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A family of numbers

Binomial coefficients: (:) = #lk),

They have size n, and k is a parameter.

The remixed Eulerian numbers A.(q) depend on some ¢

of size n, and on a real parameter g > 0.

A new proof of a formula from Garsia-Remmel (1984):
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Some motivation for A.(q)

e Mixed Eulerian numbers A.(1) originate from Postnikov

work on the permutohedra.
e Linked to chromatic symmetric functions.

e A.(g) has some nice properties: nonnegative, unimodal,
symmetric polynomials (Nadeau and Tewari, 2022).

A03020)(q) = 2¢°+6¢"+12¢°+17¢°+17q"+12¢>+64°+2q.

e Bilateral parking functions.
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A particle model: definition

c=(0,2,2,0) o
MSet(c) = {{2,2,3,3}}

0 00

We place n balls over Z, forming a configuration c, with
¢; balls over the site /.

We then drop balls one by one.

Balls bounce on top of one another.

What is the final state?
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A particle model: A

e P, = Probability that balls stay between 1 and n.
e Normalised: A. = n!P..

e Proposition (Petrov 2021): A, are well-defined integers.
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Particle model: example

Computing: IP(072’2’0) = %% + %%

Therefore A(0727270) = 4!]}?(0727270) = ].6
Note: PP, is well-defined!

Formula for P.7
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Side note: adding a parameter

e Biased case uses g-analogs:
(Mg =1+q+¢ +... 49" (n)q! =L (g
e Proposition (Nadeau-Tewari 2022): A.(q) are polynomials

in g. Moreover, they are symmetric and unimodal.

o Example: Aj220)(q) = q° +4¢* + 6¢° + 49 + q.
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e Simplest dynamic: every ball moves right.
o P.— :
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Left-to-right configurations

Simplest dynamic: every ball moves right.
_ 113 _ 3

Pe=331=a

A = 41P, =13 x 20 x 3! x 40,

AC = HaeMSet(c) 4.



Binomial coefficients

c=(3,0,0,0,2)



Binomial coefficients



Binomial coefficients

P~ 43
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Eulerian numbers

e Defined by A(0,0) =1,
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Eulerian numbers

e Defined by A(0,0) =1,
A(n—k, k) = (n—k)A(n—k, k—1)+(k+1)A(n—k—1, k).

e One can prove: Ak non-k-1) = A(n — k, k).

"Ltk A(n—k,k 9
e We also have: % = jso "
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Carlitz-Scoville Eulerian numbers

Defined by A(0,0|x,y) =1,

A(r,slx,y) = (s + x)A(r — 1, s|x, y) + (r + y)A(r, s — 1|x, y).
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Carlitz-Scoville Eulerian numbers

Defined by A(0,0|x,y) =1,
A(I’,S’X,y) - (S+X)A(r_ 1,s|x,y)—|—(r—i—y)A(r,s— 1|X7y)

. 1
One can prove: A(r,s|x,y) = mA(0r71y717r+5+1’1hl’05).

%= y=1
¢=(0,1,1,3,1,0) %
@ o ©
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Carlitz-Scoville Eulerian numbers

Defined by A(0,0|x,y) =1,

A(I’7S’X,y) = (S+X)A(r_ 1,s|x,y)—|—(r—i—y)A(r,s— 1|X7.y)

: _ 1
One can prove: A(r,s|x,y) = mA(0r71y—17r+5+17lx—1705).

r+s Lk -

o t“A(k,r + s — klx,y) () +x+y—1Y,.

k=0 ) ) _ J r+s

(1 — t)rtstxty-1 - E :t - U+y).
Jj=0
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Connectedness
Core part v = (2,2) E 8 8 i

e Connected configuration: all the balls are next to each
other, on m sites.
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Connectedness
Core part v = (2,2) E 8 8 :

e Connected configuration: all the balls are next to each
other, on m sites.

e Remark: they remain connected.
o Mset(2,2) = {{1,1,2,2}}.
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Link with hit numbers

For any v without hole:

n—m

kotfokvo”"’k th H (+a)

(1 n+1

Jj=0  acMSet(vy)

Formula of Garsia and Remmel:

§:k ot Fﬂ A q

HI Ol_tq

Forg=1:

Zk 0 tka

(1 —-t n+1

EE:tIII./+"_' n+1/)

j>0 i=1

ZtJHJJr/— it

j>0 i=1
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Connected formula

For any v without hole:
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Connected formula

For any v without hole:

nmtAk k)
k=0 (0k,y,0n=m—
(1 — t)n+1 th H (/+

j>0 acMSet(y

Forall j > 0:
J
n-+k .
S ("t VAosnomin =TI G+9)
k=0 acMSet(v)

For all k € [0;n — m] :

k
Agiyormsy = 3 (— k“(';t}) [T G+a.

Jj=0 acMSet ()

14
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Link with the formula: example

e Forall j>0:
« n+1
A(0k7,‘/70n—m—k) — Z (_1)k+'/ (k —J) H (J + a)
j=0
o Example with v = (2,2): find A(022,0)-

o 88
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Link with the formula: example

e Forallj>0:
k

o =20 55) I 0+

Jj=0 acMSet(v)

e Example with v = (2,2): find A(g22,0)-

o= X (,%) 1L 6o

; 1—y
j=0 ac{{1,1,2,2}}

R X
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Link with the formula: example

e Forall j >0:
k
(n+1 .
Ok,\/Onmk Z k+]<k—.) H (J+a)
Jj=0 J acMSet(v)

o Example with v = (2,2): find A0 2,2,0)-

1

Aoy =D (- ”1( J) II (+a

=t acf{1,1,2,2}}
A220) = =5 x 12 x 22 + 2% x 32 = 16.

R X

ii5)



New connected proof: definitions

e Take any integer j > 0.
e Why is there:

J
n+ k .
Z ( k )A(Ojk7,y70nm(jk)) = H (_/ _|_ a)?
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j added balls
Core part v = (2,2)

d=(3,0,0,2,2,0) % 58 8:

eee
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New connected proof: definitions

e Take any integer j > 0.
e Why is there:

J
n+ k .
Z ( k )A(Ojk7,y70nm(jk)) = H (_/ _|_ a)?

k=0 acMSet(v)
e Add j balls to ~, as in this figure.

e Two ways to study this bigger configuration.

j added balls
Core part v = (2,2)

d=(3,0,0,2,2,0) % 58 8:

eee

16



New connected proof: first count

j added balls
Core part v = (2,2)

d=(3,0,0,2,2,0) % 58 8 :

e d is left-to-right.
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New connected proof: first count
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o d is left-to-right.

Ad = H a.

acMSet(d)
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New connected proof: first count
d:(3>07072)270> %\3 8\’%\\

o d is left-to-right.

Ad: H =]

acMSet(d)

= H (J + a).

acMSet(v)
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New connected proof: second count

j added balls

d=(3,0,0,2,2,0) § 58 8 :

e Resolving the core part first, with k balls falling on the
left:
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e Resolving the core part first, with k balls falling on the
left:

n—m

]Pd = Z ]P(Ok;y,()nfmfk) X
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New connected proof: second count
d=(3,0,0,2,2,0) ‘\) Q Q O Q ‘\:u

e Resolving the core part first, with k balls falling on the
left:

n—m

]Pd = E ]P(OkK%Onfmfk) X ]P070j717k71n70n7m7k+j).
k=0

18



New connected proof: computations
d=(3,0,0,2,2,0) " O 0 0 0

n—m
Py = E ]P(0k7,y70n—m—k) X ]P(j70j—1—k71n70n—m—k+j)
k=0
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]Pd = Z ]P(Ok7,y70n—m—k) X ]P(J‘7Oj—1—k71n70n—m—k+j)
k=0
n—m n_l_ k
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New connected proof: computations

j added balls
Core part v = (2,2)

d=(3,0,0,2,2,0) % 58 8:

1 2 3 4 5 6 7T 8 9
]Pd — Z P(0k7770n—m—k) X ]P(j70j—1—k71n70n—m—k+j)
k=0
n—m
n—+k
Ad = Z ( k )A(Ojk’%on—m—k-f—j))
k=0
. n—m n—+ k
H (J + a) = Z ( k )A(Oj—k,,yyonmkﬁj)).
acMSet(v) k=0
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Near-connected configurations: definition

8 B @

v=(21,0,2,0,2)

e Some holes h € H within the central part.
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Near-connected configurations: definition

v =(21,0,2,0,2) 8 ®

e Some holes h € H within the central part, yet more balls
than holes.

20



Near-connected configurations: formula

v7=1(21,0,2,0,2)

@0
O

@9
199

® Set lp =3 ;cpCi, and Dy = HaeMSet(c) |a— h|.
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Near-connected configurations: formula

v7=1(21,0,2,0,2)

@0
O

@9
199

o Set lh =) i, G and Dy = [ [ cpser(cy |2 = hl-

Forall j > 0:
) n—+ k
[T G+a=3("4")Aonomson
acMSet(~) k=0
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Near-connected configurations: formula

v =(2,1,0,2,0,2) 8 ° 8 8

1 2 3 4 5 6 7

o Set lp =3 G, and Dy = [ cpser(c) |2 — hl-

For all j > 0:
J
. n+ k
H (J + 3) - Z ( k )A(ofk,y,on—m—(j—k))
acMSet(~) k=0
j+h+n—éh> (j+h—1>
+ D )
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Thank you for listening!
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