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PLUG-IN ESTIMATION OF LEVEL SETS IN A NON-COMPACT SETTING
WITH APPLICATIONS IN MULTIVARIATE RISK THEORY
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Abstract. This paper deals with the problem of estimating the level sets L(c) = {F (x) ≥ c}, with
c ∈ (0, 1), of an unknown distribution function F on R2

+. A plug-in approach is followed. That is,
given a consistent estimator Fn of F , we estimate L(c) by Ln(c) = {Fn(x) ≥ c}. In our setting no
compactness property is a priori required for the level sets to estimate. We state consistency results
with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are
motivated by applications in multivariate risk theory. In this sense we also present simulated and real
examples which illustrate our theoretical results.
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Introduction

The problem: background and motivations

The problem of estimating level sets of an unknown function (for instance of a density function and more
recently a regression function) has received many attention in the last decade. In particular the estimation of
density level sets has been studied in Polonik [26], Tsybakov [34], Báıllo et al. [3], Báıllo [2], Cadre [8], Rigollet
and Vert [28]. The estimation of regression level sets in a compact setting has been analyzed in Cavalier [10],
Biau et al. [6], Laloë [22].
An alternative approach, based on the geometric properties of the compact support sets, has been presented by
Hartigan [20], Cuevas and Fraiman [12], Cuevas and Rodŕıguez-Casal [14]. The problem of estimating general
level sets under compactness assumptions has been discussed by Cuevas et al. [13]. The asymptotic behaviour
of minimum volume sets and of a generalized quantile process is analyzed by Polonik [27].
The motivation of this research field lies in a large number of possible applications: mode estimation (Müller and
Sawitzki [24]; Polonik [26]), clustering (Biau et al. [6]), abnormal behavior in a system (Báıllo et al. [4]; Báıllo et
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al. [3]; Báıllo [2]), study of spherical data (Cuevas et al. [13]), set estimation (Cuevas and Rodŕıguez-Casal [14]).

Non compact case: our proposal

In this paper we consider the problem of estimating the level sets of a bivariate distribution function F . As in
the density or regression case, this research field is motivated by practical applications. In particular the pur-
pose of this paper is to use the estimation of level sets of F in order to estimate some new bivariate risk measures.

First, we provide a consistent estimator of the level set

L(c) = {F (x) ≥ c}, for c ∈ (0, 1).

To this end we consider a plug-in approach (e.g. see Báıllo et al. [3]; Rigollet and Vert [28]; Cuevas et al. [13]),
that is, L(c) is estimated by

Ln(c) = {Fn(x) ≥ c}, for c ∈ (0, 1),

where Fn is a consistent estimator of F .
The regularity properties of F and Fn as well as the consistency properties of Fn will be specified in the
statements of our theorems. A special issue in our work is that we do not assume any compactness property
for the level sets we estimate. This requires special attention in the statement of the problem.
In order to provide consistency results we define two proximity criteria between sets. A standard choice is the
volume of the symmetric difference. Another natural criterion is given from the Hausdorff distance that corre-
sponds to an intuitive notion of “physical proximity” between sets. Our consistency properties are stated with
respect to these two criteria under reasonable assumptions on F and Fn (Theorems 2.1 - 3.1). These results
are based on a slight modification of Proposition 3.1 in the PhD Thesis of Rodŕıguez-Casal [29] (Proposition 1.1).

Concerning our application in bivariate risk theory we recall first the definition of the bivariate Value-at-Risk
(for details see Embrechts and Puccetti [17]). Then we introduce a new definition for the bivariate Conditional
Tail Expectation. We propose an estimator for this new risk measure using plug-in approach for level sets and
provide consistency result (Theorem 4.1).

The paper is organized as follows. We introduce some notation, tools and technical assumptions in Section 1.
Consistency and asymptotic properties of our estimator of L(c) are given in Sections 2 and 3. In Section 4 we
present some applications in the field of multivariate risk theory. Illustrations with simulated and real data are
presented in Section 5. Section 5.2.2 summarizes and briefly mentions directions for future research. Finally,
some auxiliary results and more technical proofs are postponed to Section 6.

1. Notation and preliminaries

In this section we introduce some notation and tools which will be useful later.

Let N∗ = N \ {0}, R2
+
∗ = R2

+ \ (0, 0), F the set of continuous distribution functions R2
+ → [0, 1] and F ∈ F .

Given an i.i.d sample {Xi}n
i=1 in R2

+ with distribution function F , we denote by Fn(·) = Fn(X1, X2, . . . , Xn, ·)
an estimator of F based on the finite sample (X1, X2, . . . , Xn). We restrict ourselves to R2

+ for convenience
but the following results are completely adaptable in R2. This choice is motivated essentially by our applica-
tion in risk theory proposed in Section 4, where random variables will be losses then defined in a positive support.

Define, for c ∈ (0, 1), the upper c-level set of F ∈ F and its plug-in estimator

L(c) = {x ∈ R2
+ : F (x) ≥ c}, Ln(c) = {x ∈ R2

+ : Fn(x) ≥ c},
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and
{F = c} = {x ∈ R2

+ : F (x) = c}.
In addition, given T > 0, we set

L(c)T = {x ∈ [0, T ]2 : F (x) ≥ c}, Ln(c)T = {x ∈ [0, T ]2 : Fn(x) ≥ c},

{F = c}T = {x ∈ [0, T ]2 : F (x) = c}.
Furthermore, for any A ⊂ R2

+ we denote by ∂A its boundary.

Note that {F = c} can be a portion of quadrant R2
+ instead of a set of Lebesgue measure null in R2

+ (that is
the presence of plateau at level c). In the following we will introduce suitable conditions in order to avoid the
presence of plateau in the graph of F .

In the metric space (R2
+, d), where d stands for the Euclidean distance, we denote by B(x, ρ) the closed ball

centered on x and with positive radius ρ. Let B(S, ρ) =
⋃

x∈S B(x, ρ), with S a closed set of R2
+. For r > 0

and ζ > 0, define
E = B({x ∈ R2

+ : | F (x)− c |≤ r}, ζ),
and, for a twice differentiable function F ,

mO = inf
x∈E

‖(∇F )x‖, MH = sup
x∈E

‖(HF )x‖,

where (∇F )x is the gradient vector of F evaluated at x and ‖(∇F )x‖ its Euclidean norm, (HF )x the Hessian
matrix evaluated in x and ‖(HF )x‖ its matrix norm induced by the Euclidean norm.

For sake of completeness, we recall that if A1 and A2 are compact sets in (R2
+, d), the Hausdorff distance between

A1 and A2 is defined by

dH(A1, A2) = inf{ρ > 0 : A1 ⊂ B(A2, ρ), A2 ⊂ B(A1, ρ)},

or equivalently by

dH(A1, A2) = max
{

sup
x∈A1

d(x,A2), sup
x∈A2

d(x,A1)
}

,

where d(x,A2) = infy∈A2 ‖ x− y ‖.

Finally, we introduce the following assumption (e.g. see Tsybakov [34]; Cuevas et al. [13]).
H: There exist γ > 0 and A > 0 such that, if | t − c | ≤ γ then ∀ T > 0 such that {F = c}T 6= ∅ and

{F = t}T 6= ∅,
dH({F = c}T , {F = t}T ) ≤ A | t− c | .

Assumption H is satisfied under mild conditions. Proposition 1.1 below is a slight modification of Proposition
3.1 in the PhD Thesis of Rodŕıguez-Casal [29] in order to deal with non-compact sets.

Proposition 1.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R2∗
+ . Assume there exist r > 0, ζ > 0

such that mO > 0 and MH < ∞. Then F satisfies Assumption H, with A = 2
mO .

The proof is postponed to Section 6.

Remark 1. Under assumptions of Proposition 1.1, F is continuous and mO > 0, there is no plateau in the
graph of F for each level t such that | t− c | ≤ r. Furthermore from Theorem 1 in Rossi [31] we know that
each half-line in R2

+, parallel to one of the axis, meets {F = t} in a connected set of points. As a consequence
we obtain that {F = t} is a curve in the quadrant R2

+. In particular, from mO > 0, for a fixed x we have
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to consider all corresponding values y in a specific interval (we refer the interested reader to Remark 2.1 in
Rossi [31] or Remark 3.1 in Rossi [30]). In this case the plane curve {F = t} is not the graph of a function
but it has the following monotonic property. We consider (x, y), (x′, y′) ∈ {F = t}, if x < x′ then y ≥ y′,
if y < y′ then x ≥ x′. In particular if we suppose that each component of (∇F )x is greater than zero in E
then {F = t} is a monotone decreasing curve in R2

+. Finally under assumptions of Proposition 1.1 we obtain
∂L(c)T = {F = c}T = {F = c} ∩ [0, T ]2 (we refer for details to Theorem 3.2 in Rodŕıguez-Casal [29]).

2. Consistency in terms of the Hausdorff distance

In this section we study the consistency properties of Ln(c)T with respect to the Hausdorff distance between
∂Ln(c)T and ∂L(c)T . The metric dH is not always completely successful in capturing the shape properties: two
sets can be very close in dH and still have quite different shapes. Following Cuevas and Rodŕıguez-Casal [14]
and Cuevas et al. [13], a way to reinforce the notion of visual proximity between two sets provided by dH is to
impose the proximity of the respective boundaries.

From now on we note, for n ∈ N∗,

‖F − Fn‖∞ = sup
x∈R2

+

| F (x)− Fn(x) |,

and for T > 0
‖F − Fn‖T

∞ = sup
x∈ [0,T ]2

| F (x)− Fn(x) | .

The following result can be considered an adapted version of Theorem 2 in Cuevas et al. [13].

Theorem 2.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R2∗
+ . Assume that there exist r > 0, ζ > 0

such that mO > 0 and MH < ∞. Let T1 > 0 such that for all t : | t− c | ≤ r, ∂L(t)T1 6= ∅. Let (Tn)n∈N∗ be an
increasing sequence of positive values. Assume that, for each n, Fn is continuous with probability one and that

‖F − Fn‖∞ → 0, a.s.

Then
dH(∂L(c)Tn , ∂Ln(c)Tn) = O(‖F − Fn‖∞), a.s.

Theorem 2.1 states that dH(∂L(c)Tn , ∂Ln(c)Tn) converges to zero at least at the same rate as ‖F − Fn‖∞.

Remark 2. Theorem 2.1 provides an asymptotic result for a fixed level c. In particular following the proof of
Theorem 2.1 (postponed to Section 6) we remark that, for n large enough,

dH(∂L(c)Tn , ∂Ln(c)Tn) ≤ 6 A ‖F − Fn‖Tn
∞ , a.s.,

where A = 2
mO . Note that in the case c is close to one the constant A could be large. In this case, we will need

a large number of data to get a reasonable estimation.

Note that the empirical distribution estimator does not satisfy continuity assumption imposed in Theorem 2.1.
However, in order to overcome this problem it can be considered a smooth version of this estimator (e.g. see
Chaubey and Sen [11]).

3. L1 consistency

The previous section was devoted to the consistency of Ln in terms of the Hausdorff distance. We consider now
another consistency criterion: the consistency of the volume (in the Lebesgue measure sense) of the symmetric
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difference between L(c)Tn and Ln(c)Tn . This means that we define the distance between two subsets A1 and
A2 of R+

2 by

dλ(A1, A2) = λ(A1 4A2),

where λ stands for the Lebesgue measure on R2 and 4 for the symmetric difference.

Let us introduce the following assumption:
A1 There exists a positive increasing sequence vn such that vn →

n→∞
∞ and

vn ‖F − Fn‖∞ →
n→∞

0, a.s.

We now establish our consistency result in terms of the volume of the symmetric difference.

Theorem 3.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R2∗
+ . Assume that there exist r > 0, ζ > 0

such that mO > 0 and MH < ∞. Assume that for each n, with probability one, Fn is measurable and that
Assumption A1 is satisfied. Let pn be an increasing positive sequence such that pn = o (vn). Then for any
increasing positive sequence (Tn)n∈N∗ such that for all t : | t − c | ≤ r, ∂L(t)T1 6= ∅ and Tn = o (vn/pn), it
holds that

pn dλ(L(c)Tn , Ln(c)Tn) →
n→∞

0, a.s.

Theorem 3.1 provides a convergence rate, which is closely related to the choice of the sequence Tn. A convergence
rate pn close to (but slower than) vn implies choosing a sequence Tn whose divergence rate is small. Remark
that Theorem 3.1 does not require continuity assumption on Fn.

Remark 3. Assumptions of Theorems 2.1 and 3.1 are satisfied for a quite large class of classical bivariate
distribution functions; for instance independent copula and exponential marginals, Farlie-Gumbel-Morgenstern
(FGM), Clayton or Survival Clayton copulas and Burr marginals.

4. Application in bivariate risk theory

From the usual definition in the univariate setting we know that the quantile function QX provides a point
which accumulates a probability α to the left tail and 1−α to the right tail. More precisely, given an univariate
continuous and strictly monotonic loss distribution function FX ,

QX(α) = F−1
X (α), ∀α ∈ (0, 1). (1)

The notion of univariate quantile function QX is used in risk theory to define an univariate measure of risk: the
Value-at-Risk (VaR). This measure is defined as

VaRα(X) = QX(α), ∀α ∈ (0, 1). (2)

In the last decade several attempts have been made to provide a multidimensional generalization of univariate
quantile. We refer to Serfling [32] for a complete review on the topic. For example, using (1), Massé and
Theodorescu [23] defined multivariate quantiles as halfplanes and Koltchinskii [21] provided a general treatment
of multivariate quantiles as inversions of mappings. Tibiletti [33], Fernández-Ponce and Suárez-Lloréns [18] and
Belzunce et al. [5] defined multivariate quantiles as level curves.

Following the general ideas of Embrechts and Puccetti [17] and Nappo and Spizzichino [25] an intuitive general-
ization of the VaR measure in the case of a bidimensional loss distribution function F is given by its α-quantile
curves. More precisely:
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Definition 4.1. For α ∈ (0, 1) and F ∈ F , the bidimensional Value-at-Risk at probability level α is the boundary
of its α-level set, i.e. VaRα(F ) = ∂L(α).

As well described in Tibiletti [33], imposing α = 1
2 , we get a natural extension of bidimensional median. For

details about a parametric formulation of the quantile curve ∂L(α) see Belzunce et al. [5]. For details about its
properties see for instance Fernández-Ponce and Suárez-Lloréns [18] (and references therein) and Nappo and
Spizzichino [25].
Then, using a bivariate estimator Fn as in Sections 2 - 3, we can define our estimator of the bivariate Value-at-
Risk by

VaRα(Fn) = ∂Ln(α).

Moreover, under assumptions of Theorem 2.1, we obtain a consistency result, with respect to the Hausdorff
distance, for the VaRα(Fn) on the quadrant R2

+ i.e.

dH(VaRα(F )Tn ,VaRα(Fn)Tn) = O(‖F − Fn‖∞), a.s.

As in the univariate case, the bidimensional VaR at a predetermined level α does not give any information
about thickness of the upper tail of the distribution function. This is a considerable shortcoming of VaR
measure because in practice we are not only concerned with frequency of the default but also with the severity
of loss in case of default. In order to overcome this problem, another risk measure has recently received growing
attention in insurance and finance literature: Conditional Tail Expectation (CTE). Following Artzner et al. [1]
and Dedu and Ciumara [15], for a continuous loss distribution function FX the CTE at level α is defined by

CTEα(X) = E[X |X ≥ VaRα(X) ],

where VaRα(X) is the univariate VaR in (2). For a comprehensive treatment and for references to the extensive
literature on VaRα(X) and CTEα(X) one may refer to Denuit et al. [16].

Several bivariate generalizations of the classical univariate CTE have been proposed; mainly using as condition-
ing events the total risk or some univariate extreme risk in the portfolio. We recall for instance:

E[ (X, Y ) |X + Y > QX+Y (α) ], E[ (X, Y ) | min{X, Y } > Qmin{X,Y }(α) ]

and E[ (X, Y ) | max{X, Y } > Qmax{X,Y }(α) ].

The interested reader is referred to Cai and Li [9] for further details. Starting from these general considerations
we propose to study a new bivariate version of the Conditional Tail Expectation (Definition 4.2 below).

Let us first introduce the following assumption:

A2: (X,Y) is a positive random vector with absolutely continuous distribution (with respect to the Lebesgue
measure λ on R2) with density f(X, Y ) ∈ L1+ε(λ), with ε > 0 and E(X2) < ∞, E(Y 2) < ∞.

Definition 4.2. Consider a random vector (X, Y ) satisfying Assumption A2, with associate distribution func-
tion F ∈ F . For α ∈ (0, 1), we define

(1) the bivariate α-Conditional Tail Expectation

CTEα(X,Y) = E[(X,Y)|(X,Y) ∈ L(α)] =

(
E[X | (X, Y ) ∈ L(α) ]
E[Y | (X, Y ) ∈ L(α) ]

)
.
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(2) the estimated bivariate α-Conditional Tail Expectation

ĈTEα(X, Y ) =


∑n

i=1 Xi1{(Xi,Yi)∈Ln(α)}∑n
i=1 1{(Xi,Yi)∈Ln(α)}∑n

i=1 Yi1{(Xi,Yi)∈Ln(α)}∑n
i=1 1{(Xi,Yi)∈Ln(α)}

 . (3)

Note that this bivariate Conditional Tail Expectation is a natural extension of the univariate one. Moreover, if
X and Y are identically distributed with a symmetric copula then E[X | (X, Y ) ∈ L(α) ] = E[Y | (X, Y ) ∈ L(α) ].

Contrarily to the generalizations of the classical univariate CTE above, our CTEα(X, Y ) does not use an aggre-
gate variable in order to analyze the bivariate risk’s issue. Conversely, with a geometric approach, CTEα(X, Y )
deals with the simultaneous joint damages considering the bivariate dependence structure of data in a specific
risk’s area (L(α)).

Let α ∈ (0, 1) and F ∈ F . We introduce truncated versions of the theoretical and estimated CTEα:
CTET

α(X, Y ) = E[(X, Y )|(X, Y ) ∈ L(α)T ],

ĈTE
T

α(X, Y ) =


∑n

i=1 Xi1{(Xi,Yi)∈Ln(α)T }∑n
i=1 1{(Xi,Yi)∈Ln(α)T }∑n

i=1 Yi1{(Xi,Yi)∈Ln(α)T }∑n
i=1 1{(Xi,Yi)∈Ln(α)T }

 ,

where L(α)T and Ln(α)T are the truncated versions of theoretical and estimated upper α-level set defined in
Section 1.

Theorem 4.1. Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it
holds that

βn

∣∣CTETn
α (X, Y )− ĈTE

Tn

α (X, Y )
∣∣ →

n→∞
0, a.s., (4)

where βn = min{ p
ε

2(1+ε)
n ,

√
n }, with ε > 0.

The convergence in (4) must be interpreted as a componentwise convergence. In the case of a bounded density
function f(X, Y ) we obtain βn = min{√pn,

√
n }.

Remark 4. Starting from Theorem 4.1, it could be interesting to consider the convergence
∣∣CTEα(X, Y ) −

ĈTE
Tn

α (X, Y )
∣∣. We remark that in this case the speed of convergence will also depend on the convergence rate

to zero of P[(X, Y ) ∈ L(α) \ L(α)Tn ] ≤ P[X ≥ Tn or Y ≥ Tn], for n →∞.

5. Illustrations

5.1. Estimation of the level sets

In this section we confront our estimator of level sets of the distribution function with various simulated sam-
ples. We consider two distribution functions which satisfy assumptions of Theorem 3.1: independent copula
with exponential marginals and Survival Clayton copula with Burr marginals.

The plug-in estimation of level sets is constructed using the empirical estimator Fn. We take Tn = n0.45. This
choice is compatible with assumptions of Theorem 3.1. We consider a random grid of 10000 points in [0, Tn]2.
We provide a Monte Carlo approximation for λ(L(α)Tn 4 Ln(α)Tn) (averaged on 100 iterations), for different
values of α and n. The results are gathered in Tables 1− 2.
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α n= 500 n= 1000 n= 2000

0.10 0.331 0.326 0.223
0.24 0.519 0.391 0.249
0.38 0.591 0.469 0.396
0.52 1.057 0.906 0.881
0.66 1.222 0.989 0.904
0.80 1.541 1.367 1.334

Table 1. Distribution with independent and exponentially distributed marginals with pa-
rameter 1 and 2 respectively. Approximated λ(L(α)Tn 4 Ln(α)Tn).

α n= 500 n= 1000 n= 2000

0.10 0.697 0.633 0.536
0.24 0.893 0.872 0.809
0.38 0.971 0.911 0.879
0.52 1.001 0.982 1.229
0.66 1.569 1.522 1.413
0.80 2.377 2.269 2.175

Table 2. Distribution with Survival Clayton copula with parameter 1 and Burr(2, 1)
marginals. Approximated λ(L(α)Tn 4 Ln(α)Tn).

As expected, the greater n is, the better the estimations are. We remark that values in Tables 1− 2 can be
considered good approximations of λ(L(α)Tn 4Ln(α)Tn) with respect to the square [0, Tn]2. Moreover we note
that for big values of α we need more data to get a good estimation of the level sets. This may come from the
fact that when α grows the gradient of the distribution function decreases to zero and the constant A grows
significantly (see proof of Theorem 3.1 in Section 6).
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5.2. Estimation of CTEα(X, Y )

5.2.1. Simulated data

In order to evaluate the performance of our estimator we present here some simulated cases of estimation of
CTEα(X, Y ), for different values of level α. To compare the estimated results with the theoretical ones we con-
sider cases for which we can calculate (with Maple) the explicit value of the theoretical CTEα(X, Y ). However
our estimator can be applied to much more general cases: starting from the good performance of the level sets
estimation (as in cases of Section 5.1) we can expect a good estimation of CTEα(X, Y ).

We remark that distributions presented in Tables 3 - 5 satisfy assumptions of Theorem 4.1. Furthermore in
these cases we know that P[X ≥ Tn or Y ≥ Tn] decays to zero with a greater convergence rate than βn in

Theorem 4.1. Then, following Remark 4 (in Section 4), in Tables 3 - 5 we compare ĈTE
Tn

α (X, Y ) with the
theoretical CTEα(X, Y ).

In the following we denote ĈTEα

Tn

(X, Y ) =
(

ĈTEα

Tn,1
(X, Y ), ĈTEα

Tn,2
(X, Y )

)
the mean (coordinate by co-

ordinate) of ĈTE
Tn

α (X, Y ) on 100 simulations. We denote σ̂ = (σ̂1, σ̂2) the empirical standard deviation
(coordinate by coordinate) with

σ̂1 =

√
1
99

∑100
j=1

(
ĈTEα

Tn,1
(X, Y )j − ĈTEα

Tn,1
(X, Y )

)2

relatives to the first coordinate (resp. σ̂2 relatives to the second one).

We denote RMSE= (RMSE1,RMSE2) the relative mean square error (coordinate by coordinate) with

RMSE1 =

√√√√ 1
100

∑100
j=1

(
ĈTE

Tn,1

α (X,Y )j−CTETn,1
α (X,Y )

CTETn,1
α (X,Y )

)2

relatives to the first coordinate of CTETn
α (X, Y ) (resp. RMSE2 relatives to the second one).

The plug-in estimation of level sets is constructed using the empirical estimator Fn of the bivariate distribution
function with n = 1000. We choose Tn = n0.45. This choice is compatible with assumptions of Theorem 4.1.
Results are gathered in Tables 3 - 5.

α CTEα(X, Y ) ĈTEα

Tn

(X, Y ) σ̂ RMSE
0.10 (0.627, 0.627) (0.603, 0.656) (0.031, 0.031) (0.062, 0.068)
0.24 (0.761, 0.761) (0.774, 0.731) (0.061, 0.071) (0.082, 0.130)
0.38 (0.896, 0.896) (0.927, 0.871) (0.072, 0.076) (0.087, 0.119)
0.52 (1.051, 1.051) (1.086, 1.128) (0.094, 0.082) (0.095, 0.107)
0.66 (1.246, 1.246) (1.281, 1.322) (0.127, 0.101) (0.102, 0.101)
0.80 (1.531, 1.531) (1.545, 1.611) (0.157, 0.161) (0.105, 0.117)

Table 3. (X, Y ) with independent and exponentially distributed components with parameter 2.
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α CTEα(X, Y ) ĈTEα

Tn

(X, Y ) σ̂ RMSE
0.10 (1.255, 0.627) (1.233, 0.624) (0.061, 0.023) (0.051, 0.054)
0.24 (1.521, 0.761) (1.514, 0.803) (0.074, 0.039) (0.048, 0.075)
0.38 (1.792, 0.896) (1.793, 0.948) (0.096, 0.055) (0.053, 0.084)
0.52 (2.102, 1.051) (2.087, 1.111) (0.118, 0.076) (0.056, 0.092)
0.66 (2.492, 1.246) (2.477, 1.311) (0.169, 0.108) (0.068, 0.101)
0.80 (3.061, 1.531) (3.056, 1.602) (0.313, 0.153) (0.102, 0.111)

Table 4. (X, Y ) with independent and exponentially distributed components with parameter
1 and 2 respectively.

α CTEα(X, Y ) ĈTEα

Tn

(X, Y ) σ̂ RMSE
0.10 (1.188, 1.229) (1.189, 1.238) (0.061, 0.035) (0.039, 0.029)
0.24 (1.448, 1.366) (1.462, 1.365) (0.065, 0.037) (0.046, 0.031)
0.38 (1.727, 1.505) (1.751, 1.536) (0.082, 0.046) (0.049, 0.037)
0.52 (2.049, 1.666) (2.063, 1.713) (0.091, 0.061) (0.051, 0.045)
0.66 (2.454, 1.875) (2.457, 1.951) (0.117, 0.104) (0.057, 0.068)
0.80 (3.039, 2.202) (3.037, 2.322) (0.192, 0.165) (0.063, 0.108)

Table 5. (X, Y ) with Clayton Copula with parameter 1, FX exponential distribution with
parameter 1, FY Burr(4, 1) distribution.

In Table 6 below, we show that for high levels (here α = 0.9), one needs to use large samples (here n > 2500)
to get reasonable estimates of CTEα. We consider for the purpose (X, Y ) independent and exponentially
distributed with respective parameters 1 and 2. The theoretical value is CTE0.9(X, Y ) = (3.78, 1.89). In this
case we need between 2500 and 5000 data to get the same performances as for lower level (see Table 4).

n 500 1000 1500 2000 2500 5000
σ̂ (0.919, 0.419) (0.568, 0.319) (0.511, 0.294) (0.382, 0.239) (0.348, 0.223) (0.307, 0.151)

RMSE (0.242, 0.221) (0.151, 0.172) (0.133, 0.165) (0.101, 0.144) (0.093, 0.129) (0.092, 0.108)
Table 6. Evolution of σ̂ and RMSE in terms of sample size n for α = 0.9; (X, Y ) independent
and exponentially distributed components with parameter 1 and 2 respectively.

The bad properties of the estimate for sample sizes less than 2500 can be explained by the fact that for high
levels, the constant A is large (see proof of Theorem 3.1 in Section 6), but also by the fact that for α = 0.9 the
empirical estimate Fn of F is not the one to choose.

5.2.2. Real data

We consider here the estimation of CTEα in a real case: Loss-ALAE data in the log scale (for details see Frees
and Valdez [19]). Each claim consists of an indemnity payment (the loss, X) and an allocated loss adjustment
expense (ALAE, Y ). Examples of ALAE are the fees paid to outside attorneys, experts, and investigators used
to defend claims.
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The data size is n = 1500. Let Tn = n0.4. Again our estimator is constructed using the empirical estimator Fn.
Results about the estimation of CTETn

α are gathered in Table 7. In Figure 1 we represent data, estimated level
sets and estimated bivariate Conditional Tail Expectation for several values of α.

α 0.10 0.24 0.38

ĈTE
Tn

α (9.937, 9.252) (10.361, 9.566) (10.731, 9.728)

α 0.52 0.66 0.80

ĈTE
Tn

α (11.096, 10.011) (11.518, 10.315) (12.057, 10.758)

Table 7. ĈTE
Tn

α for Loss-ALAE data in log scale, with different values of level α.

In this real setting the estimation of CTEα can be used in order to quantify the mean of the Loss (resp. ALAE)
in the log scale conditionally to the fact that Loss and ALAE data belong jointly to the specific risk’s area L(α).

11



Figure 1. Loss-ALAE data in log scale: boundary of estimated level sets (line) and ĈTE
Tn

α

(star) for different values of α.

Conclusion

In this paper we have provided convergence results for the plug-in estimator of the level sets of an unknown
distribution function on R2

+ in terms of Hausdorff distance and volume of the symmetric difference. In this setting
we have proposed and estimated a new bivariate risk measure: CTEα(X, Y ). A future work comparing this
bivariate Conditional Tail Expectation with existing risk measures in terms of classical properties (monotonicity,
translation invariance, homogeneity, . . .), dependence structure, behavior with respect to different risk scenarios,
is in preparation.

6. Proofs

Proof of Proposition 1.1

Take T > 0 such that for all t : | t − c | ≤ r, {F = t}T 6= ∅, (from assumptions of Proposition 1.1 we know
that such an T there exists).
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Let x ∈ {z ∈ [0, T ]2 : | F (z)− c |≤ r}. Define for λ ∈ R

yλ ≡ yλ,x = x + λ
(∇F )x

‖(∇F )x‖
,

so ‖yλ − x‖ =| λ |. From the differentiability properties of F and using Taylor’s formula we have, for | λ |< ζ

F (yλ) = F (x) + (∇F )T
x (yλ − x) +

1
2
(yλ − x)T (HF )x(yλ − x),

with x a point on the segment between x and yλ. So

F (yλ) = F (x) + λ‖(∇F )x‖+
λ

2

2‖(∇F )x‖2
(∇F )T

x (HF )x(∇F )x.

By the Cauchy Schwarz Inequality we obtain

F (yλ) ≥ F (x) + λ‖(∇F )x‖ −
λ

2

2‖(∇F )x‖
‖(HF )x(∇F )x‖

and

F (yλ) ≤ F (x) + λ‖(∇F )x‖+
λ

2

2‖(∇F )x‖
‖(HF )x(∇F )x‖.

Since ‖(HF )x(∇F )x‖ ≤ ‖(HF )x‖‖(∇F )x‖, we have

F (x) + λ‖(∇F )x‖ −
λ

2

2
‖(HF )x‖ ≤ F (yλ) ≤ F (x) + λ‖(∇F )x‖+

λ
2

2
‖(HF )x‖.

Since x ∈ E and MH < ∞ we obtain

F (x) + λ‖(∇F )x‖ −
λ

2

2
MH ≤ F (yλ) ≤ F (x) + λ‖(∇F )x‖+

λ
2

2
MH . (5)

For 0 < λ < ζ, we have from the left side of (5)

F (yλ) ≥ F (x) + λ‖(∇F )x‖ −
λ

2

2
MH ≥ F (x) + λmO − λ

2

2
MH .

We assume now that MH > 0 (the case MH = 0 is trivial).

For x ∈ {z ∈ [0, T ]2 : | F (z)− c |≤ r} and 0 < λ < ζ ∧ mO

MH
we have then

F (yλ) ≥ F (x) +
λ

2
mO, (6)

Similarly using the right side of (5) we obtain for 0 < λ < ζ ∧ mO

MH
and x ∈ {z ∈ [0, T ]2 : | F (z)− c |≤ r},

F (y−λ) ≤ F (x)− λ

2
mO. (7)

Define

γ =
(

mO

4

(
ζ ∧ mO

MH

))
∧ r > 0.

13



Suppose that t = c+ε, 0 < ε ≤ γ. Let x ∈ [0, T ]2 such that F (x) = t = c+ε then x ∈ {z ∈ [0, T ]2 : | F (z)−c |≤
r}. Take now

0 < λ =
2ε

mO
< ζ ∧ mO

MH
.

We obtain from (7)

F (y−λ) ≤ F (x)− λ

2
mO = c + ε− ε = c.

From the continuity property of F , we deduce that there exists y between x and y−λ such that F (y) = c and
we have

‖x− y‖ ≤ ‖x− y−λ‖ =| λ |= 2ε

mO
=

2
mO

| t− c | .

So we have proved that

sup
x∈{F=t}T

d(x, {F = c}T ) ≤ 2
mO

| t− c | .

Similarly, take x ∈ [0, T ]2 such that F (x) = c and use (6) to obtain

sup
x∈{F=c}T

d(x, {F = t}T ) ≤ 2
mO

| t− c | .

The proof in case t < c is completely analogous. So F satisfies Assumption H (see Section 1) with A = 2
mO . �

Proof of Theorem 2.1

Under assumptions of Theorem 2.1, we can always take T1 > 0 such that for all t : | t− c | ≤ r, ∂L(t)T1 6= ∅.
Then for each n, for all t : | t− c | ≤ r, ∂L(t)Tn is a non-empty (and compact) set on R2

+.
In each [0, Tn]2, from Proposition 1.1, Assumption H (Section 1) is satisfied with

γ =
(

mO

4

(
ζ ∧ mO

MH

))
∧ r > 0 and A =

2
mO

.

First we have to find a bound for supx∈∂L(c)Tn d(x, ∂Ln(c)Tn).

Take x ∈ ∂L(c)Tn and define εn = 2 ‖F − Fn‖Tn
∞ . Using ‖F − Fn‖∞ → 0, a.s., for n → ∞, then εn → 0, a.s.,

for n →∞. So with probability one there exists n0 such that ∀n ≥ n0, εn ≤ γ.

Since for all t : | t− c | ≤ r ∂L(t)Tn 6= ∅, from Assumption H, there exist un ≡ uεn
x and ln ≡ lεn

x in [0, Tn]2 such
that

F (un) = c + εn; d(x, un) ≤ A εn,

F (ln) = c− εn; d(x, ln) ≤ A εn.

Suppose now ‖F − Fn‖Tn
∞ > 0 (the other case is a trivial one). In this case

Fn(un) = c + εn + Fn(un)− F (un) ≥ c + εn − ‖F − Fn‖Tn
∞ = c + 2‖F − Fn‖Tn

∞ − ‖F − Fn‖Tn
∞ > c,

and in a similar way we can prove that Fn(ln) < c.

As Fn(ln) < c and Fn(un) > c, with un and ln in [0, Tn]2, there exists zn ∈ ∂Ln(c)Tn ∩B(un, d(un, ln)) with
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d(zn, x) ≤ d(zn, un)+d(un, x) ≤ d(un, ln)+d(un, x) ≤ d(un, x)+d(x, ln)+d(un, x) ≤ 3 A εn = 6A‖F−Fn‖Tn
∞ .

Hence, for n ≥ n0

sup
x∈∂L(c)Tn

d(x, ∂Ln(c)Tn) ≤ 6 A ‖F − Fn‖Tn
∞ .

Let us now bound supx∈∂Ln(c)Tn d(x, ∂L(c)Tn).

Take x ∈ ∂Ln(c)Tn . From the a.s. continuity of Fn we obtain Fn(x) = c, a.s., so

| F (x)− c | ≤ | F (x)− Fn(x) | ≤ ‖F − Fn‖Tn
∞ ≤ εn, a.s.

Remember that ∀ n ≥ n0, εn ≤ γ, a.s. Then from Assumption H d(x, ∂L(c)Tn) ≤ A | F (x)−c |≤ A ‖F−Fn‖Tn
∞ .

We can conclude that with probability one, for n ≥ n0

sup
x∈∂Ln(c)Tn

d(x, ∂L(c)Tn) ≤ A ‖F − Fn‖Tn
∞ .

We obtain for n ≥ n0, dH(∂L(c)Tn , ∂Ln(c)Tn) ≤ 6 A ‖F − Fn‖Tn
∞ , then

dH(∂L(c)Tn , ∂Ln(c)Tn) = O(‖F − Fn‖Tn
∞ ), a.s.

Hence the result. �

Proof of Theorem 3.1

Under assumptions of Theorem 3.1, we can always take T1 > 0 such that for all t : | t − c | ≤ r, ∂L(t)T1 6= ∅.
Then for each n, for all t : | t− c | ≤ r, ∂L(t)Tn is a non-empty (and compact) set on R2

+.
We consider a positive sequence εn such that εn →

n→∞
0. For each n ≥ 1 the random sets L(c)Tn 4 Ln(c)Tn ,

Qεn = {x ∈ [0, Tn]2 : | F − Fn |≤ εn} and Q̃εn = {x ∈ [0, Tn]2 : | F − Fn |> εn} are measurable and

λ(L(c)Tn 4 Ln(c)Tn) = λ(L(c)Tn 4 Ln(c)Tn ∩ Qεn) + λ(L(c)Tn 4 Ln(c)Tn ∩ Q̃εn).

Since L(c)Tn 4 Ln(c)Tn ∩ Qεn ⊂ {x ∈ [0, Tn]2 : c− εn ≤ F < c + εn} we obtain

λ(L(c)Tn 4 Ln(c)Tn) ≤ λ({x ∈ [0, Tn]2 : c− εn ≤ F < c + εn}) + λ(Q̃εn).

From Assumption H (Section 1) and Proposition 1.1, if 2 εn ≤ γ then
dH(∂L(c + εn)Tn , ∂L(c− εn)Tn) ≤ 2 εn A.

So we can write
λ({x ∈ [0, Tn]2 : c− εn ≤ F < c + εn}) ≤ 2 εn A 2 Tn.

If we now choose

εn = o

(
1

pn Tn

)
(8)

we obtain that for n large enough 2 εn ≤ γ and

pn λ({x ∈ [0, Tn]2 : c− εn ≤ F < c + εn}) →
n→∞

0, a.s.

Let us now prove that pn λ(Q̃εn) →
n→∞

0, a.s.

From Assumption A1 (Section 3) we have vn ‖F − Fn‖∞ →
n→∞

0, a.s.
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Take εn such that

εn =
1
vn

. (9)

Then there exist n0 such that vn ‖F − Fn‖∞ ≤ 1, a.s. ∀n ≥ n0. So for all n ≥ n0, λ(Q̃εn) = 0 and obviously
pn λ(Q̃εn) = 0. As pn = o(vn) we can choose εn that satisfies (8) and (9). Hence the result. �

Proof of Theorem 4.1

We only prove the result for the first coordinate of CTEα(X, Y ) (the proof is similar for the second one).

We introduce these two preliminary results (Lemma 6.1 and 6.2):

Lemma 6.1. Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it
holds that

p
ε

2(1+ε)
n

∣∣E[X | (X, Y ) ∈ L(α)Tn ]− E[X | (X, Y ) ∈ Ln(α)Tn ]
∣∣ →

n→∞
0, a.s.,

with ε > 0.

Proof of Lemma 6.1

From Assumption A2 and Theorem 3.1 we obtain

p
ε

2(1+ε)
n

∣∣P[(X, Y ) ∈ L(α)Tn 4 Ln(α)Tn ]
∣∣ ≤ p

ε
2(1+ε)
n dλ

(
L(α)Tn , Ln(α)Tn

) ε
1+ε ‖ f ‖1+ε →

n→∞
0, a.s. (10)

As a straightforward consequence we find

p
ε

2(1+ε)
n

∣∣P[(X, Y ) ∈ L(α)Tn ]− P[(X, Y ) ∈ Ln(α)Tn ]
∣∣ →

n→∞
0, a.s.

Using Assumption A2 we also obtain

p
ε

2(1+ε)
n

∣∣∣∣∣
∫

L(α)Tn

x fX,Y (x, y)λ(dxdy)−
∫

Ln(α)Tn

x fX,Y (x, y)λ(dxdy)

∣∣∣∣∣
≤ p

ε
2(1+ε)
n E[X2]

1
2 dλ

(
L(α)Tn , Ln(α)Tn

) ε
2(1+ε) ‖ f ‖

1
2
1+ε →

n→∞
0, a.s. (11)

Then

p
ε

2(1+ε)
n

∣∣E[X|(X, Y ) ∈ L(α)Tn ]− E[X|(X, Y ) ∈ Ln(α)Tn ]
∣∣

= p
ε

2(1+ε)
n

∣∣∣∣∫
L(α)Tn

x fX,Y (x, y)λ(dxdy) P[(X, Y ) ∈ L(α)Tn ]−1

−
∫

Ln(α)Tn

x fX,Y (x, y)λ(dxdy) P[(X, Y ) ∈ Ln(α)Tn ]−1

∣∣∣∣
≤ p

ε
2(1+ε)
n

P[(X, Y ) ∈ L(α)Tn ] P[(X, Y ) ∈ Ln(α)Tn ]

(
P[(X, Y ) ∈ L(α)Tn ]∣∣∣∣∫

L(α)Tn

x fX,Y (x, y)λ(dxdy)−
∫

Ln(α)Tn

x fX,Y (x, y)λ(dxdy)
∣∣∣∣

+
∫

L(α)Tn

x fX,Y (x, y)λ(dxdy)
∣∣∣∣P[(X, Y ) ∈ L(α)Tn ]− P[(X, Y ) ∈ Ln(α)Tn ]

∣∣∣∣). (12)

Using (10)-(11) we obtain that (12) converges to zero a.s., for n →∞. Hence the result. �
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Lemma 6.2. Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it
holds that

√
n

∣∣∣∣E[X | (X, Y ) ∈ Ln(α)Tn ]−
∑n

i=1 Xi1{(Xi,Yi)∈Ln(α)Tn}∑n
i=1 1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣ →
n→∞

0, a.s.

Proof of Lemma 6.2

We can write

√
n

∣∣∣∣∣∣∣∣∣∣
E[X|(X, Y ) ∈ Ln(α)Tn ]−

n∑
i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑
i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣
=
√

n

∣∣∣∣∣∣∣∣∣∣

∫
Ln(α)Tn

x fX,Y (x, y)λ(dxdy)

P[(X, Y ) ∈ Ln(α)Tn ]
−

n∑
i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑
i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣
.

Under assumptions of Lemma 6.2, from the central limit theorem for triangular arrays (e.g. Theorem 27.2 in
Billingsley [7]) we obtain

√
n

∣∣∣∣∣P[(X, Y ) ∈ Ln(α)Tn ]− 1
n

n∑
i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣ →
n→∞

0, a.s.,

√
n

∣∣∣∣∣
∫

Ln(α)Tn

x fX,Y (x, y)λ(dxdy)− 1
n

n∑
i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣ →
n→∞

0, a.s.

Hence the result. �
Then to prove Theorem 4.1 we can write (4) as

βn

∣∣∣∣∣∣∣∣∣∣
E[X|(X, Y ) ∈ L(α)Tn ]−

n∑
i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑
i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣
≤ βn

∣∣E[X|(X, Y ) ∈ L(α)Tn ]− E[X|(X, Y ) ∈ Ln(α)Tn ]
∣∣+βn

∣∣∣∣∣∣∣∣∣∣
E[X|(X, Y ) ∈ Ln(α)Tn ]−

n∑
i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑
i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣
.

The result is a straightforward application of Lemma 6.1 and Lemma 6.2. �
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[5] F. Belzunce, A. Castaño, A. Olvera-Cervantes, and A. Suárez-Llorens. Quantile curves and dependence structure for bivariate

distributions. Computational Statistics & Data Analysis, 51(10):5112–5129, 2007.
[6] G. Biau, B. Cadre, and B. Pelletier. A graph-based estimator of the number of clusters. ESAIM. Probability and Statistics,

11:272–280, 2007.
[7] P. Billingsley. Probability and measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New

York, third edition, 1995. A Wiley-Interscience Publication.
[8] B. Cadre. Kernel estimation of density level sets. J. Multivariate Anal., 97(4):999–1023, 2006.
[9] J. Cai and H. Li. Conditional tail expectations for multivariate phase-type distributions. Journal of Applied Probability,

42(3):810–825, 2005.
[10] L. Cavalier. Nonparametric estimation of regression level sets. Statistics. A Journal of Theoretical and Applied Statistics,

29(2):131–160, 1997.
[11] Y. P. Chaubey and P. K. Sen. Smooth estimation of multivariate survival and density functions. J. Statist. Plann. Inference,

103(1-2):361–376, 2002. C. R. Rao 80th birthday felicitation volume, Part I.
[12] A. Cuevas and R. Fraiman. A plug-in approach to support estimation. The Annals of Statistics, 25(6):2300–2312, 1997.
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