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L’origine de ce travail est presque anecdotique : au détour d’une conversation, un ami
et collegue de M. Germoni, M. Bonnafé lui a lancé, vers Noél, la question naive : « Tu connais
le théoréme de Gerbaldi? ». Sa réponse fut négative, mais un rapide coup d’ceil suffit pour
piquer ardemment son intérét. Bien stir, une telle anecdote ne suffirait pas a justifier I'intérét
d’un stage : il faut replacer ce théoréme dans plusieurs contextes, a la fois géométriques et
algébriques.

Dans un premier temps, on introduira la géométrie projective, qui placera le décor pour
la suite. On définira également les coniques projectives ainsi que la polarité par rapport a
celles-ci et ce que veut dire que deux d’entre elles sont en involution, ce qui caractérisera les
coniques de Gerbaldi. Dans un deuxiéme temps, on montrera le théoréme de Gerbaldi qui
stipule 'existence de 6 telles coniques. Dans un troisiéme temps, on discutera du groupe des
homographies qui conserve les dites coniques, son groupe des "symétries". Et pour conclure,
on relevera ce groupe dans SL3(C) pour obtenir I’exceptionnel groupe de Valentiner; excep-
tionnel car c’est une extension centrale non scindée de Ag par Z/3Z, et le seul autre A, qui
posséde une telle extension est Ay (ce deuxiéme fait ne sera pas démontré).

Enfin, j’ai voulu faire ce stage car il m’a permis de découvrir un nouveau pan de la

géométrie, parce que j'ai pas mal pratiqué le langage Sage et qu’étudier un groupe fini "de
zéro", méme si le résultat était connu, ne pouvait étre que stimulant!
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1 Introduction a la géométrie projective

1.1 Définitions dans le cas général

On se place dans un K-espace vectoriel E de dimension 7 finie, et on notera E* = E \ {0}.

DEFINITION : On pose la relation d’équivalence o« sur E* telle que a « b si et seulement s’il
existe A € K tel que a = Ab, qui n’est autre que la relation de proportionnalité. On définit
ensuite le projectivé de E par IP(E) = E*/ o et sa dimension estn — 1. On pose 77 : E* — IP(E)
la projection définie par le quotient. Si E = K", on écrit IP(E) = KIP".

DEFINITION : On dit que V C IP(E) est un sous-espace projectif s'il existe F C E un sous-
espace vectoriel tel que V = 71(F). De méme, on pose dim(V) = dim(F) — 1. Ainsi, si
dim(V) = 1, on dira que V est une droite projective, si dim(V) = 2 un plan projectif.

Nous allons maintenant chercher a nous repérer dans ce nouvel espace. Prenons pour
exemple RIP?, le plan projectif réel, projectivé de R3. En notant (ey, €3, e3) une base, on serait
tenté d’écrire 'image de v = (a,b,¢c) par 7(v) = [a,b,c]. Or v s’écrit (a/2,b,c) dans la
base (2e1,e,e3), mais ces deux bases ont la méme image dans RIP2. Ainsi, on se doit de
rajouter l'information d’un quatriéme vecteur ey, qui par convention sera défini par e; =
—(e1 4 e2 + e3). On obtient alors la définition suivante :

DEFINITION : Une famille (mq,my, ..., my41) de IP(E) forme un repere projectif si chaque
m; est la projection de e; pour (e, ...,e,) une base de E, et que m, 1 soit la projection de
—(e1 + - - - +en). De cette maniere, m € P(E), dont un représentant x € E* s’écrit ) ' ; x;e;,
sera écrit [x1 : xp : ... : x,| en coordonnées homogenes.

On remarquera que pour tout A € K*, [Axg : Axg ...t Axy] = [x1 100 1.0 0 ).

Comme pour toute nouvelle structure algébrique, on a envie de s’intéresser a ses "mor-
phismes". Soit E et E’ deux espaces vectoriels de dimensions n et n’ finies, f : E — E’ une
application linéaire. On a envie de poser g : P(E) — P(E’) qui fasse commuter le dia-
gramme suivant :

E* f EI*
7T 7-[/
P(E) —3— P(E')

Le probleme étant que s'il existe x € Ker(f) \ {0}, alors f n’est pas bien définie comme sur
le diagramme.

DEFINITION : Une application g : P(E) — IP(E’) est une homographie s'il existe f : E — E’
une application linéaire injective faisant commuter le diagramme ci-dessus.

LEMME : Une homographie envoie un repére projectif sur un repere projectif.

REMARQUE : On ne s’intéressera dans la suite de ce rapport qu'aux homographies d'un
espace projectif dans lui-méme, dont on voit qu’elles forment un groupe, noté PGL(E).



1.2 Coniques projectives

A partir de maintenant et dans tout le reste de ce rapport, nous nous intéresserons spécifi-
quement a I'espace CIP?, le plan projectif complexe, et surtout a ses coniques.

DEFINITION : On appellera conigue (projective) de CIP? un élément de IP(Q(C?)), c’est-a-dire
d’une forme quadratique sur C® & un scalaire pres, qui de plus est non-dégénérée. On re-
marquera que le scalaire (non nul) ne change ni le cone isotrope de la forme, qui n’est jamais
vide, ni la dégénérescence de celle-ci.

On appellera image de la conique la donnée de son cone isotrope, et dans la suite on confon-
dra une conique et son image.

DEFINITION : Pour m € CIP?, x € C un représentant de m, on définit la (droite) polaire par
rapport & C de m par le projeté de 1'orthogonal de x pour g. On notera m= la polaire de m.

DEFINITION : Quand on parlera de triangle, on parlera de trois points A, B et C ainsi que
des trois droites (AB), (AC) et (BC). Un triangle est dit autopolaire par rapporta C si A+ =
(BC), B+ = (AC) et C*+ = (AB).

DEFINITION : La conique C est dite en involution avec C’ s'il existe un triangle inscrit dans
C et autopolaire par rapport a C’. Si chacune est en involution avec I'autre, alors on dit juste
que C et C’ sont en involution.

Cette définition ne permet pas de vérifier aisément que deux coniques sont en involu-
tion, ni méme de construire une telle conique pour une autre donnée. C’est pour cela qu’on
va démontrer dans la prochaine proposition un critere calculatoire, mais pour ¢a, on doit
comprendre ce qu'implique l’existence dun tel triangle dans C>. Soit le triangle (ABC) ins-
crit dans C et autopolaire par rapport a C’. On choisit x, y et z des représentants de A, B et C,
ces vecteurs forment une base de C3. En notant g et ¢’ les formes quadratiques associées a C
et C', et ¢ et ¢’ leurs formes polaires, on obtient que :

L'inscription dans C donne que q(x) = q(y) = q(z) =0;
L'autopolarité par rapport a C’ nous donne que ¢’ (x,y) = ¢'(x,z) = ¢'(y,z) = 0.
On notera aussi dans la suite M et N les matrices de g et 4, et € () le cone isotrope de .

THEOREME : Il existe une telle base si et seulement si Tr(N~!M) = 0.
Pour le montrer, on va utiliser le lemme suivant :

LEMME : Soit g et 4’ deux formes quadratiques non dégénérées sur E, de cdnes non réduits
a {0}. Alors €(q) = €(q’) si et seulement s’il existe A € K tel que 4 = Ag' (vu en DM).

PREUVE DU THEOREME : "=-" On écrit les matrices de M et N dans cette dite base (quitte a
la renormaliser, on suppose q'(e1) = q'(e2) = q'(e3) = 1) :

0 * =% 1 00
M=% 0 x|, N=10120
* x 0 0 01

Ce qui donne parfaitement : Tr(N"'M) =0+ 0+ 0 = 0.

"«<"Si g = Ag’, on obtiendrait en les diagonalisant que Tr(N~'M) = 3A # 0 car les formes
sont supposées non dégénérées. Par I'absurde, il existe alors e; € C tel que g(e;) = 0 et

q(e) = 1.



On pose a présent le plan H = e; 17, et w et w' les restrictions de g et g’ 2 H. Si w = Aw’, on
obtiendrait les matrices suivantes en diagonalisant w’ (et w) :

0 * % 1 00
M=|*x Aa 0], N=|0a O
*+ 0 Ab 0 0 b

ce qui donnerait encore Tr(N~!M) = 21 # 0 car M et N ne seraient plus inversibles. Par
’absurde, il existe alors e; € H tel que w(ey) = g(e1) = 0etw'(e1) = g'(eg) = 1.

Enfin, il suffit de prendre e3 € e, tel que ¢’(e3) = 1, on obtient enfin : g(e3) = Tr(N~'M) =
0 = q(e3) = 0, etla base (ey, e, e3) est bien orthogonale pour ¢'. O

Maintenant qu’on possede une maniére efficace de tester si deux coniques sont en in-
volution, on peut se poser la question légitime du nombre maximum de coniques deux a
deux en involution, et si elles existent. C’est exactement ce sur quoi Francesco Gerbaldi s’est
penché dans son article Gruppi di sei coniche in involuzione. Nous avons déduit dans la preuve
précédente qu’elles ne pouvaient étre colinéaires, mais on va maintenant montrer mieux.

LEMME : Soit (C;);c[1,,) une famille de coniques de matrices B;. Si elles sont deux a deux en
involution, alors la famille (B;);c[1,,) est linéairement indépendante.

PREUVE : Pour tout i € [1;7], on définit la forme linéaire ¢; : M — +Tr(B; ' M). On obtient
alors ¢;(B;) = d;j, pour tout j € [1;n].

Supposons qu'il existe des scalaires non tous nuls (A;)jc[1;,) € C tels que: 3 1 A;B; =0
En appliquant ¢; des deux cotés, on obtient par I’absurde :

Pi (Z A]'B]'> =) A¢i(B) =2 =0
=1 =1

Ce qui implique que la famille (B;);c[1,,] est linéairement indépendante. O

Ainsi, puisque Sym,(C) est de dimension 6, il existe au maximum 6 coniques deux a
deux en involution. Avant de voir si on peut exhiber 6 telles coniques, on va d’abord voir
une construction élégante, dans laquelle on construit une troisieme en involution avec les
deux premiéres, et ce méme dans RIP2.

1.3 Trois coniques projectives en involution

On se donne donc deux coniques en involution C; et C,. Gerbaldi affirme dans son article
que pour tout point m du plan projectif, il existe une droite D telle que m*7 est la polaire de
D par rapport a Cy, et idem en inversant 1 et 2; il affirme de plus que D n’est autre que la
polaire de m par rapport a une troisiéme conique C3. Avant d’étudier ses dires, nous allons
énoncer un lemme utile pour la suite.

LEMME : Soit deux coniques en involution C; et C>. En posant C = Bl_le, onaque C> = al3,
pour « € C*.



PREUVE : On note (A1, Ay, A3) les trois valeurs propres de C. Les conditions d’involution

nous donnent Tr(C) = Ay + Ay + A3 =0 et

1 1 1 AMAg + AA3 + AA
Tr(C1) = — + _ MA2 + AMAz + AAs

v /\_2 + A_g - o, =0 = MAry+AMA3+AA3 =0.

Or ces deux termes interviennent dans 1’écriture du polynéme caractéristique de C, prenant
donc la forme Xc(X) = X3 — (Al + Ay + )L3)X2 + ()L1)L2 + AMAz+ )L2A3)X — MAA3 = X3 —a.
Par le théoréme de Cayley-Hamilton, on obtient : xc(C) = C? —al3 =0 = C3 =al3. O

Nous allons procéder par analyse-syntheése pour trouver cette troisieme conique. On
suppose qu'il existe C3 de matrice B tel que décrite ci-dessus. Soit x € (C3)*, la premiere
affirmation se traduit par (x43)+01 = (x 1)1,

On pose V = x11 et ¢pl(y) = xByy. Pour z € V472 non nul, la forme ¢? s’annule également
sur V. Les deux formes ayant le méme noyau, on en déduit que 2B, By, soit que z «
B, 'Bjx. Donc (x7)+% = B, 'B;Vect{x}. De méme, on a (x*%)+7 = B !'BsVect{x}. Vu
que ces deux espaces sont supposés étre les mémes, on obtient que B, B By 1B, soit
B3 X Bl B2_1B1.

Puisque la constante ne nous importe, on pose B3 = BB, 1B, et C3 1a conique définie par
cette matrice. Nous allons vérifier qu’elle est bien en involution avec C; et C; :

Tr(B; 'B3) = Tr(B; 'B1B, 'B1) = Tr(B, 'B;) = 0,

Tr(B; 'B1) = Tr(B; 'B2B; 'By) = Tr(B; 'By) = 0,

Pour les deux prochains calculs, on applique le lemme : (B, 'B;)? = al; = (B, !B;)? =
aBy B, (idem en inversant 1 et 2) :

Tr(B, 'B;) = Tr(B, 'B1B, 'By) = Tr(aB; 'By)
Tr(B; 'By) = Tr(B; 'B2B; 'By) = Tr(aB, 'By) =

0,
0.

Ainsi, ces trois coniques sont deux a deux en involution, et on vérifie bien en répétant I’ana-
lyse le postulat de Gerbaldi sur 1’existence de la droite. De plus, puisque le théoreme 1 fonc-
tionne aussi pour le cas réel, on peut construire de la méme maniere une troisieme telle
conique a partir des deux premiéres!

Effectivement, I'involution de ces 3
coniques ne saute pas aux yeux!




2 Le théoréme de Gerbaldi

Pour le reste du rapport, w désignera une racine cubique complexe de 1'unité.
THEOREME : Il existe 6 coniques deux a deux en involution.

PREUVE : Pour le montrer, nous allons les calculer explicitement en suivant la méthode de
Gerbaldi. Premierement, nous allons poser :

g1 = 22+ 2 + 22
0 = 3%+ wi? + w22
Maintenant, on pose une forme quadratique arbitraire (donnant une conique C, de matrice

B) et nous allons essayer de déduire ses coefficients des conditions d’involution : ¢ = aj1x% +
azzy2 + a33z% + 2a1pxy + 2a13xz + 2a3Yz.

ajn +axp +azz =0

— (a an,a = 1(1.)2(4)-
i1 4 02y + Wiz = 0 (a11,a2,a33) = p(1, w*, w)

Tr(B;'B) = Tr(B,'B) =0 = {
pour p € C*.

Ensuite, sachant que B; et B, sont diagonales, seuls les coefficients diagonaux de B~! sont
nécessaires pour calculer les deux autres traces. On peut donc utiliser la formule de la co-
matrice pour alléger le calcul (en ignorant le déterminant qui est un facteur scalaire, donc
ignoré) :

-1 _ 2 2 2
Tr(B™'By) = apaxp — app” + a11a433 — a13° + axnazs — a3

= p?(W? 4+ w +1) — a1p? — a13> — ax3°
2

2 2
= —da12” —a13” — a23”.

De la méme maniere, Tr(B~'By) = —w?ajp? — waz? — axs?. Alors :

alzz + 11132 + 11232 =0

Tr(B~!By) = Tr(B~'B,) =0 ;

w?arp?® + waiz? +a3? =0
= (a12?%, m13%,a23%) = A2(0?, w, 1)
= (arp,a13,a23) = A(Fw, £w?, £1)
pour A € C*.

Il existe 23 = 8 configurations de signes, et plus que 4 en factorisant un signe (—); comme
les quatre coniques qu’il nous manque. En divisant chaque ligne par p, on peut se permettre
de poser les quatre dernieres formes quadratiques (linéairement indépendantes) :

g3 = x> + wy? + wz* + 2k(yz + w?xz + wxy)
gs = ¥* + W*y* + wz? + 21 (yz — w?xz — wxy)
g5 = x> + wy? + wz* + 2m(—yz + wxz — wxy)

g6 = x> + wy? + wz* + 2n(—yz — w?xz + wxy)

On pourrait se demander s’il n’est pas possible que deux de ses formes aient la méme confi-
guration de signe (ici par exemple celle de g3) avec juste des coefficients k et k” différents. En
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appelant M la matrice avec k et N celle de k/, leur involution nous donnerait :

3
22—k —1

3

TH(M'N) = W1

(2kk' —k—1) =0etTr(N"IM) = (2kk' =K —1)=0
— k=2kk' =1 =k = k =K, cequiestimpossible! Le résultat étant identique pour
chaque configuration, on se permet bien de définir les 4 dernieres formes comme ci-dessus.

Nous allons une fois de plus utiliser 1'involution pour déterminer k,I,m et n. Pour u,v €
{k,1,m,n} différents, on obtient (a ’aide de Sage [Case 1]) les 12 équations de la forme 2uv +

3u+3 = 0. Ainsi, u = —2”0;3

obtient que 2k* +3k+3 =0 = k=

= v, ce qui donne que k = I = m = n. Finalement, on

—3+iV15

1 |l =m=n.

C’est ainsi que s’acheve la preuve, on a réussi a exhiber 6 coniques telles que chacune soit
en involution avec les cinq autres, définies par les 6 formes quadratiques suivantes :

7 :x2+y2+22
0 = x2+wy2+a)222

—3+iv/15

g3 = x> + wry? + wz* + (yz + w?xz + wxy)

2
-3 +iV15
gs = x> + wry? + wz* + +TI\/_(yz — w?xz — wxy)
-3 +iV15
g5 = x> + why? + wz* + +TI\/_(—yz + w?xz — wxy)
-3 +iV15
g6 = x> + wy? + wz* + +TI\/_(—yz — w?xz 4 wxy)

Les matrices des g; seront notées B; et leurs formes polaires ¢; jusqu’a la fin de ce rapport.



3 Le groupe de Valentiner

LEMME : Une homographie de matrice P dans GL3(C) envoie une conique C de matrice B
sur la conique, notée P(C), de matrice P~1BP~1.

PREUVE : P(4(q)) = {Px | q(x) =0} = {x | g(P"'x) = 0} = {x | X('P7'BP~1)x = 0}, ce
qui est ce que 1’on voulait dans C> et donc dans CIP~. O

Dans cette partie, on notera S = {C1,Cy,C3,C4,C5,C¢}. Si P et Q stabilisent S, alors PQ et
P~ aussi, faisant de ’ensemble de ces homographies un groupe. Dans un premier temps,
on étudiera ce groupe Stab(S) = {P € PGL3(C) | VC € S, P(C) € S}, puis dans un second
temps son relevement a SL3(C), que 'on notera simplement V, et qui sera notre fameux
groupe de Valentiner.

3.1 Le groupes des homographies stabilisant les 6 coniques

Nous allons d’abord montrer un théoréme d’algebre linéaire qui s’avérera tres utile dans
cette sous-partie :

THEOREME : Deux formes quadratiques g et ¢’ non dégénérées sur C" sont codiagonali-
sables; c’est-a-dire qu’il existe une base dans laquelle g = x12 4+ x2etqg = Ax?+

PREUVE : Nous allons le montrer par récurrence. Le théoréme est vrai pourn = 1, et on le
suppose vrai au rang n — 1.

On suppose qu'il existe e; € C" tel que ;™9 = e;-7 = H et g(e;) = 1. On pose w et w'
les restrictions de g et ¢’ a H, qui sont codiagonalisables par ’hypothese de récurrence. En
notant (e, ..., e,) une base dans laquelle w et w’ sont diagonales, on obtient que pour tout
v =ouvie;1+ -+ ey € Cq(v) = 012+ 02+ - +uletq (v) = v1%q (e1) + 229 (e2) +
-+ +v,%q'(ey). En posant A; = ¢'(e;) pour tout i € [1;n], alors on aurait montré le résultat
voulu.

Montrons a présent que e; existe. On pose f : C" — (C")*,u — (v — ¢(u,v)) et f' dela
méme maniere avec ¢’.

Alors f'(u) = f(B~'B'u) pour tout u € C". Or T = B~!B’ admet un vecteur propre e; €
C" de valeur propre A € C*. Ainsi : f'(e;) = f(Te1) = f(Aer) = Af(er) = e 7
Ker(f(e1)) = Ker(f'(e1)) = er ™.

g
COROLLAIRE : Pour C et C' deux coniques en involution, on peut toujours les ramener a C;
et C; par une homographie.

PREUVE : On note P € GL3(C) la matrice de changement de base, C = 'PBP et C' = 'PB'P.
Alors : Tr(C71C') = Tr(P~'B~'"P~1PB'P) = Tr(P 'B~'B'P) = Tr(B~'B’) = 0, idem
Tr(C~1C") = 0. Les images des coniques sont encore en involution. Cela nous donne les
équations déja vues, en notant C' = diag(A1, A2, A3), A1+ A+ A3 =0et Ail + )%2 + %3 = 0.
Une solution est (A1, A2, A3) = (1, w, w?), rapportant ainsi C a C; et C' a C,. O

Avant de vraiment passer a I’établissement du groupe, on va montrer une proposition qu’on
utilisera bientdt et qui est un sous-cas du théoreme de Bézout :
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PROPOSITION : Deux coniques projectives C et C' admettent 4 points d’intersection qui
forment un repere projectif.

PREUVE : D’apres le corollaire précédent, on pose ¢ une homographie envoyant C sur Cy et C’
sur Cy. Maintenant, il suffit de calculer les points d’intersection de C; et C, car g’l (C1NC) =
C NC'. Apres un calcul dont on peut se passer des détails, on trouve que l'intersection des
cones isotropes consiste en 4 droites vectorielles, données par Vect{(+w?, +w,1)}, ce qui
correspond exactement a 4 points dans CIP2. De plus, chaque triplet de ces vecteurs forme
une base, ce qui donne bien un repere projectif. O

THEOREME : Si ¢ et h sont deux homographies telles que ¢(C;) = h(C;) € S pour tout
i € [1,6], alors g = h.

1FRE PREUVE : Cela revient a montrer que la seule homographie f telle que f(C;) = C; pour
touti € [[1;6] est I'identité.

En notant P~! une matrice de f telle que det(P) = 1 (on définit P avec I'inverse pour alléger
les notations), I’énoncé se transforme en : on a 'PB;P = A;B;, avec A; € C*, pour tout i €
[1; 6] ; montrer que P est une homothétie.

Soiti € [1;6]. Onremarque en prenant le déterminant de chaque coté que A? = det(P)? =1,
ce qui signifie que :

'P’B;P® = 'P('P('PB;P)P)P = A}B; = B; = VS € Sym,(C),'P3SP° =,
car (B;)ic[i,6) est une base de Sym;(C). En posant Q = P3 et en remplacant S par I3, on

trouve que ‘Q = Q~1. Ainsi, Q commute avec toutes les matrices symétriques, et c’est assez
restrictif sur la nature de Q.

Soit v € C3, alors v(%) est une matrice symétrique 3 x 3; on obtient :
y q

Qo(v) = v(0)Q = Qu(v)v =2()Qv = ("vv)Qv = (vQ0)v,

Qu est proportionnel a v pour tout v € C3, donc il existe y € C* tel que Q = P? = «I3. En
prenant le déterminant de chaque c6té, on trouve que det(P*) = det(P)® = 7® = 1. De plus,
'‘0Q = 7?13 = I3, impliquant 4% = 1. La seule solution possible de 7> = 4°> = 1 est v = 1.
Donc P3 = I;.

Le polynéme minimal de P divise X® — 1 qui est a racines simples, donc P est diagonalisable,
de matrice de passage Q (P = Qdiag (a1, a2, 43)Q '), et de valeurs propres incluses dans
{1,w,w?}. De plus, det(P) = ajaza3 = 1 ce qui donne (a1, a0, a3) « (1,1,1) ou (a1, ap, a3) o
(1, w, w?). Nous allons a présent essayer d’exclure le deuxieme cas.

Pour S € Sym,(C), on pose C(S) = ‘QSQ, I1(S) = PSP et B/’ = C(B;), qui est la matrice
de B; dans la base diagonalisante de P. On a encore Tr(B;"'B;) = Tr(B;, 'B;) = 0 pouri # .
Enfin, on pose I1(S) = CooTlo Cél(S) = {QPQ1)S(QPQ~1) = DSD. On trouve alors :
I1(B/) = Co oII(B;) = AiCq(B;) = A;B;’, donc les B, sont des vecteurs propres de I1.

On suppose maintenant que diag(1, w, w?) quitte a réarranger la base. On obtient en notant
E;j les matrices élémentaires :
ﬁ(Eii) = (DEil‘)D = Dé,‘Eil'D = lX%Eii

H(Ei]' + E]'i) = ((X]'Ei]' + lXiE]'i)D = Dciﬂé]'(Ei]' + Eji)-



Ainsi, les valeurs propres de I1 sont a12, 002, 32, iy, aqas, aoes ; soit 1, w et w?, chacune de
multiplicité 2. Puisque 6 > 3, il existe un espace propre contenant au moins B;’ et B]-' , qu'on
suppose étre celui associé a 1 sans perte de généralité.

On note E(x,y) = xE11 + y(Ep3 + E3), alors E; = {E(x,y) | x € C,y € C}. On a alors :

det(E(x,y)) = —xy*> = E(x,y) est inversible si et seulement si x # 0 ety # 0, d’inverse

E(3y)-
y

Soit x,y, ¥,y € C* tels que B’ = E(x,y) et B/ = E(x/,’). Onnote X = %,Y = y?/ Alors :

1 x' y
Tr(Bl-'* B]-’) = ;—1—2? =0 = X+2Y =0,

Te(B/1B/) = > +24 =0 = 2x+Y=0.
J x! y/
La seule solution de ce systeme est (X,Y) = (0,0) ce qui est absurde! Le seul choix pour D
est qu’elle soit scalaire, ce qui implique directement que P aussi, concluant la preuve. O

J'avais montré le théoréme une premiere fois grace a 1'algebre linéaire et de maniere la-
borieuse, mais ayant pensé a une seconde preuve récemment, qui plus est projective, plus
courte et élégante, je me suis dit que les deux méritaient leur place ici.

2FME PREUVE : De la méme maniere, soit f une homographie telle que f(C;) = C; pour tout
i € [1;6]. Une homographie étant définie uniquement par I'image de 4 points, notre objectif
est de construire 4 points fixes pour f.

On a comme propriété tres utile que f(C; NC;j) = f(C;) N f(Cj) = C;NCj. Nous savons que
cette intersection compte 4 points (x1,x2,x3,x4) et f ne fait que les mélanger; on peut alors
poser f(x;) = X,(;), avec o € Sy.

Si o admet un point fixe alors on a gagné,

Sio = (ab)(cd) est une double transposition, alors la droite (x,x;) est envoyée sur elle-
méme, et idem pour la droite (x.x;). En notant m leur point d’intersection, on obtient que
f(m) = m.

Enfin, si o = (a b c d) est un 4-cycle, les droites (x,x.) et (xpx;) s'envoient l'une sur l'autre.
En notant une nouvelle fois m leur point d’intersection, on obtient que f(m) = m.

La derniére question a se poser est "existe-t-il assez de points d’intersection différents pour
que ca fonctionne? et de droites formées a partir de ces points?". Il existe 15 paires de co-
niques différentes, chacune admettant 4 points d’intersection. Grace a Sage [Case 3], on
montre que les 60 points sont tous distincts. En revanche, il pourrait se passer 1’étrange phé-
nomene que beaucoup de droites se rencontrent en tres peu de points, or encore une fois, les
45 paires de droites différentes forment 45 points d’intersection tous distincts. C’est-a-dire
qu’on peut construire au minimum 15 points fixes de f rien qu’en étudiant les intersections
de coniques, ce qui est plus que suffisant pour conclure que f est 'identité. O

Ce théoréme est important car il nous permet de dire que Stab(S) s’injecte dans Sg, puisqu’a
une permutation des coniques correspond une homographie au maximum.

Pour "créer" des homographies stabilisant les 6 coniques, on commence par s’intéresser
seulement a C; et C,. On va essayer de trouver toutes les homographies stabilisant C; et
Cy, et pour cela on s’intéresse une fois de plus a leur intersection, notée (x,y,z, w), telle que
x4y +z+w = 0.On pose P la matrice de passe de la base canonique a (x,y, z), qui conju-
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guera une matrice g, U0 € Sy, 4,1 Si 0 envoie w sur w, alors la matrice sera une matrice

0-10
de permutation, et si ¢ = (x y w) par exemple, on obtient la forme suivante : ¢, = ((1) -1 cll)
avec une colonne de -1 a 'emplacement de y car c(y) = w = —x — y — z. On pose alors f

’homographie de matrice A = Pg,P~1.
PROPOSITION : f stabilise {C1,Cy} ainsi que {C3,C4,Cs5,Cs }.

PREUVE : Nous allons montrer en premier que f(C;) et f(Cz) ont pour matrice une combi-
naison linéaire de B; et B, (on dit qu’ils appartiennent au pinceau de C; et C,, appellation tres
élégante). Soit vy, v, v3, v4 des représentants des 4 points d’intersection C; et Cs.

Pour i € [1;4], on pose la forme linéaire L,, : Symy(C) — C, S — %;Sv;. Nous allons
montrer qu’elles sont indépendantes, ce qui nous donnera :

4 4
dim (ﬂ Ker(Lvi.)> =2,etBy,By € [ Ker(Ly,) = E
k=1 k=1

sont indépendantes, alors E = Vect(Bj, B) et pour finir, Mat(f(C;)), Mat(f(C,)) € E.

Soit (a1, ap, a3, a4) des complexes non tous nuls tels que 2?21 a;Ly, = Z?:l a;'v;Sv; = 0.
Soit y,z € C3, on remplace S par y’z + z'y dans l’expression ci-dessus :

W

4 4 4
Yo aivi(yz + 2o = 2 ) ai(tviy) (zor) = 2 ) ai('z0;) (viy) = '2()_ 2a50v;)y = 0
i=1 /

i=1 i=1 i=1

La derniére expression est une forme bilinéaire nulle sur C3 x C3, ce qui signifie que la
matrice M = 2?‘:1 2a;v;'v; 1a définissant est nulle. On va essayer de Iévaluer en des vecteurs
particuliers pour trouver une contradiction.

On pose V la matrice dont les colonnes sont (v1,v2, v3), et on appelle (u1, up, u3) les colonnes
detV—1, ce qui nous donne tu,'v]- = J;j. Puisque vy n’est pas nul et (uy,uz, uz) forme une base
de C3, il existe j € {1,2,3} tel que ujv, # 0.

Alors : Mu]- = Z?Zl Zaivi(tviuj) = 206]'0]' + 20(4(%]414]')7)4 = 0. Sachant que v;j et vy sont indé-
pendants, alors a; = a4 = 0. En posant {i,j,k} = {1,2,3}, on réitere cette fois en posant V
la matrice dont les colonnes sont (v;, v, v4) ; ce qui nous donnera au moins a; = 0.
Puisqu’au moins trois des coefficients sont nuls, le quatrieme aussi, ce qui conclut cette pre-
miere partie de la preuve.

De la méme maniére qu’a la preuve précédente, on notera E(a,b) = aBj + bB; et posera
I1(S) = {fA"1SA~1, qui envoie la matrice de la conique C sur la matrice de la conique f(C).
On note enfin I1(By) = E(a,b) et I1(By) = E(c,d). f(C1) et f(Cy) restent en involution
comme déja vu précédemment, ce qui nous donne les deux équations sur a,b,cetd:

a*b+c?d = 0etab® +cd®> =0 = a?b* + bc*d = 0 etab® = —cd*> = cd(bc — ad) = 0.

Sic = 0, alors d # 0 sinon I'I(B;) = 0. Cela nous donne que IT(B;) est proportionnel a B;;
mais également que @ = 0 ou b = 0. II(B;) et I1(B;) ne pouvant étre proportionnels, IT(B;)
et By le sont.

Idem sid = 0, on obtiendrait I'T(B;) o« B, et I1(By)  By.

Si bc = ad, alors on peut écrire (a,b,c,d) = (a,Aa,c, Ac). Or cela impliquerait que I1(By)
I1(B;), ce qui est impossible. On vient de montrer que f stabilise {C1,C5}.
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Sans perte de généralité, on pose IT(B1) = A1Bj et [I(By) = AyB;. Soit j € {3,4,5,6},ona:

Tr(I1(B;) 'By) = AilTr(H(B]-)_lﬂ(Bl)) = AllTr(Bj_lBl) =0
Tr(I1(B;) 'By) = AizTr(H(Bj)—ln(Bz)) = %ZTr(Bj_le) =0
Tr(B, 'T1(B))) = AilTr(H(Bl)lfI(B]-)) = AilTr(BllBj) =0
Tr(B, 'TI(B))) = %ZTr(H(Bz)_lﬂ(Bj)) = %ZTr(Bz_lBj) =0

® Donc chaque I1(B;) est en involution avec B et By, et de plus, chaque I1(B;) est en invo-
lution avec II(B;) pour i # j. Alors (I1(B;));c[1,6] est un systeme de 6 matrices deux a deux
en involution, avec I1(By) « By ou By et I1(B,) o« B, ou By : ce sont les 6 matrices des ¢; de
la page 6! Le seul probleme restant est qu’il se pourrait que f envoie les coniques sur les

coniques définies non pas avec k = =15 maijs k = =>=¥13, On note C; les matrices avec
le signe moins. On va montrer qu’il n’existe pas de telles homographies.
& q P

On suppose qu’il existe P € GL3(C) tel qu’en posant I1(S) = PSP, I1 envoie By sur C; (=
B1), By sur C; (= By) et le reste des B; sur le reste des C;.
On obtiendrait : ‘PP = Iz et 'PB,P = By = B,P = PB,. Le commutant d’une matrice
diagonale non scalaire est ’ensemble des matrices diagonales, donc P = diag(ay, a2, a3).
Réimplémenter P dans 'PB,P = B, implique que a?=1.

On s’intéresse maintenant a I1(B3) = C;; on cherche le coefficient non diagonal de Bj et B;
qui sont égaux :

[1(B3) = C3 = (‘PB3P)1o = (C3)12 = ajarkj = kj : impossible!
H(B3) =C4 = (tPB3P)2,3 = (C4)2,3 = wonzk = k: impossible!
H(Bg) =(C; = (tPB3P)1,2 = (C5)1,3 — 0(10(3](]2 = E]z : impossible!
H(Bg,) =C¢ = (tPB3P)2,3 = (C6)1/2 — oqoczkj = E] : impossible!

Donc P n’existe pas. En revanche, je n’ai pas réussi a finir en considérant le cas plus général
ou I'1(B;) = A;Cj, je ne sais pas s'il faut trouver une contradiction en arrivant par exemple a
exhiber une homographie qui agirait comme celle qu’on a démontrée inexistante, ou si c’est
juste fastidieux et laborieux.

Dans tous les cas, en utilisant Sage [Case 3] on a bien que f n’envoie pas {C3,C4,Cs,Cs} sur
les coniques définies avec k. O

PROPOSITION : f induit une permutation paire sur S.

PREUVE : La proposition précédente nous permet de dire que ce que I'on a construit en
choisissant o € S4 et en le transformant en homographie, est un morphisme ¢ : Sy —
Sy X §4 C Se.

On pose ¢ = (¢1,¢2), avec ¢y : Sy — Sy = Z/2Z et p1 : Sy — Sy.
On a pour tout o € Sy, e(¢p(0)) = e(¢p1(0))e(¢2(0)) ; puisque pour retrouver notre permuta-
tion de Se on identifie Sy et Sy3 456, puis multiplie les deux coordonnées de ¢(0).

En sachant que ¢ = (x y) agit sur S comme (1 2)(3 6), alors on sait que ¢(¢71) n’est pas le
morphisme constant. Mais le seul morphisme non constant de S, — Z/2Z étant la signa-
ture, e(¢p) = e.
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De plus, pour n # 6, tous les morphismes de S, sont intérieurs. Alors ¢, est un morphisme
intérieur, donc il existe 6 € Sy tel que ¢»(0) = 57106, ce qui implique que : e(¢y(0)) =
e(67108) = &(6) te(0)e(6) = e(o).

Finalement : e(¢(0)) = e(¢1(0))e(d2(0)) = e(0)e(c) = ¢(0)?> = 1, donc f induit bien une
permutation paire sur S. O

On a presque terminé. Sage [Case 6] nous permet de voir que grace a cette méthode, on
a généré toutes les doubles transpositions dont 1'une des deux est (1 2). Grace au premier
théoréme de cette partie, on peut envoyer (C;,Cj) sur (Cy,Cz) par une homographie g. En
reprenant la fin de la preuve, au point ® en dessous des équations de la page 11, g € Stab(S).
Si on conjugue chacune des homographies agissant comme des doubles transpositions avec
(12) par g, on obtient alors toutes les doubles transpositions avec (i j), c’est-a-dire toutes les
doubles transpositions. Sachant qu’elles générent Ag, on a que Aq s’injecte dans Stab(S).

THEOREME : Stab(S) est isomorphe a As.

PREUVE : Il ne nous reste plus qu’a montrer que Stab(S) n’agit jamais comme une permu-
tation impaire. Soit 1 € Stab(S) une homographie agissant sur S comme une permutation
impaire. Les seules possibilités sont une transposition, une triple transposition, une trans-
position et un 3-cycle, un 4-cycle ou un 6-cycle. Le but est de multiplier les cas ne stabilisant
pas deux coniques par une permutation paire. Dans chaque cas, on considére ’homographie
g qui agit comme l'inverse de h multiplié par (345 6). g € Stab(S) car g agit comme une
permutation paire.

Alors gh agit encore comme une permutation impaire, stabilise {C1, C }, donc leurs 4 points
d’intersection, donc il existe une matrice de permutation g, et P la matrice de changement de
base comme au début. Alors gh devrait agir comme une permutation paire par la proposition
précédente, ce qui est impossible. O

3.2 Le reléevement de Stab(S) a SL3(C)

Dans notre cas, on a que PGL(E) = PGL3(C) = GL3(C)/C*I; = SL3(C)/C*I3, le groupe
des matrices inversibles a un scalaire pres.

Alors on définit V = {M € SL3(C) | (M) € Stab(S)}. Stab(S) possede 360 éléments, on
définit alors une matrice représentante de chaque classe dans SL3(C), dont on note M leur
ensemble.

Soit P € SL3(C).On a:

PeVesIMeM,INeC ,P=AMA =1
& IMe M, 3N € {1,w,w?},P =AM

ce qui est équivalenta V = {1, w, w?} x M. Alors Card(V) = Card ({1, w, w?}) x Card(M) =
3 x 360 = 1080.

Nous allons maintenant définir ce qu’est une extension, qu’elle soit centrale, scindée et enfin
montrer que V est centrale non scindée, ce qui conclura ce rapport.
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DEFINITION : Soit H,N < G des groupes, avec H distingué dans G. On dit que G est le
produit semi-direct interne de H par K si pour tout ¢ € G, il existe une unique paire (h, k)
dans H x K tel que g = hk. Dans ce cas, G est isomorphe au groupe (H X K, o), ot la loi est
donnée par: (hlrkl) ° (hz, k2) = (7’11 (klhzkl_l),hlhz).

DEFINITION : Soit N, H et G trois groupes, H abélien. On dit que G est une extension de K
par H si les groupes rentrent dans la suite exacte courte :

1 s H s G s K > 1.

On dit que I'extension est centrale si H est inclus dans le centre de G, scindée si G est le produit
semi-direct interne de H par K.

PROPOSITION : Soit G une extension de K par H. Si elle est centrale, alors elle est scindée si
et seulement si G est le produit direct de H et K.

PREUVE : "<"

Soit (hl,kl), (hz,kz) € G,on a (hl,kl) ° (hg,kz) = (hlhz,klkz) = (hl(klhzkfl),klkz) car
hyk1 = kihy puisque H est inclus dans le centre. Donc le produit direct est un produit semi-
direct interne, donc 1’extension est scindée.

”:>" (I’ll,kl), (hz,kz) € G, on a (I/ll,kl) [ ] (hz,kz) = (hl(klhzkl_l),klkz) = (hlhz,klkz) car
hok1 = kyhy puisque H est inclus dans le centre. Donc G = H x K. ]

Avant de démontrer le théoréme, on a besoin de ces deux petits lemmes :

LEMME : V est égal au groupe engendré par ses commutateurs (on dit qu'il est parfait).
PREUVE : [Case 7] du fichier Sage. O
LEMME : Un groupe G simple et non abélien est parfait.

PREUVE : On note D(G) le groupe engendré par les commutateurs de G, il est distingué
dans G (car z[x,y]z 7! = [zxz~1, zyz1]). Soit D(G) = G, soit D(G) = e. Or si on était dans le
deuxiéme cas, on aurait que G est abélien, ce qui est impossible. Alors G = D(G). O

THEOREME : Le groupe de Valentiner V est une extension de A¢ par Z/3Z centrale non
scindée.

PREUVE : Dans notre cas, le groupe correspondant a Z/3Z est {I3, wls, wZIg}, et effective-
ment ces 3 matrices commutent avec toutes les autres, donc 1’extension est centrale. Il nous
suffit maintenant de montrer que V # Ag x Z/37Z.

Si V était le produit direct, alors : V = D(V) = D(Ag) x D(Z/3Z) = A x {1}, ce qui est
impossible. O

Ce qui reste sacrément étonnant, sachant que vu comment on l'a défini, on pouvait s’at-
tendre a ce qu'il soit isomorphe a Ag x Z/37Z.
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