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Eulerian polynomials

For a permutation 0 € G, anindex 1 </ < n—1is called
® a descent (des) of o if o(i) > o(i + 1);
® an ascent (asc) of o if o(i) < o(i + 1);

® an excedance (exc) of o if i < o(i).

Example
For o = 54132, des(o) = {1, 2,4}, asc(o) = {3}, exc(o) = {1,2}.

It is well-known that the Eulerian polynomials have the following combinatorial
interpretations:

A,,(X) — Z Xasc(cr) _ Z Xdes(cr) _ Z Xexc(a).

0'66,1 UEGn Ueen
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(a, f)-Eulerian polynomials

® A left-to-right maximum of o is an element o; such that o; > o} for every j < i.
® A right-to-left maximum of o is an element o; such that o; > o; for every j > i.

Let LRmax(o) (resp. RLmax(c)) be the number of left-to-right (resp. right-to-left)
maxima of o.

Example
Given a permutation o = 27183654, we have

LRmax(c) =1{2,7,8}| =3 RLmax(c) = |{4,5,6,8} =4.

In the middle of 1970's Carlitz-Scoville considered the following multivariate Eulerian
polynomials,

An(Xa y | a, ﬁ) — Z Xasc(o')ydes(a')aLRmax(U)—lﬁRLmax(a)—l‘
U€6n+1
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Two special cases of Carlitz-Scoville’s formula

Theorem (Carlitz and Scoville)

Zn
D Ay s B) = (L4 xF(x,y: 2))*(L+ yF(x, v 2))”,
n>0 '
where F(x,y;z) is given by

XZ _ ayzZ
F(x,y;2) = ——

 xe¥z — yeez’

5/39



Two special cases of Carlitz-Scoville’s formula

Theorem (Carlitz and Scoville)

Zn
D Anlxiy e B)5 = (14 xF(x,y:2))* (L + yF(x,y: 2))’,
o n!
where F(x,y;z) is given by

PR CANN 74
Floyie) = ey
1. When a=0,8 =1 and y = 1, the polynomials A,(x,1]0, 3) reduces to the classical Eulerian
polynomials Ap(x).

2. When x =y =1and g =0, it is not difficult to find that

An(l, 1 ‘ a, O) = Z aLRmax(a).
€S,
We have )
z" . 1
ZAn(l,lla,O)H =14 FQ1,1;2)* = (1 - t> _

n>0
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Refinement of («, 5)-Eulerian polynomials

Foro=o01...0, € &, with g = on11 = 0, the index i € [n] is called a

valley (val) of ¢ if 0;_1 > 0; < 0j41;

peak (pk) of o if o;_1 < 07 > 0j11;

left double ascent (da) of ¢ if 0;_1 < 07 < 0j41;
® right double descent (dd) of o if 0;_1 > 07 > 0j41.
Obviously we have val(c) = pk(o) — 1.
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Refinement of («, 5)-Eulerian polynomials

Foro=o01...0, € &, with g = on11 = 0, the index i € [n] is called a

valley (val) of ¢ if 0;_1 > 0; < 0j41;

peak (pk) of o if o;_1 < 07 > 0j11;

left double ascent (da) of o if oj_1 < 07 < Tj41;
® right double descent (dd) of o if 0;_1 > 07 > 0j41.
Obviously we have val(c) = pk(c) — 1. Recently, Ji considered the following polynomials. Let
u= (Ul, up, uz, U4).
An(l.l ‘ a, 5) — Z (Ul U2)Val(0) Uga(g) ufd(o)aLRmax(o’)—lﬂRLmax(o)—l.
0€G 11

She computed (context-free grammar) [Ji, 2023]

n
> Anlula )5 = (L4 xF(x,y:2)) % (1+ yF(x,y:2) - edPmodlonmu)z,
n>0 ’

where x +y = u3 + U, xy = uils.
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Ji’s follow-up work

Let M, be the set of permutations o € &, such that the first descent (if any) of 7 appears at the
letter n.

Example

My ={12,21} and M3 = {123,132,231,312,321}.
The binomial-Eulerian polynomials, which are the h-polynomials of stellohedrons, are defined by
~ n n
An(x) = Z xdes(o) — 1 +XZ ( >Am(x). (1)
ocEMpi m=1 m

1. Ji and Lin considered binomial-Stirling-Eulerian polynomials, using context-free grammar and
group actions and proved the ~-positivity of two a-variants of Eulerian polynomials and also an

a-analogue of Chung-Graham-Knuth's symmetric Euelrian indentity, see [Ji and Lin, 2024].

2. Dong-Lin-Pan gave a g-analogue of Ji's Stirling-Eulerian polynomials, see [Dong et al., 2024].
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Cycle («, t)-Eulerian polynomials

Define

Acyc(x y,t | o Z Xexc o) drop(o’) tﬁx(o)acyc(g),
O’GGn

where cyc(o) denotes the number of cycles of o and an index /i € [n] is a

e drop (drop) of o if i > o(i);

e fixed point (fix) of o if i = o(i).
We notice that the Carlitz-Scoville's («, 3)-Eulerian polynomials and Ji's refinements are
connected by

o Anlxoy |, B) = AT <x,y, By | o 4 ﬂ)

* Ap(ula, B) = AF° (X,y, ““3“3““ !a+ﬁ>, where xy = u1up and x +y = u3 + ug.
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Cyclic permutation statistics

For a permutation 0 = 01...0, € &, we say that an index / € [n] is a
® cycle peak (cpk) of o if o71(i) < i > o(i);
* cycle valley (cval) of o if o=1(i) > i < a(i);
® cycle double ascent (cda) of o if o7 1(i) < i < o(i);
® cycle double descent (cdd) of o if a71(i) > i > o(i).
Note that cpk(c) = cval(o).

Theorem 1

If xy = u1up and x + y = u3 + g, then

AT (xy tla) = 3 (unup) Py g0 () gerelc,
ceG,
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x-factorization

Fix a letter x € [n] and a permutation o € &, the x-factorization of ¢ is defined as the
concatenation o = wyw, x wyws, where wy (resp. wy) is the maximal contiguous subword
immediately to the left (resp. right) of x whose letters are all smaller than x.

Example (7-factorization of o)
if 0 = 934278516, then w; =9, wp, = 342, wy = () and ws = 8516.

Define the involution ¢x(o) : &, = &, by

(o) {Wl wy X wows, if x is a double ascent or a double descent of o;
$x\0) =

o, if x is a valley or a peak of o.

Here, we use conventions 0(0) = o(n+ 1) = co. It is easy to see that the involutions ¢, and ¢,
commute with each other. Given a subset S C [n], we define ¢s := ], s ¥x. The involutions
{©s}scin define a Z3-action on &,, which is a modified group action of Foata and Strehl and

called the MFS-action by Branden. A geometric version of this action was given by Shapiro et al.
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Example: valley hopping

The mountain range view of the permutation ¢ = 672841359.
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Cyclic valley hopping

Simply define ¥y (0) : &, — &, by
61 o, o00(c), ifxisnot a fixed point of o;
¢X(0-) = . . . .
o, if x is a fixed point of o,

where we treat the 0-th letter of (o) as 0 and the (n+1)-th letter as co. Given a subset
S C [n], define 95 := [[,cs ¥x. We will call the Z3-action defined by the involutions

{¥s}scn cyclic valley-hopping. Satisfying

(1) Cval(ys(o)) = Cval(o);

(2) Cpk(¢s(a)) = Cpk(o);

(3) Cda(¢s(0)) = (Cda(o) \ §) U (5N Cdd(0));
(4) Cdd(ys(0)) = (Cdd(0) \ §) U (§ N Cda(0));
(5) Fix(ys(0)) = Fix(o);

(6) cyc(¥s(0)) = cyc(o).
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Example

. .
056249873101

0564293781010
FIGURE 1. Cyclic valley-hopping on 7 = (5)(642)(9378)(101) with S =
{4, 8} yields ¢g(m) = (5)(624)(9873)(101).
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Proof of Theorem 1

Orb(o) := {¢s(0)|S C [n]}: the orbit of o under cyclic valley-hopping. The cyclic MFS-action
divides the set &, into disjoint orbits. There is a unique permutation (&) in each orbit which has

no cyclic double descents.

Z (uluz)cpk(w)ugda(w)uzdd(‘lr)tﬁx(w)acyc(fr) _ (’LL1UQ)Cpk(5)(’LL3 + u4)cda(§)tﬁx(6)acyc(6)_

7€0rb(a)

By definition, it is clear that for o € &,
exc(c) = cda(c) + cpk(o) and drop(c) = cdd(o) + cval(o).

Setting u; = u3 = x and uy = uy = y in above identity, we obtain

Z XexC(‘n’)ydl‘Op(Tr)tﬁX(Tk’)aCyC(ﬂ') — (Xy)cpk(&)(x + y)cda(&)tﬁx(t?)acyc(&).

w€Orb(o)
Thus

Z (u1u2)cpk(7r)ugda(w)uidd(‘lr)tﬁx(fr)acyc(r) _ Z xexc(ﬂ)ydrop(r)tﬁx(ﬂ)acyc(‘lr)-
w€0rb(o) 7€Orb(o)

where uiuy = xy and uz + ug = x + y. Then summing over all the orbits of &,,.
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Generalized Eulerian polynomials

An index i € [n] is a
® [eft-to-right-maximum-peak (LRmaxp) if it is a peak and o; is a left-to-right maximum;
® right-to-left-maximum-peak (RLmaxp) if it is a peak and o; is a right-to-left maximum;

® |eft-to-right-maximum-da (LRmaxda) if it is a double ascent and o; is a left-to-right
maximum;

® right-to-left-maximum-dd (RLmaxdd) if it is a double descent and o; is a right-to-left
maximum.

Define the enumerative polynomial
An(u, f,g, t | a, ﬂ) — Z (u1u2)V(a)uga(ﬂ)uid(”)fLRmaxpk(o‘)—1gRLma.xpk(a)—1

0€Gh41
% tLRmaxda(U)+RLmaxdd(a) aLRmax(a)—l[BRLmax(a)—l'

Ji's (a, B)-Eulerian polynomial is Ap(u,1, 1, 1], 8) and Ji-Lin's binomial Stirling-Eulerian
polynomial is A,(u,0, 1, 1|, ).
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Connection

Theorem 2

If xy = tiup and x + y = u3z + ug, then

auz + Bug
AP x,y, ——— t|af + = An(u,f, g, t|a,B).
(yaf+ﬁg | ﬁg) (u,f g t]a, )
We will give a bijective proof based on Foata's fundamental transformation and Theorem 1 (just
proved).
Note that

n (cont un)ie x—y af+g
i 3+Bus - 7
n§>0An(u7 f,g,t|0(,6) nl € (Xeyz_yexz> ’

where xy = u1uy and x +y = u3 + uy.
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Proof of Theorem 2

Let & be the set of permutations in &, of which each cycle has a color in {Red, Blue}. Define

w(o; a,a,b) = (uluz)q’k(") ugda(”) uzdd(a) afx(@) peyelo)—fix(a) g eye()

wi (o, a,b,t) = w(o; @, a, b) tHRmxda()
)

ws(T; @, a,b,t) = w(o; oy a,b) RIbmaxdd(r)

Equality can be written as

AP (z,y,t(aus + Bus)(af + Bg) | af + Bg)

3 (ru) PO O oy + fu) < f + )
€S,

= Z wl(a;a,ug,f,t)wz(r;,@,u4,g,t).

(o,7)e6X

Any permutation w = wy ... w,y1 € Spp1 can be written uniquely as w = u(n+ 1) v. Define a
mapping p : 6% — &, as follows:

(0,7) = 7 :=0(c)x0'(7) with x =n+1,

where 0 is the FFT and &’ its variant.
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Example

More precisely, we arrange the cycles of ¢ in increasing order from left to right of their
maximum, which are put at the beginning of their cycles. Erasing the parentheses gives
0(o). Similarly, we arrange the cycles of 7 in increasing order from right to left of their
maxima, which are put at the end of their cycles. Erasing the parentheses gives ¢'(7).

2 g T

) 7 A

\/ ()
/N

!
5

FIGURE 2. The mapping p: (6,7) —» 7 =27159108436.
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Application 1: Exponential generating functions

The exponential generating function of polynomials A7 “(x, y, t|a) is well-known and

reads as follows N ( Jetz \ @

z x—y)e

cyc PR B S AT

DAYy tla) = (Xeyz_yexz> : (2)
n>0

From the connection formula,

Theorem

Let xy = uyup and x +y = uz + us. We have

n X—y af+5g
— +0Bua)t A
D Anlu 88| ) = e ““Z(Xeyz_ exz) - ()
nz
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Application 2: Gamma positivity in two special cases

Lemma

For any variable f, we have

An(X7.ya07X+.ya f717 t|Oé,Oé)
_ Z (Xy)asc(cr)(x + y)n—2asc(a) fLRmaxp(o)—l tRLmaxdd(a)aLRmax(a)+RLmax(a)—2

€&
da(o)=0

Z (Xy)exc(a)(x +y)n—2exc(o)tﬁx(a)acyc(o)(f + 1)Cyc(a)—ﬁx(o)'

oeG)
cda(o)=0

We define three types of subsets of G,:
cda=0 .__ . _ — .
S oxe—j =10 € 6, : cda(o) = 0 and exc(o) = j};
da=0 .__ . _ — .
6l ase—j = 10 € 6, : da(0) = 0 and asc(o) = j};
da=0 ._ . _ _
M ase—j = {0 € M, : da(0) = 0 and asc(o) = j}.
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The («, t)-Eulerian polynomials A,(x,y, t]a) by

A, (X, y,t | a) — Z Xasc(a)ydes(a)tLRmaxda(a)+RLmaxdd(a)aLRmax(U)+RLmax(a)—2’

€S 11

which is equal to A,(x,y,x,y, 1,1, t]|a, «).

Theorem

For 0 < j < |n/2|, we have

Ln/2]
Anfxy,tla) = 37 nslen YooY (x+ )", (5)
=0
where
’Ynj(a7 t) _ Z aLRmax(0)+RLmax(a)—2 tRLmaxdd(U) (63)
Ueggilz,%sc:j
_ Z 2cyc(a)7ﬁx(a)acyc(a) tﬁx(a'); (6b)
GEGCda:O

n,exc=j
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The (o, t)-binomial-Eulerian polynomials An(x, y, t | ) by

Avn(X, y,t | O[) — Z Xasc(cr)ydes(cr) tLRmaXda(a)+RLmade(o)aLRmaX(a)+RLmaX(o)f27

O'GMn+1

which is equal to A,(x,y, x,y,0,1,t|a,a) because a permutation o € &, is an element
of M, if and only if LRmaxp(c) = 1.

Theorem

For n > 1, we have

13)
An(xy,tla) =) Fnja, )oY (x +y)" 7,

=0
where
:Y/n,j(ag t) _ Z aRLmax(a)—l tRLmaxdd(a) _ Z ¢ (o) tﬁx(a) )
O—EMgiiOasc:j UEGE?;:O:_/
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(v, t)-Stirling-Eulerian numbers

Define the cyclic («, t)-Stirling-Eulerian numbers by

<Z>cyc - Z acyc(g)tﬁX(U) (1 S k S n).
a,t cES,
exc(o)=n—k

Partition the set of fixed points of each permutation in &, in two categories, say blue ones and
red ones, we have

Ayt ) 0) = 3 (”) (o)™ AT (2, y, ty | @)

ms

= <m> (atz)"™™ kZ: <7Z>Zy: T Ryk

ms

i
3

3

3

Il
S)

where ()07 = (6)as = Oko-

Comparing the coefficients of x?y? and xPy? with n = a+ b.
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(c, t)-analogue of Chung-Graham-Knuth’s formula

Hence, combining the symmetry of A%¢(x,y, t(x + y)|a) in x and y, we have

Theorem

For integers a, b > 0, we have

o () (- ) )

k>0 a,t k>0 a,t

cyc
oveve _ /k\ Ve _
where () . = <0>a = 0k,0-

When a = t = 1, it reduces to Chung-Graham-Knuth's symmetric Eulerian identity

2 ()G -2 00 Gy

k>0
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Generating functions of ~-coefficients

We can derive the exponential generating function for these two ~-coefficients, respectively.

Theorem

Let u=+/1—4x. We have

Ln/2] N u e%(t—l)z 20
1 (o, )= =
+ "Z; JZ:(:) Tnj( )X n! <ucosh(uz/2) - sinh(uz/2)) ’
Ln/2] n (t—1)z @
. Z ue 2
1 Yn.ilo, )X — = - o
°F %:1 ; Vn.j{0 E)X n! (ucosh(uz/2) = smh(uz/2))
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Table

nj| o 1 2
0 1
1 ot
2 | o?t? 2
3 | a3t 2a + 60t
4 | ottt 20 + 8at + 120312 4o + 1202
5

a®t® 20+ 1002t + 200312 + 2004t 16a + 4002 + 2002t + 6003t

Table: The first values of 7y, j(«, t) for 0 < 2j < n <5.

For 0 <j < |n/2], let dpj(c,t) = vnj(c, t)/2, then,

[n/2]
An(x,y,t|a) = Z 2, i(a, t)(xyY (x +y)" .
j=0
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Cycle André permutations

Let c =01+ 0, € &,. Say that o is an André permutation of the first kind (resp. second
kind) if o has no double descents, i.e., o;_1 > 0; > 041, and each x-factorisation u A(x) x p(x) v
of o has property

° A\(x)=0if p(x) =0,
® max(A(x)) < max(p(x)) (resp. min(p(x)) < min(A(x))) if p(x) # 0 and A(x) # 0,

where A(x) and p(x) are the the maximal contiguous subword immediately to the left (resp. right)
of x whose letters are all greater than x. (Note different from the x-factorisation before.) Let AL
(resp. A2) be the set of André permutations of the first (resp. second) kind in &,. It is known
that the cardinality of A% (resp. A2) is the Euler number E,.

Let A:={a1,...,ar} be a set of k positive integers. Let C = (ay,...,ax) be a cycle (cyclic
permutation) of A with a; = min{ay, ..., ax}. Then, cycle C is called an André cycle if the word
ay...ag is an André permutation of the first kind. We say that a permutation is a cycle André
permutation if it is a product of disjoint André cycles. Let CA, be the set of cycle André
permutations of [n].
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Combinatorial interpretation

For 0 <j < |n/2], we have
dnjlot) = > gyl (7)
c€CAp
drop(o)=j
dnJ(aa t) _ Z trlminda(a)armin(a)—l, (/ =1, 2). (8)
UEAgll
des(o)=j

We prove this theorem by computing the exponential generating functions of both sides,
and derive the i = 1 case of (8) from (7) by a bijection from CA, to AL, ;, and the i =2
case by constructing another bijection from A} ; to A2, via André trees,
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Recall Carlitz-Scoville’s (a, 3)-Euerlian polynomials

Recall that

Theorem (Carlitz and Scoville)

ZA (x,y |, B)= = (1 +xF(x,y;2))*(1 + yF(x,y; 2))?,
n>0
where F(x,y;z) is given by
ez _ )7
F(x,y;z2) = ———.
xeYz — ye®?

This is equivalent to the following rational generating function

An(x,y |, B) ZXJnJJJrﬂ <0/+[))JFJ1>7 (9)

(1 n+a+ﬁ
j>0

where An(X,y | a, 6) — ZUEG,,H Xasc(a)ydcs(o)aLRmax(U)flﬁRLmaX(a’)f1'
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Eulerian polynomials: from Euler’s definition

Euler’s definition (D - X)

Let us consider the following two

well-known linear operators on C[x]:

X: multiplication by x;
D: the usual derivative.

[D,X]:= DX — XD = 1.

Leonhard Euler (1707-1783)

>

0
g(/ﬂ)x": (1_1X)2
S+ =
IZZO(: +1)3x (1(+14_X;)4X)
(D-X)" () = izzo(i—i—l)”x" = 2
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g-derivative

For a fixed real number g with 0 < g < 1 define the g-derivative operator J, by

Ox P(X) = p((q:)__]_;EX)v

where p(x) € K[[x]]. Thus &4 x¥ = [k]x*71. Let
(i @)n = (1= x)(1 = xq) - (1 —xq"™).

Recall the following g-binomial formulas

N oy o
(X; q)N = |:i:|(_1)lxlql(l_1)/27
i=0
1 ; [N +j- 1}
= X . .
(x;9)n = J
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Carlitz’s g-Eulerian polynomials

Theorem (Carlitz 1975)

For n > 0, we have

Z xdes(a) qmaj(a)

o€G, :ZXJU+1]":(5X-X)"( ! >,

(%: q)nt1 = 1—x

where maj(c) == )", 0j > 0it1.

How do we change the ﬁ with another formal series? For instance, ﬁ? What
happens?
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A g-analogue of («a, 3)-Eulerian polynomials

For positive integers o, 5 and n € N we apply the operator X158 .5, - X?, we have

>

j>0

>

Jj=0

>

Jj=0

j+a+p—1]

I J

j+a+p—1]

i J

j+a+p8-—1]
J

U+ 6] =

1

i B (X; q)a

U+ 81 =

48

(8] + q°[a]x

(X @atpr1

(81 + ¢°([1 + (8] + [[B + 1])x + > a]x?

(X: @)a+p+2

Is there any combinatorial interpretation for these numerators?
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Bi-Stirling-Macmahon Eulerian polynomial

For o € &, define the («, 8)-major index

maj(o) = (n — rlmin(o))(8 — 1) + (des(o) — Irmin(o) + 1)(a — 1) + maj(o).

We have
S Enpakla, B, g)xk 1 _Z [f—’_a—i—ﬁ ]U—Fﬁ]"
(X Qntats =0
and

En,k(aaﬁa q) _ Z [allrmin(a)—l[/B]rlmin(a')—lqmaj(a).

ceS,
des(o)=k—1

We can prove it by induction and Carlitz’s insertion method!

34/39



Recurrence

Lemma

For n > 1, we have

Ens1(x:q) = (1 = x)[8] + [0+ a + B — 1]x) En(x: 9) + (1 = x)xq”0x(En(x; 9)) ~ (10)
Extracting the coefficient of x¥~1 (1 < k < n) in Eq. (10), we have
En+l,k(&7 /3~ q) - q/'3+k—2[n + o+ 1-— k] En,k—l(aa B? q) + [ﬁ + k — 1]En7k(a7 ﬁ'/ q)*

which can be proved by a similar argument for the recurrence of Carlitz's g-Eulerian
polynomials.

Note that If x = 1 Eq. (10) reduces to E,y1(1; q) = [n+a + 3 — 1]Ex(1; g), which yields
n—1

Eni1(Liq) = [Jla+B+1]
i=0
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Some relevant known results

® When o = 8 =1, it reduces to Carlitz's g-Eulerian polynomials;

® When o = 1, Butlerstudied these polynomials E, «(1, 3, q) using the g-Rook theory
with a cycle counting parameter, see [Butler, 2004]

® When a = g = 1, it reduces to Savage-Viswanathan's 1/k-Eulerian polynomials,
see [Savage and Viswanathan, 2012];

® These polynomials appear also in Nadeau-Tewariand Gaudin as a sepecial case of the
remixed Eulerian numbers, see [Nadeau and Tewari, 2023, Gaudin, 2024].
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Some problems and further directions for g-analogue

® |s there a combinatorial proof for our g-identity? even ¢ = 1, NO (Probability proof
exists)

® Carlitz-Scoville also considered another model called («, 3)-sequence, which has
same recurrence with A(x, y |a, 3), in case g = 1, using this model and Ball in Box
method (barred permutations) is easy to prove! For g-version?

® How can prove our theorem using the P-partitions? Or P-partition can be used to
prove some Carlitz's rational function with a Stirling statistics?

® Varvak studied the connection between (g-) normal ordering problem and (g-) Rook
number, so can we extend our results in the context of g-rook theory.
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