséquence du fait que p est une application fermée : elle
envoie les fermées sur les fermées. En effet, si F ⊂ Y est
un fermé alors

p(F ) = p(Sat F )

Par hypothèse, Sat F est fermé dans Y . Son
complémentaire est un ouvert de Y nécessairement saturé.
Il en découle que p(Sat F ) est fermé dans Y/∼ □
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• Dans la propriété ci dessus, la compacité est une
hypothèse contraignante. Elle peut être remplacée par une
propriété beaucoup plus faible, la compacité locale.

Définition.– Un espace topologique X est dit LOCALEMENT

COMPACT s’il est séparé et si tout point x élément de X
admet un voisinage compact, autrement dit si x appartient à
un ouvert relativement compact (c’est-à-dire d’adhérence
compacte).

Exemples.– Sont relativement compacts, tous les
compacts, tous les espaces homéomorphes à Rn, toutes
les variétés topologiques, tous les espaces discrets.

Propriété bis (admise).– Si Y est localement compact et la
relation d’équivalence ∼ fermée alors Y/∼ est séparé.
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Proposition de transfert de continuité au quotient.– Soit
f : Y → Z une application continue telle que pour tout
(y1, y2) ∈ Y 2 on ait

y1 ∼ y2 =⇒ f (y1) = f (y2).

Alors l’application f̄ : Y/∼→ Z donnée par f̄ ([y ]) = f (y) est
bien définie et continue.

Démonstration.– Le caractère bien défini provient du fait
que f est constante sur chaque classe d’équivalence.

• Soit U un ouvert de Z . L’image réciproque f̄−1(U) est un
ouvert de Y/∼ si et seulement si p−1(f̄−1(U)) est un ouvert
de Y .
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• Or par construction f = f̄ ◦ p donc

p−1(f̄−1(U)) = (f̄ ◦ p)−1(U) = f−1(U).

• Puisque f est continue, f−1(U) est un ouvert de Y . Ainsi f̄
est continue. □

Un exemple fondamental : On considère Y = [0,1] et la
relation d’équivalence ∼ sur Y définie par

y1 ∼ y2 ⇐⇒ y1 = y2 ou (y1, y2) = (0,1) ou (y1, y2) = (1,0).

Proposition.– L’espace quotient Y/∼ est homéomorphe
au cercle S1.



CM-TA1 : Plus
d’espaces !

Complexes
simpliciaux

Espaces
quotients

CW-
complexes

Exos

Espaces quotients

Démonstration.– Montrons d’abord que la relation
d’équivalence ∼ est fermée.

• Soit F un fermé de Y = [0,1] alors :
• si F ne contient ni 0 ni 1, alors p−1(p(F )) = F et il est

fermé,
• si F contient {0,1} alors p−1(p(F )) = F et il est fermé,
• si F contient {0} ou (exclusif) {1} alors p−1(p(F )) ̸= F .

Néanmoins
p−1(p(F )) = F ∪ {0,1}

est l’union de deux fermés, il est donc fermé.

• Ainsi la relation d’équivalence ∼ est fermée. Puisque Y
est compact, on en déduit que le quotient Y/∼ est séparé.
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• Puisque p est continue, Y compact et Y/ ∼ séparé, on en
déduit que p(Y ) = Y/ ∼ est compact.

• L’application
f : [0,1] −→ S1

y 7−→ e2iπy

est continue et f (0) = f (1). D’après la proposition de
transfert de continuité au quotient, l’application

f̄ : [0,1]/∼−→ S1

est continue.

• L’application f̄ est aussi bijective car f est surjective et son
seul défaut d’injectivité concerne le couple (0,1).

• Une bijection continue d’un espace compact dans un
espace séparé est un homéomorphisme. Donc [0,1]/∼ et
S1 sont homéomorphes. □
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• Soit Y un espace topologique et soit A ⊂ Y . On considère
la relation d’équivalence suivante

y1 ∼ y2 ⇐⇒ y1 = y2 ou (y1, y2) ∈ A2

L’espace quotient Y/∼ est donc formé de la classe [a] où
a ∈ A et des classes d’équivalence [y ] avec y ∈ Y \ A.

Définition.– L’espace quotient est noté Y/A et est appelé
ESPACE QUOTIENT DE Y PAR A.

Exemple.– [0,1]/{0,1} est homéomorphe au cercle S1.

Exercice.– Montrer que D2/∂D2 est homéomorphe à la
sphère S2.
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• Soient X et Y deux espaces topologiques, A ⊂ Y et
f : A → X une application continue. On définit une relation
d’équivalence ∼ sur la somme disjointe Z = X ⊔ Y par

z1 ∼ z2 si


z1 = z2

ou
(z1 ∈ A et z2 = f (z1))

ou
(z2 ∈ A et z1 = f (z2))

Définition.– L’espace quotient est noté

X ∪f Y = X ⊔ Y/∼

et s’appelle le RECOLLEMENT DE X À Y LE LONG DE f .
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Proposition.– Si X = {x} est un singleton et Y/A est
compact alors X ∪f Y est homéomorphe à Y/A.

Démonstration.– Si X = {x} alors f : A → X est
nécessairement constante. La classe d’équivalence de tout
élément z ∈ Y \ A est triviale : [z] = {z}. La seule classe
d’équivalence non triviale est celle de z = x ou z = a,
a ∈ A, puisque l’on a

[x ] = {x} ⊔ A = [a].

Ainsi X ∪f Y est en bijection avec Y/A.

• On vérifie sans peine que la relation ∼ est fermée, ainsi
X ∪f Y est un espace séparé.
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• On a le diagramme commutatif suivant

Y i //

p
��

X ⊔ Y

p
��

Y/A
j // X ∪f Y

où i est l’inclusion naturelle (et continue) et j la bijection
décrite ci-dessus.

• Puisque j ◦ p = p ◦ i et que p ◦ i est continue, on en déduit
que j ◦ p est continue. Par transfert de continuité au
quotient, j est continue.

• Supposons que Y/A soit compact (par exemple en
supposant Y compact) alors j est un homéomorphisme car
c’est une bijection continue d’un compact dans un espace
séparée. □
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Un exemple non trivial.– Soit X = M2 ⊂ R3 où M2 est le
ruban de Möbius donné comme image de la paramétrisation

g : S1 × [−1,1] −→ R3

(θ, t) 7−→
(
ρ(θ, t) cos2θ, ρ(θ, t) sin2θ, t

2 sin θ
)

où ρ(θ, t) = 1 + t
2 cos θ.
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• On choisit Y = D2, A = ∂D2 = S1 et f : A → X donnée par

f (θ) := g(θ,1).

L’application f est un homéomorphisme sur son image (en
jaune dans l’illustration).

• Nous allons nous convaincre que X ∪f Y est
homéomorphe à l’ESPACE PROJECTIF

RP2 = S2/∼

c’est-à-dire l’espace quotient de la sphère par la relation
d’équivalence dite d’ANTIPODIE

x1 ∼ x2 si x1 = ±x2.
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L’espace projectif est homéomorphe au recollement d’un
disque et d’un ruban de Möbius le long de leur bord.
Formellement

RP2 ≈ M2 ∪f D2

où f est l’application décrite plus haut.



CM-TA1 : Plus
d’espaces !

Complexes
simpliciaux

Espaces
quotients

CW-
complexes

Exos

Espaces quotients

L’exemple non trivial sous une autre forme.– Soient
X = S1 ⊂ C, Y = D2, A = ∂D2 = S1 et

f : ∂D2 −→ S1

z 7−→ z2

• Les classes d’équivalence non triviales sont les pairs de
points {eiθ,ei(θ+π)} antipodaux de S1.

• Ainsi, et d’après ce que nous venons de faire, le
recollement S1 ∪f D2 est homéomorphe à RP2.
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Images : Jos Leys

Déformation réalisant le recollement de X = S1 avec un
voisinage Y de A = ∂D2 le long de l’application z → z2.
L’espace S1 ∪f Y est homéomorphe au ruban de Möbius M2.
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Définition.– La donnée d’un espace topologique X et d’un
point base x0 ∈ X est appelé un ESPACE POINTÉ et noté
(X , x0).

Définition.– Étant donnés deux espaces pointés (X , x0) et
(Y , y0), on appelle BOUQUET DE X ET DE Y et on note

X ∨ Y

le recollement X ∪f Y où A = {y0} et f (y0) = x0.

• On dit également que X ∨ Y est la SOMME POINTÉE de X
et de Y .
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Bouquets de deux cercles S1 ∨ S1 et de 7 cercles
S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1
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Exemple 1.– Soit K un complexe simplicial connexe et fini
de dimension 1 et S l’ensemble de ses sommets (=face de
dimension 0). L’espace |K |/S est homéomorphe à un
bouquet de cercles dont le nombre de cercles est celui des
arêtes (=face de dimension 1) de K .

Exemple 2.– Soit A ⊂ S2 un grand cercle, l’espace S2/A
est un bouquet de deux sphères S2 ∨ S2.

Exemple 3.– Soit A ⊂ S2 l’ensemble des arêtes de la
triangulation par l’icosaèdre (cf. l’image plus haut dans ce
cours). L’espace S2/A est un bouquet de vingt sphères.
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Définition.– Un CW -COMPLEXE X est un espace
topologique défini par la donnée d’une suite croissante (finie
ou non)

∅ ⊂ X 0 ⊂ X 1 ⊂ · · ·

d’espaces topologiques (X n)n∈I avec I = {0,1, ...,N} ou
I = N, et telle que :
• X = ∪n∈IX n

• X 0 est un espace discret non vide
• X n est homéomorphe à l’espace obtenu en effectuant

le recollement de X n−1 avec une famille (en
α)α∈An de

n-boules fermées, par des applications continues

φα : ∂en
α → X n−1, α ∈ An.

• Une partie F est un fermé de X ssi son intersection
avec X n est fermée pour tout n ∈ I.
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• Les espaces X n sont appelés les n-SQUELETTES, les
n-boules en

α sont appelées les n-CELLULES.

• Si I est finie, le dernier axiome est une conséquence
directe du fait que les inclusions entre les squelettes sont
des applications continues.

• La topologie de X est la plus faible pour laquelle les
inclusions X n ⊂ X sont continues. C’est la topologie de la
limite directe lim−→X n, autrement dit la TOPOLOGIE FAIBLE.

• Cette topologie n’est par reliée à la TOPOLOGIE INITIALE

des espaces vectoriels topologiques, dite elle aussi,
TOPOLOGIE FAIBLE.
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Exemple 1.– On considère le CW-complexe de dimension 1
donné par X 0 = {1} ⊂ R et

X 1 = X 0 ∪φ e1

où e1 = B1 = [−1,1] et φ : ∂e1 = {−1,1} → X 0 = {1} est
l’application constante.

D’après ce que l’on a établi plus haut

X 1 ≈ e1/∂e1 ≈ S1.

Ceci montre que le cercle S1 admet une structure de
CW-complexe ayant un point et une 1-cellule.

Exemple 2.– Plus généralement, la sphère Sn admet une
structure de CW-complexe ayant un point et une n-cellule.
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Exemple 3.– L’espace projectif RP2 admet une structure de
CW-complexe ayant un point, une 1-cellule et une 2-cellule.
Le 1-squelette est homéomorphe à S1 et le 2-squelette est
obtenu en attachant la 2-cellule avec φ : ∂e2 → X 1 donnée
par z 7→ z2.

Exemple 4.– Un complexe simplicial |K | a une structure
naturelle de CW-complexe donnée par sa filtration |K n| par
les n-simplexes.

• Le point clé est que tout n-simplexe σα est (homéomorphe
à) une n-boule. L’application de recollement

φα : ∂σα → |K n−1|

est l’inclusion naturelle.
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Proposition.– Soit X un CW-complexe alors

• X est séparé,
• l’adhérence de toute cellule eα ne rencontre qu’un

nombre fini d’autres cellules,
• X est compact ssi il se compose d’un nombre fini de

cellules.

Démonstration.– Voir le Hatcher, p. 521-523.

• On peut comprendre maintenant la dénomination de ces
espaces. Les lettres "CW" sont les initiales de
Closure-finiteness et de Weak topology.

• Les CW-complexes sont les « bons » espaces
topologiques. Kirby et Siebenmann démontrent que toute
variété topologique compacte de dimension n ̸= 4 possède
une structure de CW-complexe.
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1) Montrer que l’espace quotient Y/A d’un cylindre
Y := S1 × [−1,1] par A = S1 × {0} est homéomorphe au
cône de R3 défini par C = {x2 + y2 − z2 = 0, z ∈ [−1,1]}.



CM-TA1 : Plus
d’espaces !

Complexes
simpliciaux

Espaces
quotients

CW-
complexes

Exos

Exos

2) On définit le ruban de Möbius comme le quotient

M2 = [0, π]× [−1,1]/∼

où les seules relations non triviales de ∼ sont
(0, ρ) ∼ (π,−ρ) pour tout ρ ∈ [−1,1].
a) Montrer que M2 est un espace séparé et compact.
b) Montrer que l’application

f : M2 −→ D2 ⊂ R2

(θ, ρ) 7−→ (ρ cos θ, ρ sin θ)

est continue.
c) Soit A = [0, π]× {0}/∼ l’âme de M2. Montrer que M2/A
est homéomorphe au disque D2.
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3) Soit K le 2-complexe simplicial de R3 dont les sommets
sont

p0 = (1,1,1), p1 = (1,−1,−1),

p2 = (−1,1,−1) et p3 = (−1,−1,1),

les arêtes sont les six segments [pipj ] et les faces les quatre
triangles [pipjpk ].
a) Faire un dessin de |K | et montrer que les sommets sont
inscrits dans une sphère S.
b) Pour tout p = (x , y , z), on pose

ℓ0(
−→
Op) = x + y + z, ℓ1(

−→
Op) = x − y − z,

ℓ2(
−→
Op) = −x + y − z, ℓ3(

−→
Op) = −x − y + z.

On note Fi la face ne contenant pas le point pi . Montrer que

p ∈ Fi ⇐⇒ ℓi(
−→
Op) = −1 et ℓj(

−→
Op) ≥ −1 si j ̸= i
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c) Soit

δ(
−→
Op) := max

i∈{0,...,3}
(−ℓi(

−→
Op))

i) Montrer que δ(
−→
Op) = 0 ssi p = O.

ii) Constater que ℓ0 + ℓ1 + ℓ2 + ℓ3 = 0 et en déduire que
si p ̸= O alors δ(

−→
Op) > 0.

iii) Montrer que si λ > 0 alors δ(λ
−→
Op) = λ δ(

−→
Op).

iv) Montrer enfin que p ∈ |K | ⇐⇒ δ(
−→
Op) = 1.

d) On considère

f : S2(
√

3) −→ R3

p = (x , y , z) 7−→ 1

δ(
−→
Op)

 x
y
z


Montrer que l’image de f est incluse dans |K |.
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L’application f−1.

e) Écrire explicitement la fonction réciproque de f et en
déduire que f−1 est une triangulation de S2(

√
3).

f) À votre avis, est-il possible de construire une triangulation
de la sphère ayant moins de quatre sommets ?
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Exos

L’application f−1 pour les solides de Platon.

g) Imaginer d’autres triangulations de la sphère en
s’inspirant de la démarche précédente et de l’illustration
ci-dessus.
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4) Soit h : X → Y un homéomorphisme, en une n-boule et
φ : ∂en → X une application de recollement. Montrer que

X ∪φ en ≃ Y ∪h◦φ en.
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Les espaces X 0, X 1 et X 2 = T .

5) Soit 0 < b < a et I = [0,2π]. On considère l’espace
topologique T = f (I × I) où

f : I × I −→ R3

(θ, φ) 7−→

 x(θ, φ) = (a + b cos θ) cosφ
y(θ, φ) = (a + b cos θ) sinφ
z(θ, φ) = b sin θ

 .
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a) On note ∼ la relation d’équivalence dont les seules
relations non triviales sont

(0, φ) ∼ (2π, φ) et (θ,0) ∼ (θ,2π)

pour tout φ, θ ∈ [0,2π]. Montrer que I × I/ ∼ est
homéomorphe à T .

b) On considère la suite croissante de sous-espaces
suivants :

X 0 = f (0,0), X 1 = f (I × {0} ∪ {0} × I)), X 2 = T .

Montrer que X 1 est homéomorphe au bouquet S1 ∨ S1

c) On note p : I2 → I2/∼ la projection canonique et

ψ := p|∂I2 : ∂I2 −→ p(I2)

Montrer que
p(∂I2) ∪ψ I2 ≃ p(I2).
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d) Montrer que

∅ ⊂ X 0 ⊂ X 1 ⊂ X 2 = T

définit une structure de CW-complexe sur T . On admettra
que le carré I × I est homéomorphe à la 2-boule e2.
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