A Conjecture on descents, inversions and the weak order Christophe Hohlweg – Viviane Pons

LACIM UQAM - LISN, Univ. Paris-Saclay

$$\begin{array}{c} (1,6)\\ (1,5) \quad (2,6)\\ (1,4) \quad (2,5) \quad (3,6)\\ (1,3) \quad (2,4) \quad (3,5) \quad (4,6)\\ (1,2) \quad (2,3) \quad (3,4) \quad (4,5) \quad (5,6) \end{array}$$

Coxeter Groups

A group W generated by a set $S = \{s_1, \ldots, s_n\}$ such that

▶
$$s_i^2 = 1$$

▶ $(s_i s_j)^{m_{i,j}} = 1$ with $m_{i,j} \in \mathbb{N} \cup +\infty$

イロン 不同 とくほと 不良 とう

3

Coxeter Groups

A group W generated by a set $S = \{s_1, \ldots, s_n\}$ such that

$$s_i^2 = 1$$
 $(s_i s_j)^{m_{i,j}} = 1$ with $m_{i,j} \in \mathbb{N} \cup +\infty$

Type A: the group $\mathfrak{S}_n = A_{n-1}$

Permutations os size *n*, generated by simple transpositions $\{s_1, \ldots, s_{n-1}\}$

イロン 不同 とくほと 不良 とう

Reflections

- T := reflections of W, all possible conjugates of elements from S
- ▶ the generating set *S* are called the *simple reflections*

(4月) トイヨト イヨト

Reflections

- T := reflections of W, all possible conjugates of elements from S
- ▶ the generating set *S* are called the *simple reflections*

In type A

- T : all transpositions
- S : simple transpositions (i, i + 1)

Inversion set

Let $w \in W$, the (left) inversion set of w is given by

$$\operatorname{invs}(w) := \{t \in T \mid \ell(tw) < \ell(t)\}.$$

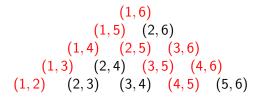
where T is the set of *reflections* of W

$$\begin{array}{c}(1,6)\\(1,5)\quad(2,6)\\(1,4)\quad(2,5)\quad(3,6)\\(1,3)\quad(2,4)\quad(3,5)\quad(4,6)\\(1,2)\quad(2,3)\quad(3,4)\quad(4,5)\quad(5,6)\end{array}$$

イロト イヨト イヨト イヨト

イロン イヨン イヨン イヨン

イロト イヨト イヨト イヨト



イロト イヨト イヨト イヨト

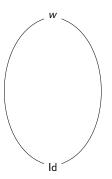
Example in type A : a bipartition of an element w w = 526341 u = 234561v = 152634

$$invs(w) = invs(u) \sqcup invs(v)$$

イロト イヨト イヨト イヨト

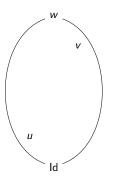
Э

(right) Weak order: order elements of W by inclusion of (left) inversion sets.



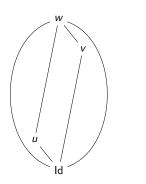
.

(right) Weak order: order elements of W by inclusion of (left) inversion sets.



< E.

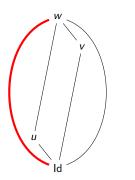
(right) Weak order: order elements of W by inclusion of (left) inversion sets.



 $w = u \lor v$ $d = u \land v$

< E

(right) Weak order: order elements of W by inclusion of (left) inversion sets.

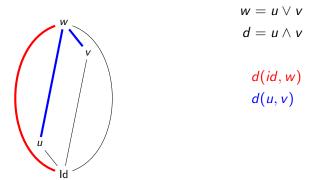


 $w = u \lor v$ $d = u \land v$

d(id, w)

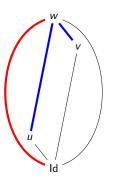
• • = • • = •

(right) Weak order: order elements of W by inclusion of (left) inversion sets.



向下 イヨト イヨト

(right) Weak order: order elements of W by inclusion of (left) inversion sets.



 $w = u \lor v$ $d = u \land v$

d(id, w)d(u, v)

u, v bipartition of $w \Leftrightarrow$

$$d(u,v) = d(id,w)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Some numbers

	AZ	A3	A4	AS
Elements which admit bipartition	1	11	81	554
Partition-indecomposable elements	5	13	39	166

10

12

ΛΛ

ΛE

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Inversion partitions in the literature

Appear in a geometric problem

Eigenvalue problem and a new product in cohomology of flag varieties, Belkale and Kumar, 2006

(4月) トイヨト イヨト

Inversion partitions in the literature

Appear in a geometric problem

Eigenvalue problem and a new product in cohomology of flag varieties, Belkale and Kumar, 2006

Also

Decomposing sets of inversions, Katthän, 2013

< ロ > < 同 > < 三 > < 三 >

Decomposing inversion sets of permutations and applications to faces of the Littlewood-Richardson cone, Dewji, Dimitrov, McCabe, Roth, Wehlau and Wilson, 2017

Our motivation

A conjecture formulated by Ressayre on the number of descents

・ロト ・回ト ・ヨト ・ヨト

(right) descents of elements

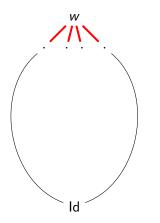
Let $w \in W$, a *(right) descent s* is a simple reflection such that $\ell(ws) = \ell(w) - 1$. We write $d_R(w)$ the number of right descents.

Example in type A

$$526341 \times (1,2) = 256341$$

 $d_R(5.26.34.1) = 3$

On the weak order



descents of w = coatoms of w

イロト イヨト イヨト イヨト

臣

The Conjecture

If u, v is a bipartition of w, then

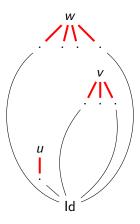
$$d_R(w) = d_R(u) + d_R(v)$$

Example in type A w = 5.26.34.1 $d_R(w) = 3$ u = 23456.1 $d_R(u) = 1$ v = 15.26.34 $d_R(v) = 2$

・ 同 ト ・ ヨ ト ・ ヨ ト

The ConjectureInversion partitionsThe proofNumber of descents

On the weak order



< ロ > < 回 > < 回 > < 回 > < 回 >

The Conjecture

True for Weyl groups (through algebraic geometry, case by case)

Intersection multiplicity one for the belkale-kumar product, Ressayre and Francone, 2023

Direct (elementary) proof in type A and B

Hohlweg and P., 2024

(4月) トイヨト イヨト

Still open for other Coxeter groups

"left words" "right words"

w = 5.26.34.1u = 23456.1v = 15.26.34

向下 イヨト イヨト

"left words" "right words"

w = 5.26.34.1u = 23456.1v = 15.26.34

向下 イヨト イヨト

"left words" "right words" w = 5.26.34.1 u = 23456.1v = 15.26.34

・ 同 ト ・ ヨ ト ・ ヨ ト

	"left words"	"right words"
w = 5.26.34.1	5.2	6.34.1
u = 23456.1	25	346.1
v = 15.26.34	5.2	16.34

	"left words"	"right words"
w = 5.26.34.1	2.1	4.23.1
u = 23456.1	12	234.1
v = 15.26.34	2.1	14.23

	"left words"	"right words"	"decreased right words"
w = 5.26.34.1	2.1	4.23.1	23.1
<i>u</i> = 23456 .1	12	234.1	
<i>v</i> = 15.26.34	2.1	14.23	

	"left words"	"right words"	"decreased right words"
w = 5.26.34.1	2.1	4.23.1	23.1
<i>u</i> = 23456 .1	12	234.1	23.1
<i>v</i> = 15.26.34	2.1	14.23	123

Also in type B

"left words" "right words" $w = 1.\overline{43}.\overline{62}.\overline{5}|5.26.34.\overline{1}|$ $u = \overline{43}.\overline{62}.\overline{51}|15.26.34|$ $v = 1.\overline{65}\overline{432}|23456.\overline{1}|$

• • = • • = •

Also in type B

	"left words"	"right words"
$w = 1.\overline{4}\overline{3}.\overline{6}\overline{2}.\overline{5} 5.26.34.\overline{1} $	2.5 5.2	6.34.Ī
$u = \bar{4}\bar{3}.\bar{6}\bar{2}.\bar{5}\bar{1} 15.26.34$	2.5 5.2	Ī6.34
$v = 1.\overline{6}\overline{5}\overline{4}\overline{3}\overline{2} 23456.\overline{1} $	5225	346.1

・ロト ・四ト ・ヨト ・ヨト

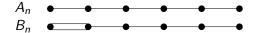
æ

Also in type B

	"left words"	"right words"
$w = 1.\overline{4}\overline{3}.\overline{6}\overline{2}.\overline{5} 5.26.34.\overline{1} $	$\bar{1}.\bar{2} 2.1$	4.23.1
$u = \overline{43}.\overline{62}.\overline{51} 15.26.34 $	$\bar{1}.\bar{2} 2.1$	14.23
$v = 1.\overline{6}\overline{5}\overline{4}\overline{3}\overline{2} 23456.\overline{1} $	$\bar{2}\bar{1} 12$	234.1

æ

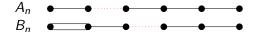
Coxeterize?



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Ð,

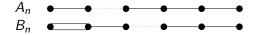
Coxeterize?



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Coxeterize?



Goal: find a group generic recursive decomposition of elements that "keeps" the descents

Thank you!

A conjecture on descents, inversions and the weak order, Hohlweg and P., arXiv:2412.09227, 2024