
Lectures on Azumaya algebras at IMAR
Winter 2025

The goal of these lectures is to continue our study of the theory of Azu-
maya algebras over rings and schemes, which is the globalization of the theory
of central simple algebras over a field. This theory is mostly due to Alexan-
der Grothendieck and is related to descent techniques and non-abelian étale
cohomology, which are fundamental tools in Algebraic Geometry and Arith-
metic Geometry. Various references are listed below.

The lectures will be on Mondays in the Foias, lecture room (8th floor) at
2 PM.

January 20, (Cameron Ruether): The étale and flat sites over a
scheme, Azumaya algebras over schemes, differences from Azumaya algebras
over rings.

January 27, (Philippe Gille): The Severi-Brauer Scheme associated to
an Azumaya algebra.

February 10, (Cameron Ruether): Quasi-coherent modules on a scheme
and its site, triviality of cohomology for quasi-coherent modules over affines..

February 24, (Ilan Zysman): Infinitesimal thickenings of schemes, in-
troduction to deformation problems, the Lie algebra.

March 3, (TBD): Classification and obstruction theory for deformations
of vector bundles and Azumaya algebras.

March 10, (TBD): Functoriality of deformation obstructions, relative de-
formation problems.

Further topics will be decided as the lectures proceed.
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