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Affine group schemes I

We shall work over a base ring R (commutative and unital).

2. Sorites

2.1. R-Functors. We denote by AffR the category of affine R-schemes.
We are interested in R–functors, i.e. covariant functors from AffR to the
category of sets. If X an R-scheme, it defines a covariant R–functor

hX : AffR → Sets, S �→ X(S).

Given a map f : Y → X of R-schemes, there is a natural morphism of
functors f∗ : hY → hX of R-functors.

We recall now Yoneda’s lemma in our setting. Let F be an R-functor.
If X = Spec(R[X]) is an affine R–scheme and ζ ∈ F (R[X]), we define a
morphism of R-functors

φ(ζ) : hX → F

by φ(ζ)(S) : hX(S) = HomR(R[X], S) → F (S), x �→ F (fx)(ζ) for each
R-ring S where fx ∈ HomR(R[X], S) is the evaluation function at x.

2.1.1. Lemma. (Yoneda lemma)

(1) The assignment ζ → φ(ζ) induces a bijection

F (R[X])
∼−→ HomR−func(hX, F ).

(2) Let Y be an R–scheme. Then we have

HomR−sch(X,Y) = hY(R[X])
∼−→ HomR−func(hX, hY).

Proof. (1) The strategy is to construct the inverse map. We are given α ∈
HomR−func(hX, F ), it gives rise to a map αR[X] : hX(R[X]) → F (R[X]) so

that the universal point xuniv ∈ hX(R[X]) = HomR(R[X], R[X]) defines an
element ψ(α) = αR[X](idR[X]) ∈ F (R[X]) or for short α(idR[X].

Step 1: ψ ◦φ = idF (R[X]). Let ζ ∈ F (R[X]). We apply φ(ζ)R[X] : hX(R[X]) →
F (R[X]) to R[X] and obtain ψ(φ(ζ)) = F (idR[X])(ζ) = ζ.

Step 2: φ ◦ ψ = idHomR−func(hX,F ). Let α ∈ HomR−func(hX, F ). Then

ψ(α) = αR[X](idR[X]) ∈ F (R[X]) and we consider the element η = φ(ψ(α)) ∈
HomR(hX, F ) defined as follows. For each fx ∈ HomR(R[X], S),
η(S) : hX(S) → F (S) applies fx to

F (fx)
�
ψ(α)

�
= F (fx)

�
αR[X](idR[X])

�
= α(fx ◦ idR[X]) = α(fx)

where we used the functorial property in the second equality. Thus φ ◦ ψ =
idHomR−func(hX,F ).

(2) We apply (1) to F = hY. �
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2.1.2. Remarks. (a) The formula F (fx)
�
ψ(α)) = α(fx) arising in the proof

expresses the fact that an R–functor hX → F is determined by its value on
the universal point of X.

(b) For more on the Yoneda lemma, see [Wa, §1.2], [GW, §4.2] or [Vi, §2.1].
Part (2) holds then for general R-schemes.

An R-functor F is representable by an R scheme (resp. an affine R–
scheme) if there exists an R-scheme X (resp. an affine R–scheme X) together
with an isomorphism of functors hX → F . We say that X represents F .

If X is affine, the isomorphism hX → F comes from an element ζ ∈
F (R[X]) which is called the universal element of F (R[X]). The pair (X, ζ)
satisfies the following universal property:

For each affine R-scheme T and for each η ∈ F (R[T]), there exists a
unique morphism u : T → X such that F (u∗)(ζ) = η.

Given a morphism of rings j : R → R�, an R–functor F defines by restric-
tion an R�–functor denoted by j∗F or FR� . If F = hX for an affine R-scheme
X, we have FR� = hX×RR� .

2.1.3. Examples. We will see later more non representable R-functors.

(a) The empty R–functor is not representable by an affine R-scheme (and
not actually by any R-scheme). Denote by F the empty functor and assume
that hX ∼= F for an R-scheme X. Then idX ∈ hX(R[X]) contradicting the
fact that F is the empty R-functor.

(b) We consider the R-functor F (S) = S(N) and claim that it not repre-
sentable by an affineR–scheme. Assume that hX ∼= F so that HomR(R[X], R[X]) ∼=
R[X](N). Then the image of idR[X] has bounded support d so that

F (S) ⊂ Sd ⊂ S(N) for each R–ring S. This is a contradiction.

2.1.4. Remark. We denote by F0(S) = {•} for each R–ring S. Let F be an
R-functor. Then there is a canonical map F → F0; in other words F0 is a
terminal object of the category of R–functors.

2.2. Monomorphisms. The fibered product of R-functors is defined as
follows. For α1 : F1 → E and α2 : F1 → E two morphisms of R-functors,
we set (F1 ×E F2)(S) = F1(S)×E(S) F2(S) for each R–ring S.

2.2.1. Lemma. Let α : F → E be a morphism of R-functors. The following
conditions are equivalent:

(i) α is a monomorphism;

(ii) the diagonal Δ : F → F ×E F is an isomorphism;

(iii) F (S) → E(S) is injective for each R–ring S.

Proof. (i) =⇒ (ii). We consider the projections pi : F×EF → F for i = 1, 2.
Since α ◦ p1 = α ◦ p2, we obtain that p1 = p2. Thus p1 is an isomorphism
and so is Δ.
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(ii) =⇒ (i). We are given β1,β2 : G → F be morphisms of R–functors such

that α ◦ β1 = α ◦ β2. This defines a map β : G → F ×E F
∼←− F , so that

β1 = β2.

(iii) =⇒ (ii). For each R-ring S, we have F (S)
∼−→ F (S) ×E(S) F (S) so

that Δ is an isomorphism of R-functors.

(ii) =⇒ (iii). Obvious.
�

We consider now the case of schemes.

2.2.2. Lemma. Let f : X → Y be a morphism of R-schemes. The following
conditions are equivalent:

(i) f is a monomorphism;

(i’) The R–functor hf : hX → hY is a monomorphism;

(ii) the diagonal Δ : X → X×Y X is an isomorphism;

(iii) F (S) → E(S) is injective for each R–ring S.

Proof. The proof of the implications (i) ⇐⇒ (ii) =⇒ (iii) is similar with the
previous lemma. The implication (iii) =⇒ (ii) Lemma 2.2.1, (iii) =⇒ (i)
yields the implication (iii) =⇒ (i�).

It remains to establish the implication (i�) =⇒ (ii). Lemma 2.2.1, (i) =⇒
(ii) shows that the diagonal hX → hX ×hY

hX is a an isomorphism of R–
functors. Let Z be an R-scheme, we need to establish that the diagonal map
X(Z) → X(Z)×Y(Z) X(Z) is an isomorphism. If Z is affine over R it is true.
Let g, h ∈ X(Z) mapping to the same element of Y(Z).

We consider then an affine cover (Ui)ı∈I of Z so that the restrictions
gi : Ui ⊂ Z → X hi : Ui ⊂ Z → X define an unique element fi ∈ X(Ui). Since
the diagonal is split by the first projection, fi and fj agree on Ui ∩ Uj so
that define f : Z → X. Then f = g = h and we are done.

�

2.2.3. Remark. The equivalence (i) ⇐⇒ (ii) in (1) holds in any category
with fiber products, see [Sta, Tag 01L3].

We consider now the epimorphisms of R–functors. If α : F → E satisfies
that F (S) → E(S) is surjective for each R–ring S, we claim that α is an
epimorphism.

Let γ1, γ2 : E → D be morphisms of R–functors such that γ1 ◦α = γ2 ◦α.
Then γ1 : E(S) → D(S) agrees with γ2 : E(S) → D(S) for each R–ring S
so that β1 = β2. Thus α is an epimorphism.

It can be shown by using coproducts that the epimorphisms are all of that
shape, see [KS, §2, Ex. 2.4, 2.23] or [SGA3, §I.1.4]; those references put also
the monomorphism case in a much wider setting.

In the category of R–schemes, we have to pay attention that there are epi-
morphisms whose associated functor is not surjective, see [GW, Ex. 8.2.(d)]
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for the construction of a bunch of epimorphisms. A concrete example is with
k = R and the morphism u : X = Spec(C) → Spec(R) = Y.

Let Z be an R-scheme and let f1, f2 : Y → Z such that f1 ◦ u = f2 ◦ u.
In other words we have two points z1, z2 ∈ Z(R) which coincide as complex
points. Since Z(R) injects in Z(C), it follows that z1 = z2 so that u is an
epimorphism. The fact that Z(R) injects in Z(C) reduces to an affine scheme
Spec(A) for which we have HomR(A,R) ⊂ HomC(AC,C) = HomR(A,C).

2.3. Zariski sheaves. We say that an R–functor F is a Zariski sheaf if it
satisfies the following requirements:

(A) for each R–ring S and each decomposition 1 = f1 + · · · + fn in S,
then

F (S)
∼−→

�
(αi) ∈

�

i=1,..,n

F (Sfi) | (αi)Sfifj
= (αj)Sfifj

for i, j = 1, ..., n
�
.

(B) F (0) = {•}.
2.3.1. Lemma. Let F be an R–functor F which a Zariski sheaf. Then F is
additive, i.e. the map F (S1×S2) → F (S1)×F (S2) is bijective for each pair
(S1, S2) of R–algebras.

Proof. We are given an R–ring S = S1 × S2; we write it S = S1 × S2 =
Se1 + Se2 where e1, e2 are idempotents satisfying e1 + e2 = 1, we have
S1 = Se1 , S2 = Se2 and Se1e2 = 0 [Sta, Tag 00ED]. Then

F (S)
∼−→

�
(α1,α2) ∈ F (S1)× F (S2) | α1,0 = α2,0 ∈ F (0)

�
.

Since F (0) = {•}, we conclude that F (S) = F (S1)× F (S2). �

Representable R-functors are clearly Zariski sheaves. In particular, to be a
Zariski sheaf is a necessary condition for an R–functor to be representable.

2.3.2. Lemma. Let 1 = f1 + · · · + fn. Let F be an R–functor which is a
Zariski sheaf and such that FRfi

is representable by an affine Rfi-scheme for
i = 1, ..., n. Then F is representable by an affine R–scheme.

Proof. Let Xi be an Rfi-scheme together with an isomorphism ζi : hXi

∼−→
FRfi

of Rfi–functors for i = 1, .., n. Then for i �= j, FRfifj
is repre-

sented by Xi ×Rfi
Rfifj and Xj ×Rfj

Rfifj . More precisely, the isomorphism

ζ−1
j,Rfifj

◦ ζi,Rfifj
: hXi×Rfi

Rfifj

∼−→ hXj×Rfj
Rfifj

defines an isomorphism

ui,j : Xi ×Rfi
Rfifj

∼−→ Xj ×Rfj
Rfifj and we have compatiblities ui,j◦uj,k =

ui,k once restricted to Rfifjfk . It follows that the Xi’s glue in an affine R–

scheme X. Also the map ζ−1
i glue in an R–map F → hX. Since F is a Zariski

sheaf, we conclude that F
∼−→ hX. �
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2.4. Functors in groups.

2.5. Definition. An R–group scheme G is a group object in the category of
R-schemes. It means that G/R is an affine scheme equipped with a section
� : Spec(R) → G, an inverse σ : G → G and a multiplication m : G×G → G
such that the three following diagrams commute:

Associativity:

(G×R G)×R G
m×id ��

can�

��

G×R G

m

��
G

G×R (G×R G)
id×m �� G×R G

m

��

Unit:

G×R Spec(R)
id×� ��

can
∼=

��

G×R G Spec(R)×R G
�×id��

can
∼=

��
G

Symmetry:

G×R G
id×σ��

��

G×R G

m

��
Spec(R)

� �� G.

We say that G is commutative if furthermore the following diagram com-
mutes

G×R G
m

��
switch

��

G

G×R G

m

��

We will mostly work with affine R–group schemes, that is, when G is an
affine R–group scheme.

Let R[G] be the coordinate ring of G. We call �∗ : R[G] → G the counit
(augmentation), σ∗ : R[G] → R[G] the coinverse (antipode), and denote by
Δ = m∗ : R[G] → R[G] ⊗R R[G] the comultiplication. By means of the
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dictionary affine schemes/rings, they satisfy the following commutativity
rules:

Co-associativity:

R[G]⊗R R[G]
id⊗Δ �� R[G]⊗R (R[G]⊗R R[G])

�

��

R[G]

Δ
��

Δ

��
R[G]⊗R R[G]

Δ⊗id�� (R[G]⊗R R[G])⊗R R[G].

Counit: The following composite maps are idR[G]

R[G]
Δ �� R[G]⊗R R[G]

id⊗� �� R[G]⊗R R
∼−→ R[G]

R[G]
Δ �� R[G]⊗R R[G]

�⊗id �� R[G]⊗R R
∼−→ R[G].

Cosymmetry:

R[G]
Δ ��

�∗��

R[G]⊗R R[G]

id×σ∗

��

R

��
R[G] R[G]⊗R R[G]

product��

In other words, (R[G],m∗,σ∗, �∗) is a commutative Hopf R–algebra1. Given
an affine R–scheme X, there is then a one to one correspondence between
group structures on X and commutative R–algebra structures on R[X].

Also G is commuative if and only if the following diagram commutes

R[G]⊗R R[G]

switch

��

R[G]

Δ

��

Δ
��

R[G]⊗R R[G]

1This is Waterhouse definition [Wa, §I.4], other people talk about cocommutative coas-
sociative Hopf algebra.
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If G/R is an (affine) R–group scheme, then for each R–algebra S the
abstract group G(S) is equipped with a natural group structure. The multi-
plication is m(S) : G(S)×G(S) → G(S), the unit element is 1S = (�×RS) ∈
G(S) and the inverse is σ(S) : G(S) → G(S). It means that the functor hG
is actually a group functor.

2.5.1. Lemma. Let X/R be an affine scheme. Then the Yoneda lemma
induces a one to one correspondence between group structures on X and
group structures on hX.

In other words, defining a group law on X is the same that to define
compatible group laws on each G(S) for S running over the R-algebras.

Proof. This is an immediate consequence of Yoneda’s lemma. We assume
that the R-functor hX is equipped with a group structure. The Yoneda
lemma shows that this group structure arises in an unique way of an affine
R-group scheme structure. �

2.5.2. Remark. We shall encounter certain non-affine group R-schemes. A
group scheme G/R is a group object in the category of R-schemes. More
generally the previous lemma holds for a non affine R–group scheme.

3. Examples

3.1. Constant group schemes. Let I be a set and consider theconsider
the R–scheme IR =

�
γ∈I Spec(R) =

�
γ∈I Ui. We claim that its functor of

points hIR identifies with
�
locally constant functions Spec(S)top → I

�
.

To see this let S be anR–ring and let f ∈ hIR(S) = HomSpec(R)(Spec(S), IR).
By pulling back the open cover (Ui) of IR, we obtain a decomposition
S =

�
γ∈I Si in open subschemes of R. This defines a locally constant

function Spec(S)top → I having the value i on each Si (for more details see
[GW, Ex. 4.43] or [Sta, Tag 03YW]).

Next let Γ be an abstract group. We consider the R–scheme ΓR =�
γ∈Γ Spec(R). Its functor of points hΓR

identifies with
�
locally constant functions Spec(S)top → Γ

�
.

The group structure on Γ induces an R-group scheme structure on ΓR. If R
is non zero, this group scheme is affine and only if Γ is finite.

3.2. Vector groups. Let N be an R–module. We consider the commuta-
tive group functors

VN : AffR → Ab, S �→ HomS(N ⊗R S, S) = (N ⊗R S)∨,

WN : AffR → Ab, S �→ N ⊗R S.
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3.2.1. Lemma. The R–group functor VN is representable by the affine R–
scheme V(N) = Spec(S∗(N)) which is then a commutative R–group scheme.
Furthermore if the R–module N is of finite presentation then the R–scheme
V(N) is of finite presentation.

Proof. It follows readily of the universal property of the symmetric algebra

HomR�−mod(N ⊗R R�, R�) ∼←− HomR−mod(N,R�) ∼−→ HomR−alg(S
∗(N), R�)

for each R-algebra R�.
We assume that the R–module N is finitely presented, that is, there exists

an exact sequence 0 → M → Rn → N → 0 where M is a finitely generated
R–module. According to [Sta, Tag 00DO] the kernel I of the surjective map
S∗(Rn) → S∗(N) is generated by M (seen in degree one) so is a finitely
generated S∗(Rn)-module. Since S∗(Rn) = R[t1, . . . , tn], we conclude that
the R–algebra S∗(N) is of finite presentation.

�
3.2.2. Remark. The converse of the last assertion holds as well by using
the limit characterizations of the finite presentation property, see [Sta, Tags
0G8P, 00QO].

The commutative group scheme V(N) is called the vector group-scheme
associated to N . We note that N = V(N)(R). In the special case N = Rd,
this is nothing but the affine space Ad

R of relative dimension d.
Its group law on the R–group scheme V(N) is given by m∗ : S∗(N) →

S∗(N)⊗R S∗(N), applying each X ∈ N to X ⊗ 1+1⊗X. The cosymmetry
is σ∗ : S∗(N) → S∗(N), X �→ −X and the counit is the augmentation map
S∗(N) → R.

If N = R, we get the affine line over R. Given a map f : N → N � of
R–modules, there is a natural map f∗ : V(N �) → V(N) of R–group schemes.

3.2.3. Lemma. The assignement N → V(N) is a faithful contravariant
(essentially surjective) functor from the category of R-modules and that of
vector group R-schemes.

Proof. Since this functor is essentially surjective, it is enough to show that it
is faithful. Given two R–modules N , N � we want to show that the morphism

HomR(N,N �) → HomR−gp

�
V(N �),V(N)

�
, f �→ f∗

is injective. This is clear since f∗ : S∗(N) → S∗(N �) is a graded morphism
and applies N to N � by f . �
3.2.4. Remark. Let k be a field of characteristic p > 0 and consider the
Frobenius morphism Ga,k → Ga,k, x �→ xp. It is a k–group homomorphism
but is linear. This shows that the functor above is not fully faithful and
then not an anti-equivalence of categories. For obtaining an anti-equivalence
of categories, we need to restrict the morphisms to linear morphisms, see
[SGA3, I.4.6.2].
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We consider also the R-functor W (N) defined by W (N)(S) = N ⊗R S.
If N is projective and finitely generated, we have W (N) = V (N∨) so that
the R–functor W (N) is representable by an affine group scheme.

3.2.5. Theorem. The R–functor W (N) is representable if and only if N is
projective and finitely generated.

If R is noetherian, this is due to [Ni04]. The general case has been handled
by Romagny [Ro, Thm. 5.4.5]. Note that it is coherent with the example
2.1.3.(b).

3.3. Group of invertible elements, linear groups. Let A/R be an al-
gebra (unital, associative). We consider the R-functor

S �→ GL1(A)(S) = (A⊗R S)×.

3.3.1. Lemma. If A/R is finitely generated projective, then GL1(A) is rep-
resentable by an affine group scheme. Furthermore, GL1(A) is of finite
presentation.

Proof. Up to localize for the Zariski topology (Lemma 2.3.2), we can assume
that A is a free R–module of rank d.

We shall use the norm map N : A → R defined by a �→ det(La) where
La : A → A is the R-endomorphism of A defined by the left translation
by A. We have A× = N−1(R×) since the inverse of La can be written Lb

by using the characteristic polynomial of La. More precisely, let Pa(X) =
Xd−Tr(La)X

d−1+ · · ·+(−1)d−1cd−1(La)X +(−1)d det(La) ∈ R[X] be the
characteristic polynomial of La; according to the Cayley-Hamilton theorem
we have Pa(La) = 0 [Bbk1, III, §11] so that LPa(a) = 0 and Pa(a) = 0. If

det(La) ∈ R×, it follows that

a
�
ad−1 − Tr(La)a

d−2 + · · ·+ (−1)d−1cd−1(La)a
�
= (−1)d+1 det(A)

so that ab = ba = 1 with b = (−1)d+1 det(A)−1
�
ad−1 − Tr(La)a

d−2 +

(−1)d−1cd−1(La)a
�
.

The same is true after tensoring by S, so that

GL1(A)(S) =
�
a ∈ (A⊗R S) = W(A)(S) | N(a) ∈ S×

�
.

We conclude that GL1(A) is representable by the fibered product

G −−−−→ W(A)
� N

�
Gm,R −−−−→ W(R).

�
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Given an R–module N , we consider the R–group functor

S �→ GL(N)(S) = AutS−mod(N ⊗R S) = EndS(N ⊗R S)×.

So if N is finitely generated projective. then GL(N) is representable by an
affine R–group scheme. Furthermore GL(N) is of finite presentation.

3.3.2. Remark. If R is noetherian, Nitsure has proven that GL1(N) is rep-
resentable if and only if N is projective [Ni04].

3.4. Diagonalizable group schemes. Let A be a commutative abelian
(abstract) group. We denote by R[A] the group R–algebra of A. As R-
module, we have

R[A] =
�

a∈A
Rea

and the multiplication is given by ea eb = ea+b for all a, b ∈ A.
For A = Z, R[Z] = R[T, T−1] is the Laurent polynomial ring over R. We

have an isomorphism R[A] ⊗R R[B]
∼−→ R[A × B]. The R-algebra R[A]

carries the following Hopf algebra structure:

Comultiplication: Δ : R[A] → R[A]⊗R[A], Δ(ea) = ea ⊗ ea,

Antipode: σ∗ : R[A] → R[A], σ∗(ea) = e−a;

Augmentation: �∗ : R[A] → R, �
��

a∈A ra ea
�
= r0.

We can check easily that it satisfies the axioms of affine commutative
group schemes. One important example is that of A = Z. In this case, we
find Gm,R = Spec(R[T, T−1]), it is called the multiplicative group scheme.
Another one isA = Z/nZ for n ≥ 1 for which we have µn,R = Spec(R[T ]/(T n−
1) called the R–scheme of n–roots of unity.

3.4.1. Definition. We denote by D(A)/R (or �A) the affine commutative
group scheme Spec(R[A]). It is called the diagonalizable R–group scheme of
base A. An affine R–group scheme is diagonalizable if it is isomorphic to
some D(B).

We note also that there is a natural group scheme isomorphism D(A ⊕
B)

∼−→ D(A)×R D(B).
If f : B → A is a morphism of abelian groups, it induces a group homo-

morphism f∗ : D(A) → D(B). In particular, when taking B = Z, we have
a natural mapping

ηA : A → HomR−gp(D(A),Gm).

3.4.2. Remark. For a ∈ A, put χa = ηA(a) : D(A) → Gm. The map
χ∗
a : R[t, t−1] → R[A] applies t to ea. Using the commutative diagram

D(A)(R[A])

�
��

χa �� Gm(R[A])

�
��

HomR(R[A], R[A]) �� HomR(R[t, t−1], R[A]) = R[A]×,
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we see that the universal element of D(A) maps to χ∗
a which corresponds to

ea.

3.4.3. Lemma. If R is connected, ηA is bijective.

Proof. We establish first the injectivity. If ηA(a) = 0, it means that the map
R[T, T−1] → R[A], T �→ ea factorises by the augmentation R[T, T−1] → R
hence a = 0.

For the surjectivity, let f : D(A) → Gm be a morphism of R–group
schemes. Equivalently it is given by the map f∗ : R[T, T−1] → R[A] of Hopf
algebra which satisfies in particular the following compatibility

R[T, T−1]
f∗

��

Δ
��

R[A]

ΔA

��
R[T, T−1]⊗R R[T, T−1]

f∗⊗f∗
�� R[A]⊗R R[A].

In other words, it is determined by the function X = f∗(T ) ∈ R[A]× satis-
fying Δ(X) = X ⊗X. Writing X =

�
a∈A raea, we have

�

a∈A
ra ea ⊗ ea =

�

a,a�∈A
ra ra� ea ⊗ ea� .

It follows that ra rb = 0 if a �= b and ra ra = ra. Since the ring is connected,
0 and 1 are the only idempotents so that ra = 0 or ra = 1. Then there exists
a unique a such that ra = 1 and rb = 0 for b �= a. This shows that the map
ηA is surjective. We conclude that ηA is bijective. �

3.4.4. Proposition. (Cartier duality) Assume that R is connected. The
above construction induces an anti-equivalence of categories between the cat-
egory of abelian groups and that of diagonalizable R–group schemes.

Proof. It is enough to contruct the inverse map HomR−gp(D(A),D(B)) →
Hom(A,B) for abelian groups A,B. We are given a group homomorphism
f : D(A) → D(B). It induces a map

f∗ : HomR−gp(D(B),Gm) → HomR−gp(D(A),Gm),

hence a map B → A. It is routine to check that the two functors are inverse
of each other. �

3.4.5. Lemma. Assume that R is connected. The following are equivalent:

(i) A is finitely generated;

(ii) D(A)/R is of finite presentation;

(iii) D(A)/R is of finite type.

Proof. (i) =⇒ (ii). We use the structure theorem of abelian groups A ∼=:
Zr × Z/n1Z · · · × Z/ncZ. Using the compatibility with products we are
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reduced to the case of Z and Z/nZ which correspond to Gm,R and µn,R.
Both are finitely presented over R.

(ii) =⇒ (iii). Obvious.

(iii) =⇒ (i). We assume that R[A] is a finitely generated R–ring. We write
A = lim−→i

Ai as the inductive limit of finitely generated subgroups. We have

R[A] = lim−→i
R[Ai]. Since the ring R[A] is finitely generated over R, the

identity Z[A] → Z[A] factorizes through Z[Ai] for some i. It implies that

Z[Ai]
∼−→ Z[A]. Cartier duality shows that Ai

∼−→ A. Thus A is finitely
generated. �

There are other notable properties of Cartier duality, see [SGA3, VIII.2.1].
In practice we will work with finiteness assumptions, however it is remarkable
that the theory holds for arbitrary abelian groups.

3.5. Monomorphisms of group schemes. We recall that a morphism
of R–functors f : F → F � is a monomorphism if f(S) : F (S) → F �(S) is
injective for each R–algebra S/R (§2.2). If F and F � are functors in groups
and f respects the group structure, the kernel of f is the R–group functor
defined by ker(f)(S) = ker(F (S) → F �(S)) for each R–algebra S.

We recall that a morphism f : G → H of affine R-group schemes is a
monomorphism if hf is a monomorphism (Lemma 2.2.2).

3.5.1. Lemma. Let f : G → H be a morphism of R–group schemes. Then
the R–functor ker(f) is representable by a closed subgroup scheme of G.

Proof. Indeed the carthesian product

N −−−−→ G
� f

�

Spec(R)
��−−−−→ H

does the job. �

Summarizing f : G → H is a monomorphism if and only if the kernel
R-group scheme ker(f) is the trivial group scheme.

Over a field F , we know that a monomorphism of algebraic groups is a
closed immersion [SGA3, VIB.1.4.2].

Over a DVR, it is not true in general that an open immersion (and a
fortiori a monomorphism as seen in the exercise session) of group schemes
of finite type is a closed immersion. We consider the following example
[SGA3, VIII.7]. Assume that R is a DVR and consider the constant group
scheme H = (Z/2Z)R. Now let G be the open subgroup scheme of H which
is the complement of the closed point 1 in the closed fiber. By construction
G is dense in H, so that the immersion G → H is not closed. Raynaud
constructed a more elaborated example where H and G are both affine over
F2[[t]] and a monomorphism which is not an immersion [SGA3, XVI.1.1.c].
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However diagonalizable groups have a wonderful behaviour with that re-
spect by using Cartier duality (Proposition 3.4.4).

3.5.2. Proposition. Assume that R is connected. Let f : D(B) → D(A)
be a group homomorphism of diagonalizable R–group schemes. Then the
following are equivalent:

(i) f∗ : A → B is onto;

(ii) f is a closed immersion;

(iii) f is a monomorphism.

Proof. (i) =⇒ (ii): Then R[B] is a quotient of R[A] so that f : D(B) →
D(A) is a closed immersion.

(ii) =⇒ (iii): obvious.

(iii) =⇒ (i): We denote by B0 ⊂ B the image of f∗ : A → B. We consider
the compositum

D(B/B0) ��

v

��
D(B)

v ��

f

��
D(B0)

w �� D(A).

We observe that it is the trivial morphism (v is trivial) and is a monomor-
phism as compositum of the monomorphisms u and f . It follows that
D(B/B0) = Spec(R) and we conclude that B0 = B by Cartier duality. �

Of the same flavour, the kernel of a map f : D(B) → D(A) is isomorphic
to D(f(A)). The case of vector groups is more subtle.

3.5.3. Proposition. Let f : N1 → N2 be a morphism of finitely generated
projective R-modules. Then the morphism of functors f∗ : W (N1) → W (N2)
is a monomorphism if and only if f identifies N1 as a direct summand of
N2. If it the case, f∗ : W(N1) → W(N2) is a closed immersion.

Proof. If N1 is a direct summand of N2, the morphism f∗ : W (N1) =
V (N∨

1 ) → W (N∨
2 ) is a closed immersion and a fortiori a monomorphism.

Conversely we assume that f∗ : W(N1) → W(N2) is a monomorphism.
Conversely suppose that f∗ is a monomorphism. Since W (N1)(R) in-

jects in W (N2)(R), we have that f : N1 → N2 is injective. We put
N3 = N2/f(N1). To show that N1 is a direct summand of N2 it is enough
to show that N3 is (finitely generated projective). This is our plan. Since
N2 and N3 are f.g. projective R–modules, the R–module N3 is of finite pre-
sentation. In view of the characterization of f.g. projective modules [Bbk2,
II.5.2], it is enough to show that N3 ⊗ Rm is free for each maximal ideal m
of R. Let m be a maximal ideal of R.

Applying the criterion of Lemma 2.2.1 to the residue field S = R/m we
have that the map

f∗(R/m) : N1 ⊗R R/m → N2 ⊗R R/m



18

is injective. It follows that there exists anR/m-base (w1, . . . , wr, wr+1, . . . , wn)
of N2 ⊗R R/m such that (w1, ..., wr) is a base of f(N1 ⊗R R/m). We have
wi = f(vi) for i = 1, .., r. We lift the vi’s in an arbitrary way in N1 ⊗R Rm

and the wr+1, . . . , wn in N2 ⊗R Rm. Then (v1, . . . , vr) is an Rm-base of
N1 ⊗R Rm and (f(v1), . . . , f(vr), wr+1, . . . , wn) is an Rm–base of N2 ⊗R Rm.
Thus N3 ⊗R Rm is free.

We conclude that f identifies N1 as a direct summand of N2. �

4. Sequences of group functors

4.1. Exactness. We say that a sequence of R–group functors

1 → F1
u→ F2

v→ F3 → 1

is exact if for each R–algebra S, the sequence of abstract groups

1 → F1(S)
u(S)→ F2(S)

v(S)→ F3(S) → 1

is exact. Similarly we can define the exactness of a sequence 1 → F1 → · · · →
Fn → 1. If w : F → F � is a map of R–group functors, recall the definition
of the R–group functor ker(w) by ker(w)(S) = ker(F (S) → F �(S)) for each
R–algebra S. Also the cokernel coker(w)(S) = coker(F (S) → F �(S)) is an
R-functor (but not necessarily an R-functor in groups).

4.1.1. Example. We consider an exact sequence 0 → N1 → N2 → N3 → 0
of finitely generated modules with N1, N2 projective. We claim that it
induces an exact sequence of R–functors in groups

0 → W (N1) → W (N2) → W (N3) → 0

if and only if the starting sequence is split (equivalently N3 is projective).
The converse implication is obvious. If the sequence above of R–functors
in groups is exact, then W (N1) → W (N2) is a monomorphism so that
Proposition 3.5.3 shows that N1 is a direct summand of N2.

We can define also the cokernel of a morphism R–group schemes. But it is
very rarely representable. The simplest example is the Kummer morphism
fn : Gm,R → Gm,R, x �→ xn for n ≥ 2 for R = C, the field of complex
numbers. Assume that there exists an affine C–group scheme G such that
there is a four terms exact sequence of C–functors

1 → hµn → hGm

hfn→ hGm → hG → 1

We denote by T � the parameter for the first Gm and by T = (T �)n the pa-
rameter of the second one. Then T ∈ Gm(R[T, T−1]) defines a non trivial

element of G(R[T, T−1]) which is trivial in G(R[T �, T �−1]) It is a contradic-
tion.

We provide a criterion.
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4.1.2. Lemma. Let
1 → G1

u→ G2
v→ G3 → 1

be a sequence of affine R–group schemes. Then the sequence of R–functors

1 → hG1 → hG2 → hG3 → 1

is exact if and only if the following conditions are satisfied:

(i) u : G1 → ker(v) is an isomorphism;

(ii) v : G2 → G3 admits a splitting f : G3 → G2 as R–schemes.

4.1.3. Remark. Note that if (ii) holds, we have G2(S) = u(G1(S))f(G3(S))
for each R-algebra S. Let S be an R–algebra and let g2 ∈ G2(S). Since
G1(S) → G2(S) → G3(S) is exact, g2 f(v(g2))

−1 ∈ G1(S). We conclude
that G2(S) = u(G1(S))f(G3(S)).

We proceed to the proof of Lemma 4.1.2.

Proof. We assume that the sequence of R-functors 1 → hG1 → hG2 →
hG3 → 1 is exact. We have seen that G1 is the kernel of v. This shows
(i). The assertion (ii) is an avatar of Yoneda’s lemma. We consider the
surjective map G2(R[G3]) → G3(R[G3]) and lift the identity of G3 to a map
t : G2(R[G3]) = HomR−sch(G3,G2). Then t is an R–scheme splitting of
v : G2 → G3.

Conversely we assume (i) and (ii). Clearly hG1 → hG2 is a monomorphism
and hG2 → hG3 is a epimorphism (see §2.2). We only have to check the
exactness of G1(S) → G2(S) → G3(S) for each S/R but it follows from
(ii). �
4.1.4. Examples. (a) It is not obvious to construct examples of exact se-
quences of group functors which are not split as R–group functors. An
example is the exact sequence of Witt vectors groups over Fp 0 → W1 →
W2 → W1 → 0. It provides a non split exact sequence of commutative
affine Fp–group schemes 0 → Ga → W2 → Ga → 0. For other examples see
[DG, III.6]. (b) Also it is natural question to ask whether the existence of

sections of the map G2 → G3 locally over G3 is enough. It is not the case
and an example of this phenomenon is by using the R–group scheme G2

defined as the unit group scheme of the R-algebra C; recall that its functor
of points is G2(S) = (S ⊗R C)× (§3.3). It comes with a norm morphism
N : G2(S) → Gm,R and we consider the kernel G3 = ker(N). Note that G2

comes with an involution σ given by the complex conjugation. We consider
the sequence of R–group schemes

1 → Gm → G2
σ−id−−−→ G3 → 1.

The associated sequence for real points is 1 → R× → C× → S1 → 1, where
the last map is z �→ z/z. For topological reasons2, there is no continuous
section of the map C× → S1. A fortiori, there is no algebraic section of

2The induced map Z = π(C×, 1) → Z = π1(S
1, 1) is the multipliczation by 2.
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the map G2
σ−id−−−→ G3. On the other hand this map admits local split-

tings, let us explain how it works for example on G3 \ {(−1, 0)}. We map

t �→ (1−t2

1+t2
, 2t
1+t2

) = (σ − 1).(1 + ti) induces an isomorphism R[G3](−1,0)
∼−→

R
�
t, 1

t2+1

�
and defines a section of σ − id on G3 \ {(−1, 0)}. The sequence

above is not exact in the category of R–functors.

4.2. Semi-direct product. Let G/R be an affine group scheme acting on
another affine group scheme H/R, that is we are given a morphism of R–
functors

θ : hG → Aut(hH).

The semi-direct product hH �θ hG is well defined as R–functor.

4.2.1. Lemma. hH �θ hG is representable by an affine R-scheme denote by
H�θ G. Furthermore we have an exact sequence of affine R-group schemes

1 → H → H�θ G → G → 1.

Proof. We consider the affine R-scheme X = H ×R G. Then hX = hH �θ

hG has a group structure so defines a group scheme structure on X. The
sequence holds in view ot the criterion provided by Lemma 4.1.2. �

A nice example of this construction is the “affine group” of a finitely
generated. projective R–moduleN . The R-group scheme GL(N) acts on the
vector R–group WN so that we can form the R–group scheme WN �GL(N)
of affine transformations of N .
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Affine group schemes II

5. Flatness

We will explain in this section why flatness is a somehow a minimal rea-
sonable assumption when studying affine group schemes. This includes a
nice behaviour of the dimension of geometric fibers, see Thm. 5.3.1 below.

5.1. Examples of flat affine group schemes.

5.1.1. Lemma. Let G be an affine R-group scheme. Then G is flat if and
only if G is faithfully flat.

Proof. Faithfully flat means that the structural morphism G → Spec(R)
is flat and surjective. Since G → Spec(R) admits the unit section, the
structural morphism is surjective. This explains the equivalence between
flatness and faithfully flatness in our setting. �

All examples we have seen so far were flat. Constant group schemes are
obviously flat. If A is an abelian group, the diagonalizable R–group scheme
D(A) is R–flat since R[A] is a free R-module.

If N is a finitely generated projective R-module, the affine group schemes
V(N) and W(N) are flat. Indeed, flatness is a local property for the Zariski
topology on Spec(R) [Sta, Tag 00HJ] so that it reduces to the case of the
affine space Ad

R which is clear since the R-module R[t1, . . . , td] is free. A
more complicated fact is the following.

5.1.2. Lemma. Let M be an R-module. Then M is flat if and only if V(M)
is a flat R-scheme.

Proof. By definition the R-scheme V(M) is flat if and only is the symmetric
algebra S∗(M) is a flat R–module. Since M is a direct summand of S∗(M)
as R-module, the flatness of S∗(M) implies that M is flat.

For the converse we use Lazard’s theorem stating that M is isomorphic
to a direct limit lim−→i∈I Mi of f.g. free R-modules [Sta, Tag 058G]. Since

S∗(M) = lim−→i∈I S
∗(Mi) and each S∗(Mi) is a free R-module (so a fortiori

flat), it follows that S∗(M) is a flat R–algebra in view of [Sta, Tag 05UU]
(use the case Ri = R for all i).

�

Finally the group scheme of invertible elements U(A) of an algebra A/R
f.g. projective is flat. We have seen that U(A) is principal open in W(A) so
that R[U(A)] is flat over R[W(A)] [Sta, Tag 00HT]. Since flatness behave
well for composition [GW, prop. 14.3], we conclude that the affine R-scheme
U(A) is flat.



22

5.2. The DVR case. Assume that R is a DV R with uniformizing pa-
rameter π and denote by K its field of fractions. We recall the following
well-known fact.

5.2.1. Lemma. Let M be an R–module. Then the following are equivalent:

(i) M is flat;

(ii) M is torsion free, that is ×π : M → M is injective;

(iii) M → M ⊗R K is injective.

Furthermore, if M is finitely generated, this is equivalent to M ∼= Rn.

Proof. (i) =⇒ (ii). It means that the functor ⊗RM is exact. Since π : R →
R is injective, it follows that ×π : M → M .

(ii) =⇒ (i). The R module M is the filtered inductive limit of its finitely
generated submodules. Also, submodules of torsionfree modules are torsion-
free, and inductive limits of flat modules are flat [Sta, Tag 05UU]. This is
why it suffices to prove that finitely generated torsionfree R-modules are
flat, or even free. We assume then that M is a finitely generated R-module.
Choose m1, . . . ,mn ∈ M such that m1, . . . ,mn is a k-basis of the k–vector
space M ⊗R k. By Nakayama’s Lemma, m1, . . . ,mn is a generating set of
M ; in other words we have a surjective R–map f : Rn → M . Consider a
non zero relation f(r1, . . . , rn) =

�n
i=1 rimi = 0. Since M is torsionfree,

dividing the r�i by the largest possible power πc occuring so that we get a
non-trivial relation

�n
i=1 rimi = 0. This is a contradiction.

(ii) =⇒ (iii). Once again this reduces to the finitely generated case which
is free. Since Rn → Kn is injective, we are done.

(iii) =⇒ (ii). Obvious.
�

Note that there are generalization to Dedekind domains and valuation
rings [Sta, Tags 0AUW, 0539]. From the lemma, we know that an affine
scheme X/R is flat, that is, R[X] is torsionfree or equivalently that R[X]
embeds in K[X].

5.2.2. Proposition. [EGA4, 2.8.1] (see also [GW, §14.3])
Let X/R be a flat affine R-group scheme. There is a one to one cor-

respondence between the flat closed R-subschemes of X and the closed K–
subschemes of the generic fiber XK .

Furthermore this correspondence commutes with fibered products over R
and is functorial with respect to R-morphisms X → X� of flat R–schemes.

The correspondence goes as follows. In one way we take the generic
fiber and in the way around we take the schematic closure (in the sense
of the scheme theoretic image of the immersion map Y ⊂ XK �→ X [Sta,
Tag 01R7]). The schematic closure Y of Y in X is the smallest closed
subscheme X such that Y ⊂ XK �→ X factorizes through Y. Let us explain
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its construction in terms of rings. If Y/K is a closed K–subscheme of X/K,
it is defined by the ideal I(Y ) = Ker(K[X] → K[Y ]) of K[X]. Similarly
we deal with the ideal I(Y) = Ker(R[X] → R[Y]) of R[X]. This fits in the
commutative diagram

0 �� I(Y) ��

��

R[X] ��
� �

��

R[Y] ��

��

0

0 �� I(Y ) �� K[X] �� K[Y ] �� 0

The ideal I(Y) of R[X] is the smallest ideal which maps in I(Y ), it follows
that I(Y) = I∩R[X]. Since I(Y)⊗RK = I(Y ), we have R[Y]⊗RK = K[Y ],
that is, Y ×R K = YK . Also the map R[Y] → K[Y ] is injective, i.e. Y is
a flat affine R–scheme. It remains to show that the other composite is the
identity and also the functorial properties. We proceed then to the end of
the proof of Proposition 5.2.2.

Proof. Given Y ⊂ X a flat closed R–subcheme, we consider the ideal I(Y) =
Ker(R[X] → R[Y]). We denote by Y� ⊂ X the schematic closure of YK ⊂ X.
We have I(Y�) = I(YK) ∩ R[X]. We consider the commutative diagram of
exact sequences of R-modules

0 �� I(Y) ��
� �

��

R[X] ��
� �

��

R[Y] ��
� �

��

0

0 �� I(YK) �� K[X] �� K[Y] �� 0

where the two vertical maps on the right express flatness of X and Y. By
diagram chase we have I(Y) = I(Y�).

We examine now the behaviour for fibered products, We are given two
affine flat R–schemes X1, X2 with closed flat R-subschemes Y1 ⊂ X1 and
Y2 ⊂ X2. Then Y1 ×R Y2 is a flat closed R–subscheme (using that flatness
behave well with tensor products, see [Bbk2, §I.7]) of X1×RX2 and of generic
fiber Y1,K×KY2,K so is the schematic closure of Y1,K×KY2,K in X1×RX2.

Next we deal with a morphism f : X → X� of affine flat R–schemes. For
an affine flat closed R–subcheme Y ⊂ X (resp. Y� ⊂ X�), if f induces a
morphism Y → Y� then fK induces a map YK → Y�

K . Conversely assume
that fK induces a map fK : Y � → Y where Y ⊂ XK (resp. Y � ⊂ X�

K) and
denote by Y ⊂ X (resp. Y� ⊂ X�) the schematic adherence of Y . We need
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to check that f induces a map Y → Y�. We consider the diagram

R[X�]
f∗
��

� �

��

R[X]� �

��
K[X�]

f∗
K �� K[X]

I(Y �) ��
��

I(Y )
��

It shows that f∗(R[X�]∩ I(Y �)) ⊆ R[X]∩ I(Y ) whence f∗(R[Y�]) ⊆ R[Y] as
desired. �

In particular, if G/R is a flat group scheme, it induces a one to one
correspondence between flat closed R-subgroup schemes of G and closed
K–subgroup schemes of GK

3.

5.2.3. Example. We consider the centralizer closed subgroup scheme of
GL2,R

Z =
�
g ∈ GL2,R | g A = Ag

�

of the element A =

�
1 π
0 1

�
. Then Z×R R/πR

∼−→ GL2,R and

Z×R K = Gm,K ×K Ga,K =
��

a b
0 a

��

Then the closure of ZK in GL2,R is Gm,R ×R Ga,R, so does not contain the
special fiber of Z. We conclude that Z is not flat.

5.3. A necessary condition. In the above example, the geometrical fibers
were of dimension 4 and 2 respectively. It illustrates then the following
general result.

5.3.1. Theorem. [SGA3, VIB.4.3] Let R be a ring and let G/R be a flat
group scheme of finite presentation. Then the dimension of the geometrical
fibers is locally constant.

It means that the dimension of the fibers cannot jump by specialization.

6. Representations

Let G/R be an a affine group scheme.

6.0.1. Definition. A (left) R − G-module (or G-module for short) is an
R–module M equipped with a morphism of group functors

ρ : hG → Autlin(W (M)).

We say that the G–module M is faithful is ρ is a monomorphism.

3Warning: the fact that the schematic closure of a group scheme is a group scheme is
specific to Dedekind rings.
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Here Autlin(W (M)) stands for for linear automorphisms of the functor
W (M), that is, Autlin(W (M))(S) = EndS(M ⊗R S)× for each R–algebra
S. We denote by GL(M) and we bear in mind that is not necessarily repre-
sentable.

If M = Rn, then GL(M) is representable by GLn,R so that it corresponds
to an R–group homomorphism G → GLn,R and faithfulness corresponds to
the triviality of the kernel.

Coming back to the general setting, it means that for each algebra S/R,
we are given an action of G(S) on W (M)(S) = M ⊗R S. We use again
Yoneda lemma. The mapping ρ is defined by the image of the universal
point ζ ∈ G(R[G]) provides an element called the coaction

cρ ∈ HomR

�
M,M ⊗R R[G]

� ∼−→ HomR[G]

�
M ⊗R R[G],M ⊗R R[G]

�
.

Yoneda lemma implies that cρ determines ρ. We denote �cρ its image in

HomR[G]

�
M ⊗R R[G],M ⊗R R[G]

�
. For g ∈ G(R), we use the evaluation

�g : R[G] → R and have by functoriality the bottom of the following com-
mutative diagram

(6.0.2) M

id
��

cρ

��
id

��

M ⊗R R[G]
�cρ ��

id⊗�g
��

M ⊗R R[G]

id⊗�g
��

M
ρ(g) �� M.

In other words we have

(6.0.3) ρ(g).m = �g(cρ.m) (g ∈ G(R),m ∈ M).

6.0.4.Remark. For the trivial representation, we have that c̃triv = idM⊗RR[G]

so that ctriv(m) = m⊗ 1.

6.0.5. Proposition. (1) Both diagrams

(6.0.6)

M
cρ−−−−→ M ⊗R R[G]

cρ

� id⊗ΔG

�

M ⊗R R[G]
cρ⊗id−−−−→ M ⊗R R[G]⊗R R[G],

(6.0.7)

M
cρ−−−−→ M ⊗R R[G]

id

� �id×�∗

M

commute.
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(2) Conversely, if an R–map c : M → M ⊗R R[G] satisfying the two rules
above, there is a unique representation ρc : hG → GL(W (M)) such that
cρc = c.

A module M equipped with a R–map c : M → M ⊗R R[G] satisfying
the two rules above is called a G-module (and also a comodule over the
Hopf algebra R[G]). The proposition shows that it is the same to talk about
representations of G or about G-modules (or also R−G-modules).

6.0.8. Remark. There is of course a compatibility with the inverse map but
it follows from the other rules.

In particular, the comultiplication R[G] → R[G] ⊗R R[G] defines a G-
structure on the R–module R[G]. It is called the regular representation
and is studied more closely in Example 6.0.9. We proceed to the proof of
Proposition 6.0.5.

Proof. (1) We double the notation by putting G1 = G2 = G. We consider
the following commutative diagram

G(R[G1])×G(R[G2])
ρ×ρ−−−−→ GL(M)(R[G1])×GL(M)(R[G2])�

�

G(R[G1 ×G2])×G(R[G1 ×G2])
ρ×ρ−−−−→ GL(M)(R[G1 ×G2])×GL(M)(R[G1 ×G2])

m

� m

�
G(R[G1 ×G2])

ρ−−−−→ GL(M)(R[G1 ×G2])

and consider the image η ∈ G(R[G1×G2]) of the couple (ζ1, ζ2) of universal
elements by the left vertical map. Then η is defined by the ring homomor-

phism η∗ : R[G]
ΔG→ R[G×G]

∼−→ R[G1 ×G2] so that ρ(η) is defined by the
following commutative diagram (in view of the compatibility (6.0.2))

M ⊗R R[G1 ×G2]
ρ(η) �� M ⊗R R[G1 ×G2]

M ⊗R R[G]
c̃ρ ��

idM⊗Δ

��

M ⊗R R[G]

idM⊗Δ

��

On the other hand we have that ρ(η) = �cρ,2 ◦ �cρ,1 where we did not write
the extensions to R[G1 × G2]. Reporting that fact in the diagram above
provides the commutative diagram

M �� M ⊗R R[G1 ×G2]
c̃ρ2◦c̃ρ1�� M ⊗R R[G1 ×G2]

M

id

��

�� M ⊗R R[G]
c̃ρ ��

idM⊗Δ

��

M ⊗R R[G].

idM⊗Δ

��
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By restricting to M , we get the commutative square

M ⊗R R[G1] ��
cρ2⊗idR[G1]�� M ⊗R R[G1 ×G2]

M
cρ ��

cρ,1

��

M ⊗R R[G]

Δ

��

as desired. The other rule comes from the fact that 1 ∈ G(R) acts trivially
on M and is a special case of the diagram (6.0.2).

(2) We are given c : M → M ⊗R R[G] satisfying the two rules. We define
first a morphism of R–functors hG → W (EndR(M)). According to Yoneda
lemma 2.1.1, we have

HomR−func

�
hG,W (EndR(M))

�
= W (EndR(M))(R[G])

= HomR[G](M ⊗R R[G],M ⊗R R[G])
∼←− HomR(M,M ⊗R R[G]).

It follows that c defines a (unique) morphism of R–functors
ρc : hG → W (EndR(M)) such that the universal element of G is applied to
c̃. The first rule insures the multiplicativity (check it) and the second rule
says that the unit element 1 ∈ G(R) is applied to idM . It follows that ρc
factorizes through the subfunctor GL(M) of W (EndR(M)) and induces a
homomorphism of R–group functors hG → GL(M). �

6.0.9. Example. We claim that the regular representation is nothing but the
right translation on R[G] and that it is faithful. We consider the G–module
A = R[G] defined by the comultiplication Δ : A → A ⊗R R[G]. It defines
the regular representation ρ : G → GL(A). Given g ∈ G(R), we consider
the following diagram (special case of the diagram (6.0.2))

(6.0.10) A

id
��

Δ

��
A⊗R R[G]

�Δ ��

id⊗�g
��

A⊗R R[G]

id⊗�g
��

A
ρ(g) �� A.

where �g is the evaluation at g and where the bottom is the compatibility

(6.0.2). In terms of schemes, the map below is G = G ×R Spec(R)
idG×g−−−−→

G ×R G
product−−−−→ G. It follows that ρ(g).a = a ◦ Rg = R∗

g(a) for each
a ∈ A = R[G] where Rg : G → G is the right translation by g, x �→ xg.
Let us show that the regular representation R[G] is faithful. Let S be
an R–ring and let g ∈ G(S) acting trivially on S[G]. It means that f ◦
Rg = f for each f ∈ S[G] hence f(g) = f(1) for each f ∈ S[G]. But
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G(S) = HomS(S[G], S), so that g = 1. This shows that the regular repre-
sentation is faithful.

A morphism of G-modules is an R–morphism f : M → M � such that
f(S) ◦ ρ(g) = ρ�(g) ◦ f(S) ∈ HomS(M ⊗R S,M � ⊗R S) for each S/R and for
g ∈ G(S). Equivalenty, this is to require the commutativty of the following
diagram

(6.0.11) M

cρ
��

f �� M �

cρ�
��

M ⊗R R[G]
f⊗id �� M � ⊗R R[G].

It is clear that the R–module coker(f) is equipped then with a natural
structure of G-module. For the kernel ker(f), we cannot proceed similarly

because the mapping ker(f) ⊗R S → ker(M ⊗R S
f(S)→ M � ⊗R S) is not

necessarily injective. One tries to use the module viewpoint by considering
the following commutative exact diagram

0 −−−−→ ker(f) −−−−→ M
f−−−−→ M �

cρ

� cρ�
�

ker(f)⊗R R[G] −−−−→ M ⊗R R[G]
f⊗id−−−−→ M � ⊗R R[G].

If G is flat, then the left bottom map is injective, and the diagram defines a
map c : ker(f) → ker(f)⊗R R[G]. This map c satisfies the two compatibil-
ities and define then a G-module structure on ker(f). We have proven the
important fact.

6.0.12. Proposition. Assume that G/R is flat. Then the category of G-
modules is an abelian category.

6.0.13. Remark. It is actually more than an abelian category since it carries
tensor products.

6.1. Representations of diagonalizable group schemes. LetG = D(A)/R
be a diagonalizable group scheme. For each a ∈ A, we can attach a character
χa = ηA(a) : D(A) → Gm = GL1(R). It defines then a G–structure on the
R–module R.

To identify the relevant coaction, we use again Yoneda’s technique by
considering the homomorphism χa,∗ = D(A)(R[A]) → Gm(R[A]) = R[A]×

and the image of the universal element which is ea in view of Remark 3.4.2.
It follows that the coaction is defined by �ca : R[A]

∼−→ R[A], u �→ ea u so
that we have ca(r) = r ⊗ ea ∈ R⊗R R[A] = R[A].

If M = ⊕a∈AMa is an A-graded R–module, the group scheme D(A) acts
diagonally on it by χa on each piece Ma.

We have constructed a covariant functor from the category of graded A–
modules to the category of representations of D(A).
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6.1.1. Proposition. The functor above is an equivalence of abelian cate-
gories from the category of A–graded R-modules to the category of R−D(A)-
modules.

Proof. Step 1: full faithfulness. Let M• and N• be A–graded modules. We
have maps

HomA−gr(M•, N•)
�

a∈A
HomR(Ma, Na) → HomD(A)−mod(M•, N•) �→

�

a,b∈A
HomR(Ma, Nb).

It is then enough to show that HomR(Ma, Nb) = 0 if a �= b. For a �= b,
let f : Ma → Nb be a morphism of D(A)-modules. Then for l ∈ Ma, we
have cNb

(f(m)) = f(cMa(m)) so that f(m)⊗ eb = f(m⊗ ea) = f(m)⊗ ea ∈
Nb ⊗ R[A]. Since R[A] =

�
a∈ARea, we conclude that f(m) = 0. We

conclude that HomR(Ma, Nb) = 0 if a �= b.

Step 2: Essential surjectivity. Let M be an R−D(A)-module and consider
the underlying map c : M → M ⊗R R[A]. We write c(m) =

�
a∈A

ϕa(m)⊗ ea.

We apply the first rule (6.0.6), that is, the commutativity of

(6.1.2)

M
c−−−−→ M ⊗R R[A]

c

� id⊗Δ

�

M ⊗R R[A]
c⊗id−−−−→ M ⊗R R[A]⊗R R[A].

We have then

(c⊗ id)(c(m)) = (c⊗ id)
��

a∈A
ϕa(m)⊗ ea

�
=

�

b∈A

�

a∈A
ϕb(ϕa(m)) eb ⊗ ea.

On the other hand we have

(id⊗Δ)(c(m)) = (id⊗Δ)
��

a∈A
ϕa(m)⊗ ea

�
=

�

a∈A
ϕa(m) ea ⊗ ea.

It follows that

ϕb ◦ ϕa = δa,b ϕa (a, b ∈ A)

We consider also the other compatibility (6.0.7)

(6.1.3)

M
c−−−−→ M ⊗R R[A]

id

� �id×�∗

M

It implies that

m = id× �∗
��

a∈A
ϕa(m) ea

�
=

�

a∈A
ϕa(m).



30

We obtain that �

a∈A
ϕa = idM .

Hence the ϕa’s are pairwise orthogonal projectors whose sum is the identity.
ThusM =

�
a∈A ϕa(M) which decomposes a direct summand of eigenspaces

as desired. �

6.1.4. Corollary. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of
R−D(A)–modules.

(1) For each a ∈ A, it induces an exact sequence 0 → (M1)a → (M2)a →
(M3)a → 0.

(2) The sequence 0 → M1 → M2 → M3 → 0 splits as sequence of R−D(A)–
modules if and only if it splits as sequence of R–modules.

Proof. (1) It readily follows of the equivalence of categories stated in Propo-
sition 6.1.1.

(2) The direct sense is obvious. Conversely, let s : M3 → M2 be a splitting.

Then for each a ∈ A, the composite (M3)a → M3
s→ M2

ϕa→ (M2)a provides
the splitting of (M2)a → (M3)a. �

We record also the following property.

6.1.5. Corollary. Let M be an R −G-module. Then for each S/R and for
each a ∈ A, we have Ma ⊗R S = (Ma ⊗R S)a.

6.1.6. Corollary. Assume that R is a field. Then the category of represen-
tations of D(A) is semisimple abelian category, that is, all short semisimple
exact sequences split [KS, 8.3.16].

Proof. Since the category of k–vector spaces is semisimple so is the category
of A-graded vector spaces. Proposition 6.1.1 shows that the category of
representations of D(A) is semisimple. �

It is also of interest to know kernels of representations.

6.1.7. Lemma. Let A� be a finite subset of A and denote by A0 the sub-
group generated by A�. We consider the representation M = ⊕a∈A� Rna of
G = D(A), with na ≥ 1. Then the representation ρ : G → GL(M) factorizes
as

G = D(A) → D(A0)
ρ0→ GL(M)

where ρ0 is a closed immersion. Furthermore ker(ρ) = D(A/A0) is a closed
subgroup scheme.

Proof. First case: A = A0. Then the map G → GL(M) factorizes by the

closed subgroup scheme T =
�

a∈A�

Gna
m,R. Since the map �T → A0 = A is

onto, the map G → �
a∈A�

Gna
m,R is a closed immersion (Proposition 3.5.2).
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A composite of closed immersion being a closed immersion, ρ is a closed
immersion.

General case. The representation ρ : G → GL(M) factorizes as

G = D(A)
q→ D(A0)

ρ0→ GL(M)

where ρ0 is a closed immersion. It follows that ker(ρ) = ker(q). This kernel
ker(q) is D(A/A0) and is a closed subgroup scheme of G (ibid). �
6.1.8. Remark. If R is a field, all finite dimensional representations of D(A)
are of this shape, so one knows the kernel of each finite dimensional repre-
sentation.

6.2. Existence of faithful finite dimensional representations (field
case). Let k be a field and let G be an affine k-group.

6.2.1. Theorem. Let V be a k − G-representation. Then V = lim−→i∈I Vi

where Vi runs over the f.d. subrepresentations of V .

Proof. We write c : V → V ⊗k k[G] for the coaction. A sum of f.d. sub-
representations of G is again one, so it is enough to show that each v ∈ V
belongs in some finite-dimensional subrepresentation. Let (ai)i∈I be a basis
of the k–vector space A. We write c(v) =

�
i∈I

vi ⊗ ai, where all but finitely

many vi’s are zero. Next we have Δ(ai) =
�
j,l∈I

ri,j,l aj ⊗k al. Using the first

rule (6.0.6) of comodules we have
�

i∈I
c(vi)⊗ ai = (c⊗ id)(c(v)) = (id⊗Δ)c(v) =

�

i,j,l

ri,j,l vi ⊗ aj ⊗ al.

Comparing the coefficients, we get c(vl) =
�
i,j∈I

ri,j,l vi ⊗ aj . Hence the

subspace W spanned by v and the vi’s is a subrepresentation. �
6.2.2. Theorem. Assume that G is algebraic, that is, the k–algebra k[G]
admits a finite dimensional faithful k–representation V .

Proof. We start with the regular representation V of G which is faithful in
view of Example 6.0.9. We write V = lim−→i∈I Vi as in the previous theorem

where the Vi’s are finite dimensional. We put Hi = ker(G → GL(Vi)), this
is a closed k-subgroup of G. For each k–algebra S, we have

�

i

Hi(S) = ker
�
G(S) → GL(V )(S)

�
= 1.

We put H =
�

iHi, this is a closed k–subgroup of G with trivial functor
of points so that H = 1. We write k[Hi] = k[G]/Ji. Then ker(R[G] →
R) = +

i∈I
Ji. Since the ring k[G] is a noetherian ring, its ideals are finitely

generated so that there exists i ∈ I ker(R[G] → R) = Ji. Thus Hi = 1 and
Vi is a faithful representation of G. �
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6.2.3. Remark. We will see later that a monomorphism of affine algebraic
k-group is a closed immersion, see also [DG, §III.7.2] or [Mi2, thm. 3.34].
An easier thing ro do is to upgrade Theorem 6.2.2 by requiring that the
homomorphism is a closed immersion, see [Wa, Thm. 3.4].

6.3. Existence of faithful finite rank representations. This question
is rather delicate for general groups and general rings, see [SGA3, VIB.13]
and the paper [Th] by Thomason. Over a field or a Dedekind ring, faithful
representations occur.

6.3.1. Theorem. Assume that R or a Dedekind ring (e.g. DVR). Let G/R
be a flat affine group scheme of finite type. Then there exists a faithful
G-module M which is f.g. free as R-module.

The key thing is the following fact due to Serre [Se4, §1.5, prop. 2].

6.3.2. Proposition. Assume that R is noetherian and let G/R be an affine
flat group scheme. Let M be a G-module. Let N be an R-submodule of M

of finite type. Then there exists an R−G-submodule �N of M which contains
N and is f.g. as R-module.

We can now proceed to the proof of Theorem 6.3.1. We take M =
R[G] seen as the regular representation G–module, it is faithful (Exam-
ple 6.0.9). The proposition shows that M is the direct limit of the family of
G-submodules (Mi)i∈I which are f.g. as R-modules. The Mi are torsion–free
so are flats. Hence the Mi are projective.

We look at the kernel Ni/R of the representation G → GL(Mi). The
regular representation is faithful and its kernel is the intersection of the
Ni. Since G is a noetherian scheme, there is an index i such that Ni = 1.
In other words, the representation G → GL(Mi) is faithful. Now Mi is a
direct summand of a free module Rn, i.e. Rn = Mi ⊕ M �

i . It provides a
representation G → GL(Mi) → GL(Mi ⊕ M �

i) which is faithful and such
that the underlying module is free.

An alternative proof is §1.4.5 of [BT2] which shows that the provided
representation G → GL(M) is actually a closed immersion. This occurs as
special case of the following result.

6.3.3. Theorem. (Raynaud-Gabber [SGA3, VIB.13.2]) Assume that R is a
regular noetherian ring of dimension ≤ 2. Let G/R be a flat affine group
scheme of finite type. Then there exists a G-module M isomorphic to Rn as
R–module such that ρM : G → GLn(R) is a closed immersion.


