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Growth bijections
For A = U,.A,, a combinatorial class, with a,, = |A,]

growth bijection = (local) bijection explaining formula for a,, /a,_1

= growth process for objects in /A (random sampling procedure)
A1 > Ay —> A3 — - -

Can be applied to:

® trees [Rémy’'85], [Marckert'22]
e planar maps Bettinelli'14,'20], [Louf'19], [Schabanel'25]
e oriented planar maps  [Bettinelli-Louf-F'24]

and other classes, e.g. domino tilings - B (n+1)
An = 2
L an — on
L an—1

[Elkies et al’92]
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explains (n + 1) Cat,, = 2(2n — 1) Cat,,_1
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Rémy’s bijection [Rémy'1985]
explains (n + 1) Cat,, = 2(2n — 1) Cat,,_4

N

also [Rodrigue’1868]  via Cat,, = # triangulations of n 4+ 2-gon
2(2n — 1)
n+ 1

&




Other growth bijection for binary trees
[Marckert'22]



Other growth bijection for binary trees
[Marckert'22]

1 kn + 1
extends to k-ary trees aptt = kn + 1 ( " )
n n



Growth bijection for Narayana numbers

1
The Narayana number is |Nar, p = — <n> (Z) , wheren=a+b-—1
n\a

It counts binary trees with a left leaves and b right leaves

a = 5 left leaves

b = 4 right leaves
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The Narayana number is |Nar, p = —

it counts binary trees with a left leaves and b rig

= Identity
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Growth bijection for Narayana numbers

1
The Narayana number is |Nar, p = — (n) <n> , wheren=a+b—1

b

n \a

It counts binary trees with a left leaves and b right leaves

= Identity

a(a —1)Narg ,—1 = b(b— 1) Nar,_1

left inner edge \ ’/ right inner edge

a = 5 left leaves
4 right inner edges

b = 4 right leaves
3 right inner edges

Rk: a — 1 right inner edges and b — 1 left inner edges



Growth bijection for Narayana numbers

The Narayana number is

it counts binary trees with a left leaves and b rig

1
Nara’b —
mn

wheren =a+b—1

Nt leaves

= identity [a(a — 1) Narg ;-1 = b(b — 1) Nar,_1

explained by cut-and-join operations

[Bettinelli-F-Louf’'24, 7]



Growth bijection for Narayana numbers

The Narayana number is

it counts binary trees with a left leaves and b rig

1
Nara,b —
mn

(

n
a

)(

n

b

).

wheren=a-+b—1

Nt leaves

= identity [a(a — 1) Narg ;-1 = b(b — 1) Nar,_1

explained by cut-and-join operations

S

[Bettinelli-F-Louf’'24, 7]



Growth bijection for Narayana numbers

n\a b

It counts binary trees with a left leaves and b right leaves

1
The Narayana number is |Nar, p = — (n) (n) , wheren=a+b—1

= identity [a(a — 1) Narg ;-1 = b(b — 1) Nar,_1

explained by cut-and-join operations [Bettinelli-F-Louf'24, 7]

cut Ak join
— —
+-¢— ¢ —
join cut
cut &J join
— —
<« —
join cut



Growth bijection for Narayana numbers

1
The Narayana number is |Nar, p = — (n) <n> , wheren=a+b—1

b

n \a

It counts binary trees with a left leaves and b right leaves

= Identity

a(a —1)Narg ,—1 = b(b— 1) Nar,_1

Rk: Identity (& boundary case Nar; ;, = 1) yields formula for Nar,

a
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Planar maps
Def. Planar map = connected graph embedded on the sphere
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Planar maps
Def. Planar map = connected graph embedded on the sphere

Rooted map

= map with marked corner

Easier to draw in the plane (choosing root-face to be the outer face)

H - A




Counting planar maps
¢ Nice counting formulas [Tutte'62,63]

arbitrary maps n edges simple quadrangulations n faces
2.3n n 2 ( 3n )
(n—i—2)(n—|—1)(n> n(n+1)\n—1
bipartite maps n edges loopless triangulations 2n faces
3.2n—1 2n PACU (3n>
(n—|—2)(n—|—1)(n> (n+1)(2n+1)\n



Counting planar maps
¢ Nice counting formulas [Tutte'62,63]

arbitrary maps n edges simple quadrangulations n faces
2.3n n 2 ( 3n )
(n—i—2)(n—|—1)<n> n(n+1)\n—1
bipartite maps n edges loopless triangulations 2n faces
3.2n—-1 2n AL (3n>
(n—|—2)(n—|—1)(n> (n+1)(2n+1)\n

e Combinatorial proofs:

- bijections to tree families
[Cori-Vauquelin'81], [Schaeffer'97,99], [Bousquet-Mélou—-Schaeffer'00],

[Bouttier-Di Francesco-Guitter'02,04], [Bernardi-F'12], [Albenque-Poulalhon’15]. ..

- bijections to slices & slice decompositions
[Bouttier-Guitter'15], [Bouttier-Guitter-Miermont'22], [Bouttier-Guitter-Manet'24]

- growth bijections using slit-slide-sew operations
[Bettinelli'14,'20], [Bettinelli-Korkotashvili'24]



Bi-marked maps [Bettinelli’20]

bi-marked map = rooted map + marked oriented edge e such that:

e ¢ has an inner face on its right
e end of e closer to root-vertex than origin of e
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[Bettinelli"20]
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Slit-slide-sew bijection on bi-marked maps
rightmost path from e [Bettinelli'20]

| @ /;ew
slide




Slit-slide-sew bijection on bi-marked maps
rightmost path from e [Bettinelli"20] leftmost path from e




Slit-slide-sew bijection on bi-marked maps
rightmost path from e [Bettinelli"20] leftmost path from e
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Quasi-quadrangulations with a boundary

rooted maps with a marked inner face of degree 3, other innerfaces of degree 4
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Quasi-quadrangulations with a boundary

rooted maps with a marked inner face of degree 3, other innerfaces of degree 4

@n’j — # quasi-quadrangulations with n inner faces,
and root-face degree 25 + 1

Rk: In distance-labeling from a given vertex, the two odd faces
have a unique edge 7 — 7 on their contour



The identity via slit-slide-sew
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The identity via slit-slide-sew

n—1 quadrangles 2§42

— %2(2n+j — 1) Qn—l,j—l-l



Oriented planar maps



Plane bipolar orientations

Acyclic orientation on rooted map, where the ends of the root-edge are
the unique source and unique sink
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Plane bipolar orientations

Acyclic orientation on rooted map, where the ends of the root-edge are
the unique source and unique sink

t ..
local conditions
inn_er
vertices
Inner

length length




Slit-slide-sew bijection for bipolar orientations

bipolar orientation with
marked inner vertex v

rightmost path
from v

1. Inner vertices
] outer vertices
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Slit-slide-sew bijection for bipolar orientations

bipolar orientation with
marked inner vertex v

rightmost path
from v

N

slit

1. Inner vertices
] outer vertices

slide
down



Slit-slide-sew bijection for bipolar orientations

bipolar orientation with bipolar orientation with
marked inner vertex v marked “good” edge e
rightmost path good edge
from v

N

slit

n inner vertices . .
7 outer vertices n—1 inner vertices

7+1 outer vertices

slide
down



Slit-slide-sew bijection for bipolar orientations

bipolar orientation with bipolar orientation with
marked inner vertex v marked “good” edge e
rightmost path good edge
from v

\VS\fW

slit
n inner vertices slide . .
J outer vertices up n—1 inner vertices
-— J-+1 outer vertices
e
Y slide

down



Inner-triangulated bipolar orientations

T, ; := 7 bipolar orientations with inner faces of degree 3,
n inner vertices and j outer vertices
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Inner-triangulated bipolar orientations

T, ; := 7 bipolar orientations with inner faces of degree 3,
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Inner-triangulated bipolar orientations

T, ; := 7 bipolar orientations with inner faces of degree 3,
n inner vertices and j outer vertices

Rk: By duality, T}, o = 7 prographs with 2n operators

< >

co-product  product

Counting formula: [Tutte'73, Bousquet-Mélou'11] "y

n (3n +2j —4)!
Tnj =3 — 1)n'(n+.7 — 1)l(n + 7)!

— Caty_
dentity: v [ USng Qo = Cati—s
nTh;=1706n+2j —4) Th1 11




Marked bipolar orientations
nly,; = %(37@ +25 —4) T 1,541

Tn,; = { inner-triangulated bipolar orientations | |
with n inner vertices, j outer vertices }

7;'73- those with a marked inner vertex T 1. ; those with a marked edge
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Marked bipolar orientations
nly,; = %(377/ +25 —4) T 1,541

Tn,; = { inner-triangulated bipolar orientations |
with n inner vertices, j outer vertices }

7;'73- those with a marked inner vertex T 1. ; those with a marked edge

. il =
Rk: Identity also reads | |7 ;| = ‘;? T rn—1,j+1]

f— visited by rightmost path

Def: An edge e is boundary-reaching if

7_'2,3- C T n.; subfamily where the marked edge is boundary-reaching

—0
@ ;D (boundary-reaching probability)
n,J




Identity via slit-slide-sew

marked vertex v boundary-reaching

marked edge ¢

]

[
T



Identity via slit-slide-sew

marked vertex boundary-reaching

marked edge ¢

]

T,

n,j

— 0 —
= ‘7:7,.,j|:‘7-n—1,j—|—1 — 7Tn—1,j—|—1‘7-n—1,j—|—1



Identity via slit-slide-sew

marked vertex v boundary-reaching

marked edge ¢

J

T2

»J

—d —
= Tl =Tl = Tl o101l

whereas ldentity << \7;:3-!: 1 ‘7_dfn,—1,j—|—1‘



Identity via slit-slide-sew

marked vertex v boundary-reaching

marked edge ¢

J
T
° 0 T
= Tl =1Tn10al = moajmlTo-1 4]
whereas ldentity << \7;:3-!: zﬁ \?n—l,j+1\

it remains to prove that |, ; =1 — 2

J




Boundary-reaching ratio on a fixed map?

edges not boundary-reaching are surrounded

11 edges

BREBEBG

— > 38 +# 33



Boundary-reaching ratio on a fixed map?
edges not boundary-reaching are surrounded
Include bipolar orientations rooted at other outer edges

GRGGEE =
PEEERR .
PREREE
CICICICICICI




Boundary-reaching ratio on a fixed map?
edges not boundary-reaching are surrounded
each edge is surrounded 12 times out of 24 !

GRGGEE =
PEEERR .
PREREE
CICICICICIC




Rerooting operator [de Fraysseix et al’95]

Number of bipolar orientations does not depend on choice of root-edge

—/

bijection

edges that can reach v’ are unchanged, other ones are returned



Rerooting operator [de Fraysseix et al’95]

Number of bipolar orientations does not depend on choice of root-edge

—/

bijection

edges that can reach v’ are unchanged, other ones are returned
Y

boundary-reaching



Orbit property
along a o-orbit, any edge is reversed 2/j of the times

11 edges
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Orbit property
along a o-orbit, any edge is reversed 2/j of the times

e true for outer edges 1207212072 . ..
e two adjacent edges are reversed same number of times

11 edges

) a:110011001100

alternation property
) r:110010011010
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> at v at v




Orbit property
along a o-orbit, any edge is reversed 2/j of the times

e true for outer edges 1207212072 . ..
e two adjacent edges are reversed same number of times

11 edges

) a:110011001100

— alternation property
) r:110010011010
s:010011010110

-

disagree agree
> at v at v

= |m, ;i =1—2 by summation over edges and orbits
2J 7




Counting by vertices and faces F=10

B,,.r.; = #* bipolar orientations with f inner faces,
n Inner vertices, 7 outer vertices
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B,,.r.; = #* bipolar orientations with f inner faces,
n Inner vertices, 7 outer vertices

S
]
SAREN |

Similarly (slit-slide-sew & orbit property), we obtain identity

7 —1
an7f7j — J+1(n+f_2) B’I’L—l,f,j—|—1




Counting by vertices and faces F=10

B,,.r.; = #* bipolar orientations with f inner faces,
n Inner vertices, 7 outer vertices

S
]
SAREN |

Similarly (slit-slide-sew & orbit property), we obtain identity

7 —1
an7f7j — J+1(n+f_2) Bn—l,f,j—l—l

“ using Bg o.p = Narg p—1

n+f-=-2)!n+f+j-2)!n+f+75—3)
nln+j)l(n+j5—Dl(n+j5—2)!

[Baxter’'01, Bousquet-Mélou'11]}

Bnyi=30—1)
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rightmost paths
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~ tree of
rightmost paths
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\\ \ / ’

NN A

\‘/

walk around the tree of rightmost paths

Y
Tn,j — # SYT on [Borie'17, Kenyon et al'15]
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Bijective encoding by tableaux

~ tree of
rightmost paths

\ ’
\\ \ 4 7’

NN A

\‘/

walk around the tree of rightmost paths

|
Tn,j — # SYT on [Borie'17, Kenyon et al'15]
B i =7 SSYT< ¢y on L= [Albenque-Poulalhon'15]
n

hook-length formula = formula for 1, ;
hook-content formula = formula for B,, ¢ ;



Schnyder woods

v3

Schnyder wood

U1



Schnyder ?ysvoods

Sn.; = # Schnyder woods with n + 5 + 1 vertices and deg(v;) = j

Sn,j :](] - 1)(] - 2)

(2n + 25 — 4)!1(2n + j — 3)!

nl(n+j7)l(n+7—Dl(n+75—2)!

[Bernardi-Bonichon'09]



Schnyder ?ygvoods

Sn.; = # Schnyder woods with n + 5 + 1 vertices and deg(v;) = j

Sn,j :](] - 1)(] - 2)

(2n + 25 — 4)!1(2n + j — 3)!

nl(n+j7)l(n+7—Dl(n+75—2)!

J 1 using Sp = Catg_o

—> .
ldentity nSp,j = j—(QTL +7—3)Sh—1,5+1

+ 1

[Bernardi-Bonichon'09]



Schnyder ?ygvoods

erase red edges
reverse blue edges

bipolar orientation
each inner face has right-length 2

Sn.; = # Schnyder woods with n + 5 + 1 vertices and deg(v;) = j
2n+ 275 —4)!(2n + 5 — 3)! [Bernardi-Bonichon'09]
nl(n+j7)l(n+7—Dl(n+75—2)!
J 1 using Sp = Catg_o
) — 2

ldentity nSp,j = j+—1(2n +7—3)Sh—1,5+1

Sn,j =3 —1)(J — 2)




Schnyder ?ygvoods

erase red edges
reverse blue edges

bipolar orientation
each inner face has right-length 2
(stable under slit-slide-sew bijection!)

Sn.; = # Schnyder woods with n + 5 + 1 vertices and deg(v;) = j
2n+ 275 —4)!(2n + 5 — 3)! [Bernardi-Bonichon'09]
nl(n+j7)l(n+7—Dl(n+75—2)!
J 1 using Sp = Catg_o
) — 2

ldentity nSp,j = j+—1(2n +7—3)Sh—1,5+1

Sn,j :](] - 1)(] - 2)




Schnyder ?ygvoods

erase red edges
reverse blue edges

bipolar orientation
each inner face has right-length 2
(stable under slit-slide-sew bijection!)

Sn.; = # Schnyder woods with n + 5 + 1 vertices and deg(v;) = j
2n+ 275 —4)!(2n + 5 — 3)! [Bernardi-Bonichon'09]
nl(n+j7)l(n+7—Dl(n+75—2)!

Sn,j =3 —1)(J — 2)

J 1 using Sp = Catg_o 2
— Tng =173
Identity |7Sn,; = i1 (2n 47 = 3) Sn—1,5+1 rerooting operator

for Schnyder woods



