Exercises, March 27, 2025

- 1) Let k be a field of characteristic 3 and consider the k-group $G = \mu_{3,k} \rtimes (\mathbb{Z}/2\mathbb{Z})_k$. where $(\mathbb{Z}/2\mathbb{Z})_k$ acts by inversion on $\mu_{3,k}$.
- (i) Show that G(k) is the group with two elements.
- (ii) Show that G(k) is non central in G(S) for some suitable k-algebra S.

2) Let R be a commutative ring.

- (i) Let $f \in R$. Show that R_f is flat over R.
- (ii) Let S be a multiplicative subset of R. Show that R_S is flat over R.

3) Let R be a commutative ring and let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of R-modules. Assume that M'' is flat over R.

(i) Let N be an R-module. Show that the sequence

 $0 \to M' \otimes N \to M \otimes_R N \to M'' \otimes_R N \to 0$

of *R*-modules is exact. [*Hint: use an exact sequence of R-modules* $0 \to K \to L \to N \to 0$ where *L* is a free module].

(ii) Show that M is flat if and only if M' is flat.

4) Let R be a DVR and let π be a uniformizer parameter and put $K = R[\pi^{-1}]$. What is the schematic closure in \mathbb{A}_R^2 of the following closed K-subchemes of \mathbb{A}_K^2 ? (i) $x^2 = \pi y^2$; (ii) $x^2 = \pi^{-1} y^2$; (iii) $x^2 = \pi^{-1} y^2 + 1$.

5) Let R be a DVR with fraction field K and residue field k. Let \mathfrak{X} be an affine R-scheme and let \mathfrak{X}' be the schematic closure of $\mathfrak{X}_K = X \times_R K$ in \mathfrak{X} . (i) Show that \mathfrak{X}' is an affine flat R-scheme of generic fiber \mathfrak{X}_K .

(ii) Show that $\mathfrak{X}'(R) = \mathfrak{X}(R)$.

(iii) Show that $\mathfrak{X}'(B) = \mathfrak{X}(B)$ for each flat *R*-ring *B*.