Exercises, April 10, 2025

Let R be a ring.

1) Assume that R is a DVR of fraction field K and consider the R-algebra
$$A = \{P \in R[T] \mid P(0) \in A\}.$$

(i) Show that A is flat and that the map $A \to K[T]$ induces an isomorphism $A \otimes_R K \xrightarrow{\sim} K[T]$.

(ii) Show that there exists a unique structure of R-group scheme on Spec(A) such that its extension to K identifies (with the map of (1)) with the additive K-group.

(iii) Let $M = Rm_1 \oplus Rm_2$ be a free *R*-module of rank 2 and consider the endomorphism *u* defined by $u(m_1) = m_2$, $u(m_2) = 0$. Show that

$$c: M \to M \otimes_R A$$

defined by

$$c(m) = m \otimes 1 + u(m) \otimes T$$

provides a \mathfrak{G} -module where $\mathfrak{G} = \operatorname{Spec}(A)$ is the *R*-group scheme of (ii). (iv) Show that $R m_1$ is the intersection of the \mathfrak{G} -submodules containing m_1 and show that $R m_1$ is not a \mathfrak{G} -submodule of M.

2) Let \mathfrak{G} be an affine R-group scheme. Let M be a \mathfrak{G} -module with coaction $c: M \to M \otimes_R R[\mathfrak{G}]$ and associated representation ρ . We assume that M is a free R-module.

(a) Show that there exists a smallest ideal I of $R[\mathfrak{G}]$ such that $c(m) = m \otimes 1 \mod M \otimes I$ for all $m \in M$ and show that its formation commutes with arbitrary change of rings.

(b) If $g \in \ker(\rho)(R)$, show that $\epsilon_q(I) = 0$.

(c) Show that the *R*-functor ker(ρ) is represented by the closed *R*-subscheme $\mathfrak{H} = \operatorname{Spec}(R[\mathfrak{G}]/I)$ of \mathfrak{G} .

3) (a) Let G be a group R-functor. Its center Z(G) is defined by letting $h \in G(R)$ be in Z(G)(R) if for every R-ring S and every $g \in G(S)$, we have hg = gh. Show that Z(G) is an R-subfunctor of G and show that it is normal in G (that is, Z(G)(S) is a normal subgroup of G(S) for each R-ring S).

(b) Suppose that G is an affine R-group scheme and put A = R[G]. Consider the representation $\rho : h_G \to GL(A)$ defined by

$$\rho(h)(f) = (L_{h^{-1}})^* ((R_h^*)(f)).$$

Show that $\ker(\rho) = Z(G)$.

(c) Suppose also that $R[\mathfrak{G}]$ is a free *R*-module. Show that Z(G) is represented by $\operatorname{Spec}(A/I)$, where *I* is the smallest ideal of *A* such that $\varphi(f) = f \otimes 1 \mod A \otimes I$ for all $f \in A$. [*Hint.* Use the preceding exercise].

(d) Discuss the case of the semi-direct product $\mu_3 \rtimes (\mathbb{Z}/2\mathbb{Z})$ over a field of characteristic 3.

4) What is the center of the affine R-group scheme GL_n for $n \ge 2$?