Exercises, May 8, 2025

1) We put $R = \mathbb{R}[[t]]$ and consider its extensions $S_1 = \mathbb{C}[[t]]$ and $S_2 = R[\sqrt{t}]$. (i) For i = 1, 2, show that S_i is a free *R*-module of rank 2 and construct an *R*-group homomorphism

$$f_i: \prod_{S_i/R} (\mathbb{G}_{m,S_i}) \to \mathbb{G}_{m,R}$$

such that its precomposite with the diagonal map $\mathbb{G}_{m,R} \to \prod_{S_i/R} (\mathbb{G}_{m,S_i})$ is $t \mapsto t^2$.

(ii) Describe $\prod_{S_i/R} (\mathbb{G}_{m,S_i}) \times_R \mathbb{R}$ for i = 1, 2 and the associated morphisms $g_i = f_i \times_R \mathbb{R}$.

(iii) Show that the character g_2 is a square (that is $g_2 = 2g'$ for some character g') but not f_2 .

2) Let R be a ring and let S be a finite locally free extension of R of constant degree $d \ge 1$ and denote by $j : R \to S$.

(a) Construct a natural linear faithful representation $\prod_{S/R} \mathbb{G}_{m,S} \to \mathrm{GL}(j_*S)$.

(b) Assume that R is connected. Show that $\prod_{S/R} \mathbb{G}_{m,S}$ is a diagonalizable

R-group scheme if and only if $S \cong R \times \cdots \times R$ (*d* times). [*Hint:* Use (a) and rank considerations (the rank of an abelian group is the minimal cardinal of a set of generators)].

3) (Connection with the definition of smoothness in the book Néron models). Let $S \cong R[T_1, \ldots, T_n]/(f_1, \ldots, f_c)$ with $0 \le c \le n$.

(a) Assume that S is standard smooth. For each $s \in \text{Spec}(S)$, that show that $df_1(s), \ldots, df_c(s)$ is a free family of the $\kappa(s)$ -vector space $\Omega^1_{R[T_1,\ldots,T_n]/R} \otimes_{R[T_1,\ldots,T_n]} \kappa(s)$. (b) If $df_1(s), \ldots, df_c(s)$ is a free family of the $\kappa(s)$ -vector space $\Omega^1_{R[T_1,\ldots,T_n]/R} \otimes_{R[T_1,\ldots,T_n]} \kappa(s)$ for each $s \in \text{Spec}(S)$, show that S is a smooth R-algebra (with the definition of the lectures).