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Eulerian polynomials

For a permutation σ ∈ Sn, an index 1 ≤ i ≤ n − 1 is called

• a descent (des) of σ if σ(i) > σ(i + 1);

• an ascent (asc) of σ if σ(i) < σ(i + 1);

• an excedance (exc) of σ if i < σ(i).

Example

For σ = 54132, des(σ) = {1, 2, 4}, asc(σ) = {3}, exc(σ) = {1, 2}.

It is well-known that the Eulerian polynomials have the following combinatorial
interpretations:

An(x) =
∑
σ∈Sn

xasc(σ) =
∑
σ∈Sn

xdes(σ) =
∑
σ∈Sn

xexc(σ).
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(α, β)-Eulerian polynomials

• A left-to-right maximum of σ is an element σi such that σi > σj for every j < i .

• A right-to-left maximum of σ is an element σi such that σi > σj for every j > i .

Let LRmax(σ) (resp. RLmax(σ)) be the number of left-to-right (resp. right-to-left)
maxima of σ.

Example

Given a permutation σ = 27183654, we have

LRmax(σ) = |{2, 7, 8}| = 3 RLmax(σ) = |{4, 5, 6, 8}| = 4.

In the middle of 1970’s Carlitz-Scoville considered the following multivariate Eulerian
polynomials,

An(x , y |α, β) =
∑

σ∈Sn+1

xasc(σ)ydes(σ)αLRmax(σ)−1βRLmax(σ)−1.
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Two special cases of Carlitz-Scoville’s formula

Theorem (Carlitz and Scoville)∑
n≥0

An(x , y |α, β)
zn

n!
= (1 + xF (x , y ; z))α(1 + yF (x , y ; z))β ,

where F (x , y ; z) is given by

F (x , y ; z) =
exz − eyz

xeyz − yeez
.

1. When α = 0, β = 1 and y = 1, the polynomials An(x , 1 | 0, β) reduces to the classical Eulerian
polynomials An(x).
2. When x = y = 1 and β = 0, it is not difficult to find that

An(1, 1 |α, 0) =
∑
σ∈Sn

αLRmax(σ).

We have ∑
n≥0

An(1, 1 |α, 0)
zn

n!
= (1 + F (1, 1; z))α =

(
1

1− t

)α

.
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Refinement of (α, β)-Eulerian polynomials

For σ = σ1 . . . σn ∈ Sn with σ0 = σn+1 = 0, the index i ∈ [n] is called a

• valley (val) of σ if σi−1 > σi < σi+1;

• peak (pk) of σ if σi−1 < σi > σi+1;

• left double ascent (da) of σ if σi−1 < σi < σi+1;

• right double descent (dd) of σ if σi−1 > σi > σi+1.

Obviously we have val(σ) = pk(σ)− 1.

Recently, Ji considered the following polynomials. Let
u = (u1, u2, u3, u4).

An(u |α, β) :=
∑

σ∈Sn+1

(u1u2)
val(σ)u

da(σ)
3 u

dd(σ)
4 αLRmax(σ)−1βRLmax(σ)−1.

She computed (context-free grammar) [Ji, 2023]∑
n≥0

An(u |α, β)
zn

n!
= (1 + xF (x , y ; z))

α+β
2 (1 + yF (x , y ; z))

α+β
2 e

1
2 (β−α)(u3−u4)z ,

where x + y = u3 + u4, xy = u1u2.
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Ji’s follow-up work

Let Mn be the set of permutations σ ∈ Sn such that the first descent (if any) of π appears at the
letter n.

Example

M2 = {12, 21} and M3 = {123, 132, 231, 312, 321}.

The binomial-Eulerian polynomials, which are the h-polynomials of stellohedrons, are defined by

Ãn(x) :=
∑

σ∈Mn+1

xdes(σ) = 1 + x
n∑

m=1

(
n

m

)
Am(x). (1)

1. Ji and Lin considered binomial-Stirling-Eulerian polynomials, using context-free grammar and
group actions and proved the γ-positivity of two α-variants of Eulerian polynomials and also an
α-analogue of Chung-Graham-Knuth’s symmetric Euelrian indentity, see [Ji and Lin, 2024].
2. Dong-Lin-Pan gave a q-analogue of Ji’s Stirling-Eulerian polynomials, see [Dong et al., 2024].
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Cycle (α, t)-Eulerian polynomials

Define

Acyc
n (x , y , t |α) :=

∑
σ∈Sn

xexc(σ)ydrop(σ)tfix(σ)αcyc(σ),

where cyc(σ) denotes the number of cycles of σ and an index i ∈ [n] is a

• drop (drop) of σ if i > σ(i);

• fixed point (fix) of σ if i = σ(i).

We notice that the Carlitz-Scoville’s (α, β)-Eulerian polynomials and Ji’s refinements are
connected by

• An(x , y |α, β) = Acyc
n

(
x , y , αx+βy

α+β |α+ β

)
;

• An(u |α, β) = Acyc
n

(
x , y , αu3+βu4

α+β |α+ β

)
, where xy = u1u2 and x + y = u3 + u4.
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Cyclic permutation statistics

For a permutation σ = σ1 . . . σn ∈ Sn, we say that an index i ∈ [n] is a

• cycle peak (cpk) of σ if σ−1(i) < i > σ(i);

• cycle valley (cval) of σ if σ−1(i) > i < σ(i);

• cycle double ascent (cda) of σ if σ−1(i) < i < σ(i);

• cycle double descent (cdd) of σ if σ−1(i) > i > σ(i).

Note that cpk(σ) = cval(σ).

Theorem 1

If xy = u1u2 and x + y = u3 + u4, then

Acyc
n (x , y , t |α) =

∑
σ∈Sn

(u1u2)
cpk(σ)u

cda(σ)
3 u

cdd(σ)
4 tfix(σ)αcyc(σ).
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x-factorization

Fix a letter x ∈ [n] and a permutation σ ∈ Sn, the x-factorization of σ is defined as the
concatenation σ = w1w2 x w4w5, where w2 (resp. w4) is the maximal contiguous subword
immediately to the left (resp. right) of x whose letters are all smaller than x .

Example (7-factorization of σ)

if σ = 934278516, then w1 = 9, w2 = 342, w4 = ∅ and w5 = 8516.

Define the involution φx(σ) : Sn → Sn by

φx(σ) :=

{
w1w4 x w2w5, if x is a double ascent or a double descent of σ;

σ, if x is a valley or a peak of σ.

Here, we use conventions σ(0) = σ(n + 1) = ∞. It is easy to see that the involutions φx and φy

commute with each other. Given a subset S ⊆ [n], we define φS :=
∏

x∈S φx . The involutions
{φS}S⊆[n] define a Zn

2-action on Sn, which is a modified group action of Foata and Strehl and
called the MFS-action by Bränden. A geometric version of this action was given by Shapiro et al.
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Example: valley hopping

The mountain range view of the permutation σ = 672841359.
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Cyclic valley hopping

Simply define ψx(σ) : Sn → Sn by

ψx(σ) :=

{
θ−1 ◦ φx ◦ θ(σ), if x is not a fixed point of σ;

σ, if x is a fixed point of σ,

where we treat the 0-th letter of θ(σ) as 0 and the (n+1)-th letter as ∞. Given a subset
S ⊆ [n], define ψS :=

∏
x∈S ψx . We will call the Zn

2-action defined by the involutions
{ψS}S⊆[n] cyclic valley-hopping. Satisfying
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Example
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Proof of Theorem 1

Orb(σ) := {ψS(σ)|S ⊆ [n]}: the orbit of σ under cyclic valley-hopping. The cyclic MFS-action
divides the set Sn into disjoint orbits. There is a unique permutation (σ̄) in each orbit which has
no cyclic double descents.

By definition, it is clear that for σ ∈ Sn,

exc(σ) = cda(σ) + cpk(σ) and drop(σ) = cdd(σ) + cval(σ).

Setting u1 = u3 = x and u2 = u4 = y in above identity, we obtain∑
π∈Orb(σ)

xexc(π)ydrop(π)tfix(π)αcyc(π) = (xy)cpk(σ̄)(x + y)cda(σ̄)tfix(σ̄)αcyc(σ̄).

Thus

where u1u2 = xy and u3 + u4 = x + y . Then summing over all the orbits of Sn.
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Generalized Eulerian polynomials

An index i ∈ [n] is a

• left-to-right-maximum-peak (LRmaxp) if it is a peak and σi is a left-to-right maximum;

• right-to-left-maximum-peak (RLmaxp) if it is a peak and σi is a right-to-left maximum;

• left-to-right-maximum-da (LRmaxda) if it is a double ascent and σi is a left-to-right
maximum;

• right-to-left-maximum-dd (RLmaxdd) if it is a double descent and σi is a right-to-left
maximum.

Define the enumerative polynomial

Ji’s (α, β)-Eulerian polynomial is An(u, 1, 1, 1 |α, β) and Ji-Lin’s binomial Stirling-Eulerian
polynomial is An(u, 0, 1, 1 |α, α).
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Connection

Theorem 2

If xy = u1u2 and x + y = u3 + u4, then

Acyc
n

(
x , y ,

αu3 + βu4
αf + βg

t |αf + βg

)
= An(u, f , g , t |α, β).

We will give a bijective proof based on Foata’s fundamental transformation and Theorem 1 (just
proved).
Note that ∑

n≥0

An(u, f , g , t |α, β)
zn

n!
= e(αu3+βu4)tz

(
x − y

xeyz − yexz

)αf+βg

,

where xy = u1u2 and x + y = u3 + u4.
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Proof of Theorem 2

Let S⋆
n be the set of permutations in Sn of which each cycle has a color in {Red ,Blue}. Define

Equality can be written as

Any permutation w = w1 . . .wn+1 ∈ Sn+1 can be written uniquely as w = u (n + 1) v . Define a
mapping ρ : S⋆

n → Sn+1 as follows:

(σ, τ) 7→ π̃ := θ(σ) x θ′(τ) with x = n + 1,

where θ is the FFT and θ′ its variant.
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Example

More precisely, we arrange the cycles of σ in increasing order from left to right of their
maximum, which are put at the beginning of their cycles. Erasing the parentheses gives
θ(σ). Similarly, we arrange the cycles of τ in increasing order from right to left of their
maxima, which are put at the end of their cycles. Erasing the parentheses gives θ′(τ).
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Application 1: Exponential generating functions

The exponential generating function of polynomials Acyc
n (x , y , t |α) is well-known and

reads as follows ∑
n≥0

Acyc
n (x , y , t |α)z

n

n!
=

(
(x − y)etz

xeyz − yexz

)α

. (2)

From the connection formula,

Theorem

Let xy = u1u2 and x + y = u3 + u4. We have

∑
n≥0

An(u, f , g , t |α, β)
zn

n!
= e(αu3+βu4)tz

(
x − y

xeyz − yexz

)αf+βg

. (3)
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Application 2: Gamma positivity in two special cases

Lemma
For any variable f , we have

An(x , y , 0, x + y , f , 1, t |α, α)

=
∑

σ∈Sn+1
da(σ)=0

(xy)asc(σ)(x + y)n−2asc(σ)f LRmaxp(σ)−1tRLmaxdd(σ)αLRmax(σ)+RLmax(σ)−2

=
∑
σ∈Sn

cda(σ)=0

(xy)exc(σ)(x + y)n−2exc(σ)tfix(σ)αcyc(σ)(f + 1)cyc(σ)−fix(σ).

We define three types of subsets of Sn:

Scda=0
n,exc=j := {σ ∈ Sn : cda(σ) = 0 and exc(σ) = j};

Sda=0
n,asc=j := {σ ∈ Sn : da(σ) = 0 and asc(σ) = j};

Mda=0
n,asc=j := {σ ∈ Mn : da(σ) = 0 and asc(σ) = j}.
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The (α, t)-Eulerian polynomials An(x , y , t |α) by

An (x , y , t |α) :=
∑

σ∈Sn+1

xasc(σ)ydes(σ)tLRmaxda(σ)+RLmaxdd(σ)αLRmax(σ)+RLmax(σ)−2,

which is equal to An(x , y , x , y , 1, 1, t |α, α).

Theorem

For 0 ≤ j ≤ ⌊n/2⌋, we have

An(x , y , t |α) =
⌊n/2⌋∑
j=0

γn,j(α, t)(xy)
j(x + y)n−2j , (5)

where

γn,j(α, t) =
∑

σ∈Sda=0
n+1,asc=j

αLRmax(σ)+RLmax(σ)−2tRLmaxdd(σ) (6a)

=
∑

σ∈Scda=0
n,exc=j

2cyc(σ)−fix(σ)αcyc(σ)tfix(σ); (6b)
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The (α, t)-binomial-Eulerian polynomials Ãn(x , y , t |α) by

Ãn(x , y , t |α) =
∑

σ∈Mn+1

xasc(σ)ydes(σ)tLRmaxda(σ)+RLmaxdd(σ)αLRmax(σ)+RLmax(σ)−2,

which is equal to An(x , y , x , y , 0, 1, t |α, α) because a permutation σ ∈ Sn is an element
of Mn if and only if LRmaxp(σ) = 1.

Theorem

For n ≥ 1, we have

Ãn(x , y , t |α) =
⌊ n
2
⌋∑

j=0

γ̃n,j(α, t)(xy)
j(x + y)n−2j ,

where

γ̃n,j(α, t) =
∑

σ∈Mda=0
n+1,asc=j

αRLmax(σ)−1tRLmaxdd(σ) =
∑

σ∈Scda=0
n,exc=j

αcyc (σ)tfix(σ).
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(α, t)-Stirling-Eulerian numbers

Define the cyclic (α, t)-Stirling-Eulerian numbers by〈n

k

〉cyc

α,t
:=

∑
σ∈Sn

exc(σ)=n−k

αcyc(σ)tfix(σ) (1 ≤ k ≤ n).

Partition the set of fixed points of each permutation in Sn in two categories, say blue ones and
red ones, we have

Comparing the coefficients of xayb and xby a with n = a+ b.
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(α, t)-analogue of Chung-Graham-Knuth’s formula

Hence, combining the symmetry of Acyc
n (x , y , t(x + y)|α) in x and y , we have

Theorem

For integers a, b ≥ 0, we have∑
k≥0

(αt)a+b−k

(
a+ b

k

)〈
k

a

〉cyc

α,t

=
∑
k≥0

(αt)a+b−k

(
a+ b

k

)〈
k

b

〉cyc

α,t

,

where
〈
0
k

〉cyc
α,t

=
〈

k
0

〉cyc

α,t
= δk,0.

When α = t = 1, it reduces to Chung-Graham-Knuth’s symmetric Eulerian identity∑
k≥0

(
a+ b

k

)〈
k

a− 1

〉
=

∑
k≥0

(
a+ b

k

)〈
k

b − 1

〉
.
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Generating functions of γ-coefficients

We can derive the exponential generating function for these two γ-coefficients, respectively.

Theorem

Let u =
√
1− 4x . We have

1 +
∑
n≥1

⌊n/2⌋∑
j=0

γn,j(α, t)x
j z

n

n!
=

(
u e

1
2 (t−1)z

u cosh(uz/2)− sinh(uz/2)

)2α

,

1 +
∑
n≥1

⌊n/2⌋∑
j=0

γ̃n,j(α, t)x
j z

n

n!
=

(
u e(t−

1
2 )z

u cosh(uz/2)− sinh(uz/2)

)α

.
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Table

n\j 0 1 2
0 1
1 αt
2 α2t2 2α
3 α3t3 2α+ 6α2t
4 α4t4 2α+ 8α2t + 12α3t2 4α+ 12α2

5 α5t5 2α+ 10α2t + 20α3t2 + 20α4t3 16α+ 40α2 + 20α2t + 60α3t

Table: The first values of γn,j(α, t) for 0 ≤ 2j < n ≤ 5.

For 0 ≤ j ≤ ⌊n/2⌋, let dn,j(α, t) = γn,j(α, t)/2
j , then,

An(x , y , t |α) =
⌊n/2⌋∑
j=0

2jdn,j(α, t)(xy)
j(x + y)n−2j .
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Cycle André permutations

Let σ = σ1 · · ·σn ∈ Sn. Say that σ is an André permutation of the first kind (resp. second
kind) if σ has no double descents, i.e., σi−1 > σi > σi+1, and each x-factorisation u λ(x) x ρ(x) v
of σ has property

• λ(x) = ∅ if ρ(x) = ∅,
• max(λ(x)) < max(ρ(x)) (resp. min(ρ(x)) < min(λ(x))) if ρ(x) ̸= ∅ and λ(x) ̸= ∅,

where λ(x) and ρ(x) are the the maximal contiguous subword immediately to the left (resp. right)
of x whose letters are all greater than x . (Note different from the x-factorisation before.) Let A1

n

(resp. A2
n) be the set of André permutations of the first (resp. second) kind in Sn. It is known

that the cardinality of A1
n (resp. A2

n) is the Euler number En.

Let A := {a1, . . . , ak} be a set of k positive integers. Let C = (a1, . . . , ak) be a cycle (cyclic
permutation) of A with a1 = min{a1, . . . , ak}. Then, cycle C is called an André cycle if the word
a2 . . . ak is an André permutation of the first kind. We say that a permutation is a cycle André
permutation if it is a product of disjoint André cycles. Let CAn be the set of cycle André
permutations of [n].

27 / 39



Combinatorial interpretation

Theorem

For 0 ≤ j ≤ ⌊n/2⌋, we have

dn,j(α, t) =
∑

σ∈CAn
drop(σ)=j

tfix(σ)αcyc(σ), (7)

dn,j(α, t) =
∑

σ∈A(i)
n+1

des(σ)=j

trlminda(σ)αrmin(σ)−1, (i = 1, 2). (8)

We prove this theorem by computing the exponential generating functions of both sides,
and derive the i = 1 case of (8) from (7) by a bijection from CAn to A1

n+1, and the i = 2
case by constructing another bijection from A1

n+1 to A2
n+1 via André trees,
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Recall Carlitz-Scoville’s (α, β)-Euerlian polynomials

Recall that

Theorem (Carlitz and Scoville)∑
n≥0

An(x , y |α, β)
zn

n!
= (1 + xF (x , y ; z))α(1 + yF (x , y ; z))β ,

where F (x , y ; z) is given by

F (x , y ; z) =
exz − eyz

xeyz − yeez
.

This is equivalent to the following rational generating function

An(x , y |α, β)
(1− x)n+α+β

=
∑
j≥0

x jyn−j(j + β)n
(
α+ β + j − 1

j

)
, (9)

where An(x , y |α, β) :=
∑

σ∈Sn+1
xasc(σ)ydes(σ)αLRmax(σ)−1βRLmax(σ)−1.
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Eulerian polynomials: from Euler’s definition

Euler’s definition (D · X )

Let us consider the following two
well-known linear operators on C[x ]:

X : multiplication by x ;
D: the usual derivative.

[D,X ] := DX − XD = 1.

Leonhard Euler (1707-1783)

∑
i≥0

x i =
1

1− x∑
i≥0

(i + 1)x i =
1

(1− x)2

∑
i≥0

(i + 1)2x i =
(1 + x)

(1− x)3

∑
i≥0

(i + 1)3x i =
(1 + 4x + x2)

(1− x)4

Euler’s

(D·X )n
(

1
1−x

)
=

∑
i≥0

(i+1)nx i = An(x)
(1−x)n+1 .
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q-derivative

For a fixed real number q with 0 < q < 1 define the q-derivative operator δx by

δx p(x) =
p(qx)− p(x)

(q − 1)x
,

where p(x) ∈ K[[x ]]. Thus δx ,q x
k = [k]xk−1. Let

(x ; q)n = (1− x)(1− xq) · · · (1− xqn−1).

Recall the following q-binomial formulas

(x ; q)N =
N∑
i=0

[
N

i

]
(−1)ix iqi(i−1)/2,

1

(x ; q)N
=

∑
j≥0

x j
[
N + j − 1

j

]
.
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Carlitz’s q-Eulerian polynomials

Theorem (Carlitz 1975)

For n ≥ 0, we have∑
σ∈Sn

xdes(σ)qmaj(σ)

(x ; q)n+1
=

∑
j≥0

x j [j + 1]n = (δx · X )n
(

1

1− x

)
,

where maj(σ) :=
∑

i σi > σi+1.

How do we change the 1
1−x with another formal series? For instance, 1

(x ;q)N
? What

happens?
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A q-analogue of (α, β)-Eulerian polynomials

For positive integers α, β and n ∈ N we apply the operator X 1−β · δx · X β, we have

∑
j≥0

x j
[
j + α+ β − 1

j

]
=

1

(x ; q)α+β
;

∑
j≥0

x j
[
j + α+ β − 1

j

]
[j + β] =

[β] + qβ[α]x

(x ; q)α+β+1
;

∑
j≥0

x j
[
j + α+ β − 1

j

]
[j + β]2 =

[β]2 + qβ([1 + α][β] + [α][β + 1])x + q2β+1[α]2x2

(x ; q)α+β+2

Is there any combinatorial interpretation for these numerators?
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Bi-Stirling-Macmahon Eulerian polynomial

For σ ∈ Sn define the (α, β)-major index

m̃aj(σ) = (n − rlmin(σ))(β − 1) + (des(σ)− lrmin(σ) + 1)(α− 1) +maj(σ).

Theorem

We have ∑n+1
k=1 En+1,k(α, β, q)x

k−1

(x ; q)n+α+β
=

∑
j≥0

x j
[
j + α+ β − 1

j

]
[j + β]n

and
En,k(α, β, q) =

∑
σ∈Sn

des(σ)=k−1

[α]lrmin(σ)−1[β]rlmin(σ)−1qm̃aj(σ).

We can prove it by induction and Carlitz’s insertion method!
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Recurrence

Lemma

For n ≥ 1, we have

En+1(x ; q) =
(
(1− x)[β] + [n + α+ β − 1]x

)
En(x ; q) + (1− x)xqβδx(En(x ; q)) (10)

Extracting the coefficient of xk−1 (1 ≤ k ≤ n) in Eq. (10), we have

En+1,k(α, β, q) = qβ+k−2[n + α+ 1− k]En,k−1(α, β, q) + [β + k − 1]En,k(α, β, q),

which can be proved by a similar argument for the recurrence of Carlitz’s q-Eulerian
polynomials.

Note that If x = 1 Eq. (10) reduces to En+1(1; q) = [n+α+ β − 1]En(1; q), which yields

En+1(1; q) =
n−1∏
i=0

[α+ β + i ].
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Some relevant known results

• When α = β = 1, it reduces to Carlitz’s q-Eulerian polynomials;

• When α = 1, Butlerstudied these polynomials En,k(1, β, q) using the q-Rook theory
with a cycle counting parameter, see [Butler, 2004]

• When α = q = 1, it reduces to Savage-Viswanathan’s 1/k-Eulerian polynomials,
see [Savage and Viswanathan, 2012];

• These polynomials appear also in Nadeau-Tewariand Gaudin as a sepecial case of the
remixed Eulerian numbers, see [Nadeau and Tewari, 2023, Gaudin, 2024].
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Some problems and further directions for q-analogue

• Is there a combinatorial proof for our q-identity? even q = 1, NO (Probability proof
exists)

• Carlitz-Scoville also considered another model called (α, β)-sequence, which has
same recurrence with A(x , y |α, β), in case q = 1, using this model and Ball in Box
method (barred permutations) is easy to prove! For q-version?

• How can prove our theorem using the P-partitions? Or P-partition can be used to
prove some Carlitz’s rational function with a Stirling statistics?

• Varvak studied the connection between (q-) normal ordering problem and (q-) Rook
number, so can we extend our results in the context of q-rook theory.
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Merci!
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