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L’origine de ce travail est presque anecdotique : au détour d’une conversation, un ami
et collègue de M. Germoni, M. Bonnafé lui a lancé, vers Noël, la question naïve : « Tu connais
le théorème de Gerbaldi? ». Sa réponse fut négative, mais un rapide coup d’œil suffit pour
piquer ardemment son intérêt. Bien sûr, une telle anecdote ne suffirait pas à justifier l’intérêt
d’un stage : il faut replacer ce théorème dans plusieurs contextes, à la fois géométriques et
algébriques.

Dans un premier temps, on introduira la géométrie projective, qui placera le décor pour
la suite. On définira également les coniques projectives ainsi que la polarité par rapport à
celles-ci et ce que veut dire que deux d’entre elles sont en involution, ce qui caractérisera les
coniques de Gerbaldi. Dans un deuxième temps, on montrera le théorème de Gerbaldi qui
stipule l’existence de 6 telles coniques. Dans un troisième temps, on discutera du groupe des
homographies qui conserve les dites coniques, son groupe des "symétries". Et pour conclure,
on relèvera ce groupe dans SL3(C) pour obtenir l’exceptionnel groupe de Valentiner ; excep-
tionnel car c’est une extension centrale non scindée de A6 par Z/3Z, et le seul autre An qui
possède une telle extension est A7 (ce deuxième fait ne sera pas démontré).

Enfin, j’ai voulu faire ce stage car il m’a permis de découvrir un nouveau pan de la
géométrie, parce que j’ai pas mal pratiqué le langage Sage et qu’étudier un groupe fini "de
zéro", même si le résultat était connu, ne pouvait être que stimulant !
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1 Introduction à la géométrie projective

1.1 Définitions dans le cas général

On se place dans un K-espace vectoriel E de dimension n finie, et on notera E∗ = E \ {0}.

DÉFINITION : On pose la relation d’équivalence ∝ sur E∗ telle que a ∝ b si et seulement s’il
existe λ ∈ K tel que a = λb, qui n’est autre que la relation de proportionnalité. On définit
ensuite le projectivé de E par P(E) = E∗/ ∝ et sa dimension est n − 1. On pose π : E∗ → P(E)
la projection définie par le quotient. Si E = Kn, on écrit P(E) = KPn.

DÉFINITION : On dit que V ⊂ P(E) est un sous-espace projectif s’il existe F ⊂ E un sous-
espace vectoriel tel que V = π(F). De même, on pose dim(V) = dim(F) − 1. Ainsi, si
dim(V) = 1, on dira que V est une droite projective, si dim(V) = 2 un plan projectif.

Nous allons maintenant chercher à nous repérer dans ce nouvel espace. Prenons pour
exemple RP2, le plan projectif réel, projectivé de R3. En notant (e1, e2, e3) une base, on serait
tenté d’écrire l’image de v = (a, b, c) par π(v) = [a, b, c]. Or v s’écrit (a/2, b, c) dans la
base (2e1, e2, e3), mais ces deux bases ont la même image dans RP2. Ainsi, on se doit de
rajouter l’information d’un quatrième vecteur e4, qui par convention sera défini par e4 =
−(e1 + e2 + e3). On obtient alors la définition suivante :

DÉFINITION : Une famille (m1, m2, . . . , mn+1) de P(E) forme un repère projectif si chaque
mi est la projection de ei pour (e1, . . . , en) une base de E, et que mn+1 soit la projection de
−(e1 + · · ·+ en). De cette manière, m ∈ P(E), dont un représentant x ∈ E∗ s’écrit ∑n

i=1 xiei,
sera écrit [x1 : x2 : . . . : xn] en coordonnées homogènes.
On remarquera que pour tout λ ∈ K∗, [λx1 : λx2 : . . . : λxn] = [x1 : x2 : . . . : xn].

Comme pour toute nouvelle structure algébrique, on a envie de s’intéresser à ses "mor-
phismes". Soit E et E′ deux espaces vectoriels de dimensions n et n′ finies, f : E → E′ une
application linéaire. On a envie de poser g : P(E) → P(E′) qui fasse commuter le dia-
gramme suivant :

E∗ E′∗

P(E) P(E′)

f

π π′

g

Le problème étant que s’il existe x ∈ Ker( f ) \ {0}, alors f n’est pas bien définie comme sur
le diagramme.

DÉFINITION : Une application g : P(E) → P(E′) est une homographie s’il existe f : E → E′

une application linéaire injective faisant commuter le diagramme ci-dessus.

LEMME : Une homographie envoie un repère projectif sur un repère projectif.

REMARQUE : On ne s’intéressera dans la suite de ce rapport qu’aux homographies d’un
espace projectif dans lui-même, dont on voit qu’elles forment un groupe, noté PGL(E).
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1.2 Coniques projectives

À partir de maintenant et dans tout le reste de ce rapport, nous nous intéresserons spécifi-
quement à l’espace CP2, le plan projectif complexe, et surtout à ses coniques.

DÉFINITION : On appellera conique (projective) de CP2 un élément de P(Q(C3)), c’est-à-dire
d’une forme quadratique sur C3 à un scalaire près, qui de plus est non-dégénérée. On re-
marquera que le scalaire (non nul) ne change ni le cône isotrope de la forme, qui n’est jamais
vide, ni la dégénérescence de celle-ci.
On appellera image de la conique la donnée de son cône isotrope, et dans la suite on confon-
dra une conique et son image.

DÉFINITION : Pour m ∈ CP2, x ∈ C3 un représentant de m, on définit la (droite) polaire par
rapport à C de m par le projeté de l’orthogonal de x pour q. On notera m⊥ la polaire de m.

DÉFINITION : Quand on parlera de triangle, on parlera de trois points A, B et C ainsi que
des trois droites (AB), (AC) et (BC). Un triangle est dit autopolaire par rapport à C si A⊥ =
(BC), B⊥ = (AC) et C⊥ = (AB).

DÉFINITION : La conique C est dite en involution avec C ′ s’il existe un triangle inscrit dans
C et autopolaire par rapport à C ′. Si chacune est en involution avec l’autre, alors on dit juste
que C et C ′ sont en involution.

Cette définition ne permet pas de vérifier aisément que deux coniques sont en involu-
tion, ni même de construire une telle conique pour une autre donnée. C’est pour cela qu’on
va démontrer dans la prochaine proposition un critère calculatoire, mais pour ça, on doit
comprendre ce qu’implique l’existence d’un tel triangle dans C3. Soit le triangle (ABC) ins-
crit dans C et autopolaire par rapport à C ′. On choisit x, y et z des représentants de A, B et C,
ces vecteurs forment une base de C3. En notant q et q′ les formes quadratiques associées à C
et C ′, et φ et φ′ leurs formes polaires, on obtient que :
L’inscription dans C donne que q(x) = q(y) = q(z) = 0 ;
L’autopolarité par rapport à C ′ nous donne que φ′(x, y) = φ′(x, z) = φ′(y, z) = 0.
On notera aussi dans la suite M et N les matrices de q et q′, et C (q) le cône isotrope de q.

THÉORÈME : Il existe une telle base si et seulement si Tr(N−1M) = 0.

Pour le montrer, on va utiliser le lemme suivant :

LEMME : Soit q et q′ deux formes quadratiques non dégénérées sur E, de cônes non réduits
à {0}. Alors C (q) = C (q′) si et seulement s’il existe λ ∈ K tel que q = λq′ (vu en DM).

PREUVE DU THÉORÈME : "⇒" On écrit les matrices de M et N dans cette dite base (quitte à
la renormaliser, on suppose q′(e1) = q′(e2) = q′(e3) = 1) :

M =

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

 , N =

1 0 0
0 1 0
0 0 1


Ce qui donne parfaitement : Tr(N−1M) = 0 + 0 + 0 = 0.

"⇐" Si q = λq′, on obtiendrait en les diagonalisant que Tr(N−1M) = 3λ ̸= 0 car les formes
sont supposées non dégénérées. Par l’absurde, il existe alors e1 ∈ C3 tel que q(e1) = 0 et
q′(e1) = 1.
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On pose à présent le plan H = e1
⊥q′ , et w et w′ les restrictions de q et q′ à H. Si w = λw′, on

obtiendrait les matrices suivantes en diagonalisant w′ (et w) :

M =

0 ∗ ∗
∗ λa 0
∗ 0 λb

 , N =

1 0 0
0 a 0
0 0 b


ce qui donnerait encore Tr(N−1M) = 2λ ̸= 0 car M et N ne seraient plus inversibles. Par
l’absurde, il existe alors e2 ∈ H tel que w(e1) = q(e1) = 0 et w′(e1) = q′(e1) = 1.

Enfin, il suffit de prendre e3 ∈ e2
⊥w′

tel que q′(e3) = 1, on obtient enfin : q(e3) = Tr(N−1M) =
0 =⇒ q(e3) = 0, et la base (e1, e2, e3) est bien orthogonale pour q′. 2

Maintenant qu’on possède une manière efficace de tester si deux coniques sont en in-
volution, on peut se poser la question légitime du nombre maximum de coniques deux à
deux en involution, et si elles existent. C’est exactement ce sur quoi Francesco Gerbaldi s’est
penché dans son article Gruppi di sei coniche in involuzione. Nous avons déduit dans la preuve
précédente qu’elles ne pouvaient être colinéaires, mais on va maintenant montrer mieux.

LEMME : Soit (Ci)i∈[[1;n]] une famille de coniques de matrices Bi. Si elles sont deux à deux en
involution, alors la famille (Bi)i∈[[1;n]] est linéairement indépendante.

PREUVE : Pour tout i ∈ [[1; n]], on définit la forme linéaire ϕi : M 7→ 1
3Tr(B−1

i M). On obtient
alors ϕi(Bj) = δij, pour tout j ∈ [[1; n]].

Supposons qu’il existe des scalaires non tous nuls (λj)j∈[[1;n]] ∈ C tels que : ∑n
j=1 λjBj = 0

En appliquant ϕi des deux côtés, on obtient par l’absurde :

ϕi

(
n

∑
j=1

λjBj

)
=

n

∑
j=1

λjϕi(Bj) = λi = 0

Ce qui implique que la famille (Bi)i∈[[1;n]] est linéairement indépendante. 2

Ainsi, puisque Sym3(C) est de dimension 6, il existe au maximum 6 coniques deux à
deux en involution. Avant de voir si on peut exhiber 6 telles coniques, on va d’abord voir
une construction élégante, dans laquelle on construit une troisième en involution avec les
deux premières, et ce même dans RP2.

1.3 Trois coniques projectives en involution

On se donne donc deux coniques en involution C1 et C2. Gerbaldi affirme dans son article
que pour tout point m du plan projectif, il existe une droite D telle que m⊥q1 est la polaire de
D⊥q1 par rapport à C2, et idem en inversant 1 et 2 ; il affirme de plus que D n’est autre que la
polaire de m par rapport à une troisième conique C3. Avant d’étudier ses dires, nous allons
énoncer un lemme utile pour la suite.

LEMME : Soit deux coniques en involution C1 et C2. En posant C = B−1
1 B2, on a que C3 = αI3,

pour α ∈ C∗.
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PREUVE : On note (λ1, λ2, λ3) les trois valeurs propres de C. Les conditions d’involution
nous donnent Tr(C) = λ1 + λ2 + λ3 = 0 et

Tr(C−1) =
1

λ1
+

1
λ2

+
1

λ3
=

λ1λ2 + λ1λ3 + λ2λ3

λ1λ2λ3
= 0 =⇒ λ1λ2 + λ1λ3 + λ2λ3 = 0.

Or ces deux termes interviennent dans l’écriture du polynôme caractéristique de C, prenant
donc la forme χC(X) = X3 − (λ1 +λ2 +λ3)X2 +(λ1λ2 +λ1λ3 +λ2λ3)X −λ1λ2λ3 = X3 − α.
Par le théorème de Cayley-Hamilton, on obtient : χC(C) = C3 − αI3 = 0 =⇒ C3 = αI3. 2

Nous allons procéder par analyse-synthèse pour trouver cette troisième conique. On
suppose qu’il existe C3 de matrice B3 tel que décrite ci-dessus. Soit x ∈ (C3)∗, la première
affirmation se traduit par (x⊥q3)⊥q1 = (x⊥q1)⊥q2 .

On pose V = x⊥q1 et ϕ1
x(y) = txB1y. Pour z ∈ V⊥q2 non nul, la forme ϕ2

z s’annule également
sur V. Les deux formes ayant le même noyau, on en déduit que tzB2 ∝ txB1, soit que z ∝
B−1

2 B1x. Donc (x⊥q1)⊥q2 = B−1
2 B1Vect{x}. De même, on a (x⊥q3)⊥q1 = B−1

1 B3Vect{x}. Vu
que ces deux espaces sont supposés être les mêmes, on obtient que B−1

2 B1 ∝ B−1
1 B3, soit

B3 ∝ B1B−1
2 B1.

Puisque la constante ne nous importe, on pose B3 = B1B−1
2 B1 et C3 la conique définie par

cette matrice. Nous allons vérifier qu’elle est bien en involution avec C1 et C2 :

Tr(B−1
1 B3) = Tr(B−1

1 B1B−1
2 B1) = Tr(B−1

2 B1) = 0,
Tr(B−1

3 B1) = Tr(B−1
1 B2B−1

1 B1) = Tr(B−1
1 B2) = 0,

Pour les deux prochains calculs, on applique le lemme : (B−1
2 B1)

3 = αI3 =⇒ (B−1
2 B1)

2 =

αB−1
1 B2 (idem en inversant 1 et 2) :

Tr(B−1
2 B3) = Tr(B−1

2 B1B−1
2 B1) = Tr(αB−1

1 B2) = 0,
Tr(B−1

3 B2) = Tr(B−1
1 B2B−1

1 B2) = Tr(αB−1
2 B1) = 0.

Ainsi, ces trois coniques sont deux à deux en involution, et on vérifie bien en répétant l’ana-
lyse le postulat de Gerbaldi sur l’existence de la droite. De plus, puisque le théorème 1 fonc-
tionne aussi pour le cas réel, on peut construire de la même manière une troisième telle
conique à partir des deux premières !

Effectivement, l’involution de ces 3
coniques ne saute pas aux yeux !
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2 Le théorème de Gerbaldi

Pour le reste du rapport, ω désignera une racine cubique complexe de l’unité.

THÉORÈME : Il existe 6 coniques deux à deux en involution.

PREUVE : Pour le montrer, nous allons les calculer explicitement en suivant la méthode de
Gerbaldi. Premièrement, nous allons poser :

q1 = x2 + y2 + z2

q2 = x2 + ωy2 + ω2z2

Maintenant, on pose une forme quadratique arbitraire (donnant une conique C, de matrice
B) et nous allons essayer de déduire ses coefficients des conditions d’involution : q = a11x2 +
a22y2 + a33z2 + 2a12xy + 2a13xz + 2a23yz.

Tr(B−1
1 B) = Tr(B−1

2 B) = 0 =⇒
{

a11 + a22 + a33 = 0
a11 + ω2a22 + ωa33 = 0

=⇒ (a11, a22, a33) = ρ(1, ω2, ω).

pour ρ ∈ C∗.

Ensuite, sachant que B1 et B2 sont diagonales, seuls les coefficients diagonaux de B−1 sont
nécessaires pour calculer les deux autres traces. On peut donc utiliser la formule de la co-
matrice pour alléger le calcul (en ignorant le déterminant qui est un facteur scalaire, donc
ignoré) :

Tr(B−1B1) = a11a22 − a12
2 + a11a33 − a13

2 + a22a33 − a23
2

= ρ2(ω2 + ω + 1)− a12
2 − a13

2 − a23
2

= −a12
2 − a13

2 − a23
2.

De la même manière, Tr(B−1B2) = −ω2a12
2 − ωa13

2 − a23
2. Alors :

Tr(B−1B1) = Tr(B−1B2) = 0 =⇒

 a12
2 + a13

2 + a23
2 = 0

ω2a12
2 + ωa13

2 + a23
2 = 0

=⇒ (a12
2, a13

2, a23
2) = λ2(ω2, ω, 1)

=⇒ (a12, a13, a23) = λ(±ω,±ω2,±1)
pour λ ∈ C∗.

Il existe 23 = 8 configurations de signes, et plus que 4 en factorisant un signe (−) ; comme
les quatre coniques qu’il nous manque. En divisant chaque ligne par ρ, on peut se permettre
de poser les quatre dernières formes quadratiques (linéairement indépendantes) :

q3 = x2 + ω2y2 + ωz2 + 2k(yz + ω2xz + ωxy)

q4 = x2 + ω2y2 + ωz2 + 2l(yz − ω2xz − ωxy)

q5 = x2 + ω2y2 + ωz2 + 2m(−yz + ω2xz − ωxy)

q6 = x2 + ω2y2 + ωz2 + 2n(−yz − ω2xz + ωxy)

On pourrait se demander s’il n’est pas possible que deux de ses formes aient la même confi-
guration de signe (ici par exemple celle de q3) avec juste des coefficients k et k′ différents. En
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appelant M la matrice avec k et N celle de k′, leur involution nous donnerait :

Tr(M−1N) =
3

2k2 − k − 1
(2kk′ − k − 1) = 0 et Tr(N−1M) =

3
2k′2 − k′ − 1

(2kk′ − k′ − 1) = 0

=⇒ k = 2kk′ − 1 = k′ =⇒ k = k′, ce qui est impossible ! Le résultat étant identique pour
chaque configuration, on se permet bien de définir les 4 dernières formes comme ci-dessus.

Nous allons une fois de plus utiliser l’involution pour déterminer k, l, m et n. Pour u, v ∈
{k, l, m, n} différents, on obtient (à l’aide de Sage [Case 1]) les 12 équations de la forme 2uv+

3u + 3 = 0. Ainsi, u = −2uv + 3
3

= v, ce qui donne que k = l = m = n. Finalement, on

obtient que 2k2 + 3k + 3 = 0 =⇒ k =
−3 ± i

√
15

4
= l = m = n.

C’est ainsi que s’achève la preuve, on a réussi à exhiber 6 coniques telles que chacune soit
en involution avec les cinq autres, définies par les 6 formes quadratiques suivantes :

q1 = x2 + y2 + z2

q2 = x2 + ωy2 + ω2z2

q3 = x2 + ω2y2 + ωz2 +
−3 + i

√
15

2
(yz + ω2xz + ωxy)

q4 = x2 + ω2y2 + ωz2 +
−3 + i

√
15

2
(yz − ω2xz − ωxy)

q5 = x2 + ω2y2 + ωz2 +
−3 + i

√
15

2
(−yz + ω2xz − ωxy)

q6 = x2 + ω2y2 + ωz2 +
−3 + i

√
15

2
(−yz − ω2xz + ωxy)

Les matrices des qi seront notées Bi et leurs formes polaires φi jusqu’à la fin de ce rapport.
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3 Le groupe de Valentiner

LEMME : Une homographie de matrice P dans GL3(C) envoie une conique C de matrice B
sur la conique, notée P(C), de matrice tP−1BP−1.

PREUVE : P(C (q)) = {Px | q(x) = 0} = {x | q(P−1x) = 0} = {x | tx(tP−1BP−1)x = 0}, ce
qui est ce que l’on voulait dans C3 et donc dans CP2. 2

Dans cette partie, on notera S = {C1, C2, C3, C4, C5, C6}. Si P et Q stabilisent S , alors PQ et
P−1 aussi, faisant de l’ensemble de ces homographies un groupe. Dans un premier temps,
on étudiera ce groupe Stab(S) = {P ∈ PGL3(C) | ∀C ∈ S , P(C) ∈ S}, puis dans un second
temps son relèvement à SL3(C), que l’on notera simplement V , et qui sera notre fameux
groupe de Valentiner.

3.1 Le groupes des homographies stabilisant les 6 coniques

Nous allons d’abord montrer un théorème d’algèbre linéaire qui s’avérera très utile dans
cette sous-partie :

THÉORÈME : Deux formes quadratiques q et q′ non dégénérées sur Cn sont codiagonali-
sables ; c’est-à-dire qu’il existe une base dans laquelle q = x1

2 + · · · + xn
2 et q′ = λ1x1

2 +
λ2x2

2 + · · ·+ λnxn
2.

PREUVE : Nous allons le montrer par récurrence. Le théorème est vrai pour n = 1, et on le
suppose vrai au rang n − 1.
On suppose qu’il existe e1 ∈ Cn tel que e1

⊥q = e1
⊥q′ = H et q(e1) = 1. On pose w et w′

les restrictions de q et q′ à H, qui sont codiagonalisables par l’hypothèse de récurrence. En
notant (e2, . . . , en) une base dans laquelle w et w′ sont diagonales, on obtient que pour tout
v = v1e1 + · · · + vnen ∈ C, q(v) = v1

2 + v2
2 + · · · + vn

2 et q′(v) = v1
2q′(e1) + v2

2q′(e2) +
· · ·+ vn

2q′(en). En posant λi = q′(ei) pour tout i ∈ [[1; n]], alors on aurait montré le résultat
voulu.

Montrons à présent que e1 existe. On pose f : Cn → (Cn)∗, u 7→ (v 7→ φ(u, v)) et f ′ de la
même manière avec φ′.
Alors f ′(u) = f (B−1B′u) pour tout u ∈ Cn. Or T = B−1B′ admet un vecteur propre e1 ∈
Cn de valeur propre λ ∈ C∗. Ainsi : f ′(e1) = f (Te1) = f (λe1) = λ f (e1) =⇒ e1

⊥q′ =
Ker( f (e1)) = Ker( f ′(e1)) = e1

⊥q. 2

COROLLAIRE : Pour C et C ′ deux coniques en involution, on peut toujours les ramener à C1
et C2 par une homographie.

PREUVE : On note P ∈ GL3(C) la matrice de changement de base, C = tPBP et C′ = tPB′P.
Alors : Tr(C−1C′) = Tr(P−1B−1tP−1tPB′P) = Tr(P−1B−1B′P) = Tr(B−1B′) = 0, idem
Tr(C−1C′) = 0. Les images des coniques sont encore en involution. Cela nous donne les
équations déjà vues, en notant C′ = diag(λ1, λ2, λ3), λ1 + λ2 + λ3 = 0 et 1

λ1
+ 1

λ2
+ 1

λ3
= 0.

Une solution est (λ1, λ2, λ3) = (1, ω, ω2), rapportant ainsi C à C1 et C ′ à C2. 2

Avant de vraiment passer à l’établissement du groupe, on va montrer une proposition qu’on
utilisera bientôt et qui est un sous-cas du théorème de Bézout :
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PROPOSITION : Deux coniques projectives C et C ′ admettent 4 points d’intersection qui
forment un repère projectif.

PREUVE : D’après le corollaire précédent, on pose g une homographie envoyant C sur C1 et C ′

sur C2. Maintenant, il suffit de calculer les points d’intersection de C1 et C2, car g−1(C1 ∩C2) =
C ∩ C ′. Après un calcul dont on peut se passer des détails, on trouve que l’intersection des
cônes isotropes consiste en 4 droites vectorielles, données par Vect{(±ω2,±ω, 1)}, ce qui
correspond exactement à 4 points dans CP2. De plus, chaque triplet de ces vecteurs forme
une base, ce qui donne bien un repère projectif. 2

THÉORÈME : Si g et h sont deux homographies telles que g(Ci) = h(Ci) ∈ S pour tout
i ∈ [[1; 6]], alors g = h.

1ÈRE PREUVE : Cela revient à montrer que la seule homographie f telle que f (Ci) = Ci pour
tout i ∈ [[1; 6]] est l’identité.
En notant P−1 une matrice de f telle que det(P) = 1 (on définit P avec l’inverse pour alléger
les notations), l’énoncé se transforme en : on a tPBiP = λiBi, avec λi ∈ C∗, pour tout i ∈
[[1; 6]] ; montrer que P est une homothétie.

Soit i ∈ [[1; 6]]. On remarque en prenant le déterminant de chaque côté que λ3
i = det(P)2 = 1,

ce qui signifie que :
tP3BiP3 = tP(tP(tPBiP)P)P = λ3

i Bi = Bi =⇒ ∀S ∈ Sym3(C), tP3SP3 = S,

car (Bi)i∈[[1;6]] est une base de Sym3(C). En posant Q = P3 et en remplaçant S par I3, on
trouve que tQ = Q−1. Ainsi, Q commute avec toutes les matrices symétriques, et c’est assez
restrictif sur la nature de Q.

Soit v ∈ C3, alors v(tv) est une matrice symétrique 3 × 3 ; on obtient :

Qv(tv) = v(tv)Q =⇒ Qv(tv)v = v(tv)Qv =⇒ (tvv)Qv = (tvQv)v,

Qv est proportionnel à v pour tout v ∈ C3, donc il existe γ ∈ C∗ tel que Q = P3 = γI3. En
prenant le déterminant de chaque côté, on trouve que det(P3) = det(P)3 = γ3 = 1. De plus,
tQQ = γ2 I3 = I3, impliquant γ2 = 1. La seule solution possible de γ2 = γ3 = 1 est γ = 1.
Donc P3 = I3.

Le polynôme minimal de P divise X3 − 1 qui est à racines simples, donc P est diagonalisable,
de matrice de passage Q (P = Qdiag(α1, α2, α3)Q−1), et de valeurs propres incluses dans
{1, ω, ω2}. De plus, det(P) = α1α2α3 = 1 ce qui donne (α1, α2, α3) ∝ (1, 1, 1) ou (α1, α2, α3) ∝
(1, ω, ω2). Nous allons à présent essayer d’exclure le deuxième cas.

Pour S ∈ Sym3(C), on pose CQ(S) = tQSQ, Π(S) = tPSP et Bi
′ = CQ(Bi), qui est la matrice

de Bi dans la base diagonalisante de P. On a encore Tr(Bi
′−1Bi

′) = Tr(Bi
−1Bi) = 0 pour i ̸= j.

Enfin, on pose Π̃(S) = CQ ◦ Π ◦ C−1
Q (S) = t(QPQ−1)S(QPQ−1) = DSD. On trouve alors :

Π̃(Bi
′) = CQ ◦ Π(Bi) = λiCQ(Bi) = λiBi

′, donc les Bi
′ sont des vecteurs propres de Π̃.

On suppose maintenant que diag(1, ω, ω2) quitte à réarranger la base. On obtient en notant
Eij les matrices élémentaires :

Π̃(Eii) = (DEii)D = αiEiiD = α2
i Eii

Π̃(Eij + Eji) = (αjEij + αiEji)D = αiαj(Eij + Eji).
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Ainsi, les valeurs propres de Π̃ sont α1
2, α2

2, α3
2, α1α2, α1α3, α2α3 ; soit 1, ω et ω2, chacune de

multiplicité 2. Puisque 6 > 3, il existe un espace propre contenant au moins Bi
′ et Bj

′, qu’on
suppose être celui associé à 1 sans perte de généralité.

On note E(x, y) = xE11 + y(E23 + E32), alors E1 = {E(x, y) | x ∈ C, y ∈ C}. On a alors :
det(E(x, y)) = −xy2 =⇒ E(x, y) est inversible si et seulement si x ̸= 0 et y ̸= 0, d’inverse
E( 1

x , 1
y ).

Soit x, y, x′, y′ ∈ C∗ tels que Bi
′ = E(x, y) et Bj

′ = E(x′, y′). On note X = x′
x , Y = y′

y . Alors :

Tr(Bi
′−1Bj

′) =
x′

x
+ 2

y′

y
= 0 =⇒ X + 2Y = 0,

Tr(Bj
′−1Bi

′) =
x
x′

+ 2
y
y′

= 0 =⇒ 2X + Y = 0.

La seule solution de ce système est (X, Y) = (0, 0) ce qui est absurde ! Le seul choix pour D
est qu’elle soit scalaire, ce qui implique directement que P aussi, concluant la preuve. 2

J’avais montré le théorème une première fois grâce à l’algèbre linéaire et de manière la-
borieuse, mais ayant pensé à une seconde preuve récemment, qui plus est projective, plus
courte et élégante, je me suis dit que les deux méritaient leur place ici.

2ÈME PREUVE : De la même manière, soit f une homographie telle que f (Ci) = Ci pour tout
i ∈ [[1; 6]]. Une homographie étant définie uniquement par l’image de 4 points, notre objectif
est de construire 4 points fixes pour f .
On a comme propriété très utile que f (Ci ∩ Cj) = f (Ci) ∩ f (Cj) = Ci ∩ Cj. Nous savons que
cette intersection compte 4 points (x1, x2, x3, x4) et f ne fait que les mélanger ; on peut alors
poser f (xi) = xσ(i), avec σ ∈ S4.

Si σ admet un point fixe alors on a gagné,
Si σ = (a b)(c d) est une double transposition, alors la droite (xaxb) est envoyée sur elle-
même, et idem pour la droite (xcxd). En notant m leur point d’intersection, on obtient que
f (m) = m.
Enfin, si σ = (a b c d) est un 4-cycle, les droites (xaxc) et (xbxd) s’envoient l’une sur l’autre.
En notant une nouvelle fois m leur point d’intersection, on obtient que f (m) = m.

La dernière question à se poser est "existe-t-il assez de points d’intersection différents pour
que ça fonctionne? et de droites formées à partir de ces points?". Il existe 15 paires de co-
niques différentes, chacune admettant 4 points d’intersection. Grâce à Sage [Case 3], on
montre que les 60 points sont tous distincts. En revanche, il pourrait se passer l’étrange phé-
nomène que beaucoup de droites se rencontrent en très peu de points, or encore une fois, les
45 paires de droites différentes forment 45 points d’intersection tous distincts. C’est-à-dire
qu’on peut construire au minimum 15 points fixes de f rien qu’en étudiant les intersections
de coniques, ce qui est plus que suffisant pour conclure que f est l’identité. 2

Ce théorème est important car il nous permet de dire que Stab(S) s’injecte dans S6, puisqu’à
une permutation des coniques correspond une homographie au maximum.

Pour "créer" des homographies stabilisant les 6 coniques, on commence par s’intéresser
seulement à C1 et C2. On va essayer de trouver toutes les homographies stabilisant C1 et
C2, et pour cela on s’intéresse une fois de plus à leur intersection, notée (x, y, z, w), telle que
x + y + z + w = 0. On pose P la matrice de passe de la base canonique à (x, y, z), qui conju-
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guera une matrice gσ, où σ ∈ S{x,y,z,w}. Si σ envoie w sur w, alors la matrice sera une matrice

de permutation, et si σ = (x y w) par exemple, on obtient la forme suivante : gσ =
( 0 −1 0

1 −1 0
0 −1 1

)
avec une colonne de -1 à l’emplacement de y car σ(y) = w = −x − y − z. On pose alors f
l’homographie de matrice A = PgσP−1.

PROPOSITION : f stabilise {C1, C2} ainsi que {C3, C4, C5, C6}.

PREUVE : Nous allons montrer en premier que f (C1) et f (C2) ont pour matrice une combi-
naison linéaire de B1 et B2 (on dit qu’ils appartiennent au pinceau de C1 et C2, appellation très
élégante). Soit v1, v2, v3, v4 des représentants des 4 points d’intersection C1 et C2.
Pour i ∈ [[1; 4]], on pose la forme linéaire Lvi : Sym3(C) → C, S 7→ tviSvi. Nous allons
montrer qu’elles sont indépendantes, ce qui nous donnera :

dim

(
4⋂

k=1

Ker(Lvi)

)
= 2, et B1, B2 ∈

4⋂
k=1

Ker(Lvi) = E

sont indépendantes, alors E = Vect(B1, B2) et pour finir, Mat( f (C1)), Mat( f (C2)) ∈ E.

Soit (α1, α2, α3, α4) des complexes non tous nuls tels que ∑4
i=1 αiLvi = ∑4

i=1 αi
tviSvi = 0.

Soit y, z ∈ C3, on remplace S par ytz + zty dans l’expression ci-dessus :

4

∑
i=1

αi
tvi(ytz + zty)vi = 2

4

∑
i=1

αi(
tviy)(tzvi) = 2

4

∑
i=1

αi(
tzvi)(

tviy) = tz(
4

∑
i=1

2αivi
tvi)y = 0

La dernière expression est une forme bilinéaire nulle sur C3 × C3, ce qui signifie que la
matrice M = ∑4

i=1 2αivi
tvi la définissant est nulle. On va essayer de l’évaluer en des vecteurs

particuliers pour trouver une contradiction.

On pose V la matrice dont les colonnes sont (v1, v2, v3), et on appelle (u1, u2, u3) les colonnes
de tV−1, ce qui nous donne tuivj = δij. Puisque v4 n’est pas nul et (u1, u2, u3) forme une base
de C3, il existe j ∈ {1, 2, 3} tel que tujv4 ̸= 0.
Alors : Muj = ∑4

i=1 2αivi(
tviuj) = 2αjvj + 2α4(

tv4uj)v4 = 0. Sachant que vj et v4 sont indé-
pendants, alors αj = α4 = 0. En posant {i, j, k} = {1, 2, 3}, on réitère cette fois en posant V
la matrice dont les colonnes sont (vi, vj, v4) ; ce qui nous donnera au moins αk = 0.
Puisqu’au moins trois des coefficients sont nuls, le quatrième aussi, ce qui conclut cette pre-
mière partie de la preuve.

De la même manière qu’à la preuve précédente, on notera E(a, b) = aB1 + bB2 et posera
Π(S) = tA−1SA−1, qui envoie la matrice de la conique C sur la matrice de la conique f (C).
On note enfin Π(B1) = E(a, b) et Π(B2) = E(c, d). f (C1) et f (C2) restent en involution
comme déjà vu précédemment, ce qui nous donne les deux équations sur a, b, c et d :

a2b + c2d = 0 et ab2 + cd2 = 0 =⇒ a2b2 + bc2d = 0 et ab2 = −cd2 =⇒ cd(bc − ad) = 0.

Si c = 0, alors d ̸= 0 sinon Π(B2) = 0. Cela nous donne que Π(B2) est proportionnel à B2 ;
mais également que a = 0 ou b = 0. Π(B1) et Π(B2) ne pouvant être proportionnels, Π(B1)
et B1 le sont.
Idem si d = 0, on obtiendrait Π(B1) ∝ B2 et Π(B2) ∝ B1.
Si bc = ad, alors on peut écrire (a, b, c, d) = (a, λa, c, λc). Or cela impliquerait que Π(B1) ∝
Π(B2), ce qui est impossible. On vient de montrer que f stabilise {C1, C2}.
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Sans perte de généralité, on pose Π(B1) = λ1B1 et Π(B2) = λ2B2. Soit j ∈ {3, 4, 5, 6}, on a :

Tr(Π(Bj)
−1B1) =

1
λ1

Tr(Π(Bj)
−1Π(B1)) =

1
λ1

Tr(Bj
−1B1) = 0

Tr(Π(Bj)
−1B2) =

1
λ2

Tr(Π(Bj)
−1Π(B2)) =

1
λ2

Tr(Bj
−1B2) = 0

Tr(B1
−1Π(Bj)) =

1
λ1

Tr(Π(B1)
−1Π(Bj)) =

1
λ1

Tr(B1
−1Bj) = 0

Tr(B2
−1Π(Bj)) =

1
λ2

Tr(Π(B2)
−1Π(Bj)) =

1
λ2

Tr(B2
−1Bj) = 0

⊛ Donc chaque Π(Bj) est en involution avec B1 et B2, et de plus, chaque Π(Bj) est en invo-
lution avec Π(Bj) pour i ̸= j. Alors (Π(Bj))j∈[[1;6]] est un système de 6 matrices deux à deux
en involution, avec Π(B1) ∝ B1 ou B2 et Π(B2) ∝ B2 ou B1 : ce sont les 6 matrices des qi de
la page 6 ! Le seul problème restant est qu’il se pourrait que f envoie les coniques sur les
coniques définies non pas avec k = −3+i

√
15

2 mais k = −3−i
√

15
2 . On note Ci les matrices avec

le signe moins. On va montrer qu’il n’existe pas de telles homographies.

On suppose qu’il existe P ∈ GL3(C) tel qu’en posant Π(S) = tPSP, Π envoie B1 sur C1 (=
B1), B2 sur C2 (= B2) et le reste des Bi sur le reste des Ci.
On obtiendrait : tPP = I3 et tPB2P = B2 =⇒ B2P = PB2. Le commutant d’une matrice
diagonale non scalaire est l’ensemble des matrices diagonales, donc P = diag(α1, α2, α3).
Réimplémenter P dans tPB2P = B2 implique que αi

2 = 1.

On s’intéresse maintenant à Π(B3) = Cj ; on cherche le coefficient non diagonal de B3 et Bj
qui sont égaux :
Π(B3) = C3 =⇒ (tPB3P)1,2 = (C3)1,2 =⇒ α1α2kj = kj : impossible !
Π(B3) = C4 =⇒ (tPB3P)2,3 = (C4)2,3 =⇒ α2α3k = k : impossible !
Π(B3) = C5 =⇒ (tPB3P)1,2 = (C5)1,3 =⇒ α1α3kj2 = kj2 : impossible !
Π(B3) = C6 =⇒ (tPB3P)2,3 = (C6)1,2 =⇒ α1α2kj = kj : impossible !

Donc P n’existe pas. En revanche, je n’ai pas réussi à finir en considérant le cas plus général
où Π(Bi) = λiCj, je ne sais pas s’il faut trouver une contradiction en arrivant par exemple à
exhiber une homographie qui agirait comme celle qu’on a démontrée inexistante, ou si c’est
juste fastidieux et laborieux.

Dans tous les cas, en utilisant Sage [Case 3] on a bien que f n’envoie pas {C3, C4, C5, C6} sur
les coniques définies avec k. 2

PROPOSITION : f induit une permutation paire sur S .

PREUVE : La proposition précédente nous permet de dire que ce que l’on a construit en
choisissant σ ∈ S4 et en le transformant en homographie, est un morphisme ϕ : S4 →
S2 × S4 ⊂ S6.

On pose ϕ = (ϕ1, ϕ2), avec ϕ1 : S4 → S2
∼= Z/2Z et ϕ1 : S4 → S4.

On a pour tout σ ∈ S4, ε(ϕ(σ)) = ε(ϕ1(σ))ε(ϕ2(σ)) ; puisque pour retrouver notre permuta-
tion de S6 on identifie S4 et S{3,4,5,6} puis multiplie les deux coordonnées de ϕ(σ).

En sachant que σ = (x y) agit sur S comme (1 2)(3 6), alors on sait que ε(ϕ1) n’est pas le
morphisme constant. Mais le seul morphisme non constant de Sn → Z/2Z étant la signa-
ture, ε(ϕ1) = ε.
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De plus, pour n ̸= 6, tous les morphismes de Sn sont intérieurs. Alors ϕ2 est un morphisme
intérieur, donc il existe δ ∈ S4 tel que ϕ2(σ) = δ−1σδ, ce qui implique que : ε(ϕ2(σ)) =
ε(δ−1σδ) = ε(δ)−1ε(σ)ε(δ) = ε(σ).

Finalement : ε(ϕ(σ)) = ε(ϕ1(σ))ε(ϕ2(σ)) = ε(σ)ε(σ) = ε(σ)2 = 1, donc f induit bien une
permutation paire sur S . 2

On a presque terminé. Sage [Case 6] nous permet de voir que grâce à cette méthode, on
a généré toutes les doubles transpositions dont l’une des deux est (1 2). Grâce au premier
théorème de cette partie, on peut envoyer (Ci, Cj) sur (C1, C2) par une homographie g. En
reprenant la fin de la preuve, au point ⊛ en dessous des équations de la page 11, g ∈ Stab(S).
Si on conjugue chacune des homographies agissant comme des doubles transpositions avec
(1 2) par g, on obtient alors toutes les doubles transpositions avec (i j), c’est-à-dire toutes les
doubles transpositions. Sachant qu’elles génèrent A6, on a que A6 s’injecte dans Stab(S).

THÉORÈME : Stab(S) est isomorphe à A6.

PREUVE : Il ne nous reste plus qu’à montrer que Stab(S) n’agit jamais comme une permu-
tation impaire. Soit h ∈ Stab(S) une homographie agissant sur S comme une permutation
impaire. Les seules possibilités sont une transposition, une triple transposition, une trans-
position et un 3-cycle, un 4-cycle ou un 6-cycle. Le but est de multiplier les cas ne stabilisant
pas deux coniques par une permutation paire. Dans chaque cas, on considère l’homographie
g qui agit comme l’inverse de h multiplié par (3 4 5 6). g ∈ Stab(S) car g agit comme une
permutation paire.

Alors gh agit encore comme une permutation impaire, stabilise {C1, C2}, donc leurs 4 points
d’intersection, donc il existe une matrice de permutation gσ et P la matrice de changement de
base comme au début. Alors gh devrait agir comme une permutation paire par la proposition
précédente, ce qui est impossible. 2

3.2 Le relèvement de Stab(S) à SL3(C)

Dans notre cas, on a que PGL(E) = PGL3(C) = GL3(C)/C∗ I3 = SL3(C)/C∗ I3, le groupe
des matrices inversibles à un scalaire près.
Alors on définit V = {M ∈ SL3(C) | π(M) ∈ Stab(S)}. Stab(S) possède 360 éléments, on
définit alors une matrice représentante de chaque classe dans SL3(C), dont on note M leur
ensemble.
Soit P ∈ SL3(C). On a :

P ∈ V ⇔ ∃M ∈ M, ∃λ ∈ C∗, P = λM, λ3 = 1

⇔ ∃M ∈ M, ∃λ ∈ {1, ω, ω2}, P = λM

ce qui est équivalent à V = {1, ω, ω2}×M. Alors Card(V) = Card({1, ω, ω2})×Card(M) =
3 × 360 = 1080.

Nous allons maintenant définir ce qu’est une extension, qu’elle soit centrale, scindée et enfin
montrer que V est centrale non scindée, ce qui conclura ce rapport.
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DÉFINITION : Soit H, N < G des groupes, avec H distingué dans G. On dit que G est le
produit semi-direct interne de H par K si pour tout g ∈ G, il existe une unique paire (h, k)
dans H × K tel que g = hk. Dans ce cas, G est isomorphe au groupe (H × K, •), où la loi est
donnée par : (h1, k1) • (h2, k2) = (h1(k1h2k−1

1 ), h1h2).

DÉFINITION : Soit N, H et G trois groupes, H abélien. On dit que G est une extension de K
par H si les groupes rentrent dans la suite exacte courte :

1 −→ H −→ G −→ K −→ 1.

On dit que l’extension est centrale si H est inclus dans le centre de G, scindée si G est le produit
semi-direct interne de H par K.

PROPOSITION : Soit G une extension de K par H. Si elle est centrale, alors elle est scindée si
et seulement si G est le produit direct de H et K.

PREUVE : "⇐"
Soit (h1, k1), (h2, k2) ∈ G, on a (h1, k1) • (h2, k2) = (h1h2, k1k2) = (h1(k1h2k−1

1 ), k1k2) car
h2k1 = k1h2 puisque H est inclus dans le centre. Donc le produit direct est un produit semi-
direct interne, donc l’extension est scindée.

"⇒" (h1, k1), (h2, k2) ∈ G, on a (h1, k1) • (h2, k2) = (h1(k1h2k−1
1 ), k1k2) = (h1h2, k1k2) car

h2k1 = k1h2 puisque H est inclus dans le centre. Donc G = H × K. 2

Avant de démontrer le théorème, on a besoin de ces deux petits lemmes :

LEMME : V est égal au groupe engendré par ses commutateurs (on dit qu’il est parfait).

PREUVE : [Case 7] du fichier Sage. 2

LEMME : Un groupe G simple et non abélien est parfait.

PREUVE : On note D(G) le groupe engendré par les commutateurs de G, il est distingué
dans G (car z[x, y]z−1 = [zxz−1, zyz−1]). Soit D(G) = G, soit D(G) = e. Or si on était dans le
deuxième cas, on aurait que G est abélien, ce qui est impossible. Alors G = D(G). 2

THÉORÈME : Le groupe de Valentiner V est une extension de A6 par Z/3Z centrale non
scindée.

PREUVE : Dans notre cas, le groupe correspondant à Z/3Z est {I3, ωI3, ω2 I3}, et effective-
ment ces 3 matrices commutent avec toutes les autres, donc l’extension est centrale. Il nous
suffit maintenant de montrer que V ̸= A6 × Z/3Z.

Si V était le produit direct, alors : V = D(V) = D(A6)× D(Z/3Z) = A6 × {1}, ce qui est
impossible. 2

Ce qui reste sacrément étonnant, sachant que vu comment on l’a défini, on pouvait s’at-
tendre à ce qu’il soit isomorphe à A6 × Z/3Z.
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