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La R-équivalence sur les groupes algébriques réductifs définis sur un corps
global, Publications Mathématiques de l’IHES 86 (1997), 199-235.

Nous corrigeons une erreur signalée par Jean-Louis Colliot-Thélène dans la démon-
stration du lemme III.2.8.b).

• Lemme III.2.8.a). Légèrement plus généralement, nous avons en fait.

a) Soit µ le groupe fondamental du groupe adjoint Gad de G et notons N = µ̂(k).
Alors toute extension de corps k′/k de degré multiple de N quasi-déploie le groupe G.

Notons au passage que la démonstration se simplifie radicalement en utilisant
l’isomorphisme H2

fppf (k, µ)
∼−→ H0(k, µ̂)D pour le k–groupe fini de type multipli-

catif µ. Celui-ci est établi dans [Se1, §5.8] dans le cas où l’exposant de µ est premier
à la caractéristique (i.e. µ est lisse); nous n’avons pas trouvé de référence pour le cas
général.

• Démonstration du lemme III.2.8.b). . . . . Soit k1/k une extension non ramifiée
de degré N . D’après le a), on a X(k1) 6= ∅, donc O×L ⊂ Nk1⊗kL/L

(
(k1 ⊗k L)×

)
⊂

NX(k,E). Par ailleurs, il existe une extension finie de corps L2 de L de degré n
totalement ramifiée. D’après le a), on a X(L2) 6= ∅ donc NL2⊗kL/L

(
(L2 ⊗k L)×

)
⊂

NX(k,E). Or L2 ⊗k L contient un facteur L2 donc (L2 ⊗k L)× → L×
w−→ Z est

surjective. Ceci permet de conclure que NX(k,E) = L× comme désiré.

*********
Spécialisation de la R-équivalence pour les groupes réductifs, Trans. Amer.
Math. Soc. 35 (2004), 4465-4474.

• Théorème 2.1. It holds in arbitrary characteristic. As explained in §3.3., the
assump- tion of characteristic 6= 2 occurs only for the construction of de Concini and
Procesi wonderful compactification of and adjoint semisimple A–group scheme.

This is folklore and can ne obtained by a refinement of [CP, th. 3.13]. By descent,
the relevant case is that of Chevalley groups over Z which is used for example [STBT].
Note that in the field case, there is a construction of the wonderful compactification
in [§6.1, BK].
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• Proof of Proposition 1.1, (i) =⇒ (ii). One other way it to appeal to the proof
Lemma 3.2 of [F]. Then the boudary ∂X is included in a reunion of finite irreducible
subvarieties W1, . . . ,Wc of X and the quoted fact provides an integral curve C ⊂ X
containing x as a regular point such that C 6⊂ ∂X.

• Another reference for Théorème 1.2, (ii) =⇒ (iii), is [G, proposition 6.(2)].

[BK] M. Brion, S. Kumar, Frobenius Splitting Methods in Geometry and Representa-
tion Theory, Progress in Mathematics 231, Birkhäuser.
[CP] C. de Concini, T. A. Springer, Compactification of symmetric varieties, dedicated
to the memory of Claude Chevalley, Transform. Groups 4 (1999), 273-300.
[F] E. Frossard, Groupe de Chow des fibrations en variétés de Severi–Brauer, Com-
positio Math. 110 (1998), 187–213.
[Guo] N. Guo, The Grothendieck–Serre conjecture over semilocal Dedekind rings,
Transformation Groups 27 (2022), 897–917.
[STBT] J. Shalika, R. Takloo-Bighash, Y. Tschinkel, Rational points on compactifi-
cations of semi-simple groups, J. Amer. Math. Soc. 20 (2007), 1135-1186

*********
with A. Pianzola, Isotriviality and étale cohomology of Laurent polynomial
rings, Journal of Pure and Applied Algebra 212 (2008), 780-800.

Cartesian is not right in the statements of Lemma A.5 and of Proposition A.6. What
we prove (and use in the paper) is the following.

Lemma A.4 Let X be scheme and G an group scheme over X which is affine, flat,
and locally of finite presentation. Let X = U ∪ V be a cover by Zariski open subsets.
We consider the following commutative diagram of pointed sets

H1
fppf (X,G) −−−→ H1

fppf (U,G)y y
H1

fppf (V,G) −−−→ H1
fppf (U ∩ V,G)

Given α ∈ H1
fppf (U,G), β ∈ H1

fppf (V,G) such that α|U∩V = β|U∩V there exists γ ∈
H1

fppf (X,G) such that γ|U = α and γ|V = β.

Proposition A.5 Let A be a discrete valuation ring and K its fraction field. Denote
by Â and K̂ the completions of A and K respectively. Let G be a group scheme which
is affine, flat and locally of finite presentation over A. We consider the diagram of
pointed sets

H1
fppf (A,G) −−−→ H1

fppf (Â,G)y y
H1

fppf (K,G) −−−→ H1
fppf (K̂,G).
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Given α ∈ H1
fppf (Â,G), β ∈ H1

fppf (K,G) such that αK̂ = βK̂ there exists γ ∈
H1

fppf (A,G) such that γÂ = α and γK = β.

*********

Le problème de Kneser-Tits, exposé Bourbaki n0 983, Astérisque 326
(2009), 39-81.

• Page 11 (pointed out by A. Sawant). We have only an exact sequence

E(k)→ W (k, G̃)→ W (k,G)→ 1.

The exactness on the left does not hold in general. This follows by pushing a coun-
terexample given by A. P. Monastyrny̌i [57].
• Page 15, proof of Lemma 4.5 (pointed out by A. Zidani).
(i) We put M = ZH(S)/S, it is a reductive O–group scheme with anisotropic special
fiber. There is more work to do to prove that M(O) = M(K). First we claim that M

is K-anisotropic and we follow the proof of Lemma 4 of [Guo]. Since its scheme of
O-parabolic subgroups Par(M) is smooth projective [SGA3, XXVI.3.5], we have

Par(M)(K)
∼←− Par(M)(O)→→ Par(M)(k)

so that all those sets are singletons. It follows that MK has no proper K-parabolic
subgroups. Let T = rad(M) be the maximal central O-torus of M [SGA3, XXII.4.3.6].
Let k′/k be a finite Galois extension of group Γ which splits Tk. Let O′/O be the
associated Galois extension and denote by K ′ its fraction field. According to [SGA3,
X.3.3.(2)], TO′ is split. We recall that the category of k–groups of multiplicative
type split by k′/k (resp. O-groups of multiplicative type split by O′, resp. K-groups
of multiplicative type split by K ′) is anti-equivalent to the category of Γ-mmodules
[SGA3, Proposition 1.1]. This provides the isomorphisms

HomK−gp(Gm,K , TK)
∼←− HomO−gp(Gm,O, TO)

∼−→ Homk−gp(Gm,k, Tk).

Since Tk is anisotropic, the righthanside group is zero, it follows that TK is anisotropic
as well. Since MK has no proper K-parabolic subgroups and no split central K-
subtorus, MK is anisotropic1. Finally we can quote Proposition 6 of Guo’s paper (or
alternatively Lemma 5.2.(3) of Zidani’s preprint) below to state that M(O) = M(K).
(ii) The reference [7, Proposition 6.11] is replaced by [7, Corollaire 6.8].

• Page 18, Lemma 5.2, the implication (2) =⇒ (1) is not established and is unknown.
The corrected statement is the following.

1Use for example Corollaire 7.3.2 of my paper Sur la classification des schémas en groupes semi-
simples, “Autour des schémas en groupes, III”, Panoramas et Synthèses 47 (2015), 39-110.



4 P. GILLE

LEMME 5.2. On suppose que le corps de base k est infini. Soit H un k–groupe
réductif. On considère les assertions suivantes :

(1) Le morphisme H(A) → H(κ) est surjectif pour toute k-algèbre locale A de
corps résiduel κ;

(2) H(K) est dense dans H(Kv) pour tout k–corps valué (K, v);
(3) H est une variété rétracte k-rationnelle.

Alors on a les implications (1)⇐⇒ (3) =⇒ (2).

Démonstration. 1) =⇒ 2) et 1) =⇒ 3) : Ce sont des conséquences immédiates de la
proposition 5.1.
3) =⇒ 1): La proposition 5.1 produit un ouvert V de H ayant la propriété de
relèvement. Vu que V(k) est Zariski-dense dans H, il existe h1, ..., hn ∈ V(k) tel que⋃
hiV = H. Il est alors immédiat que H vérifie la propriété de relèvement. �

• Page 16, after 7.5 (pointed out by A. Zidani). The sentence

Un k-tore est R-trivial si et seulement s’il est facteur direct d’un tore quasi-trivial

is wrong. The right statement is the following:

Un k-tore est R-trivial si et seulement s’il existe un k-tore S tel que T × S est
k-rationnel.

Démonstration. Soit 1→ S → E → T → 1 une résolution flasque de T . D’après [19,
Théorème 2], l’application caractéristique T (F )→ H1(F, S) induit un isomorphisme
T (F )/R

∼−→ H1(F, S) pour tout corps F/k. Ainsi T est R-trivial si et seulement si
H1(F, S) = 1 pour tout k–corps F .

On suppose que T est R-trivial. Alors H1(k(T ), S) = 1 et le point générique de T
se relève en un élément de E(k(T )). Il suit que T × S est k-birationnel à E, et donc
que T × S est k-rationnel.

La réciproque est évidente.

[Guo] N. Guo, The Grothendieck-Serre’s conjecture over semilocal Dedekind rings,
Transformations Groups 27 (2022), 897-917.
A. Zidani, Arithmétique des sous-groupes de Bruhat-Tits sur un anneau de valuation
discrète hensélien, arXiv:2509.17929

*********

Lecture Notes in Math. 2238.
(1) §6.2. Pour un foncteur en groupes F , l’affirmation que la R1-équivalence coïncide
avec la relation élémentaire est fausse. Par exemple le cas du k-tore G = (Gm,k)2.
En effet on a G(k)/R = 1 alors que les points de (k×)2 qui sont directement R1-
équivalents à l’origine (1, 1) sont les (tm0 , t

n
0 ) pour t0 parcourant k× et m,n parcourant

Z. Le lemme 1.6.5.(1) prend alors la forme suivante (le (2) restant échangé):
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Lemme 1.6.5. Soit M un k–groupe de type multiplicatif.
(1) Soit α ∈ H1

fppf(k,M). Alors α est directement R1-équivalent à 1 si et seulement s’il
existe un entier n ≥ 1 et un plongement i : µn →M telle que α ∈ Im

(
H1

fppf(k, µn)→
H1

fppf(k,M)
)
.

Comme ce lemme est utilisé dans la démonstration du Corollaire 5.5.2.(1), on doit la
modifier légèrement de la façon suivante. Sous les hypothèses du Corollaire 5.5.2.(1),
on doit montrer que l’application i∗ : R1H

1(k, T ) → H1(k,G) est triviale. Si
α ∈ H1(k, T ) est directement R1-équivalent à 1, l’argument existant s’applique avec
la nouvelle version du Lemme 1.6.5.(1) et montre que i∗(α) = 1. Etant donné
α ∈ R1H

1(k, T ), on a α = α1 . . . αc avec α1, . . . , αc directement R1-équivalent. Par
récurence sur c ≥ 1, l’argument habituel de torsion montre que i∗(α) = 1.

(2) Nous apportons deux précisions à la démonstration du théorème 8.4.1.(2) sur la
conjecture II de Serre en type E8 dans le cas d’un corps parfait.

(a) Le lemme 8.4.2 est énoncé avec un corps de base k de caractéristique nulle alors
que l’on besoin du cas parfait. L’extension ne pose pas de problème comme on va le
vérifier. Le nouvel énoncé est donc le suivant où G0 désigne le k–groupe déployé de
type E8.

Lemma 8.4.2 On suppose k de caractéristique libre. On note H0 le sous–groupe
maximal déployé de G0 de type E6×A2. Soit L/k une extension cyclique de degré 3.
On suppose que H1(k,Z/2Z) = 0. Alors

H1(L/k,G0)an ⊆ Im
(
H1(k,H0)→ H1(k,G0)

)
(H1(L/k,G0)an désigne le sous–ensemble des classes de cohomologie anisotropes, i.e.
les classes [z] telles que le groupe tordu zG0 soit anisotrope).

Démonstration. On note σ un générateur de Gal(L/k). Soit z ∈ Z1(k,G0)an et
G = zG0 le groupe tordu. Soit PL un L–parabolique de GL de type E7 et

C =
(
PL ∩ σ(PL) ∩ σ2(PL)

)
⊂ GL.

Le groupe CL est défini sur k et suivant [149, lemma 6.32] , on sait que dimk(C) ≥
77. Nous allons montrer que CL est un sous–groupe de Levi d’un L–sous–groupe
parabolique de G inclus dans PL, en particulier qu’il est lisse. En effet, soit QL un
L–sous–groupe parabolique de G contenant CL et contenu dans PL que l’on suppose
minimal pour cette propriété. Alors C =

(
QL ∩ σ(QL) ∩ σ2(QL)

)
. Par minimalité

de QL, on a QL = Ru(QL).(QL ∩ σ(QL)), donc QL et σ(QL) son opposés [22, prop.
4.10]; le groupe ML := QL∩σ(QL) est donc un sous–groupe de Levi de QL contenant
CL. De plus, CL = ML ∩ σ2(QL) est un L–parabolique de ML [82 , prop. 3.1.1.(3)].
En particulier C est lisse et connexe. On note U le k-radical unipotent de C, on sait
que UL est le L–radical unipotent de CL [53, prop. 1.1.9] donc il est L–déployé et U
est k-déployé en vertu de [53, B.3.5].
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Si CL 6= ML, alors U est non trivial, ce qui contredit l’anisotropie de G. Il résulte
que CL est un sous–groupe de Levi de QL. Le groupe C est donc réductif, et son
diagramme de Dynkin absolu est un sous–diagramme de E7. Un examen facile des
cas possibles sous les hypothèses H1(k,Z/2Z) = 0 et dimk(C) ≥ 77 entraîne alors que
C est de type E6. Le groupe H := CG(C).C est semi–simple de type E6 × A2. Soit
T/k un k–tore maximal de H. Alors le système de racines Φ(Gks , Tks) de type E8

admet le sous–système Φ(Hks , Tks) de type E6 × A2. Comme tous les sous–systèmes
E6 × A2 du système de racines E8 sont conjugués par le groupe de Weyl, il résulte
que le groupe Hks est conjugué (par un élement de G(ks)) au sous–groupe standard
H0,ks de type E6 × A2. D’après le lemme 1 de [159, §III.2], ceci entraîne

[z] ∈ Im
(
H1(k,NG0(H0))→ H1(k,G0)

)
.

On a une injection NG0(H0)/H0 → Aut(H0)/H0 = Z/2Z × Z/2Z, donc le groupe
NG0(H0)/H0 est 2–primaire et l’hypothèse H1(k,Z/2Z) = 0 entraîne que
H1(k,NG0(H0)/H0) = 1. Il résulte que [z] ∈ Im

(
H1(k,H0)→ H1(k,G0)

)
.

(b) La fin de la démonstration du théorème 8.4.1 fait appel à un théorème de Chernousov
(cas de degré 5) énoncé sur un corps de nombres. Selon Tits [180, cours 1990-91, §4.1],
celui-ci vaut dès que F = F 6 ce qui comble la lacune mentionnée.

Ces deux commentaires donnent en fait un peu plus, à savoir que dans 8.4.1.(2),
on peut demander soit k parfait, soit k de caractéristique 6= 2, 3.

*********


