
Growth bijections for

Joint work with Jérémie Bettinelli and Baptiste Louf
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Growth bijections
For A = ∪nAn a combinatorial class, with an = |An|
growth bijection = (local) bijection explaining formula for an/an−1

(or, more generally, recurrence satisfied by an)

Can be applied to:
• trees
• planar maps
• oriented planar maps

and other classes, e.g. domino tilings

n = 4

an = 2

(
n+1
2

)
an

an−1
= 2n

[Elkies et al’92]

[Rémy’85], [Marckert’22]

[Bettinelli-Louf-F’24]

[Bettinelli’14,’20], [Louf’19], [Schabanel’25]

⇒ growth process for objects in A (random sampling procedure)
A1 → A2 → A3 → · · ·
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explains (n+ 1)Catn = 2(2n− 1)Catn−1
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Rémy’s bijection [Rémy’1985]

explains (n+ 1)Catn = 2(2n− 1)Catn−1

also [Rodrigue’1868]

Catn =
2(2n− 1)

n+ 1
Catn−1

via Catn = # triangulations of n+ 2-gon



Other growth bijection for binary trees
[Marckert’22]
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Other growth bijection for binary trees
[Marckert’22]

cut join

extends to k-ary trees ak+1
n =

1

kn+ 1

(kn+ 1

n

)
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Growth bijection for Narayana numbers

The Narayana number is Nara,b =
1

n

(
n

a

)(
n

b

)
, where n = a+ b− 1

it counts binary trees with a left leaves and b right leaves

⇒ identity a(a− 1)Nara,b−1 = b(b− 1)Nara−1,b

a = 5 left leaves

b = 4 right leaves

Rk: a− 1 right inner edges and b− 1 left inner edges

4 right inner edges

3 right inner edges

right inner edgeleft inner edge
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, where n = a+ b− 1

it counts binary trees with a left leaves and b right leaves

cut join

⇒ identity a(a− 1)Nara,b−1 = b(b− 1)Nara−1,b

explained by cut-and-join operations

cut join

[Bettinelli-F-Louf’24, ?]
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Growth bijection for Narayana numbers

The Narayana number is Nara,b =
1

n

(
n

a

)(
n

b

)
, where n = a+ b− 1

it counts binary trees with a left leaves and b right leaves

⇒ identity a(a− 1)Nara,b−1 = b(b− 1)Nara−1,b

Rk: Identity (& boundary case Nar1,b = 1) yields formula for Nara,b

a

b

Nara,b

1

b(b+1)
a(a−1)



Planar maps
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=

Def. Planar map = connected graph embedded on the sphere

Easier to draw in the plane (choosing root-face to be the outer face)

⇒

Planar maps

=

Rooted map
= map with marked corner



Counting planar maps
• Nice counting formulas [Tutte’62,63]

arbitrary maps n edges simple quadrangulations n faces
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Counting planar maps
• Nice counting formulas [Tutte’62,63]

arbitrary maps n edges simple quadrangulations n faces

2 · 3n

(n+ 2)(n+ 1)

(2n
n

) 2

n(n+ 1)

( 3n

n− 1

)
bipartite maps n edges

3 · 2n−1

(n+ 2)(n+ 1)

(2n
n

) loopless triangulations 2n faces

2n+1

(n+ 1)(2n+ 1)

(3n
n

)
• Combinatorial proofs:

- bijections to tree families
[Cori-Vauquelin’81], [Schaeffer’97,99], [Bousquet-Mélou–Schaeffer’00],

- bijections to slices & slice decompositions

- growth bijections using slit-slide-sew operations
[Bettinelli’14,’20], [Bettinelli-Korkotashvili’24]

[Bouttier-Guitter’15], [Bouttier-Guitter-Miermont’22], [Bouttier-Guitter-Manet’24]

[Bouttier-Di Francesco-Guitter’02,04], [Bernardi-F’12], [Albenque-Poulalhon’15]. . .



Bi-marked maps
bi-marked map = rooted map + marked oriented edge e such that:

• e has an inner face on its right
• end of e closer to root-vertex than origin of e

e

[Bettinelli’20]



Bi-marked maps
bi-marked map = rooted map + marked oriented edge e such that:

• e has an inner face on its right
• end of e closer to root-vertex than origin of e

e

[Bettinelli’20]

0

1

1

1

2

2

2
3

3

3

4

3



e

1

12

2
3

4

3

Slit-slide-sew bijection on bi-marked maps
[Bettinelli’20]

1

0

2

3

3



e

1

12

2
3

4

3

Slit-slide-sew bijection on bi-marked maps
[Bettinelli’20]

1

0

rightmost path from e

2

3

3



e

1

12

2
3

4

3

Slit-slide-sew bijection on bi-marked maps
[Bettinelli’20]

1

0

rightmost path from e

e

slit

2

3

3



e

1

12

2
3

4

3

Slit-slide-sew bijection on bi-marked maps
[Bettinelli’20]

1

0

rightmost path from e

e

slit

slide

2

3

3



e

1

12

2
3

4

3

Slit-slide-sew bijection on bi-marked maps
[Bettinelli’20]

1

0

rightmost path from e

e

slit

slide

sew

e

2

3

3



e

1

12

2
3

4

3

Slit-slide-sew bijection on bi-marked maps
[Bettinelli’20]

1

0

rightmost path from e

e

slit

slide

sew

e

0

1
1

2

2

3

3

3

4

2

3

3

1

1 2

slit

slide

sew

leftmost path from e



e

1

12

2
3

4

3

Slit-slide-sew bijection on bi-marked maps
[Bettinelli’20]
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Quadrangulations with a boundary
Let Qn,j = # rooted maps with root-face degree 2j,

and n inner faces all of degree 4

n = 6, j = 5

Counting formula: [Tutte’62]

Qn,j =
3n(2j)!(2n+ j − 1)!)

j!(j − 1)!n!(n+ j − 1)!

⇓

2nQn,j =
3j

2j+1 (2n+ j − 1)Qn−1,j+1

Identity:

n

j

Qn,j

1 Catn+jRémy

slit-slide-sew
⇑ using Q0,k = Catk⇑ using Q0,k = Catk
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and root-face degree 2j + 1
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Quasi-quadrangulations with a boundary
rooted maps with a marked inner face of degree 3, other inner faces of degree 4

Q̃n,j = # quasi-quadrangulations with n inner faces,
and root-face degree 2j + 1

Rk: In distance-labeling from a given vertex, the two odd faces
have a unique edge i− i on their contour

1
12

2
2

2

3 n = 12
j = 4

3

4
3

3

4

0

3

3

3

3
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The identity via slit-slide-sew

e ei i−1

i+1 i

i−1 i

n−1 quadranglesn quadrangles

2nQn,j

2j 2j+1

3 j
2j+1

Q̃n,j=

ei i−1

i−1

2j+1 n−1 quadrangles

ei−1 i

n−1 quadrangles 2j+2

Q̃n,j
1
2
2(2n+ j − 1)Qn−1,j+1=



Oriented planar maps
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Acyclic orientation on rooted map, where the ends of the root-edge are
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Acyclic orientation on rooted map, where the ends of the root-edge are

s

t
local conditions

inner
vertices

inner
faces

the unique source and unique sink

left
length

right
length
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marked inner vertex v
bipolar orientation with

rightmost path
from v

v

slit

v slide
down

sew

e

marked “good” edge e
bipolar orientation with

good edge

e

n inner vertices
j outer vertices n−1 inner vertices
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Slit-slide-sew bijection for bipolar orientations

marked inner vertex v
bipolar orientation with

rightmost path
from v

v

slit

sew

v slide
down

slide
up

sew

slit
e

marked “good” edge e
bipolar orientation with

good edge

e

n inner vertices
j outer vertices n−1 inner vertices

j+1 outer vertices
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Inner-triangulated bipolar orientations
Tn,j := # bipolar orientations with inner faces of degree 3,

n inner vertices and j outer vertices

n = 8
j = 5

Rk: By duality, Tn,2 = # prographs with 2n operators

co-product product

Counting formula: [Tutte’73, Bousquet-Mélou’11]

Tn,j = j(j − 1)
(3n+ 2j − 4)!

n!(n+ j − 1)!(n+ j)!

⇓

nTn,j =
j−1
j+1 (3n+ 2j − 4)Tn−1,j+1

Identity:

n

j

Tn,j

1 Catn+j−2Rémy-Rodrigue

slit-slide-sew⇑ using Q0,k = Catk−2
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Marked bipolar orientations
nTn,j =

j−1
j+1 (3n+ 2j − 4)Tn−1,j+1

Tn,j = { inner-triangulated bipolar orientations
with n inner vertices, j outer vertices }

T •n,j those with a marked inner vertex T n,j those with a marked edge

Rk: Identity also reads |T •n,j | =
j−1
j+1 |T n−1,j+1|

e

Def: An edge e is boundary-reaching if

visited by rightmost path

T ∂

n,j ⊂ T n,j subfamily where the marked edge is boundary-reaching

πn,j :=
|T ∂

n,j |
|T n,j |

(boundary-reaching probability)



Identity via slit-slide-sew
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v

v
e

T •n,j

n

j

marked vertex v

n−1

j+1

boundary-reaching
marked edge e

T ∂

n−1,j+1

whereas Identity ⇔

⇒ |T •n,j | = |T
∂

n−1,j+1| = πn−1,j+1|T n−1,j+1|
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Identity via slit-slide-sew

v

v
e

T •n,j

n

j

marked vertex v

n−1

j+1

boundary-reaching
marked edge e

T ∂

n−1,j+1

whereas Identity ⇔

⇒ |T •n,j | = |T
∂

n−1,j+1| = πn−1,j+1|T n−1,j+1|
|T •n,j | =

j−1
j+1 |T n−1,j+1|

it remains to prove that πn,j = 1− 2
j



Boundary-reaching ratio on a fixed map?

edges not boundary-reaching are surrounded

4 6 9 9 4 6 38 6= 33

11 edges



Boundary-reaching ratio on a fixed map?

11 edges

4 6 9 9 4 6 38

9 7 3 3 3 3 28

3

edges not boundary-reaching are surrounded

3 3 3 9 7 28

4 6 9 9 4 4 38

include bipolar orientations rooted at other outer edges



Boundary-reaching ratio on a fixed map?

11 edges

4 6 9 9 4 6 38

9 7 3 3 3 3 28

3

edges not boundary-reaching are surrounded

3 3 3 9 7 28

4 6 9 9 4 4 38

each edge is surrounded 12 times out of 24 !



Rerooting operator [de Fraysseix et al’95]

Number of bipolar orientations does not depend on choice of root-edge

~ρ ′

u

u′v = u′

v′v′

bijection

edges that can reach v′ are unchanged, other ones are returned

σ



Rerooting operator [de Fraysseix et al’95]

Number of bipolar orientations does not depend on choice of root-edge

~ρ ′

u

u′v = u′

v′v′

bijection

edges that can reach v′ are unchanged, other ones are returned

σ

boundary-reaching
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Orbit property

11 edges

along a σ-orbit, any edge is reversed 2/j of the times

a

a : 1 1 0 0 1 1 0 0 1 1 0 0

sr
v

r : 1 1 0 0 1 0 0 1 1 0 1 0

s : 0 1 0 0 1 1 0 1 0 1 1 0
disagree agree

• true for outer edges 120j−2120j−2 · · ·
• two adjacent edges are reversed same number of times

⇒ πn,j = 1− 2
j by summation over edges and orbits

alternation property

at v at v
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Counting by vertices and faces
Bn,f,j = # bipolar orientations with f inner faces,

n inner vertices, j outer vertices

Similarly (slit-slide-sew & orbit property), we obtain identity

f=10

n=7
j=5

nBn,f,j =
j − 1

j + 1
(n+ f − 2)Bn−1,f,j+1ww�

Bn,f,j = j(j − 1)
(n+ f − 2)!(n+ f + j − 2)!(n+ f + j − 3)!

n!(n+ j)!(n+ j − 1)!(n+ j − 2)!

using B0,a,b = Nara,b−1

[Baxter’01, Bousquet-Mélou’11]
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Bijective encoding by tableaux

walk around the tree of rightmost paths

tree of
rightmost paths

Tn,j = # SYT on

⇓

Bn,f,j = # SSYT≤f+1 on
n

j−2

[Borie’17, Kenyon et al’15]

[Albenque-Poulalhon’15]



Bijective encoding by tableaux

walk around the tree of rightmost paths

tree of
rightmost paths

Tn,j = # SYT on

⇓

Bn,f,j = # SSYT≤f+1 on
n

j−2

[Borie’17, Kenyon et al’15]

[Albenque-Poulalhon’15]

hook-length formula ⇒ formula for Tn,j
hook-content formula ⇒ formula for Bn,f,j
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v3



Schnyder woods

Schnyder wood
v1v2

v3

Sn,j = # Schnyder woods with n+ j + 1 vertices and deg(v1) = j

[Bernardi-Bonichon’09]
Sn,j = j(j − 1)(j − 2)

(2n+ 2j − 4)!(2n+ j − 3)!

n!(n+ j)!(n+ j − 1)!(n+ j − 2)!
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Schnyder wood
v1v2

v3

Sn,j = # Schnyder woods with n+ j + 1 vertices and deg(v1) = j

[Bernardi-Bonichon’09]
Sn,j = j(j − 1)(j − 2)

(2n+ 2j − 4)!(2n+ j − 3)!

n!(n+ j)!(n+ j − 1)!(n+ j − 2)!

⇓

nSn,j =
j − 2

j + 1
(2n+ j − 3)Sn−1,j+1Identity

⇑ using S0,k = Catk−2
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Schnyder wood bipolar orientation
each inner face has right-length 2

erase red edges
reverse blue edges
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v3
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⇓
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j + 1
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Schnyder wood bipolar orientation
each inner face has right-length 2

erase red edges
reverse blue edges

v1v2

v3

Sn,j = # Schnyder woods with n+ j + 1 vertices and deg(v1) = j

[Bernardi-Bonichon’09]
Sn,j = j(j − 1)(j − 2)

(2n+ 2j − 4)!(2n+ j − 3)!

n!(n+ j)!(n+ j − 1)!(n+ j − 2)!

⇓

nSn,j =
j − 2

j + 1
(2n+ j − 3)Sn−1,j+1Identity

(stable under slit-slide-sew bijection!)

⇑ using S0,k = Catk−2



Schnyder woods

Schnyder wood bipolar orientation
each inner face has right-length 2

erase red edges
reverse blue edges

v1v2

v3

Sn,j = # Schnyder woods with n+ j + 1 vertices and deg(v1) = j

[Bernardi-Bonichon’09]
Sn,j = j(j − 1)(j − 2)

(2n+ 2j − 4)!(2n+ j − 3)!

n!(n+ j)!(n+ j − 1)!(n+ j − 2)!

⇓

nSn,j =
j − 2

j + 1
(2n+ j − 3)Sn−1,j+1Identity

(stable under slit-slide-sew bijection!)

πn,j = 1− 3
j

rerooting operator
for Schnyder woods

⇑ using S0,k = Catk−2


