Feuille X: Raisins dans Kougelhof?¹

Exercice 1. Pour $n \in \mathbb{N}^*$, posons $a_n = \sum_{k=1}^n \frac{(-1)^{n-1}}{n}$. Cette exercice est composé de 2 parties.

- 1. Ici, nous allons calculer la limite $\lim_{n\to\infty} a_n$.
 - (i) Pour tout $x \in [0; +\infty[$ et $n \in \mathbb{N}$, montrer l'identité $\sum_{k=1}^{n} (-x)^{k-1} = \frac{1 (-x)^n}{1+x}$.
 - (ii) En déduire l'identité suivante: $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} = \ln 2 + (-1)^{n-1} \int_{0}^{1} \frac{x^{n}}{1+x} dx$.
 - (iii) Montrer que $0 \leqslant \frac{x^n}{1+x} \leqslant x^n$ pour tout $x \in [0;1]$. En déduire la limite $\lim_{n \to \infty} \int_0^1 \frac{x^n}{1+x} dx$.
 - (iv) Conclure.
- 2. Fixons $p,q \in \mathbb{N}^*$, et on pose $b_n = \sum_{k=1}^{pn} \frac{1}{2k-1} \sum_{k=1}^{qn} \frac{1}{2k}$. Dans cette partie, on admet que la suite $c_n = \sum_{k=1}^{n} \frac{1}{k} \ln n$ converges à la constante appelée la **constante d'Euler-Mascheroni**, notons la par
 - (i) Montrer que $b_n = c_{2pn} \frac{1}{2}c_{pn} \frac{1}{2}c_{qn} + \ln 2 + \frac{1}{2}(\ln p \ln q)$ pour tout $n \in \mathbb{N}^*$.
 - (ii) En déduire la limite $\lim_{n\to\infty} \overline{b}_n$.
 - (iii) Que peut-on observer?

Exercice 2. (Une suite logistique) Soit μ un nombre réel tel que $0 < \mu \leq 4$. Une suite réelle $\{x_n\}_{n \in \mathbb{N}}$ définie par

$$x_{n+1} = \mu x_n (1 - x_n), \qquad x_0 \in [0; 1]$$

est appelée une suite logistique.

- 1. Monrtrer que pour tout $n \in \mathbb{N}$, x_n appartient à l'intervalle [0;1].
- 2. Montrer que pour $0 < \mu < 1$, $\lim_{n\to\infty} x_n = 0$.
- 3. Supposons que $\mu = 4$. Soit $a \in \mathbb{R}$ un nombre réel vérifiant $x_0 = \sin^2(a\pi)$.
 - (i) Déterminer x_n pour tout $n \in \mathbb{N}$.
 - (ii) Peut-on déterminer les valeurs de a vérifiant $\lim_{n\to\infty} x_n = 0$?
- 4. Que peut-on observer dans des cas $1 \le \mu < 4$? On pourra programmer pour faire une expérience... à vous de voir!

Exercice 3. (*Principe d'inclusion-exclusion*) Soit E un ensemble et soient A_1, A_2, \dots, A_n $(n \in \mathbb{N}^*)$ des ensembles finis.

- 1. Ici, on va exprimer Card $\left(\bigcup_{i=1}^{n} A_i\right)$ en fonction des intersections de A_i $(1 \le i \le n)$.
 - (i) Montrer la formule $\operatorname{Card}(A_1 \cup A_2) = \operatorname{Card}(A_1) + \operatorname{Card}(A_2) \operatorname{Card}(A_1 \cap A_2)$.
 - (ii) Montrer la formule suivante par récurrence :

$$\operatorname{Card}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{r=1}^{n} (-1)^{r-1} \sum_{1 \leqslant i_{1} < i_{2} < \dots < i_{r} \leqslant n} \operatorname{Card}\left(\bigcap_{k=1}^{r} A_{i_{k}}\right).$$

1. Une expression inspirée du mathématicien Jean-Pierre Serre.

- 2. Soit $n \in \mathbb{N}^*$ et soit \mathfrak{S}_n l'ensemble des applications bijectives de $[1, n] := \{1, 2, \dots, n\}$ vers lui-même. Soit x_n le nombre des applications $f \in \mathfrak{S}_n$ pour laquelle il n'existe pas $i \in [1, n]$ tel que f(i) = i.
 - (i) Pour $i \in [1, n]$, soit S_i l'ensemble des applications $f \in \mathfrak{S}_n$ vérifiant f(i) = i. Montrer que

$$x_n = \operatorname{Card}(\mathfrak{S}_n) - \operatorname{Card}\left(\bigcup_{i=1}^n S_i\right).$$

- (ii) Soit $r \in [1, n]$. Pour les entiers $1 \le i_1 < i_2 < \cdots < i_r \le n$, Calculer $Card(S_{i_1} \cap S_{i_2} \cap \cdots \cap S_{i_r})$.
- (iii) Conclure.

Exercice 4. (\mathbb{N} et \mathbb{R}) Ici, on va comparer les cardinaux de \mathbb{N} et \mathbb{R} .

- 1. Donner un exemple d'une application bijective f entre l'intervalle]0,1[et \mathbb{R} .
- 2. Soit $g:]0, 1[\longrightarrow]0, 1]$ une fonction définie par

$$g(x) = \begin{cases} 2x & si \exists n \in \mathbb{N}^* \ t.q. \ x = \frac{1}{2^n}, \\ x & sinon. \end{cases}$$

Montrer que g est une application bijective. En conclure que l'intervalle]0,1] et l'ensemble \mathbb{R} ont la même cardinalité.

D'ici, on va montrer qu'il n'existe pas une application surjective de \mathbb{N}^* vers]0,1]. Pour cela, on exprime un nombre réel $x \in]0,1]$:

$$x = \sum_{k=1}^{\infty} \frac{x_k}{10^k}, \qquad x_k \in \mathbb{Z} \cap [0, 9].$$

Comme $1 = 0,999999999\cdots$, pour un nombre x admettant un $N \in \mathbb{N}^*$ tel que $x_N \neq 0$ et $x_l = 0$ pour tout l > N, on adopte l'expression

$$x = \sum_{k=1}^{N-1} \frac{x_k}{10^k} + \frac{x_N - 1}{10^N} + \sum_{k=N+1}^{\infty} \frac{9}{10^k}.$$

Soit $F: \mathbb{N}^* \to]0,1]$ une application. Pour $n \in \mathbb{N}^*$, notons le développement décimal de F(n) par

$$\sum_{k=1}^{\infty} \frac{a_k^n}{10^k}.$$

3. Définissons la suite des entiers positifs $\{b_k\}_{k\in\mathbb{N}^*}$ par

$$b_k = \begin{cases} 1 & si \ a_n^n \ est \ paire, \\ 2 & si \ a_n^n \ est \ impaire. \end{cases}$$

2

Vérifier qu'il n'existe pas $n \in \mathbb{N}^*$ tel que $F(n) = \sum_{k=1}^{\infty} \frac{b_k}{10^k}$.

4. En déduire qu'il n'existe pas une application surjective entre \mathbb{N} et \mathbb{R} .

Exercice 5. (Fraction continue) Fixons un nombre réel $x \in \mathbb{R}$.

Posons $q_0 = \lfloor x \rfloor$, la partie entière de x, i.e., le plus grand entier qui est inférieur ou égale à x. Par définition, on a $0 \le x - \lfloor x \rfloor < 1$. Si ce dernier $x - \lfloor x \rfloor$ n'est pas nul, le nombre $x_1 := \frac{1}{x - \lfloor x \rfloor}$ est un réel plus grand que 1 et on a

$$x = \lfloor x \rfloor + (x - \lfloor x \rfloor) = q_0 + \frac{1}{\frac{1}{x - |x|}} = q_0 + \frac{1}{x_1}.$$

Posons $q_1 := \lfloor x_1 \rfloor$. Si $x_1 - q_1 = 0$, on s'arrête ici. Sinon, on répète la même chose. Comme $0 < x_1 - q_1 < 1$, le nombre $x_2 := \frac{1}{x_1 - q_1}$ est un réel plus grand que 1 et on a

$$x = q_0 + \frac{1}{x_1} = q_0 + \frac{1}{q_1 + (x_1 - q_1)} = q_0 + \frac{1}{q_1 + \frac{1}{x_2}}.$$

... Posons $q_n = \lfloor x_n \rfloor$ et $x_{n+1} = \frac{1}{x_n - q_n}$ si x_n n'est pas entier. On a

$$x = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cfrac{1}{\ddots \cfrac{\ddots}{q_n + \cfrac{1}{x_{n+1}}}}}}.$$

On notera cette fraction monstrueuse comme $[q_0, q_1, q_2, \cdots, q_n, x_{n+1}]$.

- 1. Ici, on montre que x est un nombre rationnel si et seulement si la procédure ci-dessus se termine en nombre fini d'étape.
 - (0) Vérifier que s'il existe $q_0, q_1, \dots, q_n \in \mathbb{Z}$ tels que $x = [q_0, q_1, \dots, q_n]$ et que q_1, q_2, \dots, q_n soient strictement positifs, alors, x est un nombre rationnel.
 - (i) Soient $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $x = \frac{p}{q}$ et que p et q sont premiers entre eux, et soient $p_1, q_1 \in \mathbb{N}^*$ tels que $x_1 = \frac{p_1}{q_1}$ et que p_1 et q_1 sont premiers entre eux. Montrer que $0 < q_1 < q$.
 - (ii) En déduire que si x est un nombre rationnel, la procédure ci-dessus (pour définir les q_i) se termine en nombre fini d'étape.
- 2. Pour $x = \sqrt{2}, \sqrt{3}$ et $x = \frac{1+\sqrt{5}}{2}$ (le nombre d'or), déterminer la suite $\{q_n\}_{n\in\mathbb{N}}$. Si cela vous plait, déterminer la suite $\{q_n\}_{n\in\mathbb{N}}$ pour $x = \sqrt{199}$.
- 3. Sont-ils rationnels?

Exercice 6. (Projection stéréographique) Soit $\mathbb S$ la sphère d'unité $\{(x,y,z)\in\mathbb R^3\,|\,x^2+y^2+z^2=1\}$. Posons $N=(0,0,1)\in\mathbb S$. Pour un point $P\in\mathbb S\backslash\{N\}$, soit l_P la droite passant les deux points N et P. Nous allons étudier l'application

$$\pi: \mathbb{S}\backslash\{N\} \longrightarrow \Pi := \{(x, y, 0) \mid x, y \in \mathbb{R}\}; \quad P \longmapsto Q,$$

où $Q \in \Pi$ est le point vérifiant $\{Q\} = \Pi \cap l_P$, c'est-à-dire, l'intersection de la droite l_P et le plan Π . Une telle application s'appelle une **projection stéréographique**. ²

- 1. Soit $l \subset \Pi$ une droite et soit Π_l le plan (dans \mathbb{R}^3) incluant le point N et la droite l.
- 2. On pourra définir une application similaire en prenant S := (0,0,-1) à la place du point N.

- i) Vérifier que l'image réciproque $\pi^{-1}(l)$ est égale à l'intersection de $\mathbb{S}\setminus\{N\}$ et le plan Π_l .
- ii) En déduire que $\pi^{-1}(l)$ est un cercle privé du point N.
- 2. Pour un point Q = (x, y, 0), calculer son image réciproque $P = \pi^{-1}(Q)$. (Indication: la droite passant les points N et Q est paramétrée comme suit : (0, 0, 1) + t(-x, -y, 1).)
- 3. Soit $C \subset \Pi$ un cercle, i.e., $C = \{(x, y, 0) | (x a)^2 + (y b)^2 = R^2\}$ où $(a, b) \in \mathbb{R}^2$ et $R \in \mathbb{R}_+^*$.
 - i) Pour $Q \in C$, vérifier que l'image réciproque $P = (X, Y, Z) \in \mathbb{S}$ du point Q par π vérifie l'équation suivante :

$$-2aX - 2bY + (R^2 - a^2 - b^2)Z = R^2 - a^2 - b^2 - 1.$$

ii) En déduire que l'image réciproque du cercle C par π est un cercle.

Ainsi, une droite ou un cercle dans le plan \mathbb{R}^2 , donc dans \mathbb{C} via la correspondance $(a,b)\longleftrightarrow a+bi$, correspond à un cercle (privé à un point, au maximum) sur la sphère \mathbb{S} . Que dit-on le résultat (de cours) sur la transformation de Möbius, alors?

Exercice 7. (Petit théorème de Fermat) On donne deux preuves du petite théorème de Fermat.

- 1. Soit p un nombre premier supérieur à 2.
 - (i) Pour tout entier k entre 1 et p-1, montrer que le coefficient binomial $\binom{p}{k}$ est divisible par p.
 - (ii) Montrer, par récurrence, que $p|a^p a$ pour tout entier naturel a.
 - (iii) En déduire que si a et p sont premier entre eux, $a^{p-1} 1$ est divisible par p.
- 2. Soient p un nombre premier et $a \in \mathbb{N}$ un entier qui n'est pas divisible par p. Posons $R_p = \{1, 2, \dots, p-1\}$. Soit $f: R_p \to R_p$ l'application définie par f(i) = j où j est l'élément de R_p vérifiant $ai \equiv j \mod p$.
 - (i) Montrer que l'application f est bijective. Indication : Montrer que f est injective.
 - (ii) Montrer que $a^{p-1}(p-1)!$ est congru à (p-1)! modulo p. Indication: Montrer que $a^{p-1}(p-1)! \equiv f(1) \cdot f(2) \cdots f(p-1) \mod p$ et en déduire.
 - (iii) En déduire que $a^{p-1} \equiv 1 \mod p$.

Exercice 8. (Théorème de Wilson)

Soit p un nombre premier. Le but de cet exercice est de montrer le théorème de Wilson :

$$(p-1)! \equiv -1 \mod p$$
.

Pour p = 2, c'est immédiat, donc on suppose que p > 2 dans la suite. Posons

$$R_p = \{ n \in \mathbb{N} \mid 0 < n < p \} = \{1, 2, \dots, p - 1\}.$$

- 1. Soit $i: R_p \longrightarrow R_p$ qui associe k à l vérifiant $kl \equiv 1 \mod p$.
 - i) Montrer que l'application i est bien-définie.
 - ii) Montrer que l'application i est bijective.
- 2. Montrer qu'il existe deux éléments de R_p , disons x_+ et x_- , tels que $i(x_\pm) = x_\pm$. Préciser-les. (Indication : i(x) = x implique $x^2 1 = (x + 1)(x 1) \equiv \cdots [p]$.)
- 3. Posons $S_p = R_p \setminus \{x_+, x_-\}$. On considère l'application $I: S_p \to S_p$ définie par I(x) = i(x).
 - i) Montrer que l'application I est bien-définie.
 - ii) Montrer qu'il existe $\widetilde{S}_p \subset S_p$ tel que $S_p = \widetilde{S}_p \coprod I(\widetilde{S}_p)$.
- 4. En déduire que

$$(p-1)! = \prod_{x \in R_p} x = (x_+ x_-) \prod_{x \in \tilde{S}_p} (xI(x)).$$

5. Conclure.

- **Exercice 9.** 1. Soit n un entier plus grand que 1. Montrer que l'entier n est un nombre premier si et seulement si tout nombre premier, qui ne dépasse pas \sqrt{n} , ne divise pas n.
 - 2. (L. Euler) Vérifier que, pour tout entier $0 \le n < 40$, l'entier $n^2 + n + 41$ est un nombre premier et que pour n = 40 et 41, ils ne le sont pas.
 - 3. Existe-t-il un entier K tel que $n^2 + n + K$ est un nombre premier pour tout $n \in \mathbb{N}$ sauf n = K 1, K?

 Justifier votre réponse.

Exercice 10. (Principe de RSA) Soient $p, q \in \mathbb{N}^*$ deux nombres premiers distincts > 2. Posons

$$R = \{\, n \in \mathbb{N} \mid 0 < n < pq \text{ } et \operatorname{PGCD}(n,pq) = 1 \, \exists m \in R \text{ } t.q. \text{ } PGCD(mn,pq) = 1\}.$$

- 1. Calculer le nombre M d'éléments de R.
- 2. Soit $a \in R$. Pour $i \in R$, montrer qu'il existe $j \in R$ tel que $ai \equiv j$ [pq]. Dans la suite, on considère l'application $f: R \to R$ définie par f(i) = j.
- 3. Montrer que f est injective. En déduire que f est bijective.
- 4. En déduire qu'il existe $m \in \mathbb{N}^*$ tel que $m \leq M$ et que $f^m = \operatorname{Id}_R$. (Indication : Pour $i \in R$, étudier la partie $R_i = \{ f^k(i) \mid k = 1, 2, \dots \}$ de R.)
- 5. Montrer que l'entier m de la question précédent est un diviseur de M.
- 6. En déduire que, pour tout $a \in R$, on $a \ a^M \equiv 1 \ [pq]$.

Exercice 11. 1. Soit $n \in \mathbb{N}$ un nombre impaire. Montrer qu'il existe un polynôme réel $F_n(y) \in \mathbb{R}[y]$ tel que $F_n(\sin x) = \sin nx$.

2. Posant n = 2m + 1. En analysant les zéros du polynôme F_n , vérifier que le polynôme $F_n(y)$ est un multiple de

$$y \prod_{j=1}^{m} \left(1 - \frac{y^2}{\sin^2\left(\frac{j}{n}\pi\right)} \right).$$

3. En déduire la formule suivante :

$$\sin nx = n\sin x \prod_{i=1}^{m} \left(1 - \frac{\sin^2 x}{\sin^2\left(\frac{j}{n}\pi\right)}\right).$$

Exercice 12. Soit $n \in \mathbb{N}^*$. Posons $\mathcal{P}_n := \{P \in \mathbb{R}[X] | P \text{ est unitaire de degré } n\}$. Le but de cet exercice est de montrer

$$\min_{P \in \mathcal{P}_n} \max_{x \in [-1, -1]} |P(x)| = \frac{1}{2^{n-1}}.$$

- 1. On définit une suite de polynômes $T_n \in \mathbb{R}[X]$: $T_0 = 1$, $T_1 = X$, $T_{n+2} = 2XT_{n+1} T_n$ pour $n \in \mathbb{N}$.
 - (i) Montrer que le polynôme T_n est un polynôme de degré n.
 - (ii) Montrer que $T_n(\cos \theta) = \cos(n\theta)$ pour tout $n \in \mathbb{N}^*$.

Le polynôme T_n est appelé **polyôme de Tchebyscheff** de degré n.

- 2. Montrer que $Q_n := \frac{1}{2^{n-1}} T_n \in \mathcal{P}_n$.
- 3. Montrer que $\max_{x \in [-1,1]} |Q_n(x)| = \frac{1}{2^{n-1}}$ et que

$$\left\{ x \in [-1, 1] \mid |Q_n(x)| = \frac{1}{2^{n-1}} \right\} = \left\{ \cos \left(\frac{\pi k}{n} \right) \mid k = 0, 1, \dots, n \right\}.$$

4. Conclure.

Indication: Montre par l'absurde, i.e., supposons qu'il existe $P \in \mathcal{P}_n$ tel que $\max_{x \in [-1,1]} |P(x)| < \frac{1}{2^{n-1}}$. Compter le nombre de zéros de $P - Q_n$ dans [-1,1] en appliquant le théorème des valeurs intermédiaires.