
Lectures on Azumaya algebras at IMAR

The goal of these lectures is to study the theory of Azumaya algebras over
a ring (or a scheme) which is the globalization of the theory of central simple
algebras over a field. This theory is mostly due to Alexander Grothendieck
and is related to descent techniques and non-abelian étale cohomology, which
are fundamental tools in Algebraic Geometry and Arithmetic Geometry. We
will mostly follow the recent book by Colliot-Thélène and Skorobogatov [1].
Additional references are listed below.

The lectures will be on Mondays in the Foias, lecture room (8th floor) at
2 PM.

October 7, lecture 1 (Cameron Ruether): Central simple algebras:
Wedderburn’s theorem and characterizations, Skolem-Noether theorem.

October 14, lecture 2 (Ilan Zysman): Central simple algebras: reduced
norms and traces, splitting fields and Galois cohomology, Brauer groups.

October 21, lecture 3 (Philippe Gille): Splitting fields, example of
local fields

October 28, lecture 4 (Philippe Gille): Brauer group of k(t). Appli-
cation to the rationality problem.

November 4, lecture 5 (Margot Bruneaux): Azumaya algebras: def-
inition over rings, faithfully flat splitting, the failure/analogue of Skolem-
Noether.

November 11, lecture 6 (Cameron Ruether): Azumaya algebras:
Morita equivalence and Brauer equivalence.

November 18, lecture 7 (Ilan Zysman): Étale morphisms and the Étale
site of a ring.

November 25, lecture 8 (Cameron Ruether): Čech cohomology and
classifying Azumaya algebras..

December 2, lecture 9 (Jing Liu): Yoga of forms: vector bundles and
Azumaya algebras mirrored in H1.

On December 9, there will be a talk by Mathieu Florence.

Further topics will be decided as the lectures are proceeding.
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