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Un lacet (en bleu) et un chemin (en rouge) sur une surface (Image : F. Lazarus)
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La concaténation des chemins

Définition.– Soit X un espace topologique et x0, x1 ∈ X .
On appelle CHEMIN JOIGNANT x0 À x1 tout application
continue γ : [0,1] → X telle que

γ(0) = x0 et γ(1) = x1.

On appelle LACET BASÉ EN x0 tout chemin tel que

γ(0) = γ(1) = x0.

Notations.– On note

L(X , x0, x1) et Ω(X , x0)

l’espace des chemins joignant x0 à x1 et l’espace des lacets
basés en x0. Ces deux espaces sont des sous-espace de
C0([0,1],X ).
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Image : Allen Hatcher

• Sur ces espaces, on note ≃∂ la relation d’homotopie
pointée, c’est-à-dire que γ1 ≃∂ γ2 signifie qu’il existe une
homotopie H : [0,1]× [0,1] → X telle que

∀t ∈ [0,1], H(0, t) = x0 et H(1, t) = x1

et bien sûr H(s,0) = γ1(s) et H(s,1) = γ2(s).
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Définition.– Soient γ1 ∈ L(X , x0, x1) et γ2 ∈ L(X , x1, x2). La
CONCATÉNATION de γ1 et γ2 est le chemin noté

γ1 ∗ γ2 ∈ L(X , x0, x2)

défini par

γ1 ∗ γ2(s) :=

{
γ1(2s) si s ∈ [0, 1

2 ]

γ2(2s − 1) si s ∈ [1
2 ,1]

Proposition 1.– Soient γ1, δ1 ∈ L(X , x0, x1) et
γ2, δ2 ∈ L(X , x1, x2). Alors

(γ1 ≃∂ δ1 et γ2 ≃∂ δ2) =⇒ γ1 ∗ γ2 ≃∂ δ1 ∗ δ2.
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Démonstration.– Soient H1 (resp. H2) l’homotopie entre γ1
et γ2 (resp. entre δ1 et δ2). L’application

H(s, t) :=

{
H1(2s, t) si s ∈ [0, 1

2 ]

H2(2s − 1, t) si s ∈ [1
2 ,1]

définit une homotopie entre γ1 ∗ γ2 et δ1 ∗ δ2. □

Notations.– 1) On note cx0 ∈ Ω(X , x0) le lacet constant

∀s ∈ [0,1], cx0(s) = x0

2) Soit γ ∈ L(X , x0, x1), on note γ̄ ∈ L(X , x1, x0) le chemin
défini par

∀s ∈ [0,1], γ̄(s) := γ(1 − s)
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Proposition 2.– Soit γ ∈ L(X , x0, x1). On a

γ ∗ γ̄ ≃∂ cx0 et γ̄ ∗ γ ≃∂ cx1 .

Démonstration.– L’application H : [0,1]× [0,1] → X
définie par

H(s, t) :=


γ(2s) si s ≤ t

2

γ(t) = γ̄(1 − t) si t
2 ≤ s ≤ 1 − t

2

γ̄(2s − 1) si s ≥ 1 − t
2

est une homotopie joignant H(·,0) = cx0 à H(·,1) = γ ∗ γ̄. □



CM-TA3 : Le
groupe

fondamental

La
concaténation
des chemins

Le groupe
fondamental

Exos
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Description visuelle de l’homotopie H. La couleur rouge souligne les
points envoyés sur x0. La verticale t = 0 correspond à cx0 et la verticale

t = 1 à la concatenation γ ∗ γ̄
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Proposition 3.– Soient γ0 ∈ L(X , x0, x1), γ1 ∈ L(X , x1, x2) et
γ2 ∈ L(X , x2, x3). On a

(γ0 ∗ γ1) ∗ γ2 ≃∂ γ0 ∗ (γ1 ∗ γ2).

Démonstration.– L’application H : [0,1]× [0,1] → X
définie par

H(s, t) :=


γ0(

4s
1+t ) si s ≤ 1

4 + t
4

γ1(4s − t − 1) si 1
4 + t

4 ≤ s ≤ 1
2 + t

4

γ2(
4s−t−2

2−t ) si s ≥ 1
2 + t

4

est une homotopie joignant H(·,0) = (γ0 ∗ γ1) ∗ γ2 à
H(·,1) = γ0 ∗ (γ1 ∗ γ2). □
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Description visuelle de l’homotopie H. Sur la ligne s = 1
4 + t

4 l’homotopie
prend la valeur x1, sur la ligne s = 1

2 + t
4 elle prend la valeur x2. La

verticale t = 0 correspond à (γ0 ∗ γ1) ∗ γ2 et la verticale t = 1 à
γ0 ∗ (γ1 ∗ γ2).
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La concaténation des chemins

Proposition 4.– Soient γ ∈ L(X , x0, x1), on a

γ ∗ cx1 ≃∂ cx0 ∗ γ ≃∂ γ.

Démonstration.– L’application

H(s, t) :=

{
γ( 2s

t+1) si s ∈ [0, t+1
2 ]

x1 si s ∈ [ t+1
2 ,1]

définit une homotopie entre γ ∗ cx1 et γ.
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• D’après la proposition 2 :

cx0 ≃∂ γ ∗ γ̄ et cx1 ≃∂ γ̄ ∗ γ.
D’après la proposition 3:

γ ∗ cx1 ≃∂ γ ∗ (γ̄ ∗ γ) ≃∂ (γ ∗ γ̄) ∗ γ ≃∂ cx0 ∗ γ.
□
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• On note : π1(X , x0) := Ω(X , x0)/ ≃∂ et on définit sur cet
ensemble un produit ” · ” par

[γ1] · [γ2] := [γ1 ∗ γ2].

• La proposition 1 montre que ce produit est bien défini, il
ne dépend pas des éléments choisis pour représenter
chaque classe.

Théorème 1. – L’ensemble π1(X , x0) muni du produit · est
un groupe (non commutatif en général).

Démonstration.– La proposition 4 montre que l’élément
neutre est la classe [cx0 ] du chemin constant, la proposition
que tout élément [γ] a pour inverse [γ̄] et la proposition 3
l’associativité. □
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Le groupe fondamental

Définition.– Le groupe π1(X , x0) s’appelle le GROUPE

FONDAMENTAL DE X .

• Notons que l’on ne dit pas : "le groupe fondamental de la
paire (X , x0)". Ceci est justifié par la proposition suivante.

Proposition 5.– Soit u : [0,1] → X un chemin joignant
x0 := u(0) à x1 := u(1). Alors, l’application

βu : π1(X , x0) −→ π1(X , x1)
[γ] 7−→ [ū ∗ γ ∗ u]

est isomorphisme de groupes.
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Démonstration.– Remarquons d’abord que l’application
est bien définie grâce aux propositions 1 et 3.

• L’application βu est un morphisme, en effet

βu([γ1 ∗ γ2]) = [ū ∗ γ1 ∗ γ2 ∗ u]
= [ū ∗ γ1 ∗ u ∗ ū ∗ γ2 ∗ u]
= βu([γ1]) · βu([γ2]).

• L’application βu a pour inverse βū, en effet

βū ◦ βu([γ]) = βū([ū ∗ γ ∗ u])
= [u ∗ ū ∗ γ ∗ u ∗ ū]
= [γ]

et similairement pour βu ◦ βū. □
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Définition.– On dit qu’un espace topologique X est
CONNEXE PAR ARCS si tout couple de point (x1, x2) ∈ X × X
peut être joint par un chemin X , autrement dit si L(X , x1, x2)
est non vide.

Corollaire 1.– Soient X connexe par arcs et x0, x1 ∈ X.
Alors π1(X , x0) et π1(X , x1) sont isomorphes.

Observation.– En général, cet isomorphisme n’est pas
canonique car βu dépend de la classe dans L(X , x0, x1) du
chemin u choisi pour joindre x0 à x1.

Définition.– Un espace topologique X est dit SIMPLEMENT

CONNEXE s’il est connexe par arcs et s’il existe x0 ∈ X tel
que π1(X , x0) = {[cx0 ]}.
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Remarque.– D’après le corollaire 1, si X est simplement
connexe, alors pour tout point x ∈ X , on a π1(X , x) = {[cx ]}.

Exemple 1.– L’espace X = {x0} est simplement connexe.

Exemple 2.– Tout espace contractile X est simplement
connexe. L’homotopie joignant γ ∈ Ω(X , x0) à cx0 est induite
par l’homotopie joignant idX à i ◦ r où i : {x0} ⊂ X et
r : X → {x0}.
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• Soient f ∈ C0(X ,Y ), x0 ∈ X et y0 = f (x0), on définit une
application

f∗ : π1(X , x0) −→ π1(Y , y0)

en posant
f∗([γ]) := [f ◦ γ].

Cette application est bien définie car si γ ≃∂ δ alors
f ◦ γ ≃∂ f ◦ δ.

Proposition 6.– L’application f∗ est un morphisme de
groupes.

Démonstration.– On a

f∗([γ] · [δ]) = f∗([γ ∗ δ]) = [f (γ ∗ δ)]
f∗([γ]) · f∗([δ]) = [f ◦ γ] · [f ◦ δ] = [(f ◦ γ) ∗ (f ◦ δ)]
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• Montrons que f (γ ∗ δ) = (f ◦ γ) ∗ (f ◦ δ). En effet, le lacet
γ ∗ δ est donnée par

(γ ∗ δ)(s) :=

{
γ(2s) si s ∈ [0, 1

2 ]

δ(2s − 1) si s ∈ [1
2 ,1]

Donc

f (γ ∗ δ)(s) :=

{
f (γ(2s)) si s ∈ [0, 1

2 ]

f (δ(2s − 1)) si s ∈ [1
2 ,1]

Quant au lacet (f ◦ γ) ∗ (f ◦ δ) il est donnée par

(f ◦ γ) ∗ (f ◦ δ)(s) :=

{
(f ◦ γ)(2s) si s ∈ [0, 1

2 ]

(f ◦ δ)(2s − 1) si s ∈ [1
2 ,1]

□
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Proposition 7.– On a
• (idX )∗ = idπ1(X ,x0)

• Soient f1, f2 ∈ C0((X , x0), (Y , y0)) alors

f1 ≃∂ f2 =⇒ (f1)∗ = (f2)∗

• Soient f ∈ C0((X , x0), (Y , y0)), g ∈ C0((Y , y0), (Z , z0))
alors

(g ◦ f )∗ = g∗ ◦ f∗

En particulier, si f est inversible alors f∗ l’est et

(f∗)−1 = (f−1)∗.

Démonstration.– En exercice. □
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Théorème 2.– Soient X et Y connexes par arcs. Si X et Y
ont même type d’homotopie alors π1(X , x0) et π1(Y , y0) sont
isomorphes pour tout choix (x0, y0) ∈ X × Y.

• En particulier si X et Y sont homéomorphes (et c.p.a.)
alors leurs groupes fondamentaux sont isomorphes.

Démonstration.– Puisque X ≃ Y , il existe f ∈ C0(X ,Y ) et
g ∈ C0(Y ,X ) telles que g ◦ f ≃ idX et f ◦ g ≃ idY . Nous
allons montrer que

g∗ ◦ f∗ : π1(X , x0) → π1(X ,g(f (x0)))

et
f∗ ◦ g∗ : π1(Y , y0) → π1(Y , f (g(y0)))

sont des isomorphismes. Ceci implique en effet que f∗ et g∗
sont des isomorphismes.
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• Attention au fait que g ◦ f ≃ idX n’implique pas
(g ◦ f )∗ = (idX )∗ par fonctorialité. En effet, le deuxième point
de la proposition 7 ne s’applique qu’entre applications
pointées.

• Or, en notant x1 = g(f (x0)), on a

g ◦ f ∈ C0((X , x0), (X , x1))

tandis que
idX ∈ C0((X , x0), (X , x0))

Donc, si x1 ̸= x0, il ne peut exister d’homotopie pointée
joignant g ◦ f à idX .

• D’ailleurs, il est faux que : g ◦ f ≃ idX ⇒ (g ◦ f )∗ = (idX )∗.
On va voir qu’en réalité : g∗ ◦ f∗ = βu.
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• Soit u le chemin joignant x0 à x1 = g(f (x0)) défini par

u(t) = H(x0,1 − t)

et où H est l’homotopie joignant g ◦ f à idX . On va montrer
que

g∗ ◦ f∗ = βu

• Soit γ ∈ Ω(X , x0). L’application F définie par

F (s, t) :=


ū(3s) si s ∈ [0, t

3 ]

H(γ(3s−t
3−2t ), t) si s ∈ [ t

3 ,1 − t
3 ]

u(3s − 2) si s ∈ [1 − t
3 ,1]

est une homotopie joignant g ◦ f ◦ γ = H(·,0) à
ū ∗ γ ∗ u = H(·,1).
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Description visuelle de l’homotopie H. Le long de la ligne s = t
3

l’homotopie prend la valeur ū(t) = u(1 − t) = H(x0, t), le long de la ligne
s = 1 − t

3 elle prend la valeur u(1 − t) = H(x0, t). Elle vaut g(f (x0)) sur
les segments horizontaux s = 0 et s = 1.
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• On en déduit [g ◦ f ◦ γ] = [ū ∗ γ ∗ u] soit encore

(g∗ ◦ f∗)([γ]) = βu([γ])

pour tout γ.

• D’après la proposition 5, l’application βu est un
isomorphisme de groupes. On en déduit que g∗ ◦ f∗ est un
isomorphisme de groupes.

• On montre que f∗ ◦ g∗ est un isomorphisme de groupes
par un raisonnement similaire. □
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1) On considère le morphisme βu de la proposition 5.
Montrer que

a) Si u ≃∂ u′ alors βu = βu′

b) βcx0
= id

c) βu∗v = βv ◦ βu

d) On suppose u ∈ Ω(X , x0). Quelle est la nature de βu ?

2) Soit X un espace connexe par arcs. Montrer que X est
simplement connexe ssi pour tout couple (x0, x1) ∈ X × X et
tout couple de chemins (γ1, γ2) de L(X , x0, x1) on a
γ1 ≃∂ γ2.
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3) Un groupe topologique est un groupe (G, ⋆) muni d’une
topologie pour laquelle les applications

G2 → G, (x , y) 7→ x ⋆ y et G → G, x 7→ x−1

sont continues.
a) Donner des exemples de groupes topologiques.
b) On note e ∈ G l’élément neutre. Soit γ1, γ2 ∈ Ω(G,e).
Montrer que ⋆ définit une loi de composition • sur π1(G,e)
par

[γ1] • [γ2] := [γ1 ⋆ γ2].

c) En remarquant que

γ1 ∗ γ2 = (γ1 ∗ ce) ⋆ (ce ∗ γ2)

montrer que le groupe π1(G,e) est abélien.
d) Montrer que • est la loi de groupe · de π1(G,e).
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4) Montrer les assertions de la proposition 7 :

Proposition 7.– On a
a) (idX )∗ = idπ1(X ,x0)

b) Soient f1, f2 ∈ C0((X , x0), (Y , y0)) alors

f1 ≃∂ f2 =⇒ (f1)∗ = (f2)∗

c) Soient f ∈ C0((X , x0), (Y , y0)), g ∈ C0((Y , y0), (Z , z0))
alors

(g ◦ f )∗ = g∗ ◦ f∗

En particulier, si f est inversible alors f∗ l’est et

(f∗)−1 = (f−1)∗.
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5) Soient pX : X ×Y → X et pY : X ×Y → Y les projections
canoniques, et

p∗ : π1(X × Y , (x0, y0)) −→ π1(X , x0)× π1(Y , y0)

défini par
p∗([γ]) := ((pX )∗[γ], (pY )∗[γ])

Montrer que p∗ est un isomorphisme de groupes.
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