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1 Rappels et compléments de topologie des espaces vectoriels
normés

1.1 Topologie et espaces métriques

Définition 1.1 (espace topologique). Une topologie sur un ensemble X est une famille de sous-
ensembles de X qui contient ∅ et X et qui est stable par union arbitraire et intersection finie. Les
éléments de la topologie sont appelés ouverts. Un espace topologique est un ensemble muni d’une
topologie.

Définition 1.2 (distance, espace métrique). Soit X un ensemble. Une distance sur X est une ap-
plication d : X ×X → R+ vérifiant pour tout x, y, z ∈ X :

i) d(x, y) = 0 ⇔ x = y (séparabilité) ;
ii) d(y, x) = d(x, y) (symétrie) ;
iii) d(x, z) ≤ d(x, y) + d(y, z) (inégalité triangulaire).

Un espace métrique est un couple (X, d) où X est un ensemble et d est une distance sur X.

Remarque. Nous avons l’inégalité triangulaire inverse suivante :

∀x, y, z ∈ X, |d(x, y)− d(x, z)| ≤ d(y, z).

Définition 1.3. Soit (X, d) un espace métrique, soit x ∈ X et soit r ∈ R∗
+. On appelle boule ouverte

(resp. boule fermée) de centre x et de rayon r l’ensemble

B(x, r) = {y ∈ X, d(x, y) < r}
resp. Bf (x, r) = {y ∈ X, d(x, y) ≤ r}.

Les espaces métriques sont des espaces topologiques. Un ensemble A est dit ouvert si pour tout
x ∈ A il existe ε > 0 tel que B(x, ε) ⊂ A. Les ensembles fermés sont les complémentaires des
ensembles ouverts.

L’adhérence d’un ensemble A, noté par A, est le plus petit fermé qui contient A. C’est aussi
l’intersection de tous les fermés qui contiennent A, ou encore l’ensemble des limites de suites de A.
De même, l’intérieur de A, noté par

◦
A, est le plus grand ouvert inclus dans A, ou encore l’union de

tous les ouverts inclus dans A. Un point appartient à l’intérieur de A si et seulement s’il y toute
une boule autour du point qui est dans A. Nous avons que A est fermé si et seulement s’il est égal à
son adhérence. Il est ouvert si et seulement s’il est égal à son intérieur. Les notions d’adhérence et
d’intérieur sont stables par inclusion. Nous avons que

A ∪B = A ∪B

mais seulement
A ∩B ⊃ A ∩B

en général.
On peut définir le produit au plus dénombrable d’espaces métriques.

Définition 1.4 (produit fini d’espaces métriques). Soient (X1, d1), (X2, d2), . . . , (Xn, dn) un nombre
fini d’espaces métriques. Le produit de ces espaces métriques est l’ensemble X = X1 ×X2 × · · · ×Xn

muni de la distance
d(x, y) = d1(x1, y1) + d2(x2, y2) + · · ·+ dn(xn.yn).
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Définition 1.5 (produit dénombrable d’espaces métriques). Soient (Xk, dk)k∈N un nombre dénom-
brable d’espaces métriques. Le produit de ces espaces métriques est l’ensemble X =

∏∞
k=0Xk muni

de la distance

d(x, y) =
∞∑
k=0

1

2k
dk(xk, yk)

1 + dk(xk, yk)
.

Proposition 1.6. a) L’application d définie au-dessus est une distance.
b) La convergence pour cette distance est la convergence composante par composante : xn → x

quand n→ ∞ si et seulement si pour tout k ∈ N nous avons que xnk → xk quand n→ ∞.

1.2 Espaces normés

Dans le reste de ce manuscrit, nous noterons par K le corps R ou C.

Définition 1.7 (espace vectoriel). Un espace vectoriel sur K est un ensemble E muni de deux
opérations :

— l’addition + avec les propriétés suivantes :
• elle est associative : x+ (y + z) = (x+ y) + z ;
• elle est commutative : x+ y = y + x ;
• il existe un élément neutre x : x+ 0 = x ;
• tout x admet un unique opposé −x : x+ (−x) = 0.

— la multiplication par des scalaires λ ∈ K avec les propriétés suivantes :
• λ(x+ y) = λx+ λy ;
• λ(µx) = (λµ)x ;
• (λ+ µ)x = λx+ µx ;
• 1 · x = x.

Définition 1.8 (norme, espace normé). On appelle norme sur E une application de E dans R+

habituellement notée ∥ · ∥ vérifiant pour tout x, y ∈ E et tout λ ∈ K
a) ∥x∥ = 0 ⇒ (x = 0) (séparation) ;
b) ∥λx∥ = |λ|∥x∥ (homogénéité) ;
c) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (inégalité triangulaire).

Un espace vectoriel normé est un couple (E, ∥ · ∥) où E est un espace vectoriel et ∥ · ∥ est une norme
sur E.

Un espace normé est aussi un espace métrique pour la distance d(x, y) = ∥x− y∥. Nous avons la
réciproque suivante de l’inégalité triangulaire :∣∣∥x∥ − ∥y∥

∣∣ ≤ ∥x− y∥.

Définition 1.9 (normes équivalentes). Deux normes ∥ · ∥1 et ∥ · ∥2 sont dites équivalentes s’il existe
deux constantes C1, C2 > 0 telles que

∥x∥1 ≤ C1∥x∥2 ≤ C2∥x∥1 ∀x. (1.1)

On vérifie aisément que deux normes équivalentes engendrent la même topologie. La réciproque
est également vraie.
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Exemples.
— L’espace Rd muni de

∥x∥p =
( d∑
i=1

|xi|p
) 1

p

si 1 ≤ p <∞, ou
∥x∥∞ = max

1≤i≤d
|xi|

si p = ∞, est un espace normé.
— L’espace ℓp des suites de puissance p sommable : ℓp = {x = (xn)n ;

∑
n≥0

|xn|p < ∞} muni de

la norme
∥x∥p =

(∑
n≥0

|xn|p
) 1

p
.

Si p = ∞, ℓ∞ est l’espace des suites bornées muni de la norme

∥x∥∞ = sup
n≥0

|xn|.

On peut aussi munir ℓp de la norme ∥ · ∥q pour tout q ≥ p.
— L’espace Lp(Ω) (Ω est un espace mesuré σ-fini) muni de

∥f∥Lp =
(∫

Ω

|f |p
) 1

p

si 1 ≤ p <∞, ou
∥f∥L∞ = sup ess

Ω
|f |

si p = ∞, est un espace normé.
— Si X est un ensemble quelconque, l’espace des fonctions bornées de X sur K muni de ∥f∥ =

supX |f | est un espace normé.
Cela résulte des deux inégalités suivantes :

Proposition 1.10 (inégalité de Hölder). Soient 1 ≤ p, q, r ≤ ∞ tels que 1
r
= 1

p
+ 1

q
. Si f ∈ Lp et

g ∈ Lq alors fg ∈ Lr et
∥fg∥Lr ≤ ∥f∥Lp∥g∥Lq .

L’inégalité de Minkowski suivante nous permet d’affirmer que les Lp sont des espaces normés.

Proposition 1.11 (inégalité de Minkowski). Soit 1 ≤ p ≤ ∞ et f, g ∈ Lp. Alors f + g ∈ Lp et

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp .

Remarquons que ℓp est un cas particulier de Lp(Ω) : si Ω = N muni de la mesure de comptage.
Autre cas particulier important : Ω ouvert de Rd muni de la mesure de Lebesgue.

1.3 Complétude, espaces de Banach

Définition 1.12. — Une suite xn dans un espace métrique est dite de Cauchy si d(xn, xm) → 0
quand m,n→ ∞. C’est-à-dire que pour tout ε > 0 il existe N ∈ N tel que d(xn, xm) < ε pour
tout m,n ≥ N .

— Un espace métrique est dit complet si toute suite de Cauchy est convergente.
— Un espace de Banach est un espace normé complet.
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— Un sous ensemble d’un espace métrique est dit complet s’il est complet en tant qu’espace
métrique muni de la métrique induite. Plus précisément, toute suite de Cauchy de l’ensemble
doit converger vers un élément de l’ensemble.

Un ensemble complet est toujours fermé. Dans un espace complet, un ensemble est fermé ssi il
est complet.

Nous avons la caractérisation suivante de la complétude d’un espace normé en terme de séries.

Proposition 1.13. Soit E un espace normé. L’espace E est complet si et seulement si toute série
absolument convergente (c’est-à-dire si la série des normes converge) est convergente. C’est-à-dire
E est un espace de Banach ssi on a l’implication suivante :

∑
n≥0 ∥xn∥ converge implique

∑
n≥0 xn

converge.

Exemples.
— Rd muni de ∥ · ∥p.
— ℓp = ℓp(N;K) muni de ∥x∥p =

(∑∞
n=0 |xn|p

) 1
p . Mais ce n’est pas un espace de Banach si on le

munit d’une norme ∥ · ∥q avec q ̸= p. Par exemple, la suite des troncatures de ( 1
n
)n≥0 est de

Cauchy pour la norme ∥ · ∥∞ masi ne converge pas dans ℓ1.
— Si (Ω, µ) est un espace mesuré σ-fini alors Lp(Ω) est un espace de Banach pour tout 1 ≤ p ≤ ∞.
— L’espace des fonctions bornées sur un ensemble arbitraire muni de la norme du sup est un

espace de Banach.
— Plus généralement, si X est un ensemble arbitraire et E est un espace de Banach alors

B(X;E) = {f : X → E ; ∥f∥L∞ = supx∈X ∥f(x)∥E < ∞} muni de ∥ · ∥E est un espace
de Banach.

— L’espace C0([0, 1]) muni de la norme ∥ · ∥Lp est un espace de Banach pour p = ∞ mais n’est
pas un espace de Banach si p <∞.

Théorème 1.14 (Riesz-Fischer). Pour tout 1 ≤ p ≤ ∞ l’espace Lp est un espace de Banach.

La preuve de ce théorème montre aussi une sorte de réciproque au théorème de convergence
dominée de Lebesgue : toute suite qui converge dans Lp admet une sous-suite qui converge presque
partout et qui est dominée par une même fonction de Lp. Cela montre l’optimalité du théorème de
convergence dominée de Lebesgue.
Fin du cours 1 (02/09/2025).

1.4 Applications linéaires et continues. Dual

Proposition 1.15. Soit (E, ∥ · ∥E) et (F, ∥ · ∥F ) deux espaces vectoriels normés. Une application
linéaire f : E → F est continue si et seulement si il existe une constante M > 0 telle que

∀x ∈ E, ∥f(x)∥F ≤M∥x∥E.

Corollaire 1.16. Deux normes sur un espace vectoriel E définissent les mêmes ouverts si et seule-
ment si elles sont équivalentes.

Définition 1.17. Les normes ∥ · ∥E et ∥ · ∥F étant fixées, on note L (E;F ) l’espace des applications
linéaires continues de E dans F . On appelle dual topologique de E et on note E ′ = L (E;K)
l’espace des formes linéaires continues sur E.

Proposition 1.18. L’espace L (E;F ) est un espace normé avec la norme suivante :

∥f∥L (E;F ) = sup
x̸=0

∥f(x)∥F
∥x∥E

= sup
∥x∥E=1

∥f(x)∥F = sup
∥x∥E≤1

∥f(x)∥F = sup
∥x∥E<1

∥f(x)∥F

= inf{M ; ∀x ∈ E, ∥f(x)∥F ≤M∥x∥E} = min{M ; ∀x ∈ E, ∥f(x)∥F ≤M∥x∥E}.
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Nous avons toujours l’inégalité

∥f(x)∥F ≤ ∥f∥L (E;F )∥x∥E.

La norme d’une application linéaire et continue est d’ailleurs la plus petite constante C avec la
propriété que

∥f(x)∥F ≤ C∥x∥E.

Nous avons que la norme de la composition est majorée par le produit des normes.

Proposition 1.19. Si (E, ∥ · ∥E), (F, ∥ · ∥F ) et (G, ∥ · ∥G) sont trois espaces vectoriels normés alors
pour f ∈ L (E;F ) et g ∈ L (F ;G) la composée g ◦ f appartient à L (E;G) et on a

∥g ◦ f∥L (E;G) ≤ ∥g∥L (F ;G)∥f∥L (E;F ).

En particulier, cette norme sur L (E) = L (E;E) est une norme d’algèbre.

Exemples.

a) Le dual d’un espace de dimension fini s’identifie à lui-même.
b) Le dual de ℓp s’identifie à ℓp′ pour tout 1 ≤ p <∞. Ici 1

p
+ 1

p′
= 1. (Preuve en TD)

c) Si (Ω, µ) est un espace mesuré σ-fini, alors pour tout 1 ≤ p ≤ ∞ nous avons que Lp′(Ω) est
inclus dans (Lp(Ω))′ où 1

p
+ 1

p′
= 1. Si p < ∞ on a même l’égalité Lp′(Ω) = (Lp(Ω))′ (sans

preuve).

1.5 Compacité

Définition 1.20 (compacité). a) Un ensemble est dit compact si de tout recouvrement par des
ouverts on peut extraire un sous-recouvrement fini. De manière équivalente, de toute suite de
l’ensemble on doit pouvoir extraire une sous suite convergente dans l’ensemble.

b) Un ensemble est dit relativement compact si son adhérence est compacte.
c) Un ensemble est dit précompact si pour tout ε > 0 on peut le recouvrir d’un nombre fini de

boules de rayon ε.

Voici une liste des propriétés des compacts.

Proposition 1.21. a) Un compact est toujours fermé et complet.
b) L’image d’un compact par une application continue est un compact.
c) Une fonction réelle continue sur un compact est bornée et atteint ses bornes.
d) Une fonction continue sur un compact est uniformément continue.
e) Un ensemble est compact ssi il est précompact et complet.
f) Dans un espace complet précompact et relativement compact veut dire la même chose.
g) Un produit au plus dénombrable d’espaces métriques compacts est un espace métrique compact.

1.6 Dimension finie

Les espaces normés de dimension finie ont un certain nombre de propriétés qui les distinguent
des autres espaces normés. En voici quelques-unes.

Théorème 1.22 (Bolzano-Weierstrass). Dans un espace normé de dimension finie, les ensembles
compacts sont les ensembles fermés et bornés.
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On a aussi la réciproque.

Théorème 1.23 (Riesz). Soit (E, ∥ · ∥) un espace normé (pas forcément de dimension finie). La
boule unité fermée est compacte si et seulement si E est de dimension finie.

Voici un théorème qui regroupe d’autres propriétés des espaces normés de dimension finie.

Théorème 1.24. a) Dans un espace normé de dimension finie toutes les normes sont équiva-
lentes.

b) Dans un espace normé quelconque, tout sous-espace vectoriel de dimension finie est fermé.
c) Toute application linéaire définie sur un espace normé de dimension finie à valeurs dans un

espace normé quelconque (pas forcément de dimension finie) est continue.

1.7 Séparabilité et convergences faibles

Rappelons maintenant la notion d’espace séparable.

Définition 1.25. Un espace normé est dit séparable s’il existe un sous-ensemble dénombrable et
dense.

Définition 1.26. Soit E un espace normé sur R ou C.
— On dit que xn → x faiblement dans E, et on note xn ⇀ x, si pour tout f ∈ E ′ nous avons que

f(xn) → f(x).
— On dit que fn → f faible∗ dans E ′ si fn(x) → f(x) pour tout x ∈ E (c’est-à-dire si la suite

converge simplement).

Pour souligner la distinction entre la convergence en norme et les diverses convergences faibles,
la convergence en norme est aussi appelée convergence forte car c’est une notion plus forte que la
convergence faible.

Voici maintenant une proposition qui regroupe quelques propriétés des convergences faibles.

Proposition 1.27. Soit E un espace normé.
a) Si xn → x en norme (convergence forte) alors xn ⇀ x.
b) Si fn → f en norme dans E ′ alors fn → f faible∗.

Si E est de dimension finie, nous avons de plus :

c) xn ⇀ x si et seulement si xn → x fortement ;
d) fn → f faible∗ si et seulement si fn → f fortement.

Le théorème qui suit est la motivation principale pour introduire les notions de convergence faible.
C’est la version en dimension infinie du théorème de Bolzano-Weierstrass qui dit qu’en dimension
finie de toute suite bornée on peut extraire une sous-suite convergente. En dimension infinie, cela
reste plus ou moins vrai à ceci près que la suite extraite va converger faiblement et non fortement.

Théorème 1.28 (Banach-Alaoglu, cas séparable). Soit E un espace normé séparable. De toute suite
bornée de E ′ on peut extraire une sous-suite qui converge faible∗.

Fin du cours 2 (03/09/2025).

Remarque. L’hypothèse de séparabilité est bien nécessaire pour que la conclusion de ce théorème
reste vraie. En effet, sur l’espace ℓ∞ des suites bornées muni de la norme ∥·∥∞, les projections Pn sur
la n-ème composante définies par x = (xn)n≥1 7→ Pn(x) = xn forment une suite bornée d’applications
linéaires et continues qui n’admet pas de sous-suite convergente faible∗.
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1.8 Séparabilité des espaces Lp

Nous allons maintenant nous intéresser à la séparabilité des espaces Lp. Celle-ci est très importante
dans la mesure où c’est elle qui va nous permettre d’extraire des sous-suites (faiblement) convergentes
des suites bornées grâce au théorème de Banach-Alaoglu.

Nous nous plaçons dans le cadre d’un ouvert Ω de Rn avec la mesure de Lebesgue.

Théorème 1.29. L’espace Lp(Ω) est séparable pour tout 1 ≤ p <∞.

La preuve repose sur la densité de C0
c (Ω) dans Lp(Ω) et de la séparabilité de l’espace des fonctions

continues sur un compact.

Proposition 1.30. Pour tout K compact l’espace C0(K) (muni de la norme L∞) est séparable.

La séparabilité des espaces Lp nous permet d’appliquer le théorème de Banach-Alaoglu (théorème
1.28). En effet, une suite bornée dans Lp avec 1 < p ≤ ∞ peut être vue comme une suite bornée dans(
Lp′

)′ où 1 ≤ p′ < ∞. Alors Lp′ est séparable et le théorème de Banach-Alaoglu (théorème 1.28)
implique immédiatement le résultat suivant.

Théorème 1.31. Soit Ω un ouvert de Rd avec la mesure de Lebesgue et fn une suite bornée dans
Lp(Ω).

a) Si 1 < p < ∞ alors la suite fn admet une sous-suite qui converge faiblement dans Lp(Ω) : il
existe f ∈ Lp(Ω) et une sous-suite fnk

telle que
∫
Ω
fnk

g →
∫
Ω
fg pour tout g ∈ Lp′(Ω).

b) Si p = ∞ alors la suite fn admet une sous-suite qui converge faible∗ dans L∞(Ω) : il existe
f ∈ L∞(Ω) et une sous-suite fnk

telle que
∫
Ω
fnk

g →
∫
Ω
fg pour tout g ∈ L1(Ω).

c) Si p = 1, la suite fn ne possède pas forcément une sous-suite convergente faiblement dans
L1(Ω).

Si p = 1, la suite fn ne possède pas forcément une sous-suite convergente faiblement dans L1(Ω).
Un contre-exemple est donné par une suite régularisante qui converge vers une masse de Dirac (dans
un sens à préciser. . .). Nous avons regardé jusqu’ici L1 comme un sous espace du dual de L∞, mais
comme L∞ n’est pas séparable on ne peut rien dire sur les suites bornées de son dual. La bonne
manière de procéder est en fait de regarder L1(Ω) comme un sous-espace du dual de C0

c (Ω) qui lui
est séparable si Ω est borné. On peut alors de même appliquer le théorème de Banach-Alaoglu et
extraire de toute suite bornée dans L1(Ω) une sous-suite qui converge faible∗ dans le dual de C0

c (Ω).
On peut montrer (c’est le théorème de Radon-Riesz) que le dual de C0

c (Ω) est formé de mesures. On
obtient alors que de toute suite bornée dans L1(Ω) on peut extraire une sous-suite qui converge au
sens des mesures. Si on veut extraire une sous-suite convergente (dans un sens raisonnable) d’une
suite bornée de L1, il nous faut donc sortir de L1 et se placer dans le cadre plus général des mesures.
Fin du cours 3 (09/09/2025).

2 Espaces de fonctions continues
Dans cette partie on se pose la question de la topologie des espaces de fonctions continues et de

leurs propriétés.

2.1 Topologie

Pour les fonctions continues sur un compact, c’est très simple, elles sont nécessairement bornées
et on utilise alors la norme ∥ · ∥∞ ce qui en fait un espace de Banach.

Définition 2.1. Soit K un compact. On définit C0(K) = {f : K → C, f continue} et on le munit
de ∥f∥∞ = supK |f | = maxK |f |.

9



On a vu les années précédentes que c’est complet.

Proposition 2.2. L’espace C0(K) muni de la norme ∥ · ∥∞ est un espace de Banach.

On peut faire de même pour les fonctions continues et bornées sur un ouvert.

Définition 2.3. Soit Ω un ouvert. On définit C0
b (Ω) = {f : Ω → C, f continue et bornée} et on le

munit de ∥f∥∞ = supΩ |f | = maxΩ |f |.

Comme au-dessus, C0
b (Ω) muni de la norme ∥ · ∥∞ est un espace de Banach.

Malheureusement, les fonctions continues sur un ouvert ne sont pas forcément bornées. Dès lors,
quelle topologie mettre sur cet espace ? Il n’y a pas de norme qui puisse convenir. Il y a cependant
une distance.

Soit Ω un ouvert de Rn et Kj une suite exhaustive de compacts : Kj ⊂
◦
Kj+1 et Ω =

⋃
j∈NKj. On

introduit la semi-norme pj(f) = supKj
|f |. La distance sur C0(Ω) est définie par

d(f, g) =
∑
j∈N

2−j pj(f − g)

1 + pj(f − g)
. (2.1)

Proposition 2.4. a) La quantité d définie au-dessus est une distance sur C0(Ω).
b) La convergence associée à la distance d est la convergence uniforme sur tous les compacts de

Ω.
c) L’espace C0(Ω) muni de la distance d est un espace métrique complet.

On appelle cette distance la distance de la convergence uniforme sur les compacts.
De manière générale, si on a famille dénombrable de semi-normes pj (semi-norme veut dire une

application qui vérifie la définition 1.8 sans la condition a) de séparation) qui vérifie la propriété
suivante :

∀j pj(x) = 0 ⇒ x = 0

alors la quantité d définie dans la relation (2.1) est une distance.
Nous pouvons aussi nous intéresser à d’autres espaces de fonctions régulières, comme par exemple

Ck(Ω) et C∞(Ω). L’étude est entièrement similaire en utilisant la distance associée à la famille
dénombrable de semi-normes suivante :

pα,j(f) = sup
Kj

|∂αf |

où α ∈ Nn est un multi-indice et ∂α =
(

∂
∂x1

)α1 . . .
(

∂
∂xn

)αn . Ici j varie dans N, et dans le cas de Ck(Ω)

il faut aussi imposer la condition |α| = |α1|+ · · ·+ |αn| ≤ k. Les espaces Ck(Ω) et C∞(Ω) deviennent
alors des espaces métriques complets dont la convergence est la convergence uniforme sur tous les
compacts de Ω de toutes les dérivées (d’ordre ≤ k dans le cas de Ck(Ω)).

2.2 Densité des polynômes

Le but de cette partie est de montrer que les polynômes sont denses dans C0(K). Nous avons
besoin de deux résultats préliminaires. Le premier est un résultat d’extension de fonctions continues.

Théorème 2.5 (Tietze). Soit Ω un ouvert de Rn et K un compact de Ω. Toute fonction continue
sur K s’étend à une fonction continue à support compact définie sur Ω.

Le deuxième affirme la densité des polynômes dans le cas du cube [0, 1]n.
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Théorème 2.6 (Bernstein). Soit f : [0, 1]n → C continue. On introduit le polynôme de Bernstein

Pk(X) =
k∑

j1=0

· · ·
k∑

jn=0

Cj1
k . . . Cjn

k f
( j
k

)
xj11 (1− x1)

k−j1 . . . xjnn (1− xn)
k−jn .

Alors Pk tend vers f uniformément sur [0, 1]n.

Fin du cours 4 (16/09/2025).
On en déduit via un changement de variables que les polynômes sont denses dans les fonctions

continues sur un pavé. Comme tout compact est inclus dans un pavé, le théorème de Tietze nous
permet de nous ramener au cas d’un pavé. Nous avons obtenu le théorème suivant.

Théorème 2.7 (Weierstrass). Soit K un compact de Rn. Les polynômes sont denses dans C0(K).

2.3 Compacité

Nous abordons enfin la question de la compacité dans les espaces de fonctions continues. D’abord
une définition.

Définition 2.8. Soient E, F deux espaces métriques, f : E → F et F ⊂ C0(E,F ).
a) La fonction f est continue si pour tout x et ε > 0 il existe η > 0 tel qu’on ait l’implication

d(x, y) < η =⇒ d′(f(x), f(y)) < ε.

b) La famille F est dite équicontinue si le η au-dessus ne dépend pas de f ∈ F .
c) La famille F est dite uniformément équicontinue si le η au-dessus ne dépend pas de f ∈ F

ni de x.

Si l’espace de départ est compact, alors l’équicontinuité équivaut à l’uniforme équicontinuité.

Proposition 2.9. Soient E compact métrique et F métrique. Une famille F ⊂ C0(E,F ) est équi-
continue si et seulement si elle est uniformément équicontinue.

Voici maintenant le théorème d’Ascoli qui donne une condition nécessaire pour la compacité de
l’espace des fonctions continues.

Théorème 2.10 (Ascoli). Soit K un espace métrique compact et X un espace métrique. On se
donne une famille F de fonctions continues de K dans X et on munit C0(K,X) de la distance de la
convergence uniforme. La famille F est relativement compacte si et seulement si les deux conditions
suivantes sont vérifiées :

a) F est ponctuellement relativement compacte : pour tout x ∈ K l’ensemble F (x) = {f(x) ; f ∈
F} est relativement compact.

b) F est équicontinue, c’est-à-dire les fonctions de F sont uniformément continues avec les
mêmes constantes : pour tout ε > 0 il existe δ > 0 tel que si d(x, y) < δ alors d(f(x), f(y)) < ε
pour tout f ∈ F .

Remarque. Souvent on travaille avec des fonctions bornées à valeurs dans Rn. Dans ce cas la condi-
tion de ponctuellement relativement compact est automatiquement vérifiée. La condition principale
est donc l’équicontinuité.
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3 Espaces de Hilbert
Les espaces de Hilbert sont essentiellement des espaces de dimension infinie qui ont un produit

scalaire similaire à celui de Rn. Définissons d’abord la notion de produit scalaire.

Définition 3.1. Soit H un espace vectoriel sur K = R ou C. Un produit scalaire sur H est une
application ⟨·, ·⟩ : H ×H → K avec les propriétés suivantes :

— pour tout x l’application x 7→ ⟨x, y⟩ est linéaire ;
— pour tout x, y nous avons ⟨x, y⟩ = ⟨y, x⟩ (symétrie) ;
— pour tout x nous avons que ⟨x, x⟩ ≥ 0 avec égalité seulement si x = 0.

Un espace vectoriel muni d’un produit scalaire est dit espace préhilbertien.

Remarques.
— Un produit scalaire a la propriété que ⟨x, λy⟩ = λ⟨x, y⟩. On dit que l’application y 7→ ⟨x, y⟩

est antilinéaire.
— Dans certains ouvrages les rôles de x et y sont inversés, c’est-à-dire que le produit scalaire est

défini comme étant linéaire en y et antilinéaire en x.
Nous avons une inégalité de Cauchy-Schwarz en dimension infinie.

Proposition 3.2 (inégalité de Cauchy-Schwarz). Soit (H, ⟨·, ·⟩) un espace préhilbertien. Alors
a) Nous avons l’inégalité de Cauchy-Schwarz suivante

|⟨x, y⟩| ≤
√

⟨x, x⟩
√

⟨y, y⟩

avec égalité si et seulement si x et y sont liés.
b) La quantité ∥x∥ =

√
⟨x, x⟩ définit une norme sur H.

c) Nous avons l’identité du parallélogramme suivante :∥∥x+ y

2

∥∥2
+
∥∥x− y

2

∥∥2
=

1

2
(∥x∥2 + ∥y∥2).

La norme est définie à partir du produit scalaire mais on peut aussi retrouver le produit scalaire
à partir de la norme. Cela se fait via l’identité de polarisation suivante :

⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2

4

dans le cas réel et
⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2 + i∥x− iy∥2 − i∥x+ iy∥2

4
dans le cas complexe.

Définition 3.3. Un espace de Hilbert est un espace préhilbertien complet pour la norme associée.

Exemples.
— L’espace L2(Ω, µ) (Ω mesuré σ-fini) muni de

⟨f, g⟩ =
∫
Ω

fg dµ

est un espace de Hilbert.
— L’espace C0([0, 1];C) muni de

⟨f, g⟩ =
∫ 1

0

fg dx

est un espace préhilbertien sans être un espace de Hilbert.
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— L’espace ℓ2 des suites de carré sommable avec le produit scalaire

⟨x, y⟩ =
∞∑
n=0

xnyn

est un espace de Hilbert.

3.1 Projection et orthogonal

Un théorème très important dans la théorie des espaces de Hilbert est le théorème de la projection
qui dit que dans un espace de Hilbert, la distance à un convexe fermé est atteinte en exactement un
point.

Théorème 3.4 (projection sur un convexe fermé). Soit H un espace de Hilbert et K un convexe
fermé. Alors

a) Pour tout x ∈ H la distance d(x,K) = infy∈K ∥x − y∥ est atteinte en un unique point u. On
appelle u la projection de x sur K et on note u = PK(x).

b) La projection PK(x) est caractérisée par la relation suivante

∀y ∈ K Re⟨x− PK(x), y − PK(x)⟩ ≤ 0.

c) La projection PK est une application 1-Lipschitzienne.

Fin du cours 5 (23/09/2025).
Un sous-espace vectoriel fermé est un convexe fermé, on peut donc lui appliquer le théorème de

la projection sur un convexe fermé. Nous obtenons alors le corollaire suivant.

Corollaire 3.5 (projection orthogonale sur un sous-espace fermé). Soit H un espace de Hilbert et
F un sous-espace vectoriel fermé. Alors la projection sur F est bien définie et on peut la caractériser
par :

u = PF (x) si et seulement si u ∈ F et ⟨x− u, v⟩ = 0 ∀v ∈ F.

On dit alors que x − PF (x) ⊥ F (x − PF (x) est orthogonal à F ) et la projection PF est appelée
projection orthogonale sur F .

Définition 3.6. Soit H un espace de Hilbert et A ⊂ H un sous-ensemble. L’orthogonal de A, noté
par A⊥, est l’ensemble des x tels que x ⊥ A :

A⊥ = {x ∈ H ; ⟨x, y⟩ = 0 ∀y ∈ A}.

Remarque. Si F est un sous-espace vectoriel fermé dans un espace de Hilbert H, alors tout x ∈ H
se décompose de manière unique sous la forme x = x1 + x2 où x1 ∈ F et x2 ∈ F⊥. Nous avons de
plus que ∥x∥2 = ∥x1∥2 + ∥x2∥2.

Proposition 3.7. Soit H un espace de Hilbert et F un sous-espace vectoriel.
a) Pour tour A ⊂ H, l’ensemble A⊥ est un sous-espace vectoriel fermé.
b) F⊥ = (F )⊥.
c) (F⊥)⊥ = F .
d) H = F ⊕ F⊥.
e) F est dense dans H si et seulement si F⊥ = {0}.
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3.2 Dualité

Un résultat très important dans la théorie des espaces de Hilbert dit que le dual d’un espace de
Hilbert est lui-même.

Théorème 3.8 (Riesz). Soit H un espace de Hilbert et f ∈ H ′. Il existe un unique u ∈ H tel que
f(x) = ⟨x, u⟩ pour tout x ∈ H. Nous avons de plus que ∥f∥ = ∥u∥ et l’application H ′ ∋ f 7→ u ∈ H
est une bijection isométrique antilinéaire.

Nous pouvons donc identifier H ′ à l’espace Ĥ qui est le même chose que H à ceci prés que l’on
a remplacé la loi λx par λx. Ainsi, le théorème de Banach-Alaoglu peut s’appliquer pour obtenir le
corollaire suivant.

Corollaire 3.9. Dans un espace de Hilbert séparable, de toute suite bornée on peut extraire une
sous-suite faiblement convergente.

3.3 Adjoint

Dans ce suit on note par L (H) l’ensemble des applications linéaires et continues (qu’on ap-
pelle aussi opérateurs) de H dans H. Montrons d’abord une proposition qui nous permet de définir
l’adjoint.

Proposition 3.10 (définition et existence de l’adjoint). Soit H un espace de Hilbert et T ∈ L (H).
Il existe un unique opérateur T ∗ ∈ L (H) avec la propriété suivante :

⟨T (x), y⟩ = ⟨x, T ∗(y)⟩ ∀x, y.

De plus ∥T∥ = ∥T ∗∥. On appelle T ∗ l’adjoint de T .

L’adjoint pour les opérateurs joue le même rôle que la transposée pour les matrices. Voici une
proposition qui regroupe quelques propriétés de l’adjoint.

Proposition 3.11. Soit H un espace de Hilbert et S, T ∈ L (H). Nous avons que
a) I∗ = I.
b) (ST )∗ = T ∗S∗.
c) (T ∗)∗ = T .
d) ∥T ∗T∥ = ∥TT ∗∥ = ∥T∥2.

Remarque. L’application T 7→ T ∗ est antilinéaire.

3.4 Base hilbertienne

Définition 3.12. Soit H un espace préhilbertien.
— Une famille {ei}i∈I est dite orthogonale si ei ⊥ ej pour tout i ̸= j.
— Une famille {ei}i∈I est dite orthonormale si elle est orthogonale et si ∥ei∥ = 1 pour tout i ∈ I.
— Une base hilbertienne est une famille orthonormale totale (les combinaisons linéaires sont

denses).

Les familles orthonormales vérifient l’inégalité de Bessel suivante.

Proposition 3.13 (inégalité de Bessel). Soit H un espace de Hilbert et {en}n≥0 une famille ortho-
normale. Alors cette famille est libre et on a l’inégalité de Bessel suivante :∑

n≥0

|⟨x, en⟩|2 ≤ ∥x∥2 ∀x ∈ H.
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Voici quelques propriétés d’une base hilbertienne.

Proposition 3.14. Soit H un espace de Hilbert et {en}n≥0 une famille orthonormale.
a) La suite {en}n≥0 est une base hilbertienne si et seulement si nous avons l’égalité de Bessel-

Parseval suivante : ∑
n≥0

|⟨x, en⟩|2 = ∥x∥2 ∀x ∈ H.

b) On suppose que {en}n≥0 est une base hilbertienne. Nous avons

∀x ∈ H x =
∑
n≥0

⟨x, en⟩en

∀x, y ∈ H ⟨x, y⟩ =
∑
n≥0

⟨x, en⟩⟨y, en⟩.

Concernant l’existence des bases hilbertiennes, nous avons le résultat suivant d’existence dans le
cas séparable.

Théorème 3.15. Soit H un espace de Hilbert de dimension infinie. Alors H admet une base hilber-
tienne dénombrable {en}n≥0 si et seulement si H est séparable.

On peut montrer que les espaces de Hilbert non séparables ont aussi des bases hilbertiennes
mais elles ne seront pas dénombrables. Il faut alors parler de familles sommables ce qui entraîne des
difficultés supplémentaires. Étant donné que les espaces de Hilbert rencontrés en pratique sont en
général séparables, nous nous passerons de ces complications.

3.5 Théorème de Lax-Milgram

Nous nous placerons dans toute cette partie dans le cas réel : K = R. Commençons par une
définition.

Définition 3.16. Soit E un espace normé et a : E × E → R une forme bilinéaire.
— a est dite continue s’il existe une constante C > 0 telle que |a(x, y)| ≤ C∥x∥∥y∥ pour tout

x, y ∈ E ;
— a est dite symétrique si a(x, y) = a(y, x) pour tout x, y ∈ E ;
— a est dite coercive s’il existe une constante α > 0 telle que a(x, x) ≥ α∥x∥2 pour tout x ∈ E.

Fin du cours 6 (30/09/2025).

Théorème 3.17 (Stampacchia). Soit H un espace de Hilbert réel et a une forme bilinéaire, continue
et coercive sur H. Soit K ⊂ H un convexe fermé non-vide et φ ∈ H ′. Il existe un unique u ∈ K avec
la propriété suivante :

a(u, v − u) ≥ φ(v − u) ∀v ∈ K.

Si a est de plus symétrique, alors u est caractérisé par

u ∈ K et
1

2
a(u, u)− φ(u) = min

v∈K

(1
2
a(v, v)− φ(v)

)
.

Lorsque K = H on obtient comme cas particulier le théorème de Lax-Milgram suivant.

Théorème 3.18 (Lax-Milgram). Soit H un espace de Hilbert réel, a une forme bilinéaire, continue
et coercive sur H et f ∈ H ′. Il existe un unique u ∈ H avec la propriété suivante :

a(u, v) = f(v) ∀v ∈ H.

Si a est de plus symétrique, alors u est caractérisé par
1

2
a(u, u)− f(u) = min

v∈H

(1
2
a(v, v)− f(v)

)
.
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4 Transformation de Fourier pour les fonctions

4.1 Cas des fonctions de L1

Définition 4.1. Soit f ∈ L1(Rn). On définit la transformée de Fourier de f par

f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx (4.1)

où x · ξ désigne le produit scalaire habituel de Rn : x · ξ =
n∑

j=1

xjξj. On note F la transformation de

Fourier en tant qu’application, c’est-à-dire que F(f) = f̂ .

Voici une première propriété de la transformation de Fourier.

Lemme 4.2 (Riemann-Lebesgue). Si f ∈ L1(Rn) alors f̂ est une fonction bornée et uniformément
continue sur Rn, nulle à l’infini (c’est-à-dire que lim

|ξ|→∞
f̂(ξ) = 0). De plus, nous avons la majoration

∥f̂∥L∞ ≤ ∥f∥L1.

Nous avons aussi la proposition suivante.

Proposition 4.3. Soient f, g ∈ L1(Rn). Nous avons que

a) f̂ ∗ g = f̂ ĝ.
b)

∫
Rn f̂ g =

∫
Rn f ĝ.

On utilise dans la preuve du lemme de Riemann-Lebesgue le résultat suivant : toute fonction
continue et nulle à l’infini est uniformément continue.
Fin du cours 7 (07/10/2025).

Introduisons maintenant quelques notations relatives aux multi-indinces et aux dérivées dans
Rn. Un multi-indice est un élément α ∈ Nn. Son module, ou sa longueur, est définie par |α| =
|α1|+· · ·+|αn|. On note ∂j = ∂

∂xj
, ∂α = ∂α1

1 . . . ∂αn
n et (i∂)α = (i∂1)

α1 . . . (i∂n)
αn . Aussi xα = xα1

1 . . . xαn
n

et (ix)α = (ix1)
α1 . . . (ixn)

αn .
Les deux propositions qui suivent montrent que la transformation de Fourier envoie les dérivées

en des puissances et les puissances en des dérivées.

Proposition 4.4. Soit f ∈ L1(Rn) tel que (1 + |x|k)f ∈ L1(Rn), k ∈ N. Alors f̂ ∈ Ck(Rn) et
x̂αf = (i∂ξ)

αf̂ pour tout |α| ≤ k.

Proposition 4.5. Soit f ∈ Ck(Rn) tel que ∂αf ∈ L1(Rn) pour tout |α| ≤ k. Alors ∂̂αf = (iξ)αf̂
pour tout |α| ≤ k.

Un exemple très important de calcul explicite de transformée de Fourier est celui de la gaussienne :

Proposition 4.6. Soit a ∈ C un nombre complexe de partie réelle strictement positive. Nous avons
que

F(e−a|x|2) =
(π
a

)n
2
e−

|ξ|2
4a

où a
n
2 = (

√
a)n et

√
a désigne la racine carrée de a de partie réelle positive.

On verra plus tard que cette formule reste vraie lorsque la parte réelle de a est nulle.

Théorème 4.7 (formule d’inversion dans L1). Soit f ∈ L1(Rn) telle que f̂ ∈ L1(Rn). Alors

f(x) = (2π)−n ̂̂f (−x) = (2π)−n

∫
Rn

eix·ξf̂(ξ) dξ p.p. en x

Donc, pour une telle fonction la transformation de Fourier est inversible et

F−1f(x) = (2π)−n

∫
Rn

eix·ξf(ξ) dξ.
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Remarque. Sous les hypothèses du théorème précédent, nous avons donc que la fonction f est
aussi continue et bornée.
Fin du cours 8 (15/10/2025).

4.2 Cas des fonctions de L2

Nous verrons dans cette partie que l’on peut définir la transformée de Fourier pour des fonctions
de L2(Rn). Pour une telle fonction la formule (4.1) ne peut plus être utilisée car l’intégrande x 7→
e−ix·ξf(x) n’est pas nécessairement intégrable. Nous allons procéder d’une autre manière. Nous avons
besoin du lemme suivant.

Lemme 4.8. Soit φ ∈ C∞
c (Rn). Alors φ̂ ∈ L2(Rn) et ∥φ̂∥L2 = (2π)

n
2 ∥φ∥L2.

Ce lemme nous dit que la transformation de Fourier restreinte à C∞
c (Rn) est une isométrie linéaire

à une constante près pour la norme L2. On peut donc l’étendre par continuité à l’adhérence de C∞
c (Rn)

dans L2. Or C∞
c (Rn) est dense dans L2, donc cette adhérence est L2 tout entier. Ceci nous permet

de poser la définition suivante :

Définition 4.9. La transformation de Fourier sur L2(Rn) est l’extension par continuité pour la
norme L2(Rn) de F

∣∣
C∞

c (Rn)
à L2(Rn) tout entier.

Concrètement, si f ∈ L2(Rn) on prend une suite de fonctions fn ∈ C∞
c (Rn) telles que fn → f

dans L2(Rn) et on pose f̂ = lim
n→∞

f̂n dans L2(Rn).

Remarque. Si f ∈ L1(Rn) ∩ L2(Rn) alors la transformée de Fourier de f en tant que fonction de
L1(Rn) coïncide avec la transformée de Fourier de f en tant que fonction de L2(Rn).

Sur L2, la transformée de Fourier est une isométrie bijective à une constante près.

Théorème 4.10 (Plancherel). Si f ∈ L2 alors f̂ ∈ L2 et ∥f̂∥L2 = (2π)
n
2 ∥f∥L2. De plus, ̂̂

f(x) =
(2π)nf(−x). La transformation de Fourier est une bijection de L2.

4.3 Classe de Schwartz (fonctions à décroissance rapide) et transforma-
tion de Fourier

On appelle multi-indice un élément α ∈ Nn. On définit ∂α = ∂α1
1 . . . ∂αn

n =
(

∂
∂x1

)α1 . . .
(

∂
∂xn

)αn ,
xα = xα1

1 . . . xαn
n , |α| = α1 + . . . αn, α! = α1! . . . αn!

Définition 4.11. On appelle espace de fonctions à décroissance rapide ou encore classe de Schwartz
l’ensemble

S (Rn) = {f ∈ C∞(Rn) tel que xα∂βf soit bornée sur Rn ∀α, β multi-indices}.

La classe de Schwartz S (Rn) est un espace vectoriel métrique complet (espace de Fréchet) avec
comme distance

d(f, g) =
∞∑
n=1

2−n pn(f − g)

1 + pn(f − g)

où
pn(f) = sup

x,|α|≤n

(1 + |x|)n|∂αf(x)|.

Proposition 4.12. La classe de Schwartz S (Rn) munie de la distance d est un espace vectoriel
métrique complet.
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La convergence dans la classe de Schwartz équivaut à la convergence uniforme de tous les xα∂βf .
La transformation de Fourier est une bijection de la classe de Schwartz :

Théorème 4.13. F est un isomorphisme topologique et algébrique de S dans S d’inverse

F−1(f)(x) = (2π)−n

∫
eix·ξf(ξ) dξ

La classe de Schwartz est stable par multiplication par des fonctions dites à croissance lente :

L (Rn) = {f ∈ C∞(Rn) tel que ∀α ∃m ∈ N, C > 0, |∂αf(x)| ≤ C(1 + |x|m)}.

Voici maintenant quelques propriétés de la transformation de Fourier et de la classe de Schwartz :

Proposition 4.14. a) Soit f ∈ L (Rn). Alors l’application S (Rn) ∋ φ 7→ fφ ∈ S (Rn) est
linéaire et continue sur S (Rn).

b) Si f, g ∈ S (Rn) alors f ∗ g ∈ S (Rn) et on a la continuité de l’application bilinéaire S (Rn)×
S (Rn) ∋ (f, g) 7→ f ∗ g ∈ S (Rn).

c) x̂αf = (i∂ξ)
αf̂

d) ∂̂αf = (iξ)αf̂

e) Soient φ et ψ deux fonctions à décroissance rapide. Alors

i)
∫
φ̂ψ =

∫
φψ̂

ii) ⟨φ, ψ⟩L2 =
∫
φψ = (2π)−n

∫
φ̂ψ̂ = (2π)−n⟨φ̂, ψ̂⟩L2 (Parseval)

iii) φ̂ ∗ ψ = φ̂ψ̂

iv) φ̂ψ = (2π)−nφ̂ ∗ ψ̂

Fin du cours 9 (04/11/2025).

5 Distributions tempérées

5.1 Définition et premières propriétés

Définition 5.1. On note par S ′(Rn) ou encore espace de distributions tempérées, le dual de S ,
c’est-à-dire l’ensemble

S ′(Rn) = {u : S (Rn) → C, u linéaire et continue }.

Pour u ∈ S ′, φ ∈ S on note u(φ) = ⟨u, φ⟩ = ⟨u, φ⟩S ′,S .

Proposition 5.2. Nous avons l’équivalence entre les deux affirmations qui suivent :
— u : S → C est distribution tempérée ;
— u est linéaire et ∃C > 0,m ∈ N tels que |⟨u, φ⟩| ≤ Cpm(φ) pour tout φ ∈ S .

Avant de donner des exemples de distributions tempérées, montrons un résultat préliminaire.

Proposition 5.3. Soit Ω un ouvert de Rn et f ∈ L1
loc(Ω) (c’est-à-dire que f est intégrable sur tout

compact de Ω, ou encore f localement intégrable). On suppose que∫
Ω

fφ = 0 ∀φ ∈ C∞
c (Ω).

Alors f = 0 p.p.
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Nous pouvons maintenant donner des exemples de distributions tempérées :
a) Si f est une fonction telle que f

(1+|x|)m ∈ Lp(Rn) pour un certain p ∈ [1,∞] et m ∈ N, on peut
définir la distribution tempérée uf associée à la fonction f par :

⟨uf , φ⟩ =
∫
Rn

fφ ∀φ ∈ S (Rn).

La proposition 5.3 nous permet d’identifier la fonction f à la distribution qui lui est associée.
On peut donc écrire par abus de notation ⟨f, φ⟩ au lieu de ⟨uf , φ⟩.

Nous avons en particulier que toutes les fonctions de Lp(Rn) et toutes les fonctions majorées
par un polynôme définissent une distribution tempérée.

b) Les mesures boreliennes finies µ définissent une distribution tempérée par ⟨µ, φ⟩ =
∫
Rn φdµ.

c) La masse de Dirac δa définie par ⟨δa, φ⟩ = φ(a). Si a = 0 on note δ = δ0.
d) La valeur principale de 1

x
sur R définie par

⟨vp 1

x
, φ⟩ = lim

ε→0

∫
|x|>ε

φ(x)

x
dx =

∫
|x|>1

φ(x)

x
dx+

∫
|x|<1

φ(x)− φ(0)

x
dx.

Opérations sur les distributions tempérées :

— Addition et multiplication par un scalaire.
— Multiplication par une fonction f à croissance lente. Plus précisément, soient u ∈ S ′ et

f ∈ L . On définit fu ∈ S ′ par ⟨fu, φ⟩ = ⟨u, fφ⟩ ∀φ ∈ S .
— Dérivation. Pour u ∈ S ′ et α ∈ Nn on définit ∂αu ∈ S ′ par ⟨∂αu, φ⟩ = (−1)|α|⟨u, ∂αφ⟩.

Si u est une fonction régulière, alors la dérivation au sens des fonctions correspond à la
dérivation au sens des distributions.

— Convolution. On peut faire la convolution entre u ∈ S ′ et f ∈ S en posant ⟨u ∗ f, φ⟩ =
⟨u, f̌∗φ⟩ où f̌(x) = f(−x). On peut montrer que dans ce cas la convolution est une distribution
de type fonction u∗f(x) = ⟨u(y), f(x−y)⟩ et que cette fonction est C∞ à croissance lente. Les
règles usuelles sur la dérivation s’appliquent : pour tout α ∈ Nn nous avons que ∂α(u ∗ f) =
(∂αu) ∗ f = u ∗ (∂αf).

On dit que uj → u dans S ′ si

⟨uj, φ⟩ → ⟨u, φ⟩ ∀φ ∈ S .

L’espace S ′ est complet au sens que toute suite de S ′ qui a la propriété que ⟨uj, φ⟩ est de Cauchy
pour tout φ ∈ S converge dans S ′.
Fin du cours 10 (18/11/2025).

5.2 Transformation de Fourier pour les distributions tempérées

La continuité de la transformation de Fourier de S dans S nous permet de l’étendre par dualité
à S ′ de la manière suivante :

Définition 5.4. Soit u ∈ S ′(Rn). On définit û ∈ S ′(Rn) la transformée de Fourier de u par :

∀φ ∈ S (Rn) ⟨û, φ⟩ = ⟨u, φ̂⟩.

Si f est une fonction de L1 ou de L2, alors f définit une distribution tempérée. On peut donc
calculer sa transformée de Fourier en tant que fonction de L1 ou L2 et aussi en tant que distribution
tempérée. On vérifie aisément que le résultat est le même, dans la mesure où on identifie une fonction
à la distribution qui lui est associée.

La bijectivité de la transformation de Fourier de S dans S et la formule de sa transformée de
Fourier inverse s’étendent sans difficulté par dualité à S ′.
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Théorème 5.5. La transformée de Fourier est une bijection continue de S ′(Rn) dans S ′(Rn) d’in-
verse F−1 : u→ (2π)−nF(ǔ), où ∀φ ∈ S (Rn), ⟨ǔ, φ⟩ = ⟨u, φ̌⟩ et φ̌(x) = φ(−x).

Voici enfin quelques propriétés de la transformation de Fourier sur S ′ qui s’obtiennent immédia-
tement par dualité à partir des propriétés correspondantes sur S ′.

Théorème 5.6. a) Si u ∈ S ′(Rn) alors ∀α ∈ Nn nous avons que ∂̂αu = (iξ)αû et x̂αu = (i∂ξ)
αû.

b) Si a ∈ S (Rn), u ∈ S ′(Rn) alors û ∗ a = ûâ

6 Distributions sur un ouvert

6.1 Définition

Les distributions tempérées ont le gros avantage d’être adaptées à la transformation de Fourier,
mais elles ont aussi deux gros désavantages : on peut les définir sur Rn seulement et il faut faire des
hypothèses sur le comportement à l’infini. Pour remédier à cela, nous introduisons les distributions
« classiques » sur un ouvert Ω arbitraire de Rn.

Définition 6.1. On définit D(Ω) = C ∞
c (Ω) l’espace des fonctions C∞ à support compact sur Ω. On

dit que φj → φ dans D(Ω) si pour tout α on a que ∂αφj → ∂αφ uniformément et si les φj sont à
support dans un même compact : il existe un compact K ⊂ Ω tel que suppφj ⊂ K pour tout j.

Une distribution sur Ω est alors définie comme un élément du dual de D(Ω). Comme nous n’avons
pas défini la topologie de D(Ω), ici la notion de dual doit être comprise par rapport à la convergence
des suites. Plus précisément, nous avons la définition suivante :

Définition 6.2. L’espace D ′(Ω) des distributions sur Ω est formé des applications u : D(Ω) → C
linéaires et séquentiellement continues : si φj → φ dans D(Ω) alors u(φj) → u(φ). Comme pour les
distributions tempérées, on note u(φ) = ⟨u, φ⟩ = ⟨u, φ⟩D ′,D .

On peut caractériser les distributions dans D ′(Ω) en termes de p̃m(φ) = sup
x,|α|≤m

|∂αφ(x)|.

Proposition 6.3. Nous avons l’équivalence entre les deux propriétés suivantes :
a) u ∈ D ′(Ω) ;
b) u : D(Ω) → C linéaire et pour tout compact K ⊂ Ω il existe C > 0 et m ∈ N tels que

|⟨u, φ⟩| ≤ Cp̃m(φ) pour tout φ ∈ D(Ω) à support dans K.

Exemples de distributions sur Ω :
— Toute fonction f ∈ L1

loc(Ω) définit une distribution uf ∈ D ′(Ω) par ⟨uf , φ⟩ =
∫
Ω
fφ. La

proposition 5.3 nous permet d’identifier f et uf . On note aussi ⟨uf , φ⟩ = ⟨f, φ⟩ =
∫
Ω
fφ.

— Les mesures µ localement finies sur Ω définissent une distribution par ⟨µ, φ⟩ =
∫
Ω
φdµ.

— La masse de Dirac δa définie par ⟨δa, φ⟩ = φ(a). Si a = 0 on note δ = δ0.
— Toute distribution tempérée dans S ′(Rn) définit une distribution dans D ′(Rn). C’est une

conséquence immédiate de l’inclusion continue de D(Rn) dans S (Rn).

6.2 Opérations sur les distributions

Voici les opérations usuelles sur les distributions :
— Addition et multiplication par un scalaire.
— Multiplication par une fonction f ∈ C∞(Ω). Si u ∈ D ′(Ω) et f ∈ C∞(Ω) on définit fu ∈ D ′(Ω)

par ⟨fu, φ⟩ = ⟨u, fφ⟩ ∀φ ∈ D(Ω).
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— Dérivation. Pour u ∈ D ′(Ω) et α ∈ Nn on définit ∂αu ∈ D ′(Ω) par ⟨∂αu, φ⟩ = (−1)|α|⟨u, ∂αφ⟩.
Si u est une fonction régulière, alors la dérivation au sens des fonctions correspond à la

dérivation au sens des distributions.
La formule usuelle pour la dérivée d’un produit reste vraie pour les distributions. Si f ∈

C∞(Ω) et u ∈ D ′(Ω), nous avons que ∂j(fu) = ∂jfu+ f∂ju.
— Convolution. On peut faire la convolution entre u ∈ D ′(Ω) et f ∈ D(Ω) en posant ⟨u∗ f, φ⟩ =

⟨u, f̌∗φ⟩ où f̌(x) = f(−x). On peut montrer que dans ce cas la convolution est une distribution
de type fonction u∗f(x) = ⟨u(y), f(x−y)⟩ et que cette fonction est C∞. Les règles usuelles sur
la dérivation s’appliquent : pour tout α ∈ Nn nous avons que ∂α(u∗f) = (∂αu)∗f = u∗(∂αf).

Sur un intervalle de R, une distribution de dérivée nulle est nécessairement constante :

Proposition 6.4. Soit I un intervalle ouvert de R et u ∈ D ′(I). Nous avons l’équivalence entre
u′ = 0 dans D ′(I) et u = C pour une certaine constante C.

Fin du cours 11 (25/11/2025).
Enfin, nous avons la formule des sauts qui dit que si f est une fonction C1 par morceaux sur un

intervalle de R, alors sa dérivée au sens des distributions est donnée par f ′ (c’est-à-dire qu’on dérive
chaque morceau) plus la somme des masses de Dirac en chaque point de discontinuité multipliées par
le saut de la fonction au point respectif.

Proposition 6.5 (formule des sauts). Soit I =]a, b[ un intervalle ouvert (pas nécessairement borné)
de R et f une fonction C1 par morceaux sur I avec un nombre fini de discontinuités {x0, x1, . . . , xn} :
f est C1 sur I \ {x0, x1, . . . , xn}, admet un saut et des dérivées à gauche et à droite dans chaque
xj. Soit uf la distribution associée à f et uf ′ la distribution associée à f ′ (fonction définie p.p., plus
précisément partout sauf en x0, x1, . . . , xn). Nous avons la formule des sauts suivante :

(uf )
′ = uf ′ +

n∑
j=0

(
f(xj+)− f(xj−)

)
δxj

dans D ′(I).

6.3 Suites convergentes de distributions

Définition 6.6. On dit que uj → u dans D ′(Ω) si ⟨uj, φ⟩ → ⟨u, φ⟩ pour tout φ ∈ D(Ω).

Nous avons que :
— Si uj → u dans D ′(Ω) et α est un multi-indice, alors ∂αuj → ∂αu dans D ′(Ω).
— Si uj → u dans D ′(Ω) et f ∈ C∞(Ω) alors fuj → fu dans D ′(Ω).
— D ′(Ω) est complet au sens suivant : si la suite uj ∈ D ′(Ω) est telle que la suite ⟨uj, φ⟩ est de

Cauchy pour tout φ ∈ D(Ω), alors la suite uj converge dans D ′(Ω).

6.4 Support d’une distribution

Définition 6.7. — Soit u ∈ D ′(Ω) et ω un ouvert inclus dans Ω. On définit la restriction de u
à ω comme la distribution u

∣∣
ω
∈ D ′(ω) suivante : ⟨u

∣∣
ω
, φ⟩ = ⟨u, φ̃⟩ pour tout φ ∈ D(ω). Ici

φ̃ ∈ D(Ω) désigne l’extension de φ à Ω par des valeurs nulles en dehors de ω.
— On dit que u s’annule sur ω si u

∣∣
ω
= 0 dans D ′(ω).

— Soit u ∈ D ′(Ω). On définit supp(u) le support de u comme le complémentaire du plus grand
ouvert où u s’annule.

Par manque de temps, nous admettrons les deux énoncés qui suivent. Le premier nous permet de
justifier l’existence du plus grand ouvert où une distribution s’annule.

Proposition 6.8. Soit u ∈ D ′(Ω) une distribution. Si ωi, i ∈ I, forment une famille d’ouverts de Ω
tels que u = 0 sur ωi pour tout i ∈ I, alors u = 0 sur

⋃
i∈I
ωi.
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Le deuxième énoncé affirme que les distributions à support ponctuel sont des combinaisons li-
néaires de dérivées de la masse de Dirac.

Proposition 6.9. Soit u ∈ D ′(Ω) et a ∈ Ω. Nous avons que supp(u) ⊂ {a} si et seulement si u est
combinaison linéaire de ∂αδa, α ∈ Nn.

6.5 Espaces de Sobolev H1(Ω) et H1
0(Ω)

Définition 6.10. Soit Ω un ouvert de Rn. On définit

H1(Rn) = {u ∈ L2(Ω) ; ∂ju ∈ L2(Ω) ∀j ∈ {1, . . . , n}}

muni de la norme

∥u∥H1(Ω) =
(
∥u∥2L2(Ω) +

n∑
j=1

∥∂ju∥2L2(Ω)

) 1
2
.

Au-dessus, la dérivée ∂ju doit être comprise au sens des distributions et son appartenance à L2(Ω)
signifie que cette distribution est associée à une fonction de L2(Ω). L’espace H1

0 (Ω) est défini comme
l’adhérence de D(Ω) dans H1(Ω).

Proposition 6.11. Les espaces H1(Ω) et H1
0 (Ω) sont des espaces de Hilbert avec le produit scalaire

⟨u, v⟩H1(Ω) = ⟨u, v⟩L2(Ω) +
n∑

j=1

⟨∂ju, ∂jv⟩L2(Ω)

7 Applications aux EDP
La notion de distribution est un outil très important et très pratique dans l’étude des EDP.

Cela introduit une notion « globale » de solution d’une EDP. En effet, considérons P (x, ∂) =∑
|α|≤m aα(x)∂

α un opérateur différentiel à coefficients aα ∈ C∞(Ω). On peut alors considérer que
l’équation P (x, ∂)u = f a lieu dans D ′(Ω), ou encore au sens des distributions. En effet, par la théorie
des distributions on voit immédiatement que P (x, ∂)u définit une distribution. L’égalité P (x, ∂)u = f
énonce alors simplement l’égalité de deux distributions. De plus, lorsque u est régulière, u ∈ Cm(Ω),
on sait que P (x, ∂)u au sens des distributions correspond à P (x, ∂)u au sens classique. Pour un tel
u, l’équation P (x, ∂)u = f au sens des distributions est la même chose qu’au sens classique. Dire que
l’équation P (x, ∂)u = f est satisfaite au sens des distributions permet de donner un sens très général
à cette égalité sans pour autant perdre des informations. On gagne sur tous les plans.

Regardons maintenant plus en détail que veut dire l’égalité P (x, ∂)u = f au sens des distributions.
Avec les définitions du cours, nous avons l’équivalence suivante :

P (x, ∂)u = f dans D ′(Ω) ⇔
∑
|α|≤m

(−1)|α|⟨u, ∂α(aαφ)⟩ = ⟨f, φ⟩ ∀φ ∈ D(Ω).

Lorsque u, f ∈ L1
loc(Ω), cela peut s’écrire sous la forme

P (x, ∂)u = f dans D ′(Ω) ⇔
∑
|α|≤m

(−1)|α|
∫
Ω

u ∂α(aαφ) =

∫
Ω

fφ ∀φ ∈ D(Ω).

Cette formulation est parfois dite la formulation faible de l’équation P (x, ∂)u = f . Elle a l’avantage
de demander moins de régularité sur les coefficients aα. On voit en effet que la formulation au-dessus
a un sens lorsque aα ∈ Cm(Ω) seulement. En fait, même la régularité Cm pour aα peut être superflue.
Voici un exemple :
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Proposition 7.1. Soit Ω un ouvert de Rn, f ∈ L2(Ω), b ∈ L∞(Ω) et ai,j ∈ L∞(Ω) pour tout
i, j ∈ {1, . . . , n}. Supposons de plus qu’il existe ε > 0 tel que b > ε p.p. et

∑
i,j ai,j(x)ξiξj ≥ ε|ξ|2

pour tout ξ ∈ Rn et p.p. en x. Alors le problème suivant
−
∑
i,j

∂i(ai,j∂ju) + bu =f dans D ′(Ω)

u
∣∣
∂Ω
=0

admet une unique solution (dans un sens à préciser).

Au-dessus, la condition au bord u
∣∣
∂Ω
= 0 s’exprime par le fait que u ∈ H1

0 (Ω). En effet, on peut
montrer que les fonctions de H1(Ω) admettent une restriction au bord (on dit qu’elles admettent
une trace au bord) et qu’une fonction de H1(Ω) est nulle au bord si et seulement si elle appartient
à H1

0 (Ω). La proposition au-dessus est une application du théorème de Lax-Milgram dans H1
0 (Ω).

Cette proposition s’applique par exemple à l’opérateur I−∆. Cet opérateur peut aussi être étudié
dans Rn à l’aide de la transformation de Fourier qui nous donne en plus la formule de la solution. On
montre ainsi qu’il y a une unique solution u ∈ S ′(Rn) de l’équation u−∆u = f avec f ∈ S ′(Rn) ;
cette solution est donnée par

u = F−1
( 1

1 + |ξ|2
f̂
)
.

Si on note E = F−1
(

1
1+|ξ|2

)
, cela s’écrit sous la forme u = E ∗ f lorsque la convolution a un sens.

On voit aussi que E − ∆E = δ. Cela nous amène à définir la notion de solution élémentaire d’un
opérateur différentiel.

Définition 7.2. Soit P (∂) =
∑

|α|≤m aα∂
α un opérateur différentiel à coefficients constants aα ∈ C.

On dit que E ∈ D ′(Rn) est une solution élémentaire de l’opérateur P (∂) si P (∂)E = δ dans D ′(Rn).

Comme pour l’opérateur I − ∆, on vérifie aisément qu’une solution de l’équation P (∂)u = f
est donnée, au moins formellement, par la convolution avec une solution élémentaire E de P (∂) :
u = E ∗ f .
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