ERRATA ET COMPLEMENTS

P. GILLE

La R-équivalence sur les groupes algébriques réductifs définis sur un corps
global, Publications Mathématiques de 'THES 86 (1997), 199-235.

Nous corrigeons une erreur signalée par Jean-Louis Colliot-Théléne dans la démon-
stration du lemme I11.2.8.b).

e Lemme I11.2.8.a). Légérement plus généralement, nous avons en fait.

a) Soit u le groupe fondamental du groupe adjoint G.q de G et notons N = j(k).
Alors toute extension de corps k'/k de degré multiple de N quasi-déploie le groupe G.

Notons au passage que la démonstration se simplifie radicalement en utilisant
Iisomorphisme H?ppf(k:, p) — HO(k,)P pour le k—groupe fini de type multipli-
catif p. Celui-ci est établi dans [Sel, §5.8| dans le cas ou 'exposant de p est premier
a la caractéristique (i.e. p est lisse); nous n’avons pas trouvé de référence pour le cas
général.

e Démonstration du lemme II1.2.8.b). .... Soit ki/k une extension non ramifiée
de degré N . D’apres le a), on a X(k) # 0, donc OF C Nye.r/((k1 @k L)*) C
Nx(k, E). Par ailleurs, il existe une extension finie de corps Ly de L de degré n
totalement ramifice. D’apres le a), on a X (Ly) # 0 donc Np,g,1/0((Le @5 L)) C
Nx(k,E). Or Ly ®; L contient un facteur Lo donc (Ly ®; L)X — L* = 7 est
surjective. Ceci permet de conclure que Ny (k, F) = L* comme désiré.
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Spécialisation de la R-équivalence pour les groupes réductifs, Trans. Amer.
Math. Soc. 35 (2004), 4465-4474.

e Théoréme 2.1. It holds in arbitrary characteristic. As explained in §3.3., the
assump- tion of characteristic # 2 occurs only for the construction of de Concini and
Procesi wonderful compactification of and adjoint semisimple A—group scheme.

This is folklore and can ne obtained by a refinement of [CP, th. 3.13]. By descent,
the relevant case is that of Chevalley groups over Z which is used for example [STBT].
Note that in the field case, there is a construction of the wonderful compactification
in [§6.1, BK].
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e Proof of Proposition 1.1, (1) = (i7). One other way it to appeal to the proof
Lemma 3.2 of [F|. Then the boudary 0.X is included in a reunion of finite irreducible
subvarieties Wi, ..., W, of X and the quoted fact provides an integral curve C' C X
containing = as a regular point such that C' ¢ 0X.

e Another reference for Théoréme 1.2, (ii) == (ii7), is |G, proposition 6.(2)].

[BK] M. Brion, S. Kumar, Frobenius Splitting Methods in Geometry and Representa-
tion Theory, Progress in Mathematics 231, Birkh&user.

[CP] C. de Concini, T. A. Springer, Compactification of symmetric varieties, dedicated
to the memory of Claude Chevalley, Transform. Groups 4 (1999), 273-300.

[F] E. Frossard, Groupe de Chow des fibrations en variétés de Severi-Brauer, Com-
positio Math. 110 (1998), 187-213.

[Guo| N. Guo, The Grothendieck—Serre conjecture over semilocal Dedekind rings,
Transformation Groups 27 (2022), 897-917.

[STBT]| J. Shalika, R. Takloo-Bighash, Y. Tschinkel, Rational points on compactifi-
cations of semi-simple groups, J. Amer. Math. Soc. 20 (2007), 1135-1186
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with A. Pianzola, Isotriviality and étale cohomology of Laurent polynomial
rings, Journal of Pure and Applied Algebra 212 (2008), 780-800.

Cartesian is not right in the statements of Lemma A.5 and of Proposition A.6. What
we prove (and use in the paper) is the following.

Lemma A.4 Let X be scheme and G an group scheme over X which is affine, flat,
and locally of finite presentation. Let X = U UV be a cover by Zariski open subsets.
We consider the following commutative diagram of pointed sets

H}ppf(X7 G) 5 H}ppf(U’ G)

l |

H}ppf(v’ G) 5 H}ppf(U nv, G)

Given o € H}ppf(a G), e H}ppfa/? G) such that anv = Punv there ewists v €
H}ppf(X, G) such that vy = o and v = B.

Proposition A.5 Let A be a discrete valuation ring and K its fraction field. Denote
by A and K the completions of A and K respectively. Let G be a group scheme which
is affine, flat and locally of finite presentation over A. We consider the diagram of
pointed sets

Hjl‘ppf(A’ G) H}ppf(A’ G)

H}ppf(K’ G) H}ppf(K’ G)‘
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Given o € H}ppf(;l, G), B € Hj, (K, G) such that ap = P there exists v €
Hj,, 1 (A, G) such that vz = o and vk = f.
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Le probléme de Kneser-Tits, exposé Bourbaki n0 983, Astérisque 326
(2009), 39-81.

e Page 11 (pointed out by A. Sawant). We have only an exact sequence
E(k) = W(k,G) = W(k,G) — 1.

The exactness on the left does not hold in general. This follows by pushing a coun-
terexample given by A. P. Monastyrny1 [57].

e Page 15, proof of Lemma 4.5 (pointed out by A. Zidani).

(i) We put m = Z4(8)/6, it is a reductive O—group scheme with anisotropic special
fiber. There is more work to do to prove that Mm(O) = M(K). First we claim that om
is K-anisotropic and we follow the proof of Lemma 4 of [Guo|. Since its scheme of
O-parabolic subgroups Par(9%) is smooth projective [SGA3, XXVI.3.5], we have

Par(am)(K) +— Par(om)(0) —» Par(m)(k)

so that all those sets are singletons. It follows that 9x has no proper K-parabolic
subgroups. Let 7' = rad (o) be the maximal central O-torus of 9 [SGA3, XXII.4.3.6].
Let k'/k be a finite Galois extension of group I' which splits Tj. Let O’'/O be the
associated Galois extension and denote by K’ its fraction field. According to [SGA3,
X.3.3.(2)], Tor is split. We recall that the category of k—groups of multiplicative
type split by &'/k (resp. O-groups of multiplicative type split by O’, resp. K-groups
of multiplicative type split by K’) is anti-equivalent to the category of I-mmodules
[SGA3, Proposition 1.1]. This provides the isomorphisms

HOHIK_gp(GmJ(, TK) L Homo_gp(Gm7o, To) ;> Homk_gp(Gm,k, Tk)

Since T}, is anisotropic, the righthanside group is zero, it follows that Tk is anisotropic
as well. Since Mx has no proper K-parabolic subgroups and no split central K-
subtorus, My is anisotropic'. Finally we can quote Proposition 6 of Guo’s paper (or
alternatively Lemma 5.2.(3) of Zidani’s preprint) below to state that Mm(O) = M(K).

(ii) The reference |7, Proposition 6.11] is replaced by |7, Corollaire 6.8].

e Page 18, Lemma 5.2, the implication (2) = (1) is not established and is unknown.
The corrected statement is the following.

1Use for example Corollaire 7.3.2 of my paper Sur la classification des schémas en groupes semi-
simples, “Autour des schémas en groupes, III”, Panoramas et Syntheses 47 (2015), 39-110.
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LEMME 5.2. On suppose que le corps de base k est infini. Soit H un k—groupe
réductif. On considére les assertions suivantes :

(1) Le morphisme H(A) — H(k) est surjectif pour toute k-algébre locale A de

corps résiduel k;
(2) H(K) est dense dans H(K,) pour tout k—corps valué (K, v);
(3) H est une variété rétracte k-rationnelle.

Alors on a les implications (1) <= (3) = (2).

Démonstration. 1) = 2) et 1) = 3) : Ce sont des conséquences immeédiates de la
proposition 5.1.

3) = 1): La proposition 5.1 produit un ouvert V de H ayant la propriété de
relevement. Vu que V (k) est Zariski-dense dans H, il existe hq, ..., h, € V(k) tel que
U RV = H. 1l est alors immédiat que H vérifie la propriété de relévement. [J

e Page 16, after 7.5 (pointed out by A. Zidani). The sentence
Un k-tore est R-trivial si et seulement s’il est facteur direct d’un tore quasi-trivial
is wrong. The right statement is the following:

Un k-tore est R-trivial si et seulement s’il existe un k-tore S tel que T x S est
k-rationnel.

Démonstration. Soit 1 — S — E — T — 1 une résolution flasque de 7. D’apreés [19,
Théoréme 2|, 'application caractéristique T'(F) — H'(F, S) induit un isomorphisme
T(F)/R — HY(F,S) pour tout corps F'/k. Ainsi T est R-trivial si et seulement si
H'(F,S) =1 pour tout k—corps F.

On suppose que T est R-trivial. Alors H'(k(T),S) = 1 et le point générique de T'
se reléve en un élément de E(k(T))). Il suit que T' x S est k-birationnel a E, et donc
que T' x S est k-rationnel.

La réciproque est évidente.

[Guo| N. Guo, The Grothendieck-Serre’s conjecture over semilocal Dedekind rings,
Transformations Groups 27 (2022), 897-917.

A. Zidani, Arithmétique des sous-groupes de Bruhat-Tits sur un anneau de valuation
discréte hensélien, arXiv:2509.17929
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Lecture Notes in Math. 2238.

(1) §6.2. Pour un foncteur en groupes F, Iaffirmation que la R;-équivalence coincide
avec la relation élémentaire est fausse. Par exemple le cas du k-tore G = (G, 1)?.
En effet on a G(k)/R = 1 alors que les points de (k*)? qui sont directement R;-
équivalents a l'origine (1, 1) sont les (¢, tf}) pour t, parcourant k* et m,n parcourant
Z. Le lemme 1.6.5.(1) prend alors la forme suivante (le (2) restant échangé):
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Lemme 1.6.5. Soit M un k—groupe de type multiplicatif.
(1) Soit € H}

fppf
existe un entier n > 1 et un plongement v : p, — M telle que o € Im(Hflppf(k, ) —

Hflppf<k7 M)) :

(k,M). Alors v est directement Ry -équivalent a 1 si et seulement s’il

Comme ce lemme est utilisé dans la démonstration du Corollaire 5.5.2.(1), on doit la
modifier légérement de la fagon suivante. Sous les hypothéses du Corollaire 5.5.2.(1),
on doit montrer que l'application i, : RyH'(k,T) — H'(k,G) est triviale. Si
a € HY(k,T) est directement R;-équivalent & 1, Pargument existant s’applique avec
la nouvelle version du Lemme 1.6.5.(1) et montre que i,(«) = 1. Etant donné
a € RiHY(k,T), on a a = ay ...aq. avec ay,...,q, directement Rj-équivalent. Par
récurence sur ¢ > 1, Pargument habituel de torsion montre que i.(a) = 1.

(2) Nous apportons deux précisions a la démonstration du théoréme 8.4.1.(2) sur la
conjecture II de Serre en type Eg dans le cas d'un corps parfait.

(a) Le lemme 8.4.2 est énoncé avec un corps de base k de caractéristique nulle alors
que l'on besoin du cas parfait. L’extension ne pose pas de probléme comme on va le
vérifier. Le nouvel énoncé est donc le suivant ot Gy désigne le k—groupe déployé de
type FEjs.

Lemma 8.4.2 On suppose k de caractéristique libre. On note Hy le sous—groupe
mazximal déployé de Gy de type Eg X Ag. Soit L/k une extension cyclique de degré 3.
On suppose que H*(k,7Z/27Z) = 0. Alors

HY(L/k,Go)an C Tm(H'(k, Hy) — H'(k, Gy))

(H'(L/k,Go)an désigne le sous—ensemble des classes de cohomologie anisotropes, i.e.
les classes [z] telles que le groupe tordu ,G, soit anisotrope).

Démonstration. On note o un générateur de Gal(L/k). Soit z € Z'(k,Go)an et
G = ,Gq le groupe tordu. Soit P, un L—parabolique de G, de type E; et

C=(P,Nno(PL)No*(P)) C Gy

Le groupe Cp, est défini sur k et suivant [149, lemma 6.32] , on sait que dimy(C) >
77. Nous allons montrer que C est un sous-groupe de Levi d'un L-sous-groupe
parabolique de G inclus dans Pp, en particulier qu’il est lisse. En effet, soit (), un
L—sous—groupe parabolique de G contenant C}, et contenu dans P;, que I’on suppose
minimal pour cette propriété. Alors C' = (QL No(Qr) N aQ(QL)). Par minimalité
de Qr, on a Qr = R,(Qr).(Qr No(Qr)), donc Qp, et o(Qr) son opposés [22, prop.
4.10]; le groupe My, := Q1 No(Qr) est donc un sous—groupe de Levi de @1, contenant
Cr. De plus, Cp, = M No*(Qr) est un L-parabolique de My, [82 , prop. 3.1.1.(3)].
En particulier C' est lisse et connexe. On note U le k-radical unipotent de C, on sait
que Uy, est le L-radical unipotent de Cp, [53, prop. 1.1.9] donc il est L—déployé et U
est k-déployé en vertu de [53, B.3.5].
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Si Cp # My, alors U est non trivial, ce qui contredit I'anisotropie de G. Il résulte
que C'7, est un sous—groupe de Levi de @)r,. Le groupe C est donc réductif, et son
diagramme de Dynkin absolu est un sous-diagramme de E7. Un examen facile des
cas possibles sous les hypothéses H'(k,Z/27Z) = 0 et dimy(C) > 77 entraine alors que
C' est de type Eg. Le groupe H := Cg(C).C est semi-simple de type Fg X As. Soit
T/k un k-tore maximal de H. Alors le systéme de racines ®(Gy,, Tk,) de type FEjg
admet le sous—systéme ®(Hy, , Ty, ) de type Fg X Ay. Comme tous les sous—systémes
Eg x Ay du systéme de racines Eg sont conjugués par le groupe de Weyl, il résulte
que le groupe Hy, est conjugué (par un élement de G(ks)) au sous—groupe standard
Hy ., de type Eg x Ay. D’aprés le lemme 1 de [159, §II1.2|, ceci entraine

2] € Im(H"(k, Ng,(Ho)) = H'(k, Gy)).

On a une injection Ng,(Hy)/Hy — Aut(Hy)/Ho = 7Z/27 x 7Z/27, donc le groupe
Ng,(Hy)/Hy est 2-primaire et I'hypothése H'(k,Z/2Z) = 0 entraine que
H'(k, Ng,(Ho)/Ho) = 1. Il résulte que [z] € Im(H(k, Hy) — H'(k, Gy)).

(b) La fin de la démonstration du théoréme 8.4.1 fait appel & un théoréme de Chernousov
(cas de degré 5) énoncé sur un corps de nombres. Selon Tits [180, cours 1990-91, §4.1],
celui-ci vaut dés que F' = F% ce qui comble la lacune mentionnée.

Ces deux commentaires donnent en fait un peu plus, a savoir que dans 8.4.1.(2),
on peut demander soit k parfait, soit k de caractéristique # 2, 3.
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