Pattern avoiding 3-permutations and triangle bases

Juliette Schabanel

LaBRI, Université de Bordeaux

I- The objects

a) Pattern avoiding 3-permutations

Pattern avoidance in permutations

A permutation $\sigma = \sigma(1)\sigma(2) \dots \sigma(n)$ is a bijection from $\llbracket 1, n \rrbracket = \{1, 2, \dots, n\}$ to itself. Its diagram is the set of points $P_{\sigma} = \{(i, \sigma(i)) \mid 1 \leq i \leq n\}.$

A permutation $\sigma \in \mathfrak{S}_n$ contains a pattern $\pi \in \mathfrak{S}_k$ if there is a set of indices I such that $\sigma_{|I} \simeq \pi$. Otherwise, it avoids it.

Pattern avoidance in 3-permutations

A 3-permutation is a couple of permutations $(\sigma, \tau) \in \mathfrak{S}_n^2$. It is represented by the diagram $P_{(\sigma, \tau)} = \{(i, \sigma(i), \tau(i)) \mid 1 \leq i \leq n\}$.

Points : (1, 2, 6), (2, 6, 3), (3, 4, 2), (4, 1, 5), (5, 5, 1), (6, 3, 4)

Pattern avoidance in 3-permutations

A 3-permutation is a couple of permutations $(\sigma, \tau) \in \mathfrak{S}_n^2$. It is represented by the diagram $P_{(\sigma, \tau)} = \{(i, \sigma(i), \tau(i)) \mid 1 \leq i \leq n\}$.

A 3-permutation $(\sigma, \tau) \in \mathfrak{S}_n^2$ contains a pattern $(\pi_1, \pi_2) \in \mathfrak{S}_k^2$ if there is a set of indices $I \subset \llbracket 1, n \rrbracket$ such that $\sigma_{|I} \simeq \pi_1$ and $\tau_{|I} \simeq \pi_2$. Otherwise it avoids it.

(264153, 632514) contains the pattern (312, 231).

It avoids the pattern (12, 12) although both 264153 and 632514 contain 12.

Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
$(12, 12), (12, 21), \\(21, 12)$	4	$1, 1, 1, 1, 1, 1, \cdots$	1 diagonal
(12, 12), (12, 21), (21, 12), (21, 12), (21, 21)	1	$1, 0, 0, 0, 0, 0, \cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, \overline{16, 124, 1262, 15898, \cdots}$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, \overline{16, 122, 1188, 13844, \cdots}$	A295928?

[Bonichon & Morel, 22]

Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
(12, 12), (12, 21), (21, 12)	4	$1, 1, 1, 1, 1, 1, \cdots$	1 diagonal
(12, 12), (12, 21), (21, 12), (21, 12), (21, 21)	1	$1, 0, 0, 0, 0, 0, \cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, \overline{16, 124, 1262, 15898, \cdots}$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, \overline{16}, 122, 1188, 13844, \cdots$	A 295928?

[Bonichon & Morel, 22]

(12, 12)

(312, 231)

Pattern avoidance classes

A295928	Number of triangular matrices $T(n,i,k)$, $k \le i \le n$, with entries "0" or "1" with the property that each triple { $T(n,i,k)$, $T(n,i,k+1)$, $T(n,i-1,k)$ } containing a single "0" can be successively replaced by {1, 1, 1} until finally no "0" entry remains
1, 3, 16, (<u>list; graph; re</u>	122, 1188, 13844, 185448, 2781348, 45868268 efs; listen; history; text; internal format)
OFFSET	1,2
COMMENTS	<pre>A triple {T(n,i,k), T(n,i,k+1), T(n,i-1,k)} will be called a primitive triangle. It is easy to see that b(n) = n(n-1)/2 is the number of such triangles. At each step, exactly one primitive triangle is completed (replaced by {1, 1, 1}). So there are b(n) "0"- and n "1"-terms. Thus the starting matrix has no complete primitive triangle. Furthermore, any triangular submatrix T(m,i,k), k <= i <= m < n cannot have more than m "1"-terms because otherwise it would have less "0"-terms than primitive triangles. The replacement of at least one "0"-term would complete more than one primitive triangle. This has been excluded. So T(n, i, k) is a special case of U(n, i, k), described in A101481: a(n) < A101481(n+1). A start matrix may serve as a pattern for a number wall used on worksheets for elementary mathematics, see link "Number walls". That is why I prefer the more descriptive name "fill matrix". The algorithm for the sequence is rather slow because each start matrix is constructed separately. There exists a faster recursive algorithm which produces the same terms and therefore is likely to be correct, but it is based on a conjecture. For the theory of the recurrence, see "Recursive aspects of fill matrices". Probable extension a(10)-a(14): 821096828, 15804092592, 324709899276, 7081361097108, 163179784397820. The number of fill matrices with n rows and all "1"- terms concentrated on the last two rows, is A001960(n). See link "Beconstruction of a sequence".</pre>
LINKS	Table of n, a(n) for n=19. Gerhard Kirchner, Recursive aspects of fill matrices Gerhard Kirchner, Number walls Gerhard Kirchner, VB-program Gerhard Kirchner, Reconstruction of a sequence Ville Salo, Cutting Corners, arXiv:2002.08730 [math.DS], 2020. Yuan Yao and Fedir Yudin, Fine Mixed Subdivisions of a Dilated Triangle, arXiv:2402.13342 [math.C0], 2024.
EXAMPLE	Example (n=2): 0 1 1 a(2)=3 11 01 10 Example for completing a 3-matrix (3 bottom terms): 1 1 1 1 00 -> 10 -> 11 -> 11 110 110 110 111

I- The objects

b) Triangle Bases

A configuration of size n is a set of n points in the triangle $T_n = \{(a, b) \in \mathbb{N}^2 | a + b < n\}.$

A configuration of size n is a set of n points in the triangle $T_n = \{(a, b) \in \mathbb{N}^2 | a + b < n\}.$

A configuration of size n is a set of n points in the triangle $T_n = \{(a, b) \in \mathbb{N}^2 | a + b < n\}.$

A configuration of size n is a set of n points in the triangle $T_n = \{(a, b) \in \mathbb{N}^2 | a + b < n\}.$

A configuration of size n is a set of n points in the triangle $T_n = \{(a, b) \in \mathbb{N}^2 | a + b < n\}.$

A configuration of size n is a set of n points in the triangle $T_n = \{(a, b) \in \mathbb{N}^2 | a + b < n\}.$

A configuration of size n is a set of n points in the triangle $T_n = \{(a, b) \in \mathbb{N}^2 | a + b < n\}.$

Triangle bases

 $T_n = \{(a, b) \in \mathbb{N}^2 \mid a + b < n\}$ triangle of size n.

A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.

Triangle bases

 $T_n = \{(a, b) \in \mathbb{N}^2 \mid a + b < n\}$ triangle of size n.

A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.

▶ Used to study the family of tilings such that if two cells of a small triangle are colored, there is a unique valide choice for the last.

For instance, the XOR automaton :

$$\begin{array}{c|c} c \\ \hline a & b \end{array} \quad c = a + b \mod 2 \\ \end{array}$$

Triangle bases

 $T_n = \{(a, b) \in \mathbb{N}^2 \mid a + b < n\}$ triangle of size n.

A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.

Theorem. [S. 25] For all n, the set of triangle bases of size n is in bijection with $Av_n((12, 12), (312, 231))$.

II- A bijection

z

х

Inversions

An inversion for $\sigma \in \mathfrak{S}_n$ is $(i, j) \in [\![1, n]\!]$ with i < j and $\sigma(i) > \sigma(j)$.

The inversion sets are $R_{\sigma}(i) = \{j > i \mid \sigma(j) < \sigma(i)\}$ (right inversions) and $L_{\sigma}(i) = \{j < i \mid \sigma(j) > \sigma(i)\}$ (left inversions). We denote $r_{\sigma}(i) = |R_{\sigma}(i)|$ and $\ell_{\sigma}(i) = |L_{\sigma}(i)|$.

The bijection: $\Gamma : (\sigma, \tau) \mapsto \{(r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in [\![1, n]\!]\}$

Theorem. [S. 25] For all n, Γ is a bijection between $Av_n((12, 12), (312, 231))$ and the triangle bases of size n.

Essentially, we need to prove that:

- If $(\sigma, \tau) \in Av_n((12, 12), (312, 231))$ then $\Gamma(\sigma, \tau)$ is a basis.
- Γ is bijective. (How to recover the label ?)

Why are (12, 12) and (312, 231) the right patterns to avoid?

Intuition

Avoiding $(12,12){:}\ \text{no}\ \text{``points too close''}$

Consequence: If (σ, τ) avoids (12, 12) then

- all points $(r_{\sigma}(i), \ell_{\tau}(i))$ are distinct
- the points are well spread.

Avoiding (12, 12): no "points too close"

 $r_{\sigma}(i) > r_{\sigma}(j) \qquad \ell_{\tau}(i) < \ell_{\tau}(j)$

Consequence: If (σ, τ) avoids (12, 12) then

- all points $(r_{\sigma}(i), \ell_{\tau}(i))$ are distinct
- the points are well spread.

Formally, a configuration C is sparse if there is no triangle T of size k such that $|C \cap T| > k$.

Proposition. If (σ, τ) avoids (12, 12) then $\Gamma(\sigma, \tau)$ is sparse.

Avoiding (312, 231): no "points too far"

the only sparse configuration of size 3 that does not fill.

Intuition: Avoiding (312, 231) prevents "filling gaps".

Avoiding (312, 231): no "points too far"

 $r_{\sigma}(i) \gg r_{\sigma}(j) \approx r_{\sigma}(k) \quad \ell_{\tau}(i) \approx \ell_{\tau}(j) \ll \ell_{\tau}(k)$

Points too far to fill

The key tool of the proof: A recursive decomposition

Lemma. [Salo, S. 22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

Lemma. [Salo, S. 22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

Lemma. Γ transports the cuts: $\Gamma(\sigma, \tau)$ admits a given cut if and only if (σ, τ) does.

Lemma. Γ transports the cuts: $\Gamma(\sigma, \tau)$ admits a given cut if and only if (σ, τ) does.

Lemma. All 3-permutations of $Av_n((12, 12), (312, 231))$ admit a cut.

Lemma. Γ transports the cuts: $\Gamma(\sigma, \tau)$ admits a given cut if and only if (σ, τ) does.

Lemma. All 3-permutations of $Av_n((12, 12), (312, 231))$ admit a cut.

- We can now prove everything by induction!
 - $\Gamma(Av_n((12, 12), (312, 231))) \subset \mathcal{B}_n$
 - Γ is surjective
 - Γ is injective.

Corollary. Γ is a bijection between $Av_n((12, 12), (312, 231))$ and \mathcal{B}_n .

Nice properties and consequences

- Simple construction that transports symmetries.
- Links two objects that are understood very differently \implies tools transfer.

On bases: a canonical labelling on bases, maybe a characterisation by forbidden patterns.

On permutations: a dynamical system on 3-permutations (and others!) which could allow sampling.

• No enumerative result.

▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.

• No enumerative result.

- ▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.
- Γ is well defined on all of Av(12, 12). Could it give correspondances between other pattern avoiding classes of 3-permutations and sparse configurations?

• No enumerative result.

- ▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.
- Γ is well defined on all of Av(12, 12). Could it give correspondances between other pattern avoiding classes of 3-permutations and sparse configurations?
- Extend Γ to higher dimensions?

• No enumerative result.

- ▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.
- Γ is well defined on all of Av(12, 12). Could it give correspondances between other pattern avoiding classes of 3-permutations and sparse configurations?
- Extend Γ to higher dimensions?

Thank you!