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Abstract

This chapter tackles the question of big pictures by taking as a case
study the reconstruction of the past of given mathematical objects, the
genera of algebraic curves, based on a 1865 definition of them provided by
Alfred Clebsch. It is shown that two essentially independent narratives can
be used to gain perspective on the event constituted by this definition, one
focusing on Abelian functions, the other on algebraic curves. Particular
attention is paid to the methodological issues involved, relating both to
the formation of corpora and to the description of their content. Finally,
a section compares the characteristics of the two narratives and offers
some thoughts on what a big picture should, or can, be in this case.

1. Introduction

“We ‘big picture’ people rarely become historians,” proclaims the 6-year-old boy
Calvin after answering his history test question on the significance of the Erie
Canal: “In the cosmic sense, probably nil.” [Watterson 1996, p. 13]. Choosing
an appropriate spatiotemporal scale to put an historical event in perspective
is indeed a smart way to escape a sticky school situation, but more virtuous
reasons may also lead one to try to embed an event of the past into a bigger
picture.

For instance, let me consider the issue of investigating the history of a
mathematical object. A common approach is to start with what can be deemed,
more or less naively, the first definition of the object, a definition considered
as the temporal reference point. Drawing a bigger picture, then, may mean
figuring out why and how this object was defined at the time. It may also
mean understanding how it circulated afterwards or from what it originated,
two avenues which come within the scope of reconstituting its future and its
past.

In such processes of reconstruction of circulation or origination, the issue
of identifying the object under scrutiny is crucial. The act of recognizing it,
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possibly under the garments of earlier or later versions, and of establishing
connections between such versions, indeed, is what founds the writing of the
past and the future of the object. The pitfall of anachronistic identifications
must therefore be avoided, so as not to produce pictures whose temporal extent
and historical consistency would be dubious, a particular danger being to end
up with illusory long-term histories.1

An obvious and customary safeguard against such anachronistic identifica-
tions is to rely on traces left by past mathematicians. Nevertheless, as obvious
as it may be, it still requires careful reflections. In the case of the future of an
object, a way of coping with the identification problem is to track this object
thanks to features such as its name in the natural language, its usual notation,
or the references to the author who is credited for having defined it. On the
contrary, one has to proceed a bit differently when trying to look backwards in
time, since the issue is to find footprints of something that does not exist yet
in the strict sense of the term.

This does not mean that investigating the past of an object is a vain
question, nor that it is a necessary impasse. Mathematical objects do not
come from nowhere. They are often introduced to address specific problems
which have their own histories, they enter into preexisting theories, they can
be the outcome of mechanisms of technical refinement or adjustment of other
objects, and their name and notation may have already been used in related
situations. Accounting for the past of the object consists precisely in locating
and comprehending such features, so as to write a corresponding narrative in
a sensible and controlled way.2

My aim in this chapter is to illustrate and discuss concretely these consid-
erations of how to account for the past of mathematical objects in one specific
case, namely the genera of algebraic curves.

The chosen point of reference consists in the two definitions given by the
German mathematician Alfred Clebsch in two papers published in 1865 in the
same volume of Journal für die reine und angewandte Mathematik, [Clebsch
1865a,b]. One of these definitions3 reads as follows:

The class of Abelian functions that is connected with an algebraic curve
1On this issue, see [Goldstein 1995, 2019], from which many of my reflections stem. In

particular, as will be seen, my conclusions echo in great part those of [Goldstein 1995], which
concerns the history of a theorem. A theorem is a mathematical entity of another nature than
an object (such as a number or a set), which leads to variations in the way of investigating
their respective identities. In any case, whatever the forms it takes, this identity issue is what
lies at the core of such inquiries. Among other works on the history of objects or theorems
that influenced me, see [Sinaceur 1991; Brechenmacher 2010; Ehrhardt 2012].

2Although the difference is not decisive for my purpose, I distinguish between a narrative,
which refers to the concrete written piece of historical work, and a picture, which is the
mental image that rests on a narrative.

3Although they are not formulated in the exact same way, the two definitions accord
perfectly with one another. Taking into consideration the two papers containing the definitions
will be useful to gather a corpus of investigation.
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of the nth order is determined by the number p = n−1·n−2
2 if the curve

has no double point and no cusp, and, in the 63rd volume of this journal,
I have given a number of results which rest on this remark. [...] Instead
of classifying the algebraic curves in orders, and making subdivisions
in them according to the number of double points and cusps that they
contain, one can classify them into genera according to the number p;
in the first genus are thus the curves for which p = 0, in the second one
those for which p = 1, etc. Hence the different orders appear reciprocally
as subdivisions of the genera [...].4 [Clebsch 1865a, p. 43]

The genera introduced by Clebsch are thus categories in a classification of
algebraic curves, i.e. curves that can be defined by a polynomial equation.
They are defined through the value of a number p coming from the theory of
Abelian functions and given by the formula p = (n−1)(n−2)

2 − d, where n is the
order of the considered curve and d is an integer whose value depends on the
singularities of the curve.5

Before proceeding, let me recall that only a few years after 1865, Clebsch
and his contemporaries designated the number p itself as the genus of an
algebraic curve, a practice that has persisted until today.6 However, such a
shift in meaning is not easy to locate with precision and does not seem to
have been accompanied by any explicit (re)definition. I will thus neglect this
phenomenon, my aim being anyway to move back in time from 1865.

As is clear from the above quote, Clebsch’s 1865 definition of the genera
involves two mathematical domains, which appear in the quote together with
indirect hints at some pieces of their history: on the one hand, the theory
of algebraic curves, associated with the traditional classification into orders,
and, on the other hand, the theory of Abelian functions, the past of which
surfaces through a citation to an earlier paper of Clebsch, [Clebsch 1864b]. In
what follows, we will see that these two facets correspond to two historical
threads that remained essentially distinct from one another before 1865, in the
sense that they involved different mathematicians and different mathematical
contents, and had their own timelines as well as their own kinds of historical
continuities and coherence.

4“Die Classe von Abelschen Functionen, mit welcher eine algebraische ebene Curve nter

Ordnung zusammenhängt, wird durch die Zahl p = n−1·n−2
2 bestimmt, wenn die Curve keine

Doppel- und Rückkehrpunkte besitzt, und ich habe im 63ten Bande dieses Journal pag. 189
eine Reihe von Resultaten angeführt, welche sich auf diese Bemerkung stützen. [...] Statt
die algebraischen Curven nach Ordnungen einzutheilen, und in diesen Unterabtheilungen zu
machen nach der Anzahl der Doppel- und Rückkehrpunkte, welche dieselben aufweisen, kann
man dieselben in Geschlechter eintheilen nach der Zahl p; zu dem ersten Geschlecht also alle
diejenigen für welche p = 0, zum zweiten diejenigen, für welche p = 1, u.s.w. Dann erscheinen
umgekehrt die verschiedenen Ordnungen als Unterabtheilungen in den Geschlechtern”.

5The order of a curve is the degree of its defining equation. As can be seen in the above
quote, the term “order” also designated the category made of the curves of a given degree.
Moreover, even though the formula p = (n−1)(n−2)

2 − d does not appear as such in the above
quote, it is contained in Clebsch’s papers of the time.

6Examples are provided in [Lê 2020, pp. 90–101].

3



More remarkable, perhaps, is the fact that these two threads also correspond
to two manners of investigating the past of the genera. Indeed, one usual way
of gaining a reasoned understanding of this past is to start with Clebsch’s
two 1865 articles, consider the publications that are cited therein, select those
where anything related to the genera appears, and start the process again
with these publications. This allows seeing p in a few texts published between
1865 and 1857, which corresponds to Bernhard Riemann’s famous memoir on
Abelian functions, [Riemann 1857]. It also allows recognizing other versions of
this number in earlier publications, in a sense that will be explained below. All
these texts relate to the topic of Abelian functions, and, while only a handful
of them involve algebraic curves, none mention any object called “genus.”

An alternative path consists in starting from a large set of publications on
algebraic curves dated before 1865, and searching for elements there that are
relevant for our purpose. In doing so, a situation opposite to the previous one
arises, since several notions of genera of algebraic curves appear while nothing
connected to the number p can be detected.

Let me note that, similarly, one could try to start with a corpus on Abelian
functions and find publications that involve the number p. While this exercise
yields the majority of the texts found by the citation process, it also suggests
new ones, whose interpretation with respect to our issue, however, turns
out to be quite perilous. Indeed, as the texts from the citation process show,
mathematicians of the time sometimes worked with what they saw as particular
values of (earlier versions of) p, such as 1, which corresponds to the case where
the Abelian functions are elliptic integrals. This raises the question of whether
to select earlier texts where the number 1 could be seen retrospectively as what
would become p, even though these texts are not connected to the others by
links such as the citations. Added to this is the problem that no appellation
in the natural language can be used to detect occurrences of 1 that would
be relevant for our purpose: the number p did not bear any name before
being called “genus” in the second half of the 1860s. The pervasiveness of
the number 1 in mathematical texts thus suggests how delicate the task of
avoiding historical artifacts may be in such a selection operation.7 Faced with
such difficulties, I chose to stick to recognition processes supported by the
explicit traces that are the citations and the identity of the name “genus,” thus
guaranteeing more solid foundations for the subsequent inquiry.

The next two sections are devoted to each of the mentioned historical
threads, which correspond to tracking backwards the number p and the curve
category called “genus,” respectively. In both cases, I first make more explicit
the processes of corpus formation. Then I present the corresponding narratives

7This issue will be commented on further at the end of the next section. The point, in
general, is that searching for earlier versions of objects is an enterprise that must always be
handled with caution, especially because the link between such versions and the reference
point is likely to become more and more blurred as one keeps going back in time.
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and analyze them in regard to the “big picture” issue, insisting in particular
on the historical intricacy of each situation and on related historiographical
questions. The concluding section finally compares these two pictures and
reflects on what would be one unified big picture of the past of the genera of
curves.

2. Tracking a number

2.1 Formation of the corpus

As just explained, the corpus considered in this section is obtained by selecting
the papers that are cited in the two 1865 articles by Clebsch and where p can
be found, and by repeating the operation on the references obtained in this
manner. I performed this process three times. The reason for this is that a
fourth layer only adds texts that deal exclusively with elliptic functions, a
situation which is more complicated to handle with respect to the issue of
recognizing p through particular values.

The corpus thus gathered is made of 29 texts by 13 authors. These texts
have been published over a century, between 1766 and 1865, although most of
them date from after the mid-1820s. They are represented, together with their
explicit8 citation links, in Figure 1.

As this graph immediately suggests, the situation is quite entangled and
cannot be reduced to a linear sequence of texts nicely organized with one
another and going from one chronological boundary to the other. But there
exist other features which contribute to the complexity of the picture and
which cannot be guessed from the appearance of the graph. On the one hand,
the citations themselves are of different kinds, some being precise technical
borrowings while others acknowledge previous works that must be surpassed,
for example,9 and do not necessarily concern p directly. On the other hand,
delving into the texts and focusing on how the number p is involved reveals a
variety of mathematical themes that are often technically independent from
one another – in the sense that the associated theorems and proofs do not
rely on each other – but may still coexist in some papers. Further, these
themes do not necessarily accord well with the citations, some of them being
addressed in certain references without being taken up by the texts that cite
these references.

For reasons of space, I cannot describe all the texts of the corpus and
all their links. I will thus confine myself to a selection that illustrates the
above-mentioned entanglement of the situation. This selection is made of texts
which form an apparently continuous chain of citations with a limited number

8Implicit references are important to take into account, too, but may be much more
difficult to grasp. An example will be seen below, in the case of [Jacobi 1832].

9On the need to examine carefully the role of the citations and, more generally, on their
use in the history of mathematics, see [Goldstein 1999].
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Figure 1: Graph of explicit citations between the texts of the corpus
on Abelian functions. These texts are arranged roughly chronologically
along the vertical. The bold boxes and arrows correspond to the chosen
chain of texts.
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of ramifications, in comparison with other possibilities. It contains the two
1865 papers by Clebsch where the genera of curves are defined and the 1864
memoir by the same author that is cited therein, [Clebsch 1864b, 1865a,b],
Riemann’s memoir on Abelian functions, [Riemann 1857], as well as texts by
Carl Weierstrass [1854, 1856], Georg Rosenhain [1851], Carl Gustav Jacob
Jacobi [1832], and Niels Henrik Abel [1826, 1828]. I will describe these texts
chronologically, concentrating on the occurrences of (earlier versions of) p, on
Abel’s addition theorem and the inversion problem, and on the connections
between the texts.10

2.2 Local descriptions...

The first text in our chain is the long memoir that Abel wrote and sent to the
French Academy of Science in 1826, but was published only posthumously, in
1841, [Abel 1826]. It is part of the corpus because both Abel himself and Jacobi
mentioned the 1826 version in published papers. The memoir was devoted
to what would later be called Abelian functions, that is, functions “of which
the derivatives can be expressed by the means of algebraic equations, all the
coefficients of which are rational functions of one and the same variable.”11

Such a function was denoted by

ψ(x) =
∫
f(x, y) dx,

where f is a rational function and y is a function of x defined implicitly by a
polynomial equation χ(x, y) = 0. Abel presented these functions as generaliza-
tions of rational and elliptic integrals. These integrals, indeed, correspond to
the case where χ(x, y) = y2 − p0(x) for a polynomial p0 of degree 1 or 2, or
3 or 4, respectively. They were taken as examples in the last section of the
memoir, together with the case where p0 is of degree 5 or 6, which leads to
hyperelliptic integrals.12

The main result in Abel’s memoir was the addition theorem. It was
introduced as encompassing the known theorems according to which the sum of
rational integrals is a rational integral, and that the sum of elliptic integrals is
an elliptic integral whose argument is determined algebraically as a function of

10Almost all the selected texts have been analyzed in other historical works, without
however focusing on the facets that interest me here. See for instance [Gray 1989] or [Houzel
2002], as well as other references that will be given below. Furthermore, my main objective
here is historiographical, which is not the case of such past research.

11“[Les fonctions] dont les dérivées peuvent être exprimées au moyen d’équations algébriques,
dont tous les coefficients sont des fonctions rationnelles d’une même variable” [Abel 1826,
pp. 176–177].

12More generally, hyperellptic integrals correspond to χ(x, y) = y2 −p0(x) with p0 of degree
greater than 4. Abel did not use the phrase “hyperelliptic integrals.” The terminology was
not settled at the time, and the corpus even allows to follow part of its evolution. I will
nevertheless elude this issue for the sake of simplicity.
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the given data.13 One form of the addition theorem given by Abel states that if
ψ(x1), . . . , ψ(xα) are α values of an Abelian function ψ, there exist an integer
µ as well as algebraic functions xα+1, . . . , xµ and an algebraic-logarithmic
function v of quantities associated with x1, . . . , xα, such that14

ψ(x1) + · · · + ψ(xα) = v − (ψ(xα+1) + · · · + ψ(xµ)).

The number µ−α corresponds to what would coincide with p decades later, at
least under some conditions on the equation χ(x, y) = 0. Abel highlighted that
this number is “very remarkable,”15 and he devoted many pages to investigate
it. In particular, in the final examples of the paper, Abel found that µ−α = 0,
1 or 2 for rational, elliptic or hyperelliptic integrals for which p0 is of degree 5
or 6, respectively, [Abel 1826, pp. 256–260].

The lack of response from the French Academy of Sciences to the submission
of his 1826 memoir prompted Abel to write an article that would be published
in Crelle’s Journal für die reine und angewandte Mathematik, [Abel 1828]. In
the introduction, Abel first stated the addition theorem for Abelian functions,
referring to his 1826 manuscript. Then he explained that his present aim was
to prove the theorem in the case of hyperelliptic integrals

ψ(x) =
∫

r(x)√
R(x)

dx,

where r is a rational function and R a polynomial.16 In fact, for some interme-
diary results, Abel was led to consider integrals having the specific form∫

δ0 + δ1x+ · · · + δm−2x
m−2√

R(x)
dx,

with R(x) of degree 2m − 1 or 2m. Retrospectively, one can see in this
formula the general expression of the integrals of the first kind associated with
χ(x, y) = y2 −R(x), that is, integrals that remain finite everywhere – a related
fact is that the maximal number of linearly independent such integrals is m− 1,
since the numerator of the integrated fraction depends on m− 1 coefficients.

Further, these integrals helped Abel prove the addition theorem for hyper-
elliptic integrals: if R is of degree 2m− 1 or 2m, and if x1, . . . , xµ1 , x′

1, . . . , x
′
µ2

are any variables, there exist algebraic functions y1, . . . , ym−1 of these variables,
such that

ψ(x1)+ · · ·+ψ(xµ1)−ψ(x′
1)−· · ·−ψ(x′

µ2) = v+ε1ψ(y1)+ · · ·+εm−1ψ(ym−1),
13The theorem on elliptic integrals is usually attributed to Leonhard Euler, including by

several authors in the corpus, as will be exemplified below.
14Abel also showed how to replace the sign − by a sign +, and how to extend the theorem

so as to treat linear combinations of values ψ(xi) with rational coefficients. On this addition
theorem and on other results that have been called “Abel’s theorem,” see [Kleiman 2004].

15“Dans cette formule le nombre des fonctions [ψ(xα+1), . . . , ψ(xµ)], est très-
remarquable.” [Abel 1826, p. 210].

16With the 1826 notations, it corresponds to χ(x, y) = y2 −R(x) and f(x, y) = r(x)
y

.

8



where v is an algebraic-logarithmic function and the ε are ±1. In particular,
and although Abel did not write it explicitly, comparing this formulation of
the theorem with the 1826 one shows that µ− α = m− 1 in the present case.

While the 1826 memoir could not be read by most mathematicians before
1841, the version published in Crelle’s journal did circulate. Even if Jacobi
did not cite the latter explicitly in his paper belonging to our sub-corpus,
the many attributions to Abel of results that are contained in it leaves little
doubt of the fact that he drew upon it.17 Jacobi’s general framework was
hyperelliptic integrals, which he presented based on known results on rational
and elliptic integrals. In particular, Jacobi underscored the importance of the
addition theorem, which he explicitly attributed to Abel and presented as the
generalization of Euler’s theorem on elliptic integrals

Π(x) =
∫ x

0

dx√
X
,

where X is a fourth-degree polynomial. After having stated Euler’s theorem,
Jacobi turned to particular hyperelliptic integrals

Π(x) =
∫ x

0

A+A1x√
X

dx,

with X of degree 5 or 6, and then to general hyperelliptic integrals

Π(x) =
∫ x

0

A+A1x+ · · · +Am−2x
m−2

√
X

dx,

with X of degree 2m− 1 or 2m. For these last integrals, the addition theorem
was stated under the form that for any variables x, x1, . . . , xm−1, there exist
algebraic functions a, a1, . . . , am−2 of these variables, such that

Π(x) + Π(x1) + · · · + Π(xm−1) = Π(a) + Π(a1) + · · · + Π(am−2).

Jacobi then highlighted that this theorem implies that the sum of any number of
Π(xi) can be expressed by a sum of m− 1 values Π(bi): this result corresponds
to the addition theorem contained in [Abel 1828] and stresses the role of the
number m− 1, for which Jacobi used the same notation as Abel.

The number m− 1 also appeared in original results by Jacobi, including
the statement of the so-called inversion problem. The initial question was to
find the reciprocal function of Π(x), i.e. to find λ(u) such that u = Π(x) if
and only if x = λ(u). Jacobi first recalled that it had already been solved
for rational and elliptic integrals. Moving on to hyperelliptic integrals and
using the addition theorem, he explained that the adequate way to tackle the

17On the other hand, Jacobi explicitly mentioned the 1826 memoir in a footnote, explaining
that it had been sent to the Academy of Sciences and that it should be published, [Jacobi
1832, p. 397].
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inversion was to introduce several variables. Thus, if X is of degree 5 or 6,
instead of considering the single equation u = Π(x), the idea was to invert the
system {

u= Φ(x) + Φ(y)
v = Φ1(x) + Φ1(y),

where Φ(x) =
∫ dx√

X
and Φ1(x) =

∫ x dx√
X

. Similarly, Jacobi indicated that the
inversion problem for hyperelliptic integrals with X of degree 2m− 1 or 2m
consisted in inverting a system of m− 1 equations in m− 1 unknowns.

If Jacobi indicated the right way of tackling the inversion problem, the
effective solution of the latter was carried out by some of his successors. In
particular, it was tackled in the case of hyperelliptic integrals corresponding to
a polynomial X of degree 5 or 6 in a paper that Rosenhain sent to the French
Academy of Sciences in 1846 at the occasion of the concours of that year.
The paper was successful and was published five years later, [Rosenhain 1851].
Jacobi’s name was associated with the inversion problem only through vague
references; explicit citations concerned mostly the Fundamenta nova, [Jacobi
1829], from which Rosenhain took the idea to consider θ-functions to solve
the problem. Jacobi, indeed, had used θ-functions of one variable to study
elliptic functions, and Rosenhain defined θ-functions of two variables to solve
the inversion system with two unknowns and two equations. Hence one sees,
both in the data of the inversion problem and in the definition of the new
θ-functions, the importance of the number 2, a number that can be recognized
as a special value of m− 1 in the light of Abel’s and Jacobi’s works. Rosenhain,
however, never mentioned this number m− 1, nor did he explicitly comment
on the significance of 2 in the problem he dealt with.18

Later, Weierstrass investigated and solved the inversion problem for general
hyperelliptic integrals. The main lines of the results were first indicated
in a short paper, [Weierstrass 1854], before a more complete version was
published, [Weierstrass 1856]. While acknowledging Rosenhain’s contribution,
Weierstrass explained that his predecessor’s approach could not be generalized
adequately, and thus that he developed a new way to handle the problem.
Jacobi’s name was mentioned a number of times, most often without explicit
reference; on the contrary, Abel’s 1828 paper was cited for the proof of the
addition theorem for hyperelliptic integrals.

Interestingly, Weierstrass did not adopt Abel’s or Jacobi’s notations. He
fixed a polynomial R(x) = A0(x−a1)(x−a2) · · · (x−a2ρ+1) for a given integer

18This example also suggests why the situation can much more complicated when it comes
to recognizing the numbers 1 or 2 as particular values of m− 1 (or p) in works that appeared
before, say, 1826.
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ρ, the inversion problem being then encapsulated in the differential system

du1 = 1
2

P (x1)
x1−a1

· dx1√
R(x1)

+ 1
2

P (x2)
x2−a1

· dx2√
R(x2)

+ · · · + 1
2

P (xρ)
xρ−a1

· dxρ√
R(xρ)

du2 = 1
2

P (x1)
x1−a2

· dx1√
R(x1)

+ 1
2

P (x2)
x2−a2

· dx2√
R(x2)

+ · · · + 1
2

P (xρ)
xρ−a2

· dxρ√
R(xρ)

...
duρ = 1

2
P (x1)
x1−aρ

· dx1√
R(x1)

+ 1
2

P (x2)
x2−aρ

· dx2√
R(x2)

+ · · · + 1
2

P (xρ)
xρ−aρ

· dxρ√
R(xρ)

,

where P (x) = (x− a1)(x− a2) · · · (x− aρ). The number ρ thus appears both
as the number of equations and variables in the inversion problem, and as the
number of constants in the polynomials P (x)

x−aj
. In other words, it corresponds

to what was denoted by m− 1 in Abel [1828] and in Jacobi [1832]. Incidentally,
this change of notation may be seen as a trace of a shift of focus: since this
number played an important role in these matters, Weierstrass adapted the
symbols so that it appeared as an entity in its own right, denoted by the single
letter ρ.19

Riemann’s paper, whose framework was completely different, was published
only one year after Weierstrass’s, [Riemann 1857]. Like Abel, Riemann studied
general Abelian functions, that is, primitives of algebraic functions s defined
implicitly by a polynomial equation F (s, z) = 0. The investigation made use of
the surfaces that would soon bear Riemann’s name.20 Riemann studied these
surfaces first in a setting independent of Abelian functions. In particular, he
characterized them with their connectivity order, a surface being (n+ 1)-ply
connected if it can be separated in two pieces by making n cross-cuts. In the
special case of a surface associated with an algebraic function s, Riemann then
showed that the number n is necessarily even, the connectivity order being
thus of the form 2p+ 1. The number p thus introduced is the one which would
eventually be used to define the genera in Clebsch’s papers.

This number was pivotal in Riemann’s whole theory of Abelian functions.
For instance, Riemann proved that p is equal to the maximal number of linearly
independent integrals of the first kind. This resulted from writing such an
integral as ∫

φ(s, z)
∂F
∂s

dz,

where φ is a polynomial having p independent coefficients – this encompasses the
elliptic and hyperelliptic integrals considered by Abel, Jacobi, and Weierstrass,
for which the number of coefficients was denoted by m− 1 and ρ respectively.
However, contrary to these numbers, the number p cannot be read off the

19It is more difficult to make such a comparison with Abel’s 1826 notation µ− α, since the
kind of Abelian functions is not the same.

20On Riemann surfaces, see for instance [Scholz 1980]. As is well known, these surfaces
were first introduced in Riemann’s doctoral dissertation, [Riemann 1851].
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expression of the polynomial F (s, z). Instead, Riemann established a formula
expressing p as a function of numbers associated with F : if n is the degree of
F with respect to s and if w is the number of pairs (s, z) such that F (s, z) =
∂F
∂s (s, z) = 0 and ∂F

∂z (s, z) ̸= 0, then

p = w

2 − (n− 1),

provided a supplementary technical condition is satisfied.
As for Jacobi’s inversion problem, Riemann first stated that Weierstrass had

solved it in the hyperelliptic case. Nevertheless, he added that his knowledge of
Weierstrass’s works consisted mostly in the sketch given in the 1854 paper, and
thus that the correspondence “not only in the results but also in the methods
leading to them will for the most part only be revealed by the promised detailed
presentation” given in [Weierstrass 1856].21 Riemann did not restrict himself
to hyperelliptic integrals: he expressed the inversion problem as the issue of
finding, for each system of complex numbers (e1, . . . , ep), some values η1, . . . , ηp

such that
(e1, . . . , ep) ≡

( p∑
ν=1

u1(ην), . . . ,
p∑

ν=1
up(ην)

)
,

where u1, . . . , up form a maximal system of linearly independent integrals of
the first kind, and where the congruence sign refers to their periods. The
problem was then solved with the help of θ-functions of p variables, the theory
of which was developed in the same paper, without mentioning Rosenhain’s
works where θ-functions of two variables had been introduced.

Finally, Abel’s addition theorem also appeared in Riemann’s paper, but
there was no question in proving it again. Instead, Riemann reformulated
it and used it, “following Jacobi [1832], for the integration of a system of
differential equations.”22

A number of Riemann’s results were taken up by Clebsch in his 1864
memoir devoted to the application of Abelian functions to geometry, [Clebsch
1864b]. Clebsch explained that Riemann’s paper contained everything that was
needed for such applications, but that difficulties in reading it had prevented
mathematicians from doing so. At the same time, he seemed to be opposed to

21“[I]n wie weit zwischen den späteren Theilen dieser Arbeiten und meinen hier dargestellten
eine Uebereinstimmung nicht bloss in Resultaten, sondern auch in den zu ihnen führenden
Methoden stattfindet, wird grossentheils erst die versprochene ausführliche Darstellung
derselben ergeben können.” [Riemann 1857, p. 116]. The exact reference to Weierstrass’s 1856
paper was given in Riemann’s paper but, oddly enough, at the end of the sentence where
the 1854 one (which was also cited a few lines before) was described. That Riemann wrote
that he would compare the methods and results later seems to indicate that he added the
reference quite late, or even that the journal editor added the exact bibliographic data shortly
before publication.

22“Ich benutze nun nach Jacobi (dieses Journals Bd. 9 Nr. 32 §. 8) das Abel’sche Addition-
stheorem zur Integration eines Systems von Differentialgleichungen”. [Riemann 1857, p. 137].
This refers to a theorem of Jacobi’s that I chose not to mention above for the sake of brevity.
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using Riemann surfaces to conceptualize integrals, and instead adopted the
viewpoint of Jacobi [1832].

Clebsch was first and foremost interested in the study of algebraic curves.
At the beginning of his work, he considered a plane algebraic curve defined by
an equation f(x1, x2, x3) = 0 of degree n between homogeneous coordinates of
the plane, which he saw as the locus of the intersection points of the lines of
two pencils whose parameters s and z are linked by an equation F (s, z) = 0.23

The similarity with Riemann’s notations is no coincidence: it prepared the
effective mathematical transfer, especially the transformation of the formula
p = w

2 − (n − 1). Indeed, having linked the curve f = 0 to an equation
F (s, z) = 0 allowed Clebsch to interpret w as the class of the curve, that is,
as the number of tangents that can be drawn to it from any (generic) point
of the plane. The combination of the well-known equality w = n(n− 1) − d,
where d is the number of double points of f = 0,24 with Riemann’s formula
eventually yielded

p = (n− 1)(n− 2)
2 − d.

The number p can be seen in many other places in Clebsch’s paper. For
instance, it was involved in the homogeneous expression of the integrals of the
first kind: ∫

Θ ·
∑

±c1x2 dx3

c1
∂f
∂x1

+ c2
∂f
∂x2

+ c3
∂f
∂x3

,

where
∑

±c1x2 dx3 is the determinant whose elements are the ci, xj , and dxk,
and where Θ is a polynomial having p independent coefficients. Just like in
Riemann, this expression was associated with the fact that p is the maximal
number of independent integrals of the first kind, a system of which is denoted
by u1, . . . , up.

On the other hand, contrary to Riemann, Clebsch did not deal with Ja-
cobi’s inversion problem. Instead, he presented one his main theorems as a
consequence of Abel’s addition theorem:25 mn points x1, . . . , xmn of the curve
f = 0 are the intersection points of this curve with a curve of order m if and
only if 

u1(x1) + · · · + u1(xmn) ≡ 0
...

...
up(x1) + · · · + up(xmn) ≡ 0

23For more details on Clebsch’s research on this point, see [Lê 2020, pp. 79–84].
24This expression of w had been proved by Poncelet in the 1820s. We will encounter the

definition of this concept of class in the next section. In the case studied by Clebsch, its
validity comes from Riemann’s supplementary condition mentioned above, which amounts to
the fact that the curve f = 0 has only nodes as singularities.

25The reference given by Clebsch was [Abel 1829], and not [Abel 1826] or [Abel 1828].
The cited paper contains what Steven L. Kleiman [2004] called “Abel’s elementary function
theorem.”
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modulo the periods of the Abelian functions. As can be seen, p occurs here as
the number of equations, which corresponds to the number of integrals of the
first kind.

We finally arrive at Clebsch’s publications of 1865 where the genera of
curves are defined, [Clebsch 1865a,b]. The main reference for this definition was
the memoir on the application of Abelian functions to geometry, a reference
that was used above all for the formula p = (n−1)(n−2)

2 − d. This formula was
taken as such, without being reworked, and served to gather algebraic curves
into genera, as has been seen in our introduction. Riemann’s memoir was also
cited in [Clebsch 1865b], when Clebsch presented the invariance of p under
birational transformations of a curve as “just another clothing of Riemann’s
theorem.”26 This invariance was used to derive results on algebraic curves,
which I will not mention here.

2.3 ... of a global picture

In the above narrative, the number p, or some of its earlier versions, can be
recognized at each step, whether in the very writing of the hyperelliptic integrals,
the addition theorem or the inversion problem. However, the identification of
these versions and the establishment of links between them takes different forms
according to the cases. In the passage from Riemann to Clebsch, the comparison
is made quite easy by a range of features: Clebsch adopted Riemann’s notations
for p, F (s, z), w, etc., cited him explicitly for the formula for p, and worked
at the same degree of generality for Abelian functions, in the sense that the
grounding equation F = 0 was given by a polynomial of any form and any
degree. On the contrary, no such elements are available to connect explicitly
Riemann with his predecessors, or to connect some of them with one another.
In particular, as mentioned, the fact that the numbers µ−α, m−1, ρ, and p do
not bear any name in the natural language contributes to the difficulty of the
situation. Hence it is the responsibility of the historian to identify Riemann’s
p and Abel’s µ− α, for instance.

In general, such an identification process is often performed via the under-
standing of the mathematical content, and it may be more or less immediate
and explicit in the historian’s mind. This is where features such as citations
between texts, even if vague or not directly linked to the investigated object,
are useful safeguards. It is with this in mind that I warned against the hazard
of recognizing the number 1 as a particular value of p in texts that would deal
with elliptic functions all the while being disconnected from sources where p or
its earlier versions appear explicitly.27

26“In der That ist dieser Satz nur eine andere Einkleidung desjenigen, welchen Herr Riemann
dieses Journal Band 54 pag. 133 gegeben hat.” [Clebsch 1865b, p. 98].

27The case of p = 0, which is associated with rational (or trigonometric) functions, would
be even more problematic because of the greater number of possibly relevant texts.
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My analysis also shows that the citations between our selection of texts
reflect a spectrum of positions, from the plain adoption to the claim of breaks
in approach, by way of ambivalent attitudes, with one author refusing a part
of a work while still borrowing some of its results. Moreover, the addition
theorem and the inversion problem are examples of specific questions that are
important to take into account to understand the evolution of p but have their
own dynamics in terms of occurrences, proofs, uses, and reformulations. The
succession of the chosen texts, finally, does not reflect any process such as a
progressive rise in generality or in rigor.

All this contributes to drawing a bigger picture into which the episode of
Clebsch’s definition of the genera fits, and which must be thought of with the
necessary nuances and caution. In particular, even if one could have thought
that extracting a continuous chain of texts would lead to an easy narrative, it is
not the case: there is no direct, obvious historical path that would echo a linear
process of conceptualization of p and of its occurrences in various problems.

Of course, an even bigger picture could be obtained by taking into account
elements that have been ruled out above, such as entire texts, or topics that
are connected to p and are tackled in the publications considered above, as
is illustrated by Riemann’s counting of 3p − 3 constants on which depends
the birational classes of equations F (s, z) = 0 for which p > 1. Such avenues,
which will not be explored here, illustrate the richness of the situation and,
consequently, the obstacles with which one is confronted when searching for
a global description. To employ a mathematical metaphor, the situation at
hand – like many other situations, presumably – is locally linear (and has been
locally depicted), but globally much more intricate.

3. Tracking a name

I now turn to the nominal path, associated with the name “genus” and with
algebraic curves.

3.1 Formation of the corpus

Let me first recall that none of the references given in Clebsch’s 1865 papers
introducing the genera of curves deal with a notion bearing the same name.
This is why the angle of attack must be changed, for instance by starting from
a large corpus related to algebraic curves and then searching in it for texts
dealing with any notion of genus.

Because the introduction of algebra in geometry made by René Descartes
and Pierre Fermat greatly changed methods of dealing with curves, I chose as
the lower bound of my time interval the year 1637, when La Géométrie was
published and Ad locos pianos et solidos isagoge was (approximately) written.
The corpus thus extends over almost two centuries and a half, from 1637 to
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1865.
To collect publications on algebraic curves, I first used the Catalogue of

scientific papers, which enables surveying the period 1800–1865. Specifically,
the Catalogue contains a section devoted to “Algebraic Curves and Surfaces
of degree higher than the second,” and I considered all the papers referenced
in the “General” subsection and in the subsections on plane curves, which
represents 368 articles. For earlier publications, I drew, on the one hand,
upon Jeremias David Reuss’ Repertorium commentationum [1808], of which
the chapter devoted to mathematics contains sections on algebraic curves: 74
articles, published between 1694 and 1795, are thus retained. To complete
the corpus, I eventually gathered all the primary references listed in Carl B.
Boyer’s History of analytic geometry and dated between 1637 and 1799, which
adds 80 new references.28

Then I investigated these 522 texts, searching in particular for any notion
called Geschlecht, which is the German original word employed by Clebsch. In
order not to restrict myself to German publications, words used at different
times as explicit foreign equivalents of Geschlecht have also been taken into
account: the Latin genus, the French genre, the Italian genere, the English
“genus,” as well as a few other ones.29

The examination of these words reveals two important points. First, they
all refer to categories of curves, and prior to Clebsch’s 1865 definition there were
four main notions of genera successively proposed by Descartes (1637), Newton
(1704), Euler (1748) and Cramer (1750).30 Second, the context in which genera
of curves are introduced and used is always that of curve classifications, and,
except for the case of Descartes, they are accompanied by considerations of
other taxa of curves, such as orders, classes, and species. Although special
attention is paid to genera, to include these categories in the study thus helps
build a more coherent narrative and understand phenomena that concern
genera. I will elaborate on this issue after describing the most salient points of

28Only 5 references appear both in Reuss and in Boyer. Moreover, a historical work not
reduced to being a topical bibliography, Boyer’s book, [Boyer 1956], is different in nature than
the Catalogue and Reuss’ Repertorium. The main reason that I chose to rely on it is that
Boyer used bibliographies made by mathematicians of the past to which I could not access.
Of course, my narrative has been constructed independently from Boyer’s, who, besides, dealt
with a different historical issue.

29Let me recall that the investigation follows here a nominal way. Thus the question is
not to locate concepts which would correspond mathematically to genera but would have a
completely unrelated name. That said, it turns out that the corpus does not bear any trace
of such concepts. As these observations suggest, I carried out a systematic reading of the
texts, and not just a textual search for a few key words, precisely to detect possible problems.
There are about 30 texts where the name “genus” or one of its foreign equivalents appear.

30A few other technical or semi-technical meanings of the genus of curves can be found,
and will be accounted for below. Non-technical meanings are not retained as relevant for
the present study: for instance, the French genre is used in phrases such as “ce genre de
considérations,” which can be translated by “this kind of considerations,” or “this type of
considerations.”
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this narrative.31

3.2 Classifications of curves

The first genera that can be found in our corpus are defined by René Descartes
in La Géométrie, [Descartes 1637]. In the second book of this text, Descartes
proposed to “distinguish [curves] by order in certain genera”32 by using the
equations defining them. More precisely, if n > 1, the nth genus encompassed
the curves whose equation is of degree 2n − 1 or 2n. As for the first genus,
it consisted only of curves with an equation of the second degree because
Descartes did not recognize straight lines as curves – significantly, he called
the latter “curved lines.”

Descartes justified this way of classifying curves only by alluding to the fact
that the “difficulties” of the fourth degree can be “reduced” to the third degree,
and that those of the sixth degree can similarly be reduced to the fifth degree.33

This justification referred to the possibility of reducing equations with one
unknown of degree 4 to equations of degree 3, a possibility that Descartes
apparently believed to be true also for higher degrees and for equations with
two unknowns.34

The classification proposed by Descartes was received in different ways in
the 17th century. Fermat, for one, criticized it in his Dissertatio tripartita
and preferred to classify curves degree by degree, calling “species” the families
of curves having an equation of the same degree.35 Another mathematician
who adopted such a negative opinion of Descartes’ classification is Jacob
Bernoulli [1695], who also preferred grouping curves by degrees. On the
other hand, Descartes’ genera were fully integrated in the works of other
mathematicians, such as Frans van Schooten [1657] and Jacques Ozanam [1687].

In the corpus under scrutiny, only one 17th-century reference contains a
notion of genus of curves that is not related to Descartes’. This is a book by
John Craig, where genera are used to divide the totality of curves, be they
algebraic or not. Specifically, algebraic curves themselves form the first genus,
while transcendent curves are classified into the other genera according to

31A similar study is proposed in [Lê 2023], although the corpus is a bit different and no
special emphasis is made on the genera.

32“[D]istinguer [les lignes courbes] par ordre en certains genres” [Descartes 1637, p. 319].
On La Géométrie, see [Bos 2001; Serfati 2005; Herreman 2012, 2016].

33“[I]l y a règle générale pour réduire au cube toutes les difficultés qui vont au quarré de
quarré, & au sursolide toutes celles qui vont au quarré de cube” [Descartes 1637, p. 323].

34See for instance [Bos 2001, p. 356]. Another interpretation of Descartes’ grouping of
curves is given in this reference, and is linked with the issue of constructing curves associated
with the problem of Pappus and with the Cartesian classification of geometrical problems.

35The Dissertatio is edited in [Fermat 1891, pp. 118–132]. According to [Mahoney 1999,
p. 130], it has probably written at the beginning of the 1640s. See also a 1657 letter from
Fermat to Kenelm Digby where the arguments of the Dissertatio are taken up and made
more explicit, [Fermat 1999, pp. 491–497].
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further criteria, [Craig 1693, p. 42]. Such a definition, however, does not seem
to have been taken up by later mathematicians.

This contrasts with the notion introduced by Isaac Newton in his famous
Enumeratio linearum tertii ordinis, published in 1704 as an appendix to the
treatise Opticks, [Newton 1704].36 At the very beginning of this text, Newton
asserted that lines can be divided into orders “according to the dimensions of
the equation expressing the relation between absciss and ordinate, or, which is
the same thing, according to the number of points in which they can be cut by
a straight line.”37 The nth order was thus made up of the lines defined by an
equation of degree n. Furthermore, echoing the distinction between lines and
curves, Newton proposed a parallel classification of curves, the corresponding
categories being genera. More precisely, the nth genus of curves was that of
the curves defined by an equation of degree n + 1, so that “[a] curve of the
second genus is the same as a line of the third order.”38

The title of his work made clear that Newton’s aim was to classify the
lines of the third order. In fact, past this title and the very first lines, Newton
mainly used the vocabulary of curves in the text, and he divided the curves
of the second genus into 72 species. Such a terminology thus refers to the
usual connection between genera and species, the orders not being common
categories of classification at the time.39

Many publications from the first half of the 18th century used the same
classifying vocabulary. They often involved both lines and curves, even though
a certain prevalence of the former can be observed. For instance, James
Stirling’s Lineae Tertii Ordinis Neutonianae only dealt with lines and their
orders, [Stirling 1717], while François Nicole also mentioned curves and their
genera in his Traité des lignes du troisième ordre, ou des courbes du second
genre, [Nicole 1731]. Such works were direct continuations of Newton’s Enu-
meratio, but orders and genera appeared in other types of publications. One
of them is a 1705 book by Nicolas Guisnée, entitled Application de l’algèbre
à la géométrie, where the double classification was adopted although Newton
was not referred to, [Guisnée 1705]. Other examples are Edmund Stone’s
New Mathematical Dictionary, [Stone 1726], and Colin Maclaurin’s Treatise
of Algebra, [MacLaurin 1748], where the English words used to refer to what
Newton designated as genera are “genders” and “kinds,” respectively. Maria
Gaetana Agnesi [1748], for her part, also spoke both about orders of lines and
genera of curves, the Italian words being ordine and genere. But she also made
use of the latter term in a less technical sense, like when she described the

36On the Enumeratio, see [Guicciardini 2009, pp. 109–136].
37“Lineae Geometricae secundum numerum dimensionum aequationis qua relatio inter

Ordinatas & Abscissas definitur, vel (quod perinde est) secundum numerum punctorum in
quibus a linea recta secari possunt, optimè distinguuntur in Ordines.” [Newton 1704, p. 139].
The given English translation comes from [Talbot 1860].

38“Curva secundi generis eadem cum Linea Ordinis tertii.” [Newton 1704, p. 139].
39On this point, see [Lê 2023, pp. 96–100].
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curve defined by am−1x = ym as a “curve of the genus of the parabolas,” a
phrase which recalls the taxonomic connotation of the word.40

No publication, however, used the vocabulary of curves and genera without
involving that of lines and orders. Moreover, in many cases the terms related
to curves appeared only in the titles of the papers or of their sections, or were
hardly used in the statement of theorems and their proofs, unlike “lines” and
“orders.”41 Lines and orders are therefore the objects that were mainly used in
practice during in the first half of the 18th century.

The coexistence of lines and curves was abolished explicitly in two major
books published in the middle of that century. One of them is Leonhard Euler’s
Introductio ad analysin infinitorum, whose second volume contained chapters
devoted to the theory of algebraic curves [Euler 1748]. Euler first defined the
orders of “curved lines” via the degree of the equations. Further, to encompass
the case of straight lines, he explained that since it would be inappropriate to
qualify the latter as curves, he would only speak about “lines” to refer to both
cases, [Euler 1748, p. 26].

Genera in the Newtonian sense thus disappeared together with the distinc-
tion between lines and curves, but Euler did introduce genera to divide lines of
a given order. For instance, in the chapter devoted to the lines of the third
order, Euler first explained that they can be classified into species, according
to the number and the nature of their infinite branches. After having brought
out 16 such species, he emphasized that they are not the same as Newton’s 72
species, and he showed how these 72 can be distributed into his 16. At the
end, he added:

Most of these species are so extensive that they each include quite consid-
erable varieties, if we consider the shape they present in a finite space. It
is for this reason that Newton multiplied the number of species, in order
to distinguish one from another the curves that offer notable differences
in this space. It will therefore be more appropriate to call Genera what
we have designated as Species, and to refer to Species the varieties they
contain.42 [Euler 1748, p. 126]

In other words, Euler adjusted the terminology to fit with the great number
of categories he had to deal with, and what he had first called “species” were
renamed “genera.”

A similar situation occurred in Gabriel Cramer’s Introduction à l’analyse
40“am−1x = ym, curva del genere delle parabole.” [Agnesi 1748, p. 940].
41This is thus the exact opposite of Newton’s case.
42“Species autem hae plerumque tam late patent, ut sub unaquaque varietates fatis notabiles

contineantur; si quidem ad formam, quam Curvae habent in spatio finito, respiciamus.
Hancque ob causam Newtonus numerum specierum multiplicavit, ut eas Curvas, quae in
spatio finito notabiliter discrepant, a se invicem secerneret. Expediet ergo has, quas Species
nominavimus, Genera appellare, atque varietates, quae sub unoquoque deprehendantur, ad
Species referre.”
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des lignes courbes algébriques, [Cramer 1750].43 In the preamble of the book,
Cramer recalled that “Algebra alone provides the means to distribute Curves
into Orders, Classes, Genera & Species” and that “it is to the illustrious Newton
that Geometry is most indebted for this distribution.”44 Later, Cramer defined
the orders of lines through the degree of their defining equation. He then
explicitly recalled the old distinction between lines and curves:

Mr. Newton distinguishes between the Orders of Lines & the Genera of
Curves. Since the first Order contains only the straight Line [...], he calls
Curves of the first Genus the Lines of the second Order, Curves of the
second Genus the Lines of the third Order, & so on. However reluctant
one may be to deviate from the denominations established by this Great
Man, it seemed to me that this expression was too cumbersome in terms
of expression, & I decided to say indifferently Curves or Lines of the
second Order, Curves or Lines of the third Order, &c.45 [Cramer 1750,
p. 53]

Just like in Euler, the notion of genus that Newton had defined thus vanished
with the disappearance of the difference between curves and lines. Although
neither of these authors explained why they favored lines and orders, it is most
likely that these objects survived because their numbering corresponds exactly
to the degrees of the equations.

Genera of lines can still be found in Cramer’s text, as subcategories of each
order that reflect properties related to the infinite branches. In particular,
Cramer classified curves of the third order into 14 genera, and he systematically
indicated their correspondence to Newton’s species. For instance, the curves
with three concurrent asymptotic lines were gathered in one genus, which
“contains the nine species of redundant hyperbolas whose asymptotes intersect
at one point. Newton, Nb. 4.”46

Comments on the appropriate classification scale appeared when Cramer
treated the case of curves of the fourth order. Imitating the approach he used
in the third-order case, Cramer was first led to consider eight cases of equations

43On this book, see [Joffredo 2017, 2019]. As Cramer explained in the beginning of the
Introduction, he only became aware of Euler’s Introductio after he had developed his own
ideas. The two mathematicians were in epistolary communication during the 1740s, though.
See [Joffredo 2019, pp. 250–258].

44“[L]’Algèbre seule fournit le moyen de distribuer les Courbes en Ordres, Classes, Genres
& Espèces” and “c’est à l’illustre Newton que la Géométrie est surtout redevable de cette
distribution” [Cramer 1750, p. viii]

45“Mr. Newton distingue les Ordres des Lignes & les Genres des Courbes. Comme le
premier Ordre ne renferme que la Ligne droite [...], il appelle Courbes du premier Genre, les
Lignes du second Ordre, Courbes du second Genre, les Lignes du troisième Ordre, & ainsi
de suite. Quelque répugnance qu’on ait à s’écarter des dénominations établies par ce Grand
Homme, il m’a paru que cette distinction génoit trop l’expression, & je me suis déterminé à
dire indifféremment, Courbes ou Lignes du second Ordre, Courbes ou Lignes du troisième
Ordre, &c.”.

46“Ce Genre contient les neuf espèces d’Hyperboles redondantes dont les trois asymptotes
se croisent en un point. Newton, N.o 4.” [Cramer 1750, p. 362].
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of curves. The three first cases yielded 1, 6, and 9 genera, respectively. But
when Cramer treated the next case, he indicated that the number of genera
was too great to be completely listed: “It would be impossible to enumerate
all the genera of curves included in this IVth Case: but they can be reduced
to five Classes.”47 In other words, since the genera became too numerous to
be enumerated exhaustively, Cramer decided to introduce a new type of curve
categories, situated between the fourth order and its genera.

Strikingly, no technical use of the word “genus” can be found in the texts
of our corpus between Euler’s and Cramer’s books and 1833, when Euler’s
genera were mentioned again. On the contrary, the orders of lines (or curves,
the difference being abandoned) were absolutely commonplace in the texts
that were published during this period. Their use caused many comments at
the occasion of a specific episode, during which new “classes” of curves were
introduced.

This episode is the famous duality controversy, which, at the end of the
1820s, opposed Joseph-Diez Gergonne and Jean-Victor Poncelet.48 Let me
briefly recall that Gergonne’s principle consisted in associating a dual theorem
with any given theorem, the two being related by the exchange of the words
“points” and “lines,” and of associated verbs and adjectives. However, Gergonne
made the mistake to proceed as though curves of order n > 1 were replaced by
curves of the same order in this process: this is one of the points that Poncelet
used against him. When he reworked his theory, Gergonne [1827] introduced
the notion of “class,” a curve being of the nth class if n tangents can be drawn
to it from a given point of the plane. The principle of duality could then be
corrected by making curves of the nth class correspond to curves of the nth
order.

Classification issues were part and parcel of Gergonne’s and Poncelet’s
arguments. On the one hand, Gergonne emphasized that orders and classes
provided two ways of classifying curves which were dual to one another. On the
other hand, Poncelet blamed Gergonne for having “admitted simultaneously
two essentially different classifications for curves,” and he insisted that he
himself did not “shy away from the difficulty of preserving [to the classification]
of curves [its] legitimate and universally [accepted] definition.”49 If Poncelet
thus refused the classification itself, he was still interested in evaluating the
number of tangents that can be drawn to a curve, and he found that this
number is n(n − 1) − 2d if the curve is of order n and has only d nodes as

47“On ne saurait énumérer tous les genres des courbes comprises dans ce IVe Cas : mais
on peut les réduire à cinq Classes.” [Cramer 1750, p. 379].

48On this controversy, see [Lorenat 2015] and the references given on p. 547, as well
as [Etwein, Voelke, and Volkert 2019].

49“[I]l ne s’est agi de rien moins que de torturer le sens des mots, en admettant simultanément
deux classifications essentiellement distinctes pour [les] courbes.” Further: “je n’ai pas reculé
devant la difficulté de conserver aux classifications des courbes [...] leur définition légitime et
universellement admise.” [Poncelet 1828, pp. 300, 302].
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singularities.
In spite of Poncelet’s hostility, the notion of class defined by Gergonne was

adopted quite quickly by the 19th-century geometers. In the corpus, the first
one to use it is Julius Plücker, who published many papers on algebraic curves
during the 1830s,50 including those where he completed Poncelet’s formula for
the class-number of a curve.

Genera are mentioned in one of these papers, which is a presentation
of the book System der analytischen Geometrie, [Plücker 1833, 1835]. As
this presentation explained, one of the aims of the book was to rework the
classification of the curves of the third order. Plücker rooted the question in
Newton’s Enumeratio and declared that Euler, though having made progress
in the theory of infinite branches, did not succeed in settling the issue. The
genera that Euler had defined were thus briefly evoked in this discussion – the
presentation paper, written in French, used the word genres, while the book
itself referred to these categories by the term Geschlechter. However, no genera
were involved in Plücker’s own classification, which consisted in dividing the
third order into species only.

Only a very few occurrences of genera occur in the corpus between 1833 and
1865. They either correspond to concepts defined by past mathematicians, or
concepts that were used in a less technical way, just like with Agnesi’s example
mentioned above. For instance, Joseph Dienger devoted a paper published
in 1847 to a “curve deriving from the ellipse, of the genus Conchoid”51 and
Ernest De Jonquières, in a 1861 article, was led to consider a “curve of the
fourth order, of the genus of the lemniscates.”52 Finally, a paper published in
1863 by a certain F. Lucas also employed the term “genus” as he referred to
Newton’s works on the classification of third-order curves, [Lucas 1863].

Such a paucity shows that when Clebsch defined the Geschlechter in 1865,
the word was, so to speak, available to be endowed with a new technical
definition. Moreover, we saw that when Clebsch did so, the idea of introducing
a new classification of curves was clear. A notable difference between his
Geschlechter and the other notions of genus that we encountered is that these
genera were not presented as subcategories of orders, quite the opposite. The
idea was to divide the totality of algebraic curves into genera, each of them
being then subdivided according to the orders. This classification program was
thus different from Gergonne’s, for whom the distribution into classes was not
supposed to replace that into orders, but to offer another way to conceive of
the division of curves.

50The adoption of the notion of class by Plücker and other mathematicians is described
in [Lê 2023, pp. 110–116].

51“Note sur une Courbe dérivant d’une ellipse (du genre Conchoïde)”, [Dienger 1847, p. 234].
The words that are here between parentheses are in a footnote in the original paper.

52“[La courbe...] est une courbe du quatrième ordre, du genre des lemniscates.” [Jonquières
1861, p. 211].
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3.3 Continuities and discontinuities

If Clebsch’s definition of the genera is thus embedded into a narrative that
extends over almost two centuries and a half, it is true that there is no direct,
effective link made by Clebsch between this episode and the previous ones –
his mention of the classification by orders, which has been reported in the
introduction of this chapter, appears more as a general mathematical fact than
a historical reference per se.

More generally, the genera proposed by Descartes, Newton, Euler, Cramer,
and Clebsch, have no direct mathematical link to one another. They cannot be
seen as different instances of one and the same concept which would correspond
to different degrees of generality of the associated algebraic curves, for example.
The situation is thus distinct from that of the numbers p, ρ and m − 1, the
first becoming equal to the other two if the framework of Abelian functions
in which it is defined is particularized. Nor are they concepts, each of which
would have been developed from the previous one following a discussion of
its relevance and an attempt to replace it. Significantly, if Cramer did refer
explicitly to Newton to explain why the latter’s genera should be abandoned,
his own genera referred to something else, and the bridge with Newton was
made on the level of species.

From this point of view, isolating the works of the five above-mentioned
mathematicians, focusing on their definition of genera solely, and juxtaposing
their description would yield quite a discontinuous result, both in terms of
chronology and intellectual dynamics. Greater coherence is achieved by taking
into account both other works that contain a notion of genus (be it a simple
adoption of Descartes’ notion, for example, or a semi-technical one) and works
that involve other categories of curves, namely orders, classes, and species: in
doing so, the historian weaves a more complete and continuous fabric related
to the classifications of curves, in which the episodes of the definitions of the
genera can be advantageously included.

As in the previous section, this bigger picture could be extended or made
more complex. For instance, most of the texts that have been kept silent
above do not contain any new notion of genera, orders, classes, or species, but
they could be used to get a view of the range of the mathematical questions
in which these categories have been involved, or to analyze the process of
their banalization. Finally, questions revolving around the tension between
the categories of curves and the numbers that characterize them, or the
mathematical links between these numbers, could also be investigated further.

4. Bigger pictures

The two pictures obtained by following the paths of the number p and of the
name “genus” are essentially disjoint in terms of content, which reflects the
historical divide between the theory of Abelian functions and the theory of
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algebraic curves before Clebsch began to systematize their interactions in 1864.
Most mathematicians of our corpora, indeed, only contribute to one of these
pictures, the three exceptions being Clebsch, Jacobi, and Siegfried Aronhold,
among whom only the first has papers that belong to both corpora. The
mathematical questions and the techniques that are deployed to address them
are also proper to both pictures, except for these three mathematicians’ cases –
Clebsch’s interpretation of the number of ramification points as the class of a
curve nicely illustrates this point.53

The two narratives have also their own timelines and their own pace, with
one extending over almost two centuries and a half while the other is mainly
concentrated in forty years. As explained in the introduction, this difference
does not merely stem from a convention of corpus formation. It reflects an
asymmetry in the process of identifying earlier versions of mathematical objects
and in the limits with which the historian is confronted when doing so. In
particular, the sameness54 that underlies each picture is not of the same nature,
as is reflected by the differences between the intellectual dynamics that govern
the succession of the diverse concepts of genera and that of the numbers µ−α,
m − 1, ρ, and p. These numbers, indeed, can be seen as being the same,
provided the technical frameworks with which they are associated are adjusted
to one another. On the contrary, what remains stable in the nominal path –
and seems to allow a more straightforward writing of a long-term history – is
a framework of curve classifications, a framework that is general enough to
give rise to different ways of approaching it, and to answers having little in
common apart from the names of the considered categories of curves.

As disconnected as the two pictures that have been obtained can be, both
have their own kind of coherence, and there is no question of ranking them, by
asserting that one would be more relevant or more significant than the other.
Quite simply, they refer to two types of connection of a newly defined object
with its past.

This observation takes us eventually back to the issue of drawing one picture
of the past of the genera into which the episode of Clebsch’s 1865 definition
would be embedded.

Considering what has been done in this chapter, I think it would be
misguided to aim at writing a final result consisting in one unified narrative,
well-ordered chronologically, and integrating all the above elements. In fact,
what has been proposed corresponds better to what should be done to draw
a bigger picture, in my view: the construction of corpora on the basis of
explicit criteria, their systematic study with regards to determined objectives,
the comparison of the obtained results, and a reflection on the possibility of

53Aronhold and Jacobi mix together elliptic functions and algebraic curves in papers that
belong to the corpus on Abelian functions, [Jacobi 1828; Aronhold 1862]. Their works are
analyzed and compared to Clebsch’s approach, [Clebsch 1864a], in [Lê 2018].

54I borrow this term from [Goldstein 2019].
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merging them or not. In particular, I do not see what has been presented in
the chapter as simply setting two narratives down along side each other, even
though these narratives are related to quite autonomous historical situations.

Of course, the result is still a partial picture, since other entire tracks
could be followed and yield other pictures with their own content, dynamics,
and chronologies. For instance, one could try tracing back the topological
interpretation of the number p as the half of the number of sections required to
disconnect a surface, or researching the past of the number (n−1)(n−2)

2 , which
would lead to the path of curve singularities. On the other hand, focusing on
synchronicity rather than diachronicity, one could try to embed each of the
episodes that compose our two narratives into thicker wholes extending even
beyond mathematics, for instance by considering the practice of classification
in science at different moments between the 17th and the 19th centuries in
Europe, or by investigating how the epistemic values shared in given European
universities could have impacted their mathematicians’ ways of thinking of
Abelian functions and curves.

Such possibilities are legion, because any human activity is entangled
in various intellectual, social, cultural, and institutional configurations, and
because any work of any mathematician comes within the framework of its
present and its past. Confronted to such an endless spectrum of tracks, however,
one is not doomed to capitulate and stay within the relative safety of local
studies.

Facing the fantasy of absolute exhaustiveness, indeed, systematicity presents
itself as a more reasonable option for drawing bigger pictures. From the
formation of relevant corpora to the treatment of a given question, it enables
reaching a form of completeness in the sense that it forces the historian not to
set pieces of history aside too rapidly, or even without realizing it. Further,
provided methodology is made explicit in the final outcome, it helps the
reader appreciate the significance of the constructed narrative, even though
this narrative is necessarily constrained by the tension between the need of
providing enough information for the historical proof, and that of condensing
the written account, for concrete reasons of space, for instance.

Said differently, big pictures are not meant to stay out of range of the
historian of mathematics, as long as sound methodological groundings underpin
their drawing and significant details are still taken into account to delineate
clearly the specificities of each author and each text in relation to the issue at
hand. I have tried to illustrate this in presenting and confronting two ways of
reconstructing the past of a mathematical object. Considering other objects
or other mathematical entities, searching for their future, or trying to thicken
the comprehension of the episode of their definition in synchronicity would
certainly require proceeding a bit differently. In this respect, this chapter is not
to be seen as a way of settling the question by inferring general laws on how to
draw bigger pictures in the history of mathematics, or on what such pictures
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may look like, but rather as a case study aimed at stimulating historiographical
and methodological reflection.
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