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¢ On travaille dans R*°, c’est-a-dire, dans le plus “petit
espace affine de dimension infini” :

R® = U R".
neN*

Chaisir un point p € R*> c’est choisir un point d’un certain
R". et donc, de tous les RN, N > n, via l'inclusion R” c RN.

e Pour se fixer les idées, on peut penser R comme R[X],
les deux espaces étant affinement isomorphes.
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Définition.— Soit n € N*. On appelle simplexe affine de
dimension n tout sous-ensemble o C R*° tel qu'il existe
(n+ 1)-points {py, ..., pn} affinement indépendants dont
I'enveloppe convexe soit égale a o :

o = Conv(py, .., Pn)
e Les points p; sont appelés les SOMMETS de o.

e Soit 0 < k < n. On appelle FACE DE DIMENSION k de o,
toute enveloppe convexe de n’importe quel sous ensemble
de k points de {pq, ..., Pn}-
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Le 2-simplexe standard Ao

Exemple de simplexes : le n-SIMPLEXE STANDARD défini

par
n+1 n+1

Ap:={0+> Ne| > N=1} cR™

i=1 i=1

L=
ol K™ = Vect(ey, ..., €n41).



CM-TA1 : Plus
d’'espaces !

Complexes
simpliciaux

Complexes simpliciaux

Définition.— On appelle COMPLEXE SIMPLICIAL K une
collection de simplexes

K = {Ua}aeA
telle que

1) o, € K = toutes les faces de o, sont dans K

oaNog =10
2) 04,08 € K= ¢ ou
o, Nog = une face de o, et de og.

La réalisation géométrique de K est le POLYEDRE |K| de
R°° définit par
Kl = oa-

a€cA
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Un exemple de polyédre |K| (Image : Wikipédia)

(=] = =

DA



CM-TA1 : Plus
d’'espaces !

Complexes simpliciaux

Complexes
simpliciaux

Exemples d’ensembles qui ne sont pas des polyédres de
complexes simpliciaux (Image : Bredon)

Définition.— Sisup,c4dimo, = k < 400 on dit que K est
un complexe simplicial de dimension k.

¢ Un complexe simplicial de dimension 0 est espace
topologique discret

¢ Un complexe simplicial de dimension 1 est un graphe
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Une triangulation de la sphére ou |K| est un icosaédre

Définition.— Une TRIANGULATION d’un espace
topologique X est un homéomorphisme entre |K| et X ou K
est un complexe simplicial de dimension 2.
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¢ Dans toute la suite, on considere un espace
topologique Y SEPARE.

e Rappelons qu’un espace topologique est dit SEPARE si
tout couple de points distincts admet des voisinages
disjoints.

¢ Rappelons également qu’un espace topologique compact
est un espace séparé tel que de tout recouvrement on peut
extraire un sous-recouvrement fini.

e Soit ~ une relation d’équivalence entre les points de Y.
On note
p:Y—=>Y/~

la surjection canonique de Y sur son espace quotient.
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e On définit une topologie sur Y/~ en décrétant que
Uc Y/~ estouvertsi p~'(U) est ouvert dans Y.
e L'espace quotient Y/~ n’est pas nécessairement séparé.

e Un espace topologique est dit SEPARE si tout couple de
points distincts admet des voisinages disjoints.

e Le SATURE d'un ensemble F C Y est 'ensemble
p~'(p(F)), c’est-a-dire tous les points de Y qui sont en
relation par ~ a un point de F.

e La relation d’équivalence ~ est dite FERMEE si le saturé
de toute partie fermée est fermée.
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epaces Propriété.— Si Y est compact et la relation d’équivalence ~
quotients fermée alors Y/ ~ est séparé.

Démonstration.— Soient [y;] # [y2] deux points distincts de
Y/~ . Puisque Y est compact, les ensembles

Fi=p '(n]}) et F=p '({ll})

sont des compacts de Y (pré-images de fermés dans un
compact).

e Les espaces compacts sont des ESPACES NORMAUX,
c’est-a-dire des espaces pour lesquels, pour tous fermés
disjoints F; et F», il existe deux ouverts disjoints U; et Us
tels que F; C Uy et F> C Us.
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eOnpose Ci =Y\ UjetCo= Y\ Uy, puis

Vi=(Y/~)\p(C1) et Vo=(Y/~)\p(Ca)

Par construction [y1] € V; et [yo] € Va.

Espaces
quotients

e Reste a montrer que V; et Vs sont ouverts. Ceci est une
conséquence du fait que p est une application fermée : elle
envoie les fermées sur les fermées. En effet, si F C Y est
un fermé alors

p(F) = p(Sat F)

Par hypothese, Sat F est fermé dans Y. Son
complémentaire est un ouvert de Y nécessairement saturé.
Il en découle que p(Sat F) est fermé dans Y/~ O
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e Dans la propriété ci dessus, la compacité est une
hypothése contraignante. Elle peut étre remplacée par une
propriété beaucoup plus faible, la compacité locale.

Définition.— Un espace topologique X est dit LOCALEMENT
COMPACT s'il est séparé et si tout point x élément de X
admet un voisinage compact, autrement dit si x appartient a
un ouvert relativement compact (c’est-a-dire d’adhérence
compacte).

Exemples.— Sont relativement compacts, tous les
compacts, tous les espaces homéomorphes a R”, toutes
les variétés topologiques, tous les espaces discrets.

Propriété bis (admise).— Si Y est localement compact et la
relation d’équivalence ~ fermée alors Y/ ~ est séparé.



CM-TA1 : Plus
d’'espaces !

Espaces quotients

S Proposition de transfert de continuité au quotient.— Soit
quotients f: Y — Z une application continue telle que pour tout
(y1,y2) € Y? on ait

y1 ~ Yo = f(y1) = f(y2).

Alors I'application f : Y/~ — Z donnée par f([y]) = f(y) est
bien définie et continue.

Démonstration.— Le caractére bien défini provient du fait
que f est constante sur chaque classe d’équivalence.

e Soit U un ouvert de Z. Limage réciproque f~'(U) est un

ouvertde Y/~ si et seulement si p~'(f~1(U)) est un ouvert
de Y.
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e Or par construction f = f o p donc

p(F(U) = (fop) ' (U) = (V).

e Puisque f est continue, f~'(U) est un ouvert de Y. Ainsi f
est continue. O

Un exemple fondamental : On considére Y = [0,1] et la
relation d’équivalence ~ sur Y définie par

Yi~Yo < yy =Yyo0uU(yy,y2) = (0,1)0ou (y1,¥2) = (1,0).

Proposition.— L'espace quotient Y / ~ est homéomorphe
au cercle S'.
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Démonstration.— Montrons d’abord que la relation
G d’équivalence ~ est fermée.

e Soit F un fermé de Y = [0, 1] alors :

* si F ne contient ni 0 ni 1, alors p~'(p(F)) = F et il est
ferme,

e si F contient {0,1} alors p~'(p(F)) = F et il est fermé,

* si F contient {0} ou (exclusif) {1} alors p~'(p(F)) # F.
Néanmoins

p~(p(F)) = Fu{0,1}
est 'union de deux fermés, il est donc fermé.

e Ainsi la relation d’équivalence ~ est fermée. Puisque Y
est compact, on en déduit que le quotient Y/~ est séparé.
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e Puisque p est continue, Y compact et Y/ ~ séparé, on en
déduit que p(Y) = Y/ ~ est compact.

Espaces
quotients

Lapplicati
e Lapplication 01 —
y — 92i7ry
est continue et f(0) = f(1). D’apres la proposition de
transfert de continuité au quotient, I'application

f:10,1]/~—S!
est continue.

o Lapplication f est aussi bijective car f est surjective et son
seul défaut d’injectivité concerne le couple (0, 1).

e Une bijection continue d’un espace compact dans un
espace separé est un homéomorphisme. Donc [0, 1]/~ et
S' sont homéomorphes. O
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e Soit Y un espace topologique et soit A C Y. On considére
la relation d’équivalence suivante

Vi~ Yo < yi=Yys0U(¥,)p) € A2

Lespace quotient Y/~ est donc formé de la classe [a] ou
a € A et des classes d’équivalence [y] avec y € Y \ A.

Définition.— Lespace quotient est noté Y /A et est appelé
ESPACE QUOTIENT DE Y PAR A.

Exemple.— [0,1]/{0, 1} est homéomorphe au cercle S'.

Exercice.— Montrer que D?/9D? est homéomorphe a la
sphére S?.
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S e Soient X et Y deux espaces topologiques, A C Y et
e f: A— X une application continue. On définit une relation
d’équivalence ~ sur la somme disjointe Z = X LI Y par

21 = 2o
ou
2y ~2o Si (Z1 eAetzzzf(z1))
ou
(22 cAetzy = f(Zg))

Définition.— Lespace quotient est noté
XUrY=XUY/~

et s’appelle le RECOLLEMENT DE X A Y LE LONG DE f.
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Proposition.— Si X = {x} est un singleton et Y /A est
compact alors X Us Y est homéomorphe a Y /A.

Démonstration.— Si X = {x} alors f : A — X est
nécessairement constante. La classe d’équivalence de tout
élément z € Y\ Aesttriviale : [z] = {z}. La seule classe
d’équivalence non triviale est celle de z = x ou z = a,

a € A, puisque l'on a

[X] = {x}UA=]a].
Ainsi X Uy Y est en bijection avec Y/A.

e On vérifie sans peine que la relation ~ est fermée, ainsi
X Ur Y est un espace séparé.
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e On a le diagramme commutatif suivant

Yy ' xuy

|

Y/A—Ls XU Y

ou i est l'inclusion naturelle (et continue) et j la bijection
décrite ci-dessus.

e Puisque jop = poietque poiestcontinue, on en déduit
que j o p est continue. Par transfert de continuité au
quotient, j est continue.

e Supposons que Y/A soit compact (par exemple en
supposant Y compact) alors j est un homéomorphisme car
c’est une bijection continue d’un compact dans un espace
séparée. O
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Espaces quotients

Un exemple non trivial.— Soit X = M? c RS ou M? est le
ruban de Mébius donné comme image de la paramétrisation

g: S'x[-1,1] — R®
(6,1) —  (p(0,t)cos 26, p(0,t)sin20, £ sin6)

ot p(0,t) =1+ £ cos 6.
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e On choisit Y = D?, A= 0D? =S'" et f : A— X donnée par
Espaces

quotients f(O) — g(e, 1 )

Lapplication f est un homéomorphisme sur son image (en
jaune dans l'illustration).

e Nous allons nous convaincre que X U; Y est
homéomorphe a 'ESPACE PROJECTIF

RP? =§2/~

c’est-a-dire I'espace quotient de la sphére par la relation
d’équivalence dite d’ANTIPODIE

Xy ~Xo SI Xy = EXo.
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Lespace projectif est homéomorphe au recollement d’un
disque et d’un ruban de Mdbius le long de leur bord.
Formellement

RP? ~ M? U; D?

ou f est I'application décrite plus haut.

IS
)
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Lexemple non trivial sous une autre forme.— Soient
X=S'cC,Y=D? A=0D?>=S"et

f: D> — S
z — Z2

e Les classes d’équivalence non triviales sont les pairs de
points {€?, €(*+7)} antipodaux de S'.

¢ Ainsi, et d’aprés ce que nous venons de faire, le
recollement S' Uy D? est homéomorphe & RP?.
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Images : Jos Leys

Déformation réalisant le recollement de X = S' avec un
voisinage Y de A = 9D? le long de I'application z — z2.
Lespace S'! Uy Y est homéomorphe au ruban de Mébius M?.



CM-TA1 : Plus
d’'espaces !

Espaces quotients

Espaces

quotients Définition.— La donnée d’un espace topologique X et d’un
point base xp € X est appelé un ESPACE POINTE et noté
(X7 XO)'

Définition.— Etant donnés deux espaces pointés (X, xo) et
(Y, ¥0), on appelle BOUQUET DE X ET DE Y et on note

XVvY
le recollement X Ur Y ou A= {yo} et f(yo) = Xo.

e On dit également que X V Y est la SOMME POINTEE de X
etde Y.
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Bouquets de deux cercles S' v S' et de 7 cercles
stvstvstvstvstvst vs!
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quotients Exemple 1.— Soit K un complexe simplicial connexe et fini
de dimension 1 et S 'ensemble de ses sommets (=face de
dimension 0). Lespace |K|/S est homéomorphe a un
bouquet de cercles dont le nombre de cercles est celui des
arétes (=face de dimension 1) de K.

Exemple 2.— Soit A C S? un grand cercle, 'espace S?/A
est un bouquet de deux sphéres S? v S2.

Exemple 3.— Soit A C S? 'ensemble des arétes de la
triangulation par 'icosaédre (cf. 'image plus haut dans ce
cours). Lespace S?/A est un bouquet de vingt sphéres.
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Définition.— Un CW-COMPLEXE X est un espace
topologique défini par la donnée d’une suite croissante (finie
ou non)

cw- pcXxXcxX c-..

complexes
d’espaces topologiques (X")cs avec I = {0,1,..., N} ou
I =N, et telle que :
® X =Upe/X"
e X0 est un espace discret non vide

e X" est homéomorphe a I'espace obtenu en effectuant
le recollement de X"~ avec une famille (€7)qca, de
n-boules fermées, par des applications continues

o 1 OEN — X1 aeA,

e Une partie F est un fermé de X ssi son intersection
avec X" est fermée pour tout n € /.
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e Les espaces X" sont appelés les n-SQUELETTES, les
n-boules e sont appelées les n-CELLULES.

e Si / est finie, le dernier axiome est une conséquence
directe du fait que les inclusions entre les squelettes sont
des applications continues.

o L a topologie de X est la plus faible pour laquelle les
inclusions X c X sont continues. C’est la topologie de la
limite directe Ii_m>X”, autrement dit la TOPOLOGIE FAIBLE.

e Cette topologie n’est par reliée a la TOPOLOGIE INITIALE
des espaces vectoriels topologiques, dite elle aussi,
TOPOLOGIE FAIBLE.
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Exemple 1.— On considere le CW-complexe de dimension 1
donné par X° = {1} c Ret

1 _ y0 1
X' =X"U,e

oue' =B =[-1,1]etp:0e' ={-1,1} = X° = {1} est
I'application constante.

D’aprés ce que I'on a établi plus haut
X'~ e'/oe' = S

Ceci montre que le cercle S' admet une structure de
CW-complexe ayant un point et une 1-cellule.

Exemple 2.— Plus généralement, la sphere S” admet une
structure de CW-complexe ayant un point et une n-cellule.
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Exemple 3.— Lespace projectif RP? admet une structure de
CW-complexe ayant un point, une 1-cellule et une 2-cellule.
Le 1-squelette est homéomorphe a S' et le 2-squelette est
obtenu en attachant la 2-cellule avec ¢ : 96 — X' donnée
par z — z2.

Exemple 4.— Un complexe simplicial |K| a une structure
naturelle de CW-complexe donnée par sa filtration |K”| par
les n-simplexes.

e Le point clé est que tout n-simplexe o, est (homéomorphe
a) une n-boule. Lapplication de recollement

Yo 004 — \K"‘W

est I'inclusion naturelle.
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Proposition.— Soit X un CW-complexe alors
e X est séparé,
e ['adhérence de toute cellule e, ne rencontre qu’un
nombre fini d’autres cellules,

e X est compact ssi il se compose d’un nombre fini de
cellules.

Démonstration.— Voir le Hatcher, p. 521-523.

e On peut comprendre maintenant la dénomination de ces
espaces. Les lettres "CW" sont les initiales de
Closure-finiteness et de Weak topology.

e Les CW-complexes sont les « bons » espaces
topologiques. Kirby et Siebenmann démontrent que toute
variété topologique compacte de dimension n # 4 possede
une structure de CW-complexe.
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1) Montrer que I'espace quotient Y /A d’un cylindre
Y :=S"x [-1,1] par A=S" x {0} est homéomorphe au
cone de R3 définipar C = {x® + y? - 22 =0,z ¢ [-1,1]}.
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2) On définit le ruban de Mdbius comme le quotient
M? = [0, 7] x [~1,1]/~

ou les seules relations non triviales de ~ sont

(0, p) ~ (m, —p) pour tout p € [-1,1].

a) Montrer que M? est un espace séparé et compact.
b) Montrer que I'application

f: M2 — D?cCRR?
(0,p) — (pcosh,psinf)
est continue.

c) Soit A = [0, 7] x {0}/~ I'd&me de M?. Montrer que M?/A
est homéomorphe au disque D?.
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3) Soit K le 2-complexe simplicial de R® dont les sommets
sont

lJO = ( 1 9 1 ) 1 )7 l)1 = ( 1 ) __'1 ) __'1 )a
p2:(_1717_1) et p3:(_17_171)7
les arétes sont les six segments [p;p;] et les faces les quatre
triangles [p;pjpx]-
a) Faire un dessin de |K| et montrer que les sommets sont
inscrits dans une sphere S.
b) Pour tout p = (x, y, z), on pose
— —
KO(@)) =X+y+2z EﬂO&:x—y—z,
(a(Op) = —x+y —2, (3(0p) = —x—y+2z
On note F; la face ne contenant pas le point p;,. Montrer que

peF < 4(Op)=—1et((Op)> —1sij#]
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c) Soit

i) Montrer que 5(O_p>) =0ssip=0.
Exos ii) Constater que ¢y + ¢4 + ¢2 + ¢3 = 0 et en déduire que
, —
si p # O alors 6(Op) > 0. . .
iii) Montrer que si A > 0 alors 6(AOp) :A 5(Op).
iv) Montrer enfin que p € |K| < §(Op) = 1.

d) On considére

f: S8 — RS

1 X
p—(X,y,Z) — ﬁ()z/)

Montrer que I'image de f est incluse dans |K]|.
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e) Ecrire explicitement la fonction réciproque de f et en
déduire que ' est une triangulation de S2(v/3).

f) A votre avis, est-il possible de construire une triangulation
de la sphére ayant moins de quatre sommets ?
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Lapplication =" pour les solides de Platon.

g) Imaginer d’autres triangulations de la sphere en

s’'inspirant de la démarche précédente et de l'illustration
ci-dessus.
[m] = -

DA
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4) Soit h: X — Y un homéomorphisme, e” une n-boule et
¢ : 0e" — X une application de recollement. Montrer que

XU, €7~ Y Upyy, €.
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Les espaces X°, X' et X2 =T.

5) Soit 0 < b < aet /= [0,2x]. On considére I'espace
topologique T = f(/ x I) ou

f: Ixl — R®
X(0,¢) = (a+ bcosf)cosy
0,p) — y(0,9) = (a+ bcos)sinp .

z(0,¢) = bsiné
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a) On note ~ la relation d’équivalence dont les seules
relations non triviales sont

(0,0) ~ (2m,p) et (6,0)~ (0,27)

pour tout ¢, 8 € [0,27]. Montrer que / x I/ ~ est
homéomorphe a T.

Exos

b) On considere la suite croissante de sous-espaces
suivants :

X% =1£0,0), X'=f(Ix{0}u{0}x1)), X2=T.
Montrer que X' est homéomorphe au bouquet S' v S'
c) On note p : > — [/~ la projection canonique et

= Pppoe 1 0F — p(P?)

Montrer que
p(OF) Uy P =~ p(?).
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Fros d) Montrer que
pcXcX cXx2=T

définit une structure de CW-complexe sur T. On admettra
que le carré | x | est homéomorphe & la 2-boule €.
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