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ABSTRACT. It has been known since the pioneering work of Jakobson and subsequent work
by Benedicks-Carleson and others that a positive measure set of quadratic maps admit an
absolutely continuous invariant measure. Young and Keller-Nowicki proved exponential
decay of its correlation functions. Benedicks-Young [BeY] and Baladi-Viana [BV] studied
stability of the density and exponential rate of decay of the Markov chain associated to
i.i.d. small perturbations. The almost sure statistical properties of the sample measures
of i.i.d. itineraries are more difficult to estimate than the “averaged statistics.” Adapting
to random systems, on the one hand the notion of hyperbolic times due to Alves [A], and
on the other a probabilistic coupling method introduced by Young [Yo2] to study rates of
mixing, we prove stretched exponential upper bounds for the almost sure rates of mixing.

1. INTRODUCTION

An important class of discrete-time deterministic dynamical systems (given by a
transformation f on a Riemann manifold) are those which are both “chaotic” (i.e.,
satisfy some sensitiveness of initial conditions property) and statistically predictable,
i.e., there is (an ergodic) stationary measure p so that, for each integrable observable
@, Lebesgue almost every point xy has a time average converging to the space average:

n—oo N
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A stronger ergodic property is mixing. If 4 is mixing, we have convergence to equilibrium:

n—> 00

lim [ po f"dlLeb = /god,u, (1.2)

and more generally, for any pair of square integrable observables we have decay of the
operational correlations:

nlijgo</<pof"¢dLeb—/<pdu/¢dLeb>:o. (1.3)

(Essentially equivalently, the classical correlations tend to zero, which is the same as
limy, 0o [(pof™)¢pdu = [@du [ du. The proofs below (see e.g. (7.1)) apply to both
notions, and we concentrate on the operational correlations, more accessible experimen-
tally.) When (1.2-1.3) hold, a natural question is: “how fast does the convergence take
place?” Such quantified information on rates of mixing may sometimes be obtained for
smooth enough observables, and often yields a central limit theorem for them. See e.g.
[Yol] and references therein for a discussion of this class of problems and some specific
examples of uniformly and nonuniformly hyperbolic dynamical systems where the rate
of mixing is exponential. One of these examples is the quadratic family z — a — 22 on
the interval for “good” (so called Collet—Eckmann or Benedicks—Carleson) values of the
parameter a, or more generally unimodal maps satisfying certain axioms.

Our present object of study is small random perturbations of dynamical systems.
Since our results are for independent identically distributed perturbations of good uni-
modal maps, we can be a little more specific without being too technical: let f: T — T
be a smooth dynamical system with f(I) a subset of the interior of I. For small € > 0,
let v be a probability measure on [—¢, €]. We may consider two models for the random
compositions of f + wy with wy selected in [—e, €] following the law v.:

Markov chain. In words, we are averaging over all possible random realisations.
Because of the i.i.d. setting, this can be done by averaging at each time-step. More
formally, this means considering the Markov chain {X,,}22 ; with transition probabilities
(here, z € I and E C I with characteristic function xg)

€

Prob (X1 € E | X,, = x) = / x(F() + wo) dve(w) - (1.4)

—€

Under rather weak assumptions, it is possible to show that the Markov chain admits a
unique invariant probability measure, i.e., a measure pu. on I with

wlB) = [ 6 [ )+ o) ) i),

Writing f,(z) = f(x) + wo, and by induction f7(z) = f2-1o f, (), one defines opera-
tional correlation functions

n—1
/gpofa’}d;dLeb I dve(ws) —/@due /¢dLeb. (1.5)
=0
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for the Markov chain. It is of obvious interest to study stochastic stability, i.e., whether
pe — g (at which speed? in which topology?) and whether the rate of decay of
correlations is stable as € — 0.

Random skew product. Alternatively, we may wish to state “almost sure” results.
Formally, we consider the skew product T : I x Q — I x Q, with Q = [—¢, €]Z,

T(z,w) = (fu(z),0(w)), where (cw)r = w41 - (1.6)

The natural objects of study are the invariant probability measures for T of the form
ptw (dLeb) P(dw) with P = v, in particular those for which almost each y,, is absolutely
continuous with respect to Lebesgue measure. In the present i.i.d. setting such a fam-
ily of absolutely continuous quasi-invariant measures pi, = h,dLeb (so called because
(fw)slw = How) may be obtained by disintegrating a natural extension of . X vit T
is natural in this context to consider both the future (“aiming at a moving target”), and
the past rates of convergence to equilibrium:

R (n) = |(f2)«(dLeb) = pigny| and  RP(n) = [(f7 -, )e(dLeb) = |, (1.7)
where |- | denotes the total mass of a signed measure. We may also consider the “future”
and “past” random operational correlations:

c) ,(n) = ‘ / (9o )9 dLeb — / o djigna / ¢ dLeb

(1.8)

’

00,0 =| [(wo sz nwdier — [, [vaten

The aim here is to obtain for P-almost all w, upper bounds of the type C,, - p(n) or
Cy,yCy - p(n) on the expressions (1.7) respectively (1.8), where p(n) — 0 at a certain
rate, independently of w. (In general it is not immediate to obtain bounds on the future
random correlation functions from estimates on the past random correlation functions,
and vice versa.) Asymptotic bounds on

P({w]|C, > n)) (1.9)

are also desirable. The stochastic stability questions mentioned in the framework of the
Markov chain may also be asked here.

Obviously, controlling (1.5) is not enough to estimate (1.8). In the other direc-
tion, averaging estimates (1.8) yield corresponding bounds for (1.5) whenever the con-
trol in (1.9) is enough to guarantee that C, € L'(P). (In fact, some additional
information is needed — and often available — to estimate expressions of the type
[ ¢1(0"w)¢e(w) dP.(w) — [ ¢1(w) dP.(w) [ ¢2(w) dP.(w).) Also, it may be argued that
a control of “almost all random itineraries” with information of the type (1.9) is more
relevant to an actual physical experiment (e.g.) than bounds for the the averages (1.5).
After all, only finitely many experiments may be actually realised!
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Before we state our main new results, let us recall previously known facts. For
smooth expanding (in any dimension) or piecewise smooth and piecewise expanding one-
dimensional maps, the Markov chain was studied by Baladi—Young [BaY] who proved
exponential decay of correlations and strong stochastic stability. Baladi-Viana [BV]
then extended these results to a positive measure set of nonuniformly expanding uni-
modal maps, for which Benedicks—Young [BeY] had previously obtained a weaker form
of stochastic stability. (We also refer to results of Katok-Kifer [KaK] for more general
perturbations, but under a Misiurewicz assumption, as well as to work of Collet [Col].)

Let us now discuss random skew products for which a large body of literature is
available (in particular by Kifer, and the school of L. Arnold in Bremen), we restrict to
results related to the physical measures of small random perturbations of strongly mixing
discrete-time dynamics. Bogenschiitz [Bo] and Baladi et al. [BKS] studied random
correlations for smooth expanding dynamics, proving exponential decay of future and
past correlations together with a strong form of stochastic stability (this was done by
using a very naive idea: all transfer operators in play map a given function cone strictly
inside itself). We mention also the work of Khanin-Kifer [KhK] who were interested in
more general equilibrium states for random compositions of maps expanding in average
(they studied neither stability nor rates of mixing). More recently, Buzzi [Bul, Bu2]
considered random compositions of piecewise monotone interval maps (not necessarily
close to a fixed map) having some expansion in average property. He showed existence
of absolutely continuous quasi-invariant measures and exponential decay of both future
and past correlations, using a probabilistic approach.

Informal statement of results

Starting from a “good” unimodal map f (our assumptions are stated in an axiomatic
way, see (H1)-(H4) in Section 2, they apply to a positive measure set of parameters
of the quadratic family) and an atomless probability measure v, on [—e¢, €] (the precise
assumption is given in (2.1)), we consider for small enough € the i.i.d. compositions of
f + wo. We show that for almost every w € Q:

(1) There is a unique family of quasi-invariant densities hyn,, for n € Z.
(2) We have stretched exponential decay for the rates of mixing. More precisely,
there are 0 < u < 1, v > 1, C(e) > 1, and a random variable C, with

P{w | Cy > n}) < C;l(f) such that for all Lipschitz test functions ¢, 1, there
is C(p,1), depending only on their Lipschitz constants so that with rY )(n)

RP (n), ¢} (n), €I (n) as in (1.7), (1.8) we have
max (RY) (n), RP (n), O, ,(n), O, ,(m) < C(e)Cu Clp ) ™" Vn € L.

In fact, we can prove the bounds for the universal exponent u = 1/16 if we allow a
factor C'(e¢) > 1 as follows:

max (Rff)(n), R (n), c\) (1), C’(zj) ,

w,p w,p,
4

(n)) < C(e)Cu Clp,p) €710



We believe that this is the first time that estimates have been obtained for the almost
sure rates of mixing in a concrete nonuniformly hyperbolic dynamical setting. We hope
that they may be used to prove a random central limit theorem (see Kifer [Ki]).

Since the bound on Ctgf :5)1/} is integrable, averaging our results on the random corre-

lations gives that the Markov chain correlation decays faster than C(e)e™" for some
0 < u < 1 a result not as good as the exponential decay obtained in [BV]. Note also
that our upper bounds for the various constants C,,(¢), C(¢) blow up when ¢ — 0. (In
particular, we do not address in the present paper the question of stochastic stability.)
In view also of the fact that the transition from exponential (Lemma 3.8) to stretched
exponential bounds occurs rather late in the proof (it is a consequence of the waiting
times interfering with the combinatorial bounds e.g. in the proof of Proposition 4.3), it
is not clear whether the subexponentiality is an artifact of our proof.

One of the advantages of this work as contrasted to the previous studies ([BV, BaY,
BeY], etc.) of the Markov chain approach is that it is naturally suited to extensions to
the non-autonomous case. More precisely, instead of assuming full i.i.d., that is P = v/Z,
we could suppose that (o, P) is “strongly” mixing, and try to implement a variant of

the geometric construction of Viana [V] to replace e.g. Lemma 3.4.

The basic idea in our proof is to construct a random version of the towers of Young
[Yo2], showing that the coupling method she introduced can be randomised. The first
difficulty here is to modify the standard partition (see e.g. [Yol]) and obtain good
estimates on points with large return times. Here, a beautiful idea due to Alves [A]
was instrumental. He studied (maps close to) a deterministic skew product T'(x,0) =
(a—x2+€f, DO mod 1) where D > 1 gives a “strongly mixing” deterministic dynamical
system on the circle. In order to construct absolutely continuous invariant measure for
T on the cylinder, Alves introduced good partitions into rectangles, involving a crucial
notion of “hyperbolic times” (an abstraction of the escape times relevant for unimodal
or Hénon maps, which was later applied by Alves-Bonatti-Viana and Castro to analyze
partially hyperbolic systems). He also exploited bounds on “exceptional sets” previously
obtained by Viana [V], who was the first to study this skew product model and proved
that it possesses two positive Lyapunov exponents. Although we consider a slightly
more general framework than the Misiurewicz in [A] and [V], many properties become
easier to prove in our i.i.d. setting (see Lemma 3.4). The key observation then is that
the bounds obtained on the set of w such that a given x behaves well by following
[A], [V] are uniform in z, so that a careful application of Fubini’s theorem allows us to
exchange = and w (up to a zero-measure residue of bad w:s which may be excluded). On
the other hand, we are forced to introduce “waiting times” (see Lemma 3.7) which make
the coupling argument more intricate. Finally, one surprising fact was that an estimate
of Young (see the “choice of ng” in [Lemma 1, Yo2]) which was a trivial consequence
of the mixing property of the measure, becomes more troublesome in the random case.
To deal with this, we bootstrap from the mixing property of the Markov chain on the
tower (which follows from mixing of the random skew product in Section 6) applied in
(yet) another large deviation argument (Sections 7-8) within the coupling estimates.
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Sketch of contents

The article is organised as follows. In Section 2 we give precise statements of our
hypotheses and results, including an application to random countable Markov chains.
Section 3 is devoted to constructing random partitions of the interval, and estimat-
ing random return times to a well-chosen subinterval (adapting the hyperbolic times
techniques in [A], and the bounds in [V]), after suitable “waiting times.” Section 4 is
centered around Proposition 4.3 which gives upper bounds on the random recurrence
asymptotics. In Section 5, we first exploit Sections 3-4 to construct towers satisfying a
random version of the axioms in [Yo2], and then use these towers to exhibit (saturating
a quasi-invariant measure for the return map) and study the quasi-invariant measures
for our i.i.d. unimodals. Section 6 is devoted to general remarks on random mixing
and random exactness, followed by a proof that the skew product on the tower is exact
(and thus mixing) if the original dynamics is topologically mixing. These remarks are
used in a large deviations argument in Section 7, where the coupling method of [Yo2]
is implemented on the towers from Section 5 to study the rate of decay of the “future”
correlation function. Finally, in Section 8 we further adapt the coupling method to
study the“past” correlations.

Our main theorem follows from combining Lemma 5.3 with Corollaries 7.10 and 8.5.

To keep the length of this article within reasonable bounds, we put the emphasis on
those of our arguments which are new or differ nontrivially from previous ones, giving
precise references to published computations (in particular in [A, BeY, V, Yo2]).

2. SETTING AND STATEMENT OF RESULTS

Let I =[—1,1] and f: I — I be a C? unimodal map (i.e., f is increasing on [—1, 0],
decreasing on [0, 1]) satisfying f”(0) # 0, and,

(H1) There are 0 < a < 1, K > 1, and A < X < 4 with 2000 < (log\)?, and
sup; |f'] < MK < 8 so that

@) [(f™) (£(0))] > A™ for all n € Z and A = limy,_,00 |(f™) (£(0)) "/

(ii) |f™(0)] > e ", for all n > 1.
(H2) For each small enough § > 0, there is M = M(d) € Z, for which

() If ..., fM=1(z) & (—0,6) then |(fM) ()] > AM;

(ii) For each n, if z, ..., f*~Y(z) & (—0,0) and f"(z) € (=6,0), then |(f™)(x)] > A™.
(H3) f(I) is a subset of the interior of I.
(H4) f is topologically mixing on [f2(0), f(0)].

Examples of unimodal maps satisfying (H1)—(H4) are quadratic maps a — 22 for a
positive measure set of parameters a. (See e.g. [BV] for notations similar to those of the
present paper; the estimate 200 < (log 5\)2 used here in Lemmas 3.1-3.4 corresponds
in [BV] to e>* < X.) Condition (H2) is in fact implied by the existence of § > 0 and
M € Z, such that (H2)(i)—(ii) hold. See the remark in Section 3.A.

Fixing €y > 0 small enough to guarantee f(z)+ ¢y € I for all z € I, we assume that
we are given a constant C' > 0 and for each 0 < € < ¢y a probability measure v, on
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[—€, €] and such that for any subinterval J C [—e¢, €],

vy < G (2.1)

€

(This is used in Lemma 3.4.) Assumption (2.1) may be relaxed, but we do not pursue
this aim here. It cannot be completely suppressed since there are open intervals of
parameters corresponding to periodic attractors arbitrarily close to a. Assumption
(2.1) holds if v, has a density with respect to Lebesgue which is bounded above by C'/e.
It does not imply that 0 belongs to the support of v..

For fixed € > 0, we write Q = Q, = [—¢, €], o : Q — Q for the shift to the left, and
P = P. = v”. Our aim is to study the random compositions of maps f.,(z) = f(x) + wo
with w € Q following the law P. For n > 1 we write f7(x) = fy, _, 0 -0fu, (). Denoting
Lebesgue measure on I by dLeb, and |u| for the total mass of a signed measure, our first
main result is stretched exponential bounds for the speed of approach to equilibrium
(as usual, Lipschitz can be replaced by Holder):

Main Theorem. (Stretched exponential mixing for i.i.d. unimodals). If ¢
is small enough (depending on f) then for P.-almost each w € Q. there is a quasi-
invariant density h,, € L'(dLeb). There exist C(¢) > 1 and, for almost every w € Q,

oM = Cé,l)(e) > 0 such that for each Lipschitz function ¢ : I — C, and all n > 1,

(7 )x (@ dLeb) — (hy, dLeb)| < C Lip e~ (/00 (2.2)
Additionally, for almost every w € €2, there are chz) > 0, Ci,g) > 0 (depending on €)
such that for each Lipschitz function ¢ : I — C and every bounded function ¢ : I — C,
the “past” and “future” random correlation function satisfy for all n > 1

‘/QOOf:—nwldeeb—/@hw dLeb /deeb < C® sup || Lip e~ /¢ | (2.3)

and

‘/%fngeb —/whanw dLeb /1/;dLeb < CB) sup || Lip e~ ™"""/C) | (2.4)

There are C(e) and v > 1 so that the mazimum C,, = maX(C’S), c?, Cﬁf‘)) satisfies

C(e) .

n’U

Plwe. | C,>n}) <

(2.5)

Finally, there is 0 < u < 1/16 so that the factor e=(n!/1°/C @) 4, (2.2-2.4) may be
replaced by e=™" .
Remarks.

(1) Our proof gives the same upper estimates for the “classical” correlations.
7



(2) See e.g. [BKS] for the operational significance of, and experimental access to,
the rates in (2.2-2.4).

(3) The almost everywhere existence of the quasi-invariant measure can be obtained
by disintegrating the skew-product invariant measure which can be constructed
from the Markov chain invariant measure in [BV] or [BeY]. Our proof gives
additional information, in particular it produces the quasi-invariant measure on
the tower which is used to control rates of mixing.

(4) By the work of Bahnmiiller [Ba] (who extended previous work of Ledrappier and
Young [LY] to noninvertible situations), the Pesin formula holds for the random
skew product invariant measure h,, (dLeb)P(dw).

(5) If (H4) does not hold, a result of Blokh-Lyubich [BL] says that f is renormalis-
able, i.e., that there is a cycle of intervals {I;}™, f : I; = I 41, I, = Ip, where
{I;} have disjoint interiors. This is reflected in the greatest common denomina-
tor G # 1 of return times, also for the random towers (see (A.VI), (4.10)). Our
proof yields stretched exponential decay of correlation and speed of mixing for
the Gth iterate f9 of the random system.

A simplification of our proof produces a result on random countable Markov chains
with estimates on the recurrence times (after waiting times) which we were unable to
locate in the literature. The setting is the following: Let o : Q@ — Q with Q =[], E,
where (F, v) is a probability space, be a two-sided Bernoulli shift preserving a probability

measure P = [[,v. Let X5 be a random Markov chain for (6,€) on the countable
state space Z, given by the random transition probabilities
Prob (X" =j | X =) = pij onw,Vn € Z .

(In particular, for almost all w and all i, Y32 1Pijw = 1.) The random Markov chain
is called #rreducible if for all 7, 7 and almost all w there is n with Prob (XCE,") =7 |
Xf,l) = z) > 0 and wrreducible aperiodic if for almost all w and all ¢, 7 the g.c.d. of
{n|Prob (X5 =j | X7 = i) > 0} is one.

Main Corollary (Application to i.i.d. countable Markov chains). Let X5 be
a random irreducible aperiodic Markov chain for (o,Q) on Z,. Assume that there are

0 <u,v" <1 and a random variable ny : Q — Z with

v!

P{w|ni(w) >n})<e™
such that for P-almost every w € )
Prob (X(EJO) =0; Xf,k) #0,VE=1,...,m) < e_mu’ ,Vm > ny(w). (2.6)

Then, for almost all w € €2, there is a unique stationary probability measure pu,, on Z.,
with density h,, € £1(Z). Also, writing, forn € Z,, w € Q, and ¢ in {>(Z,)

n—1
B = % ol (T pasanons ) huli),
(joy"'yjn)ez_7_+1 k=0
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there are 0 < u < u' and 6’5,4) > 1 such that for each ¢ and 1 in £>°(Z,), the past
random correlations satisfy

E[e(x ", )9 (X,)] ~ Elp (XX, )I| < C5 sup 4] sup lple™ . (27)

o "w o "w o "w
Finally, there are v > 1, C > 1 so that
C
ﬁ .

P{we Q.| CH >n}) <

Remarks.

(1) Obviously one may formulate the main corollary for future correlations, ap-
proach to equilibrium, etc., for i.i.d. countable Markov chains. The main corol-
lary can be also expressed as a result on speed of convergence to the maximal
eigenvector of random products of stochastic matrices having a “tower structure”
as in (2.6). The slightly cumbersome exercise is left to the reader. We refer to
the papers of Hennion [He] and the book of Bougerol-Lacroix [BoL, especially
Chapter A.III] for references on the classical work of Furstenberg, Kesten, Guiv-
arc’h, Ledrappier, and others, on applications of the Oseledec theorem yielding
exponential bounds for the speed of convergence to the maximal eigenvector of
random products of finite stochastic matrices, under assumptions guaranteeing
that the maximal Lyapunov exponent is simple.

(2) Adapting Sections 7 and 8 similarly as the corresponding proofs of Theorem 2(IT)
of [Yo2], we may also obtain exponential (respectively polynomial) estimates in
(2.7) if we change the assumptions accordingly.

Open questions.

(1) Asmentioned in the introduction, by adapting Kifer’s methods in [Ki], we expect
that it is possible to prove a random central limit theorem in the setting of the
present paper.

(2) We also pointed out already that it is of obvious interest to generalise our i.i.d.
setting to weaker forms of mixing. One could also attempt to study non-additive
perturbations.

(3) We have restricted ourselves to perturbations of exponentially mixing maps. It
would be interesting to see if our approach can be extended to unimodal maps
with slower rates of mixing. See the recent study by Bruin, Luzzatto, and van
Strien [BLS], based on Young’s coupling argument [Yo2].

3. FUBINI AND PARTITIONS VIA RANDOM HYPERBOLIC TIMES

3.A Preliminary estimates.

In Lemmas 3.1 and 3.3, we extend to our situation (using techniques of Benedicks
and Young [BeY]) basic estimates from Viana [V, Lemmas 2.4 and 2.5] and Alves [A,
Lemma 2.1] proved there under a Misiurewicz assumption. Most of the ideas used go
back to [BC1, BC2]. (We do not require the topological mixing assumption (H4) at this
stage.)



Lemma 3.1 (Starting in (—+/¢,+/€)). Assume (H1), (H2), and (H3). For

2ce <
log A TS

there are a constant C > 1 and for each small enough € > 0 an integer N(€) with

log(1/€) <N <C+ 210g(1~/<—:)
(K +1)logA log A

such that for all w € Q and each x with |z| < 2\/e

(#29) @) > lale=+0
fi(x)] > Ve, ¥i=1,...,N(e).

In the proof of Lemma 3.4 below, it will be useful to take n = log7/(4log32) for
7 > AY/® from Lemma 3.3. This is the reason for the condition on « in (H1). The lower
bound N(e) > log(1/€)/log32 (since AEX+! < 8 x 4) is also convenient in the proof of

Lemma 3.4.

To prove Lemma 3.1, we shall use the following result adapted from Lemma 4.4 in

[BeY], which will also help to get the “large image” property in Lemma 3.10:

Sublemma 3.2 (Random bound period). Assume (H1), (H2), (H3) and let % <

n < 1/4. For k such that e™* < §, let Ji,e be the interval

Jp,e = [—e—l—min(f(e_k),f(—e_k)),f(O)—I—e] ,

and let p = p(k, €) be the largest integer p such that

<A Vjielo,p].

U fgw(Jk,E)

wEN

Then there is C' > 1, independent of 6, such that for all small enough e:
(1) For allw € Q, all y € Ji . and each 0 < j < p(k,€)

1 (£2.)' ()
— < e (O
¢ ) O~
min(2k,log(1/¢)) min(2k,log(1/¢))
(2) _C+W <p(k,e) < C-I-T

(3) For allw € Q and all y € J .

‘(fp(k 6)) (y )‘ > %max(e@_z”)k,e_l"”’).
10
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Proof of Sublemma 3.2. This is an adaptation of the usual “bound period estimates” of
[BC1, BC2]. The starting point is the claim that there is C' > 1, independent of ¢ and
d, and such that for every y,7 € Ji ., all w,w € Q, and all 1 < j < p(k,e) +1

1£2,(y) — Fo@)] < C|(FF71'(£(0))] - max(e™2*,¢). (3.2)

To check (3.2), we first verify inductively that
[f30@) = F1o@)] < [di(--- (da(di+1) - -+) +1] C max(e™?*, ¢) =t [m;] C max(e™*, ¢),

where d; = |f}.,,(z:)| = |f' ()| for some z; € [fi'(y), 75" ()],

Then, to estimate m;, we let d; = |f'(f1(0))|, and we note that since |f(0) — ;] <
A7 for 1 < i < p+ 1, by definition of p, and \d;| > e~ /C by (H1)(ii), standard
arguments involving (H2) and using e —inlog A < g=2j (see [BeY, Lemma 1.3]) give that
there is C' > 1 with

T, d;
C_lg%(;gC,Vlgjgp(k,e)+l. (3.3)
i=1 i
In fact, the proof of (3.3) also gives assertion (1) of the sublemma. (Note that the
proof of [BeY, Lemma 1.3] may require taking a smaller value of ¢ in (H2), in order
to guarantee that |f7(0)| > d for j < My, where M, is a large integer, making use of
(H1)(ii).) Now, by definition and (H1)(i)

mj = dj_ymj_1 + 1< dj_imjy(1+CA77),
so that

7j—1
(H d; > H (14+ CX™%), showing our claim (3.2).
=1

We may now prove assertions (2) and (3) of the sublemma. Assumption (H1)(i),
together with (1), that we already proved, and the fact that |J; | > max(e=2* ¢)/C,
yield

—2k p—1
max(e %", €) A <1,
c <

so that
1

logS\ ’
showing the upper bound in (2). For the lower bound, use (H1) |Ji | < C max(e™2¥,¢),
the definition of p(k,€) and MEA" < MK+,

For (3), letting 1 < j < p(k,e) + 1 it follows from (3.2) that for y,y € J . and
arbitrary w,w € €0,

[f2u(y) = Fla(@)] < CI(F) (£(0))] max(e™*, ¢) < C2|(f1,)' (y)| max(e™*,e).
11
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Thus, the definition of p(k, €) gives
C2|(f2FaT 1Y ()| - max(e~2F, €) > A7+
Finally (3.4) implies

S\—W(p(k,e)—i—l) > e—(n log X) [C’-i—log (min (e2k,571))]/10g5\ > max(e_znkv 677)
= =z C )

and we conclude that

(D) ()] > & max(el 0%, 4oy ]

Proof of Lemma 3.1. This will easily follow from Sublemma 3.2, taking k = k(e) € Z
maximal so that /e < e7*. Indeed, for any || < 2\/€, writing y = f,,(z) € J., and
setting N(e) = p(k(e),€) + 1 we get from (3), that for each w

(£ (@)] = [(F25 ) ()| fo(@)] = Clafe™ 7, (3-5)

for some constant C', independent of €, §, w, and which may be removed by working
with a slightly smaller  in Sublemma 3.2 and taking small enough e.
To check the second assertion, we decompose for each 1 < j < N(e)

f@)] = [F7(0)] = [£7(0) = fi(x)]-

Now, there are two cases. Either j < log(1/€)/(4K log ), and then by using (H1)(ii)
and Sublemma 3.2(2) (recall (3.2))

O] = [17(0) = fi ()] = e*N O = Ce|(f)) (F(0))| = €" — Ce¥/* > Ve,

since n < 1/4, if € > 0 is small enough. The other possibility is j > log(1/¢)/(4K log 5\),
but then, using (H1)(ii) and the definition of p(k(¢)), we get for small enough ¢

1F7(0)] = [£7(0) — fi(z)] > e — 2% > (1 — M/ UKIBA)) 5 (e O

We now divert to verify the statement about varying § in (H2)(i),(ii).

Remark. If there is § = d; so that (H1) holds with A1 satisfying Ay > €20 and (H2)
holds for a fixed § = §; and A = Ay then for all § = 02 < §; (H1) and (H2)(i),(ii) hold
with X = A = AZ 4%,

Sketch of proof. Take a point x ¢ (—0s,02). If x, fo,..., fM 'z ¢ (=01,01) there is

nothing to prove. Suppose that k < M — 1 is the first index so that f¥(z) € (—=da,d2) \
12



(—01,01). Then by (H2)(ii) for § = &2, |(f7)'(x)| > M. With y = f¥(z) and the
bound period p = p(y) defined in the usual way it is easy to verify that [(fPT1)'(y)| >
Z\ﬁ““")(p“). We conclude that with Ay = S\I%_M, |(fRHPry ()| > AEHPHL Moreover
with an argument similar to that in the proof of the second assertion in Lemma 3.1,
fF+3(x) will never hit (—dz,d2) for j < p. We conclude that (H2)(i) holds with M =

The proof of (H2)(ii) uses the same type of arguments. Each bound period of
length p; following a return y; to (—d1,071) \ (—d2,02) gives a derivative contribution
|(fP+8Y (y;)] > X5t The derivative during the “free” period following each bound
period of this type lasting until the next return to (—dy,d1) (and eventually to (—do, d2))
is estimated using (H2)(ii) with 6 = d;. O

Lemma 3.3 (“Outside” lemma). Let f satisfy (H1), (H2), and (H3) and assume

2a/10g)\<17<1/10 There are C > 1 and 7 > X/5 > 1 such that for all € > 0, all
weQ,zel,andk € Z,

k
)] > Va2, %5 = 0, k- 1= (5 (@) = Yo (3.6)
There is 0 < 01 < 0 (independent of €, w) such that
[f5(@)| > Ve/2,¥j =0,... .k =1 and |f5(x)| < 01 = |(f5) ()| > L

Proof of Lemma 3.5. We claim that it suffices to see that there are 0 < §; << ¢ and
7> A5 such that if \/e/2 < |z| < 0, then there is p(z) < C'log(1/e) with

p—1
(@) > 61, Y0 < j<p—Land []Ife,(fi(x)] > 7, VweQ. (3.8)
§=0

Indeed, (H2)(i) and (ii) imply by a continuity argument that for small enough e (and
up to slightly reducing \) for each w and y if y, f,(y),..., 2" 1(y) ¢ (=9, 6) then

(F2) ()| = A/C.

If, additionally, f*(y) € (—6,48) then |(f7)'(y)| > A\". Using this fact and (3.8) (which
plays the role of Lemma 2.4(b) in [V]), Lemma 3.3 may be proved as Lemma 2.5 in [V]
using ideas going back to [BC1, BC2].

But now, (3.8) may be obtained for any 7 < A¢ if 2¢ < 1/2—n, by the arguments used
to show Sublemma 3.2(3), taking k& = k(e) maximal so that /e < e™* and considering
Y € Jutey.e \ Je with J. = [—e + f(\/€/2), F(0) + €] (see [BeY, Lemma 4.4 (ii)]). O

13



3.B Estimating bad sets.

We now prepare the construction of the random dynamical partitions of the interval,
in view of obtaining in Section 5 a tower suitable for the coupling argument [Yo2]. We
start with the exponential partition Q of I (modulo zero measure sets) into intervals
defined for r € Z by I, = (Vee ", \fee ""D) r > 1, I, = —1_,, r < -1, I] =
(Ve vee), Iy = —If, IT = (\fee,1), I- = —IT. For |r| > 1 we write [} = I, U
I,,1 UI._1. For m > 1, we also introduce the functions r,, : 2 x I — R, by setting
rm(w,z) = |r| if f7(z) € I, and 0 otherwise, and sets

G (w0, 2) = G5 (w,7) = {1 <j<m|rwe)> max <1, G _ 2n> log%) } (3.9)

Recall that (2a/log ) < n < 1/10 appeared in Lemmas 3.1 and 3.3. In view of the
proof of Lemma 3.4, we take n = log7/(4log32) for 7 > X'/ from Lemma 3.3 (since
5-8-1og(32) < 200, assumption (H1) guarantees that we may do this).

The reader is invited to check (see [V, § 2.4], and also [A, § 2]) that for suitably small
¢ > 0, large C' > 1, small € > 0, Lemma 3.1 and the definition of G, (w,x) imply that
for each large enough n > C'log(1/¢) and all (w,z) for which

Z rj(w,z) <cn, (3.10)

JEGS, (w,x)

we have |(f?)'(x)] > ¢™“. Hint: The key step is the first of the following bounds,
recorded here for future use,

(2@ > exp (400 = Ty 0 i) 2o )
(3.11)

2 (@) < v = [(f2)(2)] = exp (4cn Yt o T3 (@27) — 0) .

Our next aim is to show that for all = the set of w such that (3.10) is violated has
small measure. The i.i.d. setting together with the assumption on v, give:

Lemma 3.4 (Estimates on “bad w-sets”). There are C(e) > 1, v(e) > m,

and for each x € I and all n > 1 sets E,(x) C Q with P(E,(z)) < C(e)e™ )™ such
that if w ¢ E,(x) then condition (3.10) holds for (w,z) and n.

Proof of Lemma 3.4. The crucial point is the fact that there are C >0and 0 < < 1
so that for small enough ¢, there is M(e) ~ C'log(1/e), so that for each interval I, with
Ir| > (1/2 — 27n)log(1/¢), and all z, w

Pwe Q| fMO@) € 1)) < Ce 7. (3.12)
14



(Note that an obvious upper bound is (C'/e)\/ee~" if r > log(1/1/€), with C' the constant
from (2.1). We need the better estimate (3.12) to deal with (1/2 — 2n)log(1/e) < r <
(1/2)log(1/e€).) See Lemmas 2.3 and 2.6, and especially the bound on line 3 of p. 77 in
[V] (note that this bound is in fact a conditional probability) for deterministic analogues
of (3.12), obtained using a notion of admissible curves which we do not require.

Let us sketch how to adapt the proof of Lemma 2.6 in [V] to obtain (3.12). We
start by observing that (2.1) implies that there are constants C; > 1 and Cy > 1
so that for each ¢ > 0 there are subsets Hy = Hj(¢), Ho = Hj(e) of [—¢,¢€], with
ve(H;) > 1/Cy for i = 1,2, and the distance d(H;, H2) > €¢/C5. This immediately
implies that |f, (z) — fo(x)| > €/Cs if wg € Hy and Wy € Hy. (This is Lemma 2.7 in
[V] with Cy = 16 and Cy = 100.) Then, taking M = M(e) to be the maximum integer
so that 32M(9e < 1, we observe that M(e) is smaller than the constant N(¢) from
Lemma 3.1. Since our choice of n and M implies

1 1
r+M(e)10gT—§log— >nr,
€

for all » > (1/2—2n) log(1/e€), we may just follow the proof of Lemma 2.6 in [V], making
use of (H1)(ii) in lieu of the finite postcritical assumption there (clearly, o < (log 32)/4),
and of our Lemma 3.3 in place of his Lemma 2.5.

Now, to deduce Lemma 3.4 from (3.12), we may simplify Viana’s large deviation
argument [V, Theorem A § 2.4]. In particular, our i.i.d. setting allows us to suppress
the time-shift “I = m — M(e)” (with | ~ m ~ /n) in [V]. As a consequence, we get
exponential bounds (our rate depends on €) instead of the stretched exponential bound
in [V].

More precisely, we now sketch how (3.12) gives y(e) > C/log(1/¢) and C > 1 so that
for each fixed small enough ¢, all x € I, and all n > log(1/¢)

P<{w | Z ri(w,z) > cn}) < C’IL(l/E)e—'y(e)n_
1€G, (w,z) \/E

“Large deviations” here is just the remark that for any 8 > 0 and all 0 < ¢ < M(e) — 1
(see Lemma 7.1 for a similar computation)

cn _ Ben_ BY ri
P< w | ri(w,r) > —— ) < e M© / e “i€Gngwa) " dP(w),
{ 2. M (e) } {Grnq(w,2)£0}

1€EG, ¢(w,x)
where G, 4(w, ) is the set of those i € G,,(w, z) for which i = ¢ modulo M(e). Thus,
setting () = ¢f/M(e), it suffices to show

Y

/ o Licanatn ™ dP(w) < 1
QN{G, q(w,z)#0}

for some f > 0 and all € > 0, z, 0 < ¢ < M(e), and n > log(1/e). In order to
obtain the above bound, we introduce some notation. For fixed €, n, ¢, and z, w, let
15



t(r,w) = t>™9(x,w) be the cardinality of G, q(w r) = {i1 <idz... < iygw)}, and set
To = Tom+q if Tom4q > (1/2 — 2n) log(1/€) and 7y = 0 otherwise.

Next, it is easy to deduce from (3.12) and independence that there is C' > 0 so that
for all €, every n > log(1/¢€), each 0 < g < M(e) — 1, every 1 <t < n, and any sequence
p; with either p; =0 or p; > (1/2 — 2n) log(1/e),

P({w |t (z,w) =1t and 7, = p;, ,L=1,... ,t})

({W | fj\//\t/l(fz)+q(w)( z) € IPiHl }>

t
—432,91'
< — it
< ﬁe

(We used the trivial fact (£ + 1)M + ¢ =4 M + q+ M.) Thus

/ elgziegn,q(w,z) " dP(w)
Qﬂ{Gn,q(w’m);ﬁ@}

< 6_1/2ZCt€_3'BZiPi < 6_1/2ZC(t7R)Ct6_3BR7
i R

where ((t, R) is the number of integer solutions of the equation 2221 pi = R satisfying
pi > (1/2 — 2n)log(1/e) for all j. Since R/t > (1/2 — 2n)log(1/e), taking € > 0 small
enough ensures that (recall 1 <t < R and R > (1/2 —2n)log(1/¢) > 1)

D (L R)CTeTIR <N e 5R<ZR6 PR<1. O
t.R

t,R

Corollary 3.5 (Bad (w,x) sets). Let C = C(¢) and v(€) be as in Lemma 3.4. There
is ¢ > 0 and for each m > 1 there is E,, C Q x I with (P x Leb)(E,,) < Ce~"™ such
that for all (w,x) ¢ E,, we have

Z rj(w,xz) <cm.

JEGm (w,x)

Proof of Corollary 3.5. Just write E {(w z) | w € Ep(z)} and use Fubini to apply
Lemma 3.4: (P x Leb)( = [; P( )dLeb. O

Corollary 3.6 (Bad z sets and bad w sets). Let C = C(e) and y(€) be as in
Lemma 3.4. For w € Q, and m > 1, set E,,(w) = {x € I | (z,w) € En}. Then

P({w € Q| Leb(Ep,(w)) > VCe=1(Om}) < V/Cev(e)m,

Proof of Corollary 3.6. This is Fubini agam' Indeed 1f P({w € Q| Leb(Fp(w)) >
VCe=7m}) > /Ce=r™ then (P x Leb)( = [o P( )) dP(w) would imply (P x
Leb)(E,,) > VCe=7m\/Ce—1m, contradlctmg Corollary 3.5. O
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Lemma 3.7 (Parameter exclusion — Waiting times). Let y(¢) be as in Lemma 3.4.
There is C = C(€) > 1 and a full measure subset Qo C  such that for each w € Qg
there is no(w) such that for all m > ng(w)

Leb(E,,(w)) < Ce™ ttm

Additionally, there are C = C(e) > 1 and ((e) > (Clog(1))™! such that the random
variable no(w) satisfies for all n € Z 4

P({w e Q| no(w) >n}) < Ce=¢lom (3.13)

The lower bound ng(w) is called a waiting time. Tt will have to be modified before
we reach the final waiting time function n4(w) which will play a role in the recurrence
asymptotics of our random towers (see (A.V) in Subsection 5.B).

Proof of Lemma 3.7. Using C' = C(€) from Corollary 3.6, define for each n a “bad set”
B, = {w € Q| 3Im > n,Leb(Enp(w)) > \/Ce—vm} .

Corollary 3.6 says that P(B,) <> .- C(e)e‘qe)k. Therefore lim,, ., B, = 0. Setting
Qo =U,,(2\ By), and for each w € Q,

no(w) :inf{n €Zs|w¢ Bn},
we easily get (3.13). O

Definition (Random hyperbolic (return) times). Fix ¢/ > ¢. We say that m is a
hyperbolic time for (w, z) if for each 0 < k < m — 1 we have

Z ri(w,z) < (m—k).

1€EGm (w,z) ,k<i<m—1

(This condition depends on € through G¢,.) We say that m is a hyperbolic return time for
(w, ), or a hyperbolic return if m is a hyperbolic time and, additionally, r, (w, z) > 1.

For w € 2, a fixed py(€) (the choice of py occurs later in Lemma 3.9 and 5.3), and all
m we define

H,,(w) = {x € I | m is the first hyperbolic time > py for (w,z)}
H (w) ={xz € I | m is the first hyperbolic return > py for (w,z)}.

Finally, we set B}, (w) = I\ Uy, Hi(w).

17



v(€)/2 be as in
no(w) + C(e), we

Lemma 3.8 (Hyperbolic return estimates). Let 0 < ((¢)
Lemma 3.7. There is C'(¢) > 1, such that for all w € Qg and all m
have Leb(E¥, (w)) < C(e)e=¢(m,

<
>

Proof of Lemma 3.8. Applying Pliss’ Lemma as in [A, Proposition 2.6], we find

I\ E,(w)C U Hy(w), Vm > po .
k

=Po

Next, we shall show that if |f7*(z)| > /e at the hyperbolic time m, then there is a first
iterate 1 < j < C'log(1/€) for which |f™+i(x)| < \/e. Of course, m + j is then not only
a return but also a hyperbolic return (use Lemma 3.3), so that we get

m m—C'log(1/€)
U Hiw) > | Hilw).
k=po k=po

If y = |f™(x)| > /e then the interval [ty — \/€/2,+ty + \/€/2] does not intersect
(—v€/2,1/€/2). The heart of the proof lies in the observation that there is C' > 1
(independent of w, m) such that H,,(w) C UZH'C log(1/¢) H}(w). For this, we apply

Lemma 3.3 which gives 7 > 1, C' > 1 so that if |}gmw(z)| > /e for 0 < j <Fk—1 then
|(fE.)(2)| > Verk/C. Tf k > log(2/Ce)/logT ~ Clog(1/e) then Cy/e\/et® > 2 = |I|

so that our interval of length /e centered at y will have intersected (—/¢, /) for the

first time by the time C'log(1/e).
To finish, since |, Hji(w) D UZ:pf log(1/¢) Hy(w) and I\ B}, (w) = Ui, Hi (W),
we have

E;z(w) C Em—C’log(l/e) (w)
giving the claim, with C'(e) = log1/e, by definition of the B,,, see Lemma 3.7. O

3.C The random partitions.
The first step is to obtain for fixed w € €2, and each m > py a mod-0 partition of I

into intervals -
=y U 7v | L

k=po JCR (w) LCSm (w)

The families of intervals Ry, = Ry (w) and Sy, (w) are constructed inductively, simplifying
the strategy in [A, §3] (in particular the distinction between Ry and R} does not exist
here). We first list their key properties, valid for po < k < m (recall the definitions
given before Lemma 3.4):

(P.I) Hi(w) C Ujery(w)d and J N Hj(w) # 0 for each J € Ry. (In particular, if
w € Qo then Lemma 3.8 implies that Leb S, (w) < Ce=SEm if p > no(w). As
a consequence, Uzozpo U JCRE(w) J is a partition of I modulo zero measure sets.)
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(P.IT) For each J € Ry(w) and 0 < j <k — 1, there is I, € Q such that fJ(J) C [,Z‘;.

(P.IIT) For each J € Ry (w), there exist 0 < j <m —1 and I, with fJJ D I, .

(P.IV) For each J € S,,(w), either J € Q or J is subordinate to some J* € R, for
some £ < m. (By definition, J is subordinate to J* € Ry if J and J* have a
common endpoint and there are 0 < j </ —1 and r; > 1 with fZ;J D Iy41 0
fiJ> I,y where I, C fIJ*.)

Construction of the initial partition:

First step: We first construct R,, and S,,, by using an auxiliary sequence of families
of intervals 7, for 1 < £ < po. For this, start with the family of intervals J; =
{I, € Q| I, " H} (w) # 0}. For each J; € J1, we consider f,(J1). If it does not
contain any interval of Q@ we put the interval J; in J5. Otherwise, we subdivide J;
into subintervals having as image either exactly one element of Q or one element of Q
and part of either of the elements of Q which intersect the boundary of f,(J1), and we
put into J> those intervals in the decomposition which contain an element of H, (w).
Then, for each Jy € J» we consider f2(Js), putting it into J3 if it contains no interval
of Q, and otherwise decomposing J» as in the first step and putting into J3 those
subintervals which intersect H, (w). We continue in this way until reaching the iterate
fPo=1 obtaining a family of intervals J,,. We define R,, = J,,, and set

Spo = (Q\ J1) U {connected components of .J; \ U J| Ve T}
TETp,

Properties (P.I-IV) are satisfied by construction for R,, and S,, (we set Ry = J; for
1 <2 <py—1 in the formulation of (P.IV)).

Inductive step: Assume that Ry, po < k < m, and S,,, have been defined and satisfy
(P.I-IV). We shall construct R,,+1 and S,+1. For this, let J,,, € S;,,. By construction,
Jm C I, € Q. If J,, N HY, 1 (w) = 0 we put this interval into Sp,41 (no subdivision has
been made, so that (P.IV) still holds). Otherwise, we observe that (P.IV) implies that
there are 0 < j <m and I, € Q with f2(Jm) D I, (indeed, if .J;,, € Q we may just take
J = 0 and otherwise we apply the definition of “subordinate”). We take the smallest
such 7 and proceed as in the first step, decomposing .J,,, into subintervals having image
either exactly one element of Q or one element of @ and part of one of the adjacent
elements of Q, putting in S,,+1 the connected components of the complement of those
intervals, J;, ;, in the decomposition which contain a point in Hy,  (w), and continuing
the procedure until we exhaust all ' < m with f7 (J,,) D I, defining thus R, 1 and
Sm+1. Properties (P.I-IV) hold by construction, and we are done.

Definition (Uniform contraction and bounded distortion). Let n, w and an
interval J C I be such that f7 is injective on .J. We say that f7|; enjoys uniform
contraction along inverse branches for 0 < g < 1 and C' > 1 if for every x € J and all
0<j<m—1

1:[ [ (fa(@)] > B]%m (3.14)
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We say that f7|; enjoys bounded distortion for K > 1 if for all y € f*(.J)

d 1 -1 roa—1
d—y(goaﬁ YW)| - |#' oo™ Hy)| < K. (3.15)

We list for further use the key property of the partition, adapted from [A].

Lemma 3.9 (Intermediate size — Bounded distortion — Uniform contraction).
There are C > 1, 0 < B < 1 and for each € there are po(e) > 1 and C(€) such that for
all w, each m > py, and every J € Ry, (w):

(1) f™; is injective, |f™(J)| > €'=21/C, and f™(J)| intersects (—/€,/€).
(2) s enjoys uniform contraction along inverse branches for 3 and C.
(3) f|; enjoys bounded distortion for C(e).

Proof of Lemma 3.9. Injectiveness is by construction. For the rest, we require in
particular the following consequence of (P.I-P.II): For each x € J € R,,(w) there is
z € JNH (w) with

ri(w,z) <ri(w,2)+2,V0 <i<m-—1, and r(w,z;) < 7r(w,z;)+2,Y0 <i<m-—j—1,

where we set x; = fi(z), zj = f1(z). Assertion (2) on the contraction of inverse
branches is then obtained from (3.11) (adapting the proof of Lemma 3.7 in [A]): It is
not difficult to get (see [A, Lemma 2.3], observing that m — j is a hyperbolic return for
(07w, z;) because m is a hyperbolic return for (w, 2))

mE[ U )] = mH (Pl
> oxp(3e(m — 1) - T nletn) - c)
> oxp(3e(m 1) = ¢~ ) = ) > exp (3em — /2 €.

(3.16)

The claim on the length of the image follows from enhancing the bounds of [A,
Proposition 3.8] by making use of the hyperbolic returns. Indeed, (P.ITI) implies that
there is 0 < j < m — 1 and I, with I, C fZ(J). Then, by the mean value theorem,

there is x € J with _
(D = (57 (FL@)] - )]
Next, applying (3.16),
((F50)) (fi(w))| > = /C.

It remains to obtain a lower bound for |f7(J)|. For this, it suffices to control |I,|.
By construction, there is z € J with rj(w,z) = r; and there is y € J N H}, (w) with
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<rj(w,y)+2. If j € Gy (w,y), since m is a hyperbolic time for (w,y) we
have r;(w,y) < ¢/(m — j), so that, using n < 1/4,

I, > Ve (e @2 — =i (ww)=3)
> e(e™! — e72)em (M=) > (1=(=1 _ =2)=¢(m=d)

If j ¢ Gp(w,y) then rj(w,y) < (3 —2n)log(1/e) and

—2
|IT‘J'| > 6761_27] .

Finally, the distortion control (3) with C'(¢) ~ e~7/2 is obtained by a one-dimensional
version of the proof of Proposition 4.2 in [A], adapting the estimates for the term A,
there. (We leave the details to the reader.) O

Let us define the basic subintervals A4 on which our random towers will be con-

~

structed. For this, we partition (—4d,4) (0 as in (H2) and small enough) into 4> g, Ik

~ ~ ~ ~ 2 ~
with I, = (e7%71,e7%), I_; = —1I; and then we subdivide I}, = Ulzzl Ii.¢ so that the
I.¢ are disjoint and | | = k=2 | I|. (Note that € does not intervene.) We set Ay to
be the rightmost and leftmost intervals of this partition of (—4,d), i.e.,

Ay =Tgorz, A =T 1. (3.17)

We also define /N\_|_ to be the interval of length 3|A | centered at A, similarly for A_.

We close this section with a lemma that will be instrumental to prove Lemma 4.1
(replacing ideas in the Appendix of a preprint version of [A] which circulated in 1997;
note that we do not use the topological mixing assumption (H4)):

Lemma 3.10 (Large size of image). Assume (H1)-(H3) and let 8 < 1 be as in
Lemma 3.9. Then there is C > 1 and for every small enough ¢ and large enough |k|
there is a constant C(k) > 1 (independent of €) so that for each w € Q, and every
interval IAkyg there are a time

t(k) = t(Ige,w) < Clk],
and a subinterval ﬁw - [Ak,g such that

{ Ul > 1/C(k),

. - - (3.18)
k) (Us) = Ay or A_.
Furthermore, ¢ = ff,|gw s injective and enjoys both uniform contraction on backwards

branches (3.14) for C' and (3, and distortion bounds (3.15) for K = C(k).

Proof of Lemma 3.10. We shall use again the random bound period ideas from [BeY].
We first state an easy consequence of Sublemma 3.2 (3). For every 1/4 > n' >n >0
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(recall that n was fixed in the proof of Lemma 3.4) each small enough ¢, all w € Q, and
every Iy ¢, taking p(k,€) as in Sublemma 3.2:

\fﬁ(’“)“(fk,g)\ > e—2n' k] (3.19)
Indeed, just observe that
—lk|-1 o—lkl-1 (2=2n)lkl o—2(lk[+1)
ke)+1/7 . ke e e € € —2n' |k
| R (I )| > inf (259 c = 2 g o e Ikl
(3.20)

Next, we claim that there is an integer i = ig < C|k|, so that for some k; and ¢4
fREOTITO (T ) S Ty 1 Uy 00 Uy gi41, and [ky| < 29 [K| (3.21)

(with the obvious interpretation if £, = 1 or £; = k?).
To check (3.21) we first note that there is a first iterate jo < C|k| so that

frkeFI4io ([ )y (=6,8) #0.

Indeed, while fﬂ’“’”““(fk,g) stays outside of (—d,d) we have, setting i = ¢M (5) + r
with 0 < r < M(J) and applying (H2)(i),
M

—2n'|k|
(it [F@DY ©

. M .
frEatIri(L | > — fREAFL(T )| >
| s A

Now, if f5®9To0 (f ) c (=6,6)UA,4 UA__, where A, is the interval to the right
of A4 in an augmented partition, and A__ is the corresponding interval to the left of
A_, we set i’ = jg, and by (H2)(ii)

PR )| > W[ fEEIT (T )| > N e M (3.22)

Tn the other case, except if f5F)T1H70 (Ix.¢) covers Ay or A_ (in which case we would

A

stop, having proved Lemma 3.10), we replace fg(k’e)HHO (I.¢) by
fREHIRI (T )\ (=6, 6) (3.23)

and continue iterating until we intersect (—d,d) again. The loss in length caused by
(3.23) is insignificant since there is a minimal time between successive returns to (—d,0).

We may thus assume that we are in the situation (3.22) for some i’ < C|k| and that
there is (k',¢") with |k'| < n'|k| and

fg(k:e)‘i‘l‘f'z’ (IAk,Z) g IAk',Z’—l U jk’,f’ U IAk/7€/+1 (3.24)
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(since otherwise (3.21) would be proved). Applying Lemma 3.2 (3) to I/ ¢ we get (recall

(3.20))
‘fﬁ(k’e)“H’er(kl’e)“(fk,e)‘ > e 21kl

Continuing the procedure, we eventually find subintervals Uy C ﬁo - fk,g, an iterate
1= io, and (kl,gl) with io S C|k| and |k1| S 27]l|k|,

fg(k’E)-l-l-Ho (UO) = fkl,& ) fg(k76)+1+io ((70) = fk1,£1—1 U fkl,& U fk1,41+1 ) (3'25)

ending the proof of (3.21). We take kq so that |k1| is minimal with the property (3.25).

We may now conclude the proof of Lemma 3.10: Repeating the procedure leading to
(3.25), we obtain sequences

Uy, Us,...Up,Us,...,
kozk,kl,kg,... , with |km_|_1| <2’I7/|km|, (326)
io,il,iz, ceey with 'Lm S C|km| .
The only way this can stop is that the second line of (3.18) be satisfied. The total time
spent before this happens is

S

t= (p(km,€) +1+im)

m=0
<C Y k| <C Y (20)™ kol < Clkol .
m=0 m=0

Since s < s(k) < Clko|, the lower bound on the length of U, follows from the remark
and choice just after (3.23) and (3.25). The assertions on injectivity, distortion and
contraction are immediate by construction, see in particular (3.24). O

4. ESCAPE AND RECURRENCE TIMES ASYMPTOTICS

Let Ay and A be defined by (3.17). We take as our reference interval A = A, C I,
For small enough € and for all w € 2 we subdivide A into subintervals of points having
the same return times to A, using the partitions R,,(w) and S, (w) from the previous
section. Our aim is to controll asymptotically the Lebesgue measure of points having
large return time. We first use Lemmas 3.9 and 3.10 to show:

Lemma 4.1. (Covering A, by iterating J € R,,(w)). There are C > 1, and for
each € > 0 a constant C(€) > 1 such that, for all w, all m > pg, each interval J in
R (w), the following holds:

There are a subinterval J C f™(J) and an iterate t(J) < C'log(1/€) such that |J| >

C(e)™t and for which ft,._, maps J injectively onto either Ay orA_.
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Furthermore, the restriction of ¢ = fim, on J engjoys both distortion bounds (3.15)
for K = C(¢) and uniform contraction on backwards branches (3.14) for the constant
B <1 from Lemma 3.9.

Proof of Lemma 4.1. By Lemma 3.9, the interval f™(.J) has length > ¢!727/C and in-
tersects (—y/€,v/€). It thus contains an interval J' C (—2\/¢, 2\/€) of length > €727 /C,
disjoint from (—€'=27/C,e!727/C). Now an easy modification of the beginning of the
proof of Lemma 3.10 may be applied to .J', giving an iterate to < C'log(1/€) and a
subinterval J” C J’ with |.J”| > 1/C(€) and such that £, (J") = I}, injectively, with
|k| < C'log(1/€) minimal for this property, and good distorsion and expansion for the
restriction to J” of this tpth iterate. (In particular, (3.20) is replaced by the observa-
tion that |fZum,(J')| > €'737/C.) We may then apply Lemma 3.10 to I}, and get a

subinterval U C I, and a time ¢; < C'log(1/€) so that |f§1m+t0w(ﬁ)| is exactly one of

the intervals Ay. Take t(J) = to+¢1 and J = J” N (f%,,) " (U). The assertions on the

length of J, distortion, and contraction follow from Lemmas 3.9 and 3.10. [

Definition (Escape time). For w € Q, m > pg and J € R, (w), let ¢(J) be as given
by Lemma 4.1. We say (J,w) has (equivalently, (z,w) for all points = € J have) escaped
at time m + t(.J). (By Lemma 4.1, f™%*(.J) contains A, or A_, and we have good
distortion and expansion control along the way.)

Lemmas 3.8 and 4.1 together with the remark in Property (P.I) immediately imply:

Corollary 4.2. (Basic escape time asymptotics). For allw € Qg and m > ny(w)+
2C' log(1/e)

Leb({(a:,w) € I |x escapes at time > m}) < C’exp(—((e)(m—2010g<1>> .

€
Proof of Corollary 4.2. If m > ng(w) + 2C'log(1/e),

Leb({(z,w) € I | x escapes at time > m})
m—2C'log(1/¢)
gLeb<{I\ U Rk(w)}>
k=po
< Leb({Sn—2010501/0@)}) < € exp(~C(m — 20Tog(1/e)). O

For each m > pg, we shall define the return times of all z € J € R,,,(w) abstractly
(and independently of ¢).

Definition (Return time—Partition A;(w)— Abstract return time R,). Fix w €

Q, m > po(e). For xz € J € Ryy(w), consider all those ¢ > m such that f! maps .J

injectively onto an interval containing A and for which there exists a nontrivial interval
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J = J(t) C J containing z with f!(J) = A and f|; enjoys bounded distortion (3.15)
and uniform contraction on inverse branches (3.14), with the constants from Lemma 4.1.
The return time R, (z) is then the minimum of those ¢ which appear. It is infinite if
the set is empty.

For each w, define a countable partition of A into subintervals {A; = A;(w) |i € Z4},
by considering the connected components of the sets {{z € A | R, (z) =r} | r > po}.

Proposition 4.3 shows in particular that for w € g, the A;(w) form a partition of A
modulo zero Lebesgue measure sets, and that the return times are almost everywhere
defined:

Proposition 4.3 (Return time asymptotics). There exists Qs C Qg of full measure,
a random variable ny(w), and constants C(e) > 1, Cy(e) > Ca(e) > 1 such that for all
w € Qq, and all £ > nq(w),

Leb({z € A | R,(z) > /}) < C’(E)e—(ez/c'l(ﬁ)) ,

and

1
P({w | na(w) > £}) < C(e)e™ T/
We may replace the right-hand-sides in both inequalities by C(e)e™" for 0 <u < 1/4,

The fact that Cs(€) < Ci(€) will be crucial to obtain the asymptotics (2.5) for C,,
(see Corollary 7.10).

Proof of Proposition 4.3. We first estimate auxiliary concrete (e-dependent) return times

R, (z), corresponding to the first time when one of the Ay is guaranteed by Lemma 4.1
to be “well” covered (with good expansion and distortion control). After that we shall
define second auxiliary concrete return times R (z) corresponding to the first time that

A = A, is well-covered and estimate them using the information on the R, (x). Since, by
definition, the “abstract” return times satisfy R, < R, this will prove Proposition 4.3.
Good returns to A, U A_ (estimating R, ):

Fix w € Q. For each m > pg, and J € R,,(w), we now define the auxiliary return
time R, (z) € Z4 U {oo} of all z € J inductively. Let ¢(.J), and J be as in Lemma 4.1.
Then, if f™(z) € J, and f™(z) € A, or A_ we set

Ry (z) = m+t(J).
If fm(z) € J, but f™+(z) ¢ Ay (for all r) then
Ry(x) = m 4+ t(J) + Rymiry, (f7(z)) .
Finally, if f™(z) ¢ J, we set

ﬁw(fv) = m+ Rymy, (fl,"(x)) .
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We introduce a sequence of stopping times T, = fw,i AL UA_ = {0,...,n}U{oc}
with

~ ~

To < Tt (z) < Tipp(2) < -+ < Ty (o) () = Ruo(2) (4.1)

) ’

0
such that for all £, k € Z

{z € AL UA_ | Ry(x) > £}
Cl{re Ay UA k> Emax(z), 3 < kmax(2) , T i(z) > £} (4.2)
U{zeAL UA_ | Ry(2) > Tyn(x)}.

Using standard ideas, it will be easy to bound the mass of the second set in the above
decomposition by showing that the probability that fw,k < R, (that is, k < kmax(z))
decays exponentially fast in k. That is, we shall find 6 = 0(¢) < 1 so that for all k € Z
and all w € Qg

Leb({x €Ay UA_ | Ro(z) > ﬁ,,k(x)}) < gk (4.3)

Then, using the basic bound on escape times from Corollary 4.2, we shall control the
mass of the first set. More precisely, we shall exhibit a random variable ni(w) on a
full measure set Q; (with controlled distribution, see (4.8)), and C'(e) > 1, so that for
> ny(w)

Leb({x €Ay UA_ | VE> kpax(z)

and Ji < kpax(z) with T}, ;(z) > g}) < C(e)eVHO©

Putting together (4.4) and (4.3) for k = /¢ proves that there is C3(e) > 1, so that for
all £ > nj(w)

Leb({z € AL UA_ | Ry (z) > £}) < C’(e)e_‘/z/CS(e) : (4.5)

Let us now define the stopping times, using again the notation from Lemma 4.1. We
say that T, 1 is defined at x € Ay U A_ if there is my > py and J; € Ry, (w) with

z € Ji (hence, the component of f™**(.J;) containing f™**(z) covers Ay or A_). We

then set _
~ m if fha ¢ J,
Tuste) = { i ¢
m +t(J1) otherwise.

Clearly, ﬁw(.r) > T\w,l(x), and equality is only possible in the second case: There,

at time Tj(z), part of the component of fo'(J;) containing o' (x) returns to

Ay UA_. We shall estimate the “overflowing parts” using the distortion control from

Lemmas 3.9 and 4.1. For this, let ©,1 = {z € AL UA_ | T, 1(z) is defined }. For

z € 0,1 \ {R(z) = T1(x)}, we say that Ty is defined at z if there are my > po and
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Jy € Ry, (0 i?1(9”%)) with ffl(m)(.r) € Jp, setting Th(z) to be either Ti(z) + ma, or
Ty (z) + my + t(J2). For general k > 2, we let @wk = {z | T, k() is defined}, and
we define 7, k41 0N Opiy C Opy \ {Ro(z) = wk(x)} if there is my > po and

Ji € R, (JTk(“’)w) with fg’“(x)(x) € Ji. The relatlon (4.1) (and thus (4.2)) is an
immediate consequence of the definition.

Estimate (4.3) for R,,:

The estimate (4.3) can be restated as Leb(6,, %) < 0% for some 0 < 6 < 1 and all
ke€Zy,néeZy we Qy This exponential bound will be an easy consequence of
Lemma 4.1. Indeed, for all w € Qg, n’, and pg < m, if J is an interval of Rm((f”'w), the
uniform distortion bounds from Lemma 4.1 imply (using the notation there) that

Leb (L' = 701 (/) 0y (Ap UAL)) > Cte) [A+ - Al Len()
1 AL UA_]|
= C(e)? : 2 ’
Leb(J N (f™) ) L) > Cte) (1) |A+:JA‘| Leb(.J).

(In the above bounds, J may be replaced by a subinterval L C J with |L| > |J|/C, up
to adapting the constants correspondingly.)

Therefore, setting n'(z) = T\w,k_l(:v) for x € ©, k_1, we have

Leb( Tk 1(960,76—1) N {y € @an'w,l | ﬁa’”'w(y) = fan'w,l(y)}) |A_|_ U A_|
Leb(f1 1 (Oux1)) 4C%(e)

>0.

Since Oy C Oy -1 N {R v, O f > T w1 ° f'Y, setting

AL UA_|

=1—
o 40(e)

<1,

one more (inductive) application of the distortion bounds yields Leb(0, %) < 0%, as
claimed. (Note that # is uniform in w but tends to 1 as [Ay UA_| — 0 or € — 0.)

Estimate (4.4) for R,,:
We now move to the estimate (4.4). For fixed £,i > 1, fixed 0 =19 < pp <11 < 1o <
- <1 <L, and 7 </, define k(1) = max{0 < k <i |7 <7} and

A~

AT(T17 v 7Ti) = {ZC € A+ UA_ | k(T) +1< kmax(x) 7Tw,k('r)+1(l') > T,

and ﬁ,,j(x) = Tj,VTj < T}.
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Applying the absolute bound in Corollary 4.2 we find that, whenever 71 — 1 > ng(w) +
2C'log(1/e),

Leb(A; —1(71,...,7)) =Leb({z € Ay UA_ | fw,l(x) > —1})
< Ce_C(T1—1)—2Clog(1/e) )

For j > 2, we let L be a component of A, _ (71,...,7;) with fw,j_1|L = 7j_1, and
decompose L — {R,, = 7j_1} into connected components J,. L, (with possible times

Tj—1 = m, and m + t). We apply again the absolute bounds from Corollary 4.2 to
¢=rjand f7~'L, and get, using once more the distortion control in Lemma 4.1 when
pulling back that whenever 7; — 7;_1 > no(c™'w) + 2C'log(1/¢)

ljeb(l, ) 4
Leb L, IAT._ Tiyeoo s Ti)) < C = r C(rj—1-7j_1)-2C 108(1/6)_
¢ ( ! 1( ! )) B (E)Leb(f(,’_l(Lr))e

If 7j — 151 < ng(c™~'w) + 2Clog(1/€), we only have, by the distortion control from
Lemma 4.1, that

Leb(L,)
Leb(fo ™" (L))

Leb(Lr N A'rj—l(Tla N ,Ti)) S C(E)

Thus, by definition of the L, and A,, and using the “large image” properties in
Lemma 4.1, there is C'(€) such that for all j > 2,

Lob(Ar; —1(r1,...,71)) (et 1) -
Tob(A,, 1 (ri, or) = Cle)e ¢mimm1=D i 7 — 75 4 =1 > mg(0™'w),

Leb(Ar, —1(71,...,73)) . |
Leb(A-,-j_Jl_11(;1, "'77-1')) S C(G) lf Tj — Tj—]. — 1 < nO(O'TJ_lCU) .

Therefore forany 0 < 7y < ++- <713 < /£

Leb(Ay(71,...,7)) < C(e)e™¢ - exp [C((—:) Z (15 — Tj—1) |,

Tj—Tj—1—1<ng(c"i~1w)

and (we shall soon choose k = k(?))

k
Leb({k > kmax, 3 < kmax, Twi > 1) <Y Y Leb(Ag(r1,..., 7))
1=0 0<11 <--- <1, <4

Y Y e e [cinowmm]-

1=0 0<71 <--- <1 <X 7j=1
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We now estimate the last factor in (4.6), i.e., the effect of the random waiting times:
This is where we shall lose the exponential decay. Fix 0 < p < 1. Since P({ng(w) >
n}) < Ce=¢", for each fixed 1 <i < k and 7q,---, 7,

p({ éno(g‘rjlw) > pé}) < éP({no(anlw) > %£}>

< COle) ke SO 5

(4.7)

Consider the partition of A into maximal atoms I',, = T',,(k) on which the T\w,j (x) are
constant for 0 < j < k. We will say that such an atom T is (4, k)-good if for all z € T,
and < k,

i
> no(c™mw) < pl.
7j=1

The other atoms are called (£, k)-bad. Defining My C 2 x I to be the set of (w, x) such

that = belongs to an (¢, k)-bad T'y,, (4.7) implies that (P xLeb) (M) < CkeF". Using
a Fubini argument as in Corollaries 3.5-3.6, we get that the set Mé,k of w such that

XM, (w, ) dLeb(z) > ke~ %% has P-measure smaller than e~ 5% . Therefore, there

is a set of full measure Q; C Qg such that for each w € Qq, there exists ni(w) > ng(w)
with the property that w ¢ Mj ; for all £ > n;(w). Now, for w € @y and £ > n; (w)

k
Leb({k > kmax» 3i < kmax, Twi > £1) < Y. > Leb(Ay(r,...,m)NT,)

1=0 0< 71 <---<71; <4
(£,k)-good T,

+ ) Leb(Ty).

(¢,k)-bad T,

Therefore, taking k = v/¢, applying (4.6), and using the Stirling formula we get for
1/2<v<1and £>ni(w)

Leb({k = V£ > kmax ;3 < kmax, Tui > £})

<Ve" [C(E)]ﬂe—e(l—p)g(e) -I-\/Ze—“?”\/z
< C(e)e~VE/Cs(9)

~

Combining this with (4.3) ends the proof of the bound (4.5) for the return times R,,,.
Moreover, we may estimate P({ni(w) > £}):

P({w|m(w) > 6}) < P({3j > t|we M 4})+ P({no(w) > e})

< T HEVG | et < O(e) (O (4.8)
j>e
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Note that Cy(e)™! > C3(e)™!.

Good returns to Ay (estimating R):

For z € A, UA_ we now consider the “concrete” return times R’ (z) to A = Ay. As
observed in the beginning of the proof, the abstract times satisfy R, (z) < R} (z). To
prove the desired asymptotics for R} (z), following § 7.6 in [Yol], we introduce second
stopping times S, ; on AL U A_ by setting S, o =0, and

S k() = Suk-1(®) + B s ) (F5 (@)
If = is the partition Ay UA_, and if we define =, (w) = Z\/ f75(E) V-V f;sk_l(E),
then £ maps each element & of =5 (w) onto Ay or A_, and f5* restricted to each such
¢ has bounded distortion and uniform contraction in the sense of Lemma 3.9. With the
help of ideas already discussed, these two facts yield the following two claims:

(i) The map ffj‘;f “ behaves like an irreducible two-state random Markov chain. Con-
sider for a moment the unperturbed map f, writing R* and S, for its return and stopping
time. Since the intervals AL are independent of € there are e-independent return times
T, and T_ with

min (Leb({x e A, | R*(z) = Sr, (a;)}) ,Leb({a: e A_ | R*(x) = So_ (a:)})) > 0.

Thus, if € is small enough,

1
i * = > — .
i,glefﬁz Leb{z € Ay | R} (z) = Sur, (z)} > c> 0
Hence, there is Ky > 1 so that for all w and &,
1\ F
Leb({:c eA|R:> sw,kKO}) < (1 - 5) . (4.9)

Note also for further use that if (H4) holds, then there is Ny(f,A) so that (¢ —
1/C,q+1/C) C f™(A) for all n = N1(f,A), and thus for n > Ny(f, A), where ¢ > 0 is
the repelling fixed point of f. (Indeed, take A to be the interior of A and, for B, take
first By = (¢ —2/C,q —1/C), and then By = (¢ + 1/C,q + 2/C'). For large enough
C > 1, topological mixing gives L(A,C) so that f*(A) intersects both B; and By for
all £ > L(A,C). Since f*(A) is connected, it must contain (¢ — 1/C,q + 1/C) for all
¢ > L(A). Take Ny = L(A).) If € is small enough this consequence of (H4) also holds
for . Clearly, there is Na(f, A) so that ™ sends a subinterval of (¢ — 1/C,q+ 1/C)
injectively onto A with bounded distorsion and uniform expansion. Thus, if € > 0 is
small enough, for all n > N3 = max(po(€), N1 + Na)

1

igfLeb({x €A | R:(2) = Sui(z) = n}) > Leb({A N f;l(A)}) > = (410)
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(ii) The tail estimate already obtained for R, gives C (€) > 1 such that for all w € Q;,
v €A, £>ni(0%*(w)), k € Zy, writing & () for the atom of Zx(w) containing z,

Leb({y € & () | Swk+1 — Swi > £}) —(VE/C1(€))
Leb(€(x)) <cle |

Therefore, similarly as in the proof of (4.4), we find a set Qo of full measure and
ng : Qo — Zy with no(w) > nq(w) such that for all £ > ng(w) and 0 < w < 1/2,

Leb({z € A | Sy jpw) > £}) < (C())" 176~ VD) 4 O (e, w)e= "0/ 3C1()
(4.11)
Combining (4.9) for k£ = [(*/Kp] with (4.11), the optimal choice being for w =
1/2—w = 1/4, gives the first inequality of Proposition 4.3. The claim on P({na(w) > £})
is proved just like the estimate on P({ni(w) > ¢}). O

5. RANDOM TOWERS WITH WAITING TIMES — THE QUASI-INVARIANT MEASURE

5.A Notation

From the countable partition A = A;(w) and the function R,, : A — Z4 U {o0}, we
define tower extensions F,, : A, — A, over f,. Set

A, = {(:L',E) EAXZ, |x€ UAj(J_Ew),OSKEZJF,ESRJzw(a:)—l}.
J

(Le., layer R, (x)—1 disjoint copies of A;(w) in Pisa tower fashion.) Denote by A, ¢ the
¢th level of the tower {(z,¢) € A, }. We sometimes slightly abuse notation and identify
Ay with {x € A| Ry—e,(x) > £} = {z| (x,£) € A,}; in particular A, o = A for all w.
A will denote the family {A,}uecq-

The dynamics Fy, : A, — A, consists in hopping from one tower to the next above
(x,0), stopping at level R, (z) — 1 if R, (z) < oo, and falling down to the zeroth level
of A r.(x), using the return map f2: A — A defined by

[ (@) = [l ().

In other words, we set

(x, 0+ 1), ifl+1< Ry—e(x),
(fE, (2),0), ifl+1=R, (7).

o tw

F(x,0) = {

(In particular, Ff«|a = fE|A.)
Clearly, the projection m, : A, — [—1,1] defined by =, (z,¢) = fﬁ,zw(aﬁ) satisfies

fu 0Ty = Ty 0 Fy, and m,(A,,) = Uezo ff_lw(Uj Aj(a_ew)) = UZZO fﬁ_[w(A).
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For each ¢ we consider the countable partition Z, , of A, , induced by Uj Aj(a_zw)

¢
Aw,g = U AJ (O' w)
j s.t. Rolp(o—tuy2t+1

we also let Z,, Z be the corresponding partitions of A, respectively A.

Without risk of confusion, denote by Leb the lift of Lebesgue measure on A, (sup-
pressing the dependence on w from the notation) and by d the lift to A, of the distance
d(xz,y) = |z —y| on I. Observe that sup, Leb(A,) is not finite (this plays a role e.g.
in the proof of Proposition 7.6, (7.5-7.6)). Since countable sets have zero Lebesgue
measure, we sometimes implicitly replace open intervals by closed intervals.

In view of first bounding Leb(A,,) and then extending the asymptotics of Proposi-
tion 4.3 to the a return-time function defined on all levels of A, recall that there exist
for small enough € constants C'(¢) > 1, C1(e) > Cs(€) > 1 and a random variable nq(w)
such that for all w € Qy, £ > na(w):

Leb{z € A | Ry(z) > £} < C(e)e=¢1/C1(9) (5.1)

Now, the estimate P({na(w) > n}) < C(e)e=(*/¢2(4) from Proposition 4.3 implies
that for each fixed N3 € Z; (N3 = N3(e) from (4.10), see (A.VI) and the proof of
Proposition 6.3 below), there are Q3 C 9, of full measure, and a random variable
n3 > ng on {23, so that

no(0~fw) < £ and na(o™Netbw) < £, VL > n3(w), (5.2)
1 5.2
P({nz(w) > n}) < Ce=(7/C2(e) yp
Indeed, just set
na(w) = inf{l > ny(w) | ¥n > £,na(c "w) < n and ny(e™ w) < n},
and use that
P({ns(w) > £}) <Y _P({na(c™"w) > n}) + Y _ P({na(c™*"w) > n})
n>¢ n>¢
< ZP({nz(w) >n})+ ZP({nz(w) >n}).
n>¢ n>¢
Now, if w € Q3
Leb(A,) = Y Leb({R, ¢, > £})
LEZ
1 (5.3)
< ng(w) + C(e) Z e~ E1/C1(e) < o,
£>ns(w)
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Next, we extend R, to A, (keeping the same notation without risk of confusion) by
setting R, (z,£) = Ry—t,,(x,0) — £. (Le., R,(x,¥) is the first positive integer for which
Fl(z,0) € Agnyo.) We claim that there is a random variable ny > ng3 on a full measure
subset €24 C €3 so that

{ Leb({z € A, | Ru(z) > n}) < Ce=mT/COLeb(A,), Vn > na(w), 5.

P({na(w) > n}) < Ce(T/C2() vy,
up to taking slightly larger constants 1 < Cy(€) < Cy(€). Indeed, just set
ng(w) = min{m > ng(w) | ¥n > m and V£ > 0, n3(c ‘w) < n+£}.
For each w, we introduce a separation time s, : A, X A, — Z, U {0} by

Sw(r,y) =min{n > 0| F}(z) and F(y) lie in distinct elements of Z} .

5.B Axioms

We list the crucial properties of the tower:

(A.I) [Return and separation times| R, : A, — Z is constant on each interval
of the partition Z,; with R, > po(¢). If (z,¢) and (y,£) are both in the same
interval of the partition Z,,, then s, ((z,0), (y,0)) > £. For any (z,0),(y,0) in
the same interval of Z,,

Sw(xv y) = Rw('r) + SoRw (w) (wa(m) (.I‘), wa(y)(y)) .

(A.Il) [Markov property] For each element Aj(w) of Z,, the map FI«[s () :
Aj(w) — A is a bijection.

(A.IIT) [Weak forward expansion]| The partition Z,, is generating for F, in the sense
that the diameters of the partitions \/;.Z=0 FU__jijw tend to zero as n — oo.

(A.IV) [Bounded distortion] By Lemma 3.9 and Proposition 4.3, there are C(e) > 1
and 0 < 8 < 1 (B is independent of €) such that for all w and each element
Aj(w) of Z,, the map F Ro| A;(w) and its inverse are nonsingular with respect
to Lebesgue measure, and, writing JFE > 0 for its jacobian, we have for each

r,y € Aj(w), writing s for s, r,) ()
R,
‘M“’T(I) _ 1‘ < O(e) PR @ FF )| (5.4)
TF™(y)

(A.V) [Return times asymptotics] For small enough ¢, consequences (5.1-5.2) of
Proposition 4.3 give (14 of full measure and a random variable ngy > n3 on {24 so
that for each w € Qy:

no(0~tw) < £ and na(a™MeHw) < £, VI > nz(w),
Leb({z € Ay | Ru(z) > n}) < Ce=T/COLeb(A,), Vn > na(w),  (5.5)

P({ns(w) > n}) < Ce /() v,
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Recall also (5.3) which implies (“summability”) that for almost all w
Leb(A,) < n3(w) + C(e) < oo (5.6)

(A.VI) [Ged(Return times)=1 (mixing)] There are Ny > 1 and {t; € Z,,i =
1,...No} with ged {#;} = 1 such that for all w € Qg, alln € Zall 1 < i < Ny we
have Leb({x € A | R,(z) = t;}) > 0. In fact, we have by (4.10), the following
stronger property: there is N3(e) > 1 so that for almost all w and each r > Nj
the set of z € A with R, (z) = r has positive Lebesgue measure.

5.C Dynamical Lipschitz and bounded random function spaces

Consider the following “dynamical Lipschitz” space of densities on A (with 5 < 1 as
in (A.IV), writing z, y instead of (x,£), (y,£) for simplicity):

Fi={pu: 8y = C|IC, >0, VJ, € Z,, either p,|s, =0,

0w (7)
Puw(y)

For a random variable Iy, : 2 — R, with infg K, > 0 and

or ¢,|s, >0 and < C’LP,BSW(:”’y) Nryy e J,t,

log

1
P({w| K > n}) < P({w] na(w) > n/3}) < C(e" 1@ (57)
we introduce on the one hand a space of random Lipschitz functions:
.7-";36“’ ={pw: A, = C|3C, >0,
[w () — 0u(y)] < Ctplcwﬂsw(m’y) ] pw(T) < CoKu ,Vr,y € Ay},

and on the other, a space of random bounded functions:

[,’OCOW ={pw: A, = C| E|Cfp >0, sup |pu(z)| < C;/Cw}.
rE

w

Note for further use (in Section 7) that (5.7) together with (A.V) give that £X« and
thus .7-"[’;“’, is a subset of L?(A, Leb).

Slightly abusing language (see Lemma 5.3) we refer to the smallest possible C, or Cf,
as the Lipschitz constant, or supremum, of ¢ in .7-';' or }'g “ respectively LK« . Clearly,
.7-"[’36“’ and L&« with the norms ||¢|| 7 = C,, respectively ||¢|z., = C', are Banach spaces.

5.D Constructing the absolutely continuous quasi-invariant measure

Theorem 5.1. (Quasi-invariant measure). Let {F, : A, — Ay, } satisfy axioms
(A.I)-(A.IV) together with the summability condition (5.6) in (A.V). Then there is for
almost each w € ) an absolutely continuous probability measure p,, = h,, dLeb on A,
which is quasi-invariant, i.e., (F,)«(lw) = tow -

Additionally, {h,} € FI, and there is a random variable K, satisfying (5.7) so that
both h,, and 1/h,, belong to .7:5“ C LKe.

From now on, I, will refer to the random variable from Theorem 5.1.
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Corollary 5.2. The measure (m,)«ftw on [f.(0), f2(0)] is an absolutely continuous
quasi-invariant measure for f, : I — I.

Proof of Corollary 5.2. Quasi-invariance is clear, and absolute continuity follows from
(o) bt (B) = 3520 b (£ 5, | Ao, (E)) and absolute continuity of p,. O

Proof of Theorem 5.1. Let FZ Ao — U

If the meaning is clear, we just write F/.
For any I C A (recall A,-n, o= A for all w and n)

n>po Ayny 0 denote the return map Ff(z,0).

[(FR)_l]w(E) = {(.I‘,n) S Aa'—"cu,O X Z-l- | Ra—nw('r) =n and FR

o "w

(z,0) € E}.

We define [(F®)~7],(E) by induction, and for probability measures {v,—n,, | n € Z}
on ez, Ag-nwo, e set ([(F7)]n)(E) =3, Vo ([(FF) 710 (E) N Ag-ny o).

Let Lebg be the probability measure Leb|a, ,/Leb(A, 9) on A, o = A. For each w,
set 7, to be an accumulation point of

n—1

L3 ([Fmy]) (nebo)

=0

for the weak-* topology. (Probability measures on the compact set A, o form a compact
space.) Using the distortion bound (5.4), we next show that the density of 7, is bounded
from above and from below on A, and also that this density belongs to .7-"; (A). For

this, let A C |, ez, Agny,o with A € \/] 1[(FR) Y1, 2, and set

Bja = dL‘ZbO ([(FR)j]w>*(Leb0 | A).

For z,y € A, 0, letting 2,3 € A be such that 2’ € [(FE)=7],(z), ¥’ € [(F®)].(y),
and setting n to be so that =,y € A, -, o, we find for a suitable sequence 0 < n, < n,

ialy) . (J(FE.))@) JER,, ((FE. )
log ——=~ =1 |
P hial) - UEL NG Z CTFE, (FE, )
i (5.8)
< C(E)ﬁsw(m,y)—i-(j—ﬁ)—l < C(E)ﬁsw(m,y) :
/=0

which is uniform in j, A, and w. Then, we saturate (see e.g. the proof of Theorem 1 in
[Yol] or [Yo2]) to construct a measure on | J,c; Ay

oo

flo = Z(F(f—lw)*(ﬁoflw | Ry—ey, > ﬂ) :
£=0
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Property (5.6) in (A.V) implies

fio(Ay) < CY Leb({R, ¢, > £}) < o0,
£=0

In particular, i, can be normalised to get an absolutely continuous probability measure
- Its density satisfies the conditions needed to be in .7-"; (which only involve ratios).

The upper and lower bounds for the density of #,, and its Lipschitz constant translate
into bounds for that of fi,-»,, depending on w through n3(c~"w), and we get the final
claim in the theorem by setting IC,, to be the maximum of the upper bounds for A, and
its Lipschitz constant, and the corresponding bounds for 1/h,. O

5.E Lifting Lipschitz and bounded functions to the tower.

In combination with Corollary 7.10 and Corollary 8.5, the following lemma gives our
main theorem:

Lemma 5.3 (Lifting bounded and Lipschitz functions). There is po(€) so that
if inf, inf R, > po(€) then for each Lipschitz ¢ : I — C, the family of lifted functions
d;w =¢om,: A, — C belongs to fg“’, for Ko from Theorem 5.1. Furthermore, C’q; S
bounded by an expression depending only on € and (linearly) on the Lipschitz constant
of ¢. If ¢ is bounded on I then ¢ € LK and sup 5 |<;~S| < sup |@|.

Proof of Lemma 5.3. The claim on bounded functions is trivial and we concentrate on
Lipschitz functions. The statement is an immediate corollary of the following assertion:
There is C(€) > 0 so that for all z,y in A, and ¢ for which
Ra'_[w(x) 7Ra'_[w(y) Z f7 and Sa'—zw(('ra 0)7 (y7 0)) Z ga
we have,
d(fﬁfew(x), fffew(y)) < C(e)BPe—te (@00~ — o (¢) goe (@:0:w:0)
To check the assertion, first assume that s,—¢,((z,0), (y,0)) = p = Ry—¢,,(x) > ¢. By

Proposition 4.3, we have uniform backwards contraction: for all 0 < 7 < p and z such
that (z,0) belongs to the same element of Z as (x,0) and (y, 0),

[CEIR(ANCIEY

Let zp = ff_lw(x), Yy = ff_[w(y), we have

d(f57 (w0), £57"(ye)) >
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which gives the result.

In general, decompose s,-¢,((x,0), (y,0)) = p into the sum of successive return times
of (z,0) and (y,0) to A, o, invoking uniform backwards contraction successively and
assuming that the minimal return time pg(€e) has been chosen large enough to guarantee
that C(e)BPo() < 1 (where 0 < f < 1 and C(e) are the contraction and distortion
constants from (A.IV): there is no loophole here, as increasing py when defining the
partition for a fixed € does not make C(¢) or S larger). [

6. MIXING FOR THE SKEW PRODUCT: RANDOM EXACTNESS

In the previous section, we built a random tower (A,),co and maps F, : A, —
Ay,. The random skew product is the fibered map F = (F,)uecq on A. Let B, be
the Borel g-algebra of A, and let B be the family of g-algebras B,,. In Theorem 5.1
we constructed absolutely continuous fibered invariant measures (py,)weco. Let p be

the corresponding invariant measure for the random skew product: p(A) = [ pw(Ay),
Q

for A € B. Let L?(u) be the Hilbert space of ¢ = (¢, : A, — C),eq such that
¢w € L*(Bu,, ju) for almost all w, and [, [\ [¢w|*dp,dP(w) < co.

For n € Z, we denote by F~"(B) the family ([Fn-1, 00 F,] ! (Byny))weq and
by F} the compositions Fyn-1,0---0F,.

We recall definitions which are standard for deterministic dynamics:

Definitions (Random exactness, mixing).

(1) The random skew product (F,pu) = (F,, p)weco is exact if each B € B which
belongs to all F~"B, n € Z, is trivial. (Le., for almost all w, either u,(B,) = 0 or
po(Buy) = 1.)

(2) The random skew product (F, x) is mixing if for all ¢ and 1 in L?(u),

lim ‘ / / Ganis © F2 hy dptdP(w / / o AP / / Yo oy dP(w)| =
n— oo

Remark. In our particular case of random towers, instead of a random dynamical sys-
tem, we may consider a skew-product map F' acting on A x Z, x 0, endowed with the
invariant measure p = p,, X P, where pu, has support on A, C A x Z4 x {w}. Then
the definition reduces to the usual definitions of exactness and mixing.

0.

The following proposition may be proved as in the deterministic case (see e.g. [PY]):
Proposition 6.1. If F' is exact then it is mixing.

The following result is less standard. We shall not need it (our main theorem says
much more), but we include it for completeness:
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Lemma 6.2 (Forward fibered mixing). Assume that the random skew product (F, )
i1s exact. Then for all ¢ such that

sup/ |90w|2dUw < o0,
and all v in L2(u), we have for almost all w € ):

=0.

n—> 00

lim ‘ / Ponw 0 F -y, dpty, — / Ponw Afbgny /7,% diy,
Ay Ay

oclw

Proof of Lemma 6.2. This goes along the lines of the classical proof of Proposition 6.1
(see [PY]). Indeed, exactness implies that for almost all w,

L*(By, o) D L*(F7'Bow) D -+ D L (F;"Bony) D -+ O C.

Choose {k%, & € Z } an orthonormal basis of L2(B,,)OL?(F; ' B,.), then {k% oF, ,a €
Z.4 } is an orthonormal basis of L2(F) ' B,,)OL*(F?By2,), and {k%, oFJ a € Z, ,j €
Z.} is an orthonormal basis of L?(B,,) © C. Writing ¢gn,, and ¢, in these bases, we
get:

/ Ponw O F(Z}’ ¢w d,u'w - / Porw dﬂa"w / ¢w dﬂw
w Ao'nw Aw

2
/ ks, 0 FNH gy dp,| 22250, O

S / |Q00”w|2 d,U/a”w Z

J a

oclw

Proposition 6.3 (Exactness of random map). Let (F,p) satisfy (A.1)-(A.IV) and
the summability condition (5.6) from (A.V), with u from Theorem 5.1. If (A.VI) holds
then (F, p) is exact and thus mixing.

Proof of Proposition 6.3. First we prove: if, for every £ > 0 and almost all w, there
exists an integer ¢(k,w) such that Leb(F! (A, 0)) > 1 — K, then F' is exact.

We adapt Young’s proof ([Yo2, Theorem 1 (iii)]) to our random setting. Let A €
N,, F~"B. Fixing w such that p,(A,) > 0, we are going to prove that for any x > 0,
pw(Ay,) > 1 — k. Let t(w,k/2) be given by hypothesis. For each n € Z, we have
A, = (EP) =Y Bnye,,) and

fo(Ao) = prgnti(Bontiy) = figntiy(Fla, 0 FM(A)) .

Now, the non singularity of Ft,. , the absolute continuity of jisn+t, with respect to Leb
on Agn+t,,, and the definition of ¢ imply the existence of v(k,w,t,n) > 0 such that

Leb(Ao-nw70 \ Da-nw) < v = ,U:o-n+tw(F§.nwDa-nw) > ]_ — 2KI .
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Thus, if we can find n € Z, such that Leb(Agny, 0\ F (Ay)) < v, then we shall conclude
that u,(Ay) > 1 — K. Let us prove the existence of such an integer n.

Since we assumed that pu,(A,) > 0, we may choose , € Z,(0c"w) with F7(&,) =
Agny 0 and Leb(A, N &) /Leb(é,) > 1 —wv/2. If n is large enough we may assume that
Swle, is large enough so that C'(€)3*> < v. Then, the bounded distortion estimate (5.8)
gives

Leb(F (A, N&)) Leb(A, N Z,)

- 1 - 20.
Leb(Ayny o) e PN

Finally, we prove that for any £ > 0 and all w € Q3, there exists an integer ¢(k,w)
such that Leb(F! (A, 0)) > 1 — &, following ideas from Markov chains. By construction
(see (4.10)), Leb(A, 0 N E; (Asty,0)) > 0 for all t > N5. Let £y > max[N3, ng(w)], the
tower structure gives

F“])V?’—i_zo (Aw70) D) U A0N3+£0w,£
0<ty

Because £y > ns(w) and by definition of Q3 we have ny(a™+40w) < £y Therefore,
> e, Leb(Agnateng o) < Ce% . (This is where we used the presence of N3 in the
definition of ng in Subsection 5.A.)

If we replace the assumption that all return times > N3 occur with positive proba-
bility by the weaker “g.c.d.=1” assumption, we may use the following argument: Define

U= {t €7y |Yw e 3, Leb(Ayo N (FE) " (Agry o)) > 0} .

The Markov property (A.IT) of the tower gives that U is stable under addition, and it
follows from the assumption in (A.VI) that g.c.d. U = 1. Then, Lemma A.3 in Seneta
[S] gives that U contains all but a finite number of positive integers, so that there exists
to such that for all ¢ > ¢ty and all w

Leb(Ayo N E (Ayey0) > 0.

Replacing N3 by tg in the previous paragraph completes the argument. (The definition
of nz should be modified accordingly.) O

7. RANDOM COUPLING ARGUMENT, “FUTURE” CORRELATIONS

7.A Large deviations and joint returns to the basis.

Adapting Young’s definitions ([Yo02, §3.3]) to our random setting, we introduce stop-
ping times 7 and a joint return time T,, on A, x A, for each w and z,2" € A x A, as
follows. Set

\]

(z,2") = inf{n > Ly | F}(z) € Agnyo},
2(0,0') = nf{n > by + 79(2,2') | F2(") € Aguo}

o) = inf{n > by + 75 (2,0') | F2(2) € Agnaro} |
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and so on, with the action alternating between x and z’. Define then T, (x,z") to be
the smallest integer n > £y such that (F)(z), F}(z")) belongs to Agny0 X Agny 0.

For fixed w and m € Z,, consider also the partition é‘;’n of A, x A, into maximal

subsets on which the 7 (z, ') are constant for 0 < i < m.

In order to make use of the random mixing properties, for ¢ € Z, consider the
random variable:

V2 = Leb(Bu0 1 F5 (D)) = [ (xa,ier., 0 F2) - X dLeb,

Recall that f. is the invariant measure for the Markov chain and A, o = A for all w.
For small v > 0, to be chosen later, since F' is mixing by Propositions 6.1 and 6.3, there
exists £ such that for all £ > £y, the expectation of Vf satisfies

‘ / V2 dP(w) — Leb(A) - uE(A)‘ <. (7.1)
Q

(In order to deduce (7.1) from mixing of F, we also used that h;'- xa, , belongs to
L?(u). This follows from Theorem 5.1.)

For any m € Z and each fixed sequence of integers 7o =0 < 7 < -+ < 7, such
that Ti+1 — T4 Z go, define:

Sirit(w) = i VI
i=1

Lemma 7.1 (Large deviations for ST{nTi}). There exist p > 0 and 0 < k < 1 such
that for each m and all 9 =0 < 7 < --- < Ty, such that 7,41 — 17, > Yy,

P({SfTH (w) < mp}) < k™. (7.2)
Proof of Lemma 7.1. The random variable th depends only on wqg,...,ws_1, SO th

}

and Vo’_“jw are independent provided 7 > /. In particular, S7{nT “7is a sum of independent

random variables.

For any v > 0 and ¢ > 0,
PSS @) <th < [ explute - S5 @) dPw)
< et [ expl-oS{ @) dPw)

m—1
< eVt H /exp[—vVo,Tii__wal]dP(w) (by independence).
i=0
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We have 0 < V¥ < Leb(A) and, by (7.1), /Vf dP(w) > Leb(A) - pe(A) — 7, provided

£ > £y. Now, since 0 < oV 777t < 1,
/exp[—vVJii__wal] dP(w)<1—w [Leb(A)ue(A) —y— Leb(A)zg =:a(v,7).

Choose v < 2p.(A) and then v > 0 small enough so that 0 < a(v,y) < 1. We
get P({ST{Ji}(w) < mp}) < (e - a(v,v))™ < k™, for some 0 < £ < 1 by choosing
0<p< Llog(l/a(v,y)). O

We shall now use Lemma 7.1 to perform yet another parameter exclusion which
will be useful later on to estimate the joint return time on A x A. First observe that
the lemma may be reformulated as follows: For each m, and every fixed sequence of

integers 7o = 0 < 7 < -+- < Ty, such that 7,41 — 7; > £, there is a set Mif} C Q with
P(Mifi}) < k™ and such that if w & M, then Sgi}(w) > m - p. Next define

M, = {(wza) € | ({w) x Ay x A) |w e M@
weN

Corollary 7.2. Let K, be given by Theorem 5.1. There is 0 < k < 1 such that for
each large enough m the set M, C Q defined by

M,, = {we Q| X (w,2,3") K2 dLeb?(z,2) > ™/?} (7.3)
Ay XA,

has P-measure smaller than k™/*. Furthermore, there is a random variable ns defined

on a full measure set Qs C ) and such that

{ n2n5(w):>w¢an (7.4)

P({ns(w) > n}) < Cx™/2.

Proof of Corollary 7.2. The first claim is once more a Fubini argument. Indeed, if Mm
had P-measure greater than £™/*, then

/~ / X (w, z, 3") K2 dLeb?(z, #') dP(w) > k™% x k™%,
My, JAagxa, "
However, denoting by P the finite measure on U,ecq({w} x A, x A,) defined by:

P(A) = / / xa(w, z,2') K2 dLeb?(z,z") dP(w),
QJALXA,
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using (5.6) and (5.7), we find for large enough m
P(M’,) = / xarr (w,2,2") K2 dLeb?(z, #') dP(w)

= Y PWM, n{rf(xa)=m,i=1,..,m})
T1<-<Tm
< K™ sup > K2 Leb’((Aw x Ay) N {7 (z,2) = 7;,i})
w€EN3

T < LT
(K2 Leb(A,))<k™™/%

+ P({K2Leb?(A,) > k™ ™/8})
S K]3m/47
a contradiction. Setting Q5 = {w | Ins(w) so that Vn > ns(w), w & M,}, a large
deviations argument as in Lemma 7.1 together with the first claim of the corollary gives
the second claim. [

7.B Estimates on stopping times and joint return times.

From now on, the notations A, X, A will be used to denote probability measures,
absolutely continuous with respect to Leb on A or Leb x Leb on A x A. There should
be no confusion with the constants from (H1)-(H2) which will not appear anymore.
Before proving the main estimate of this section (Proposition 7.6), we state two lemmas
which are randomised versions of Lemmas 1 and 2 in [Yo2].

Lemma 7.3 (Lower bound for P({T, = 7;})). Let X\, X' be absolutely continuous
probability measures on {Ay}, with densities ¢, ¢’ in .7-";. If ' € ¢ is such that
(T)r > Ti—1, then, letting V17" be associated to the 7;(T),

oli-lw

Ax N)Y{T, > =}T) <1 —=VZT=/Cya(e),

oTi—1lw

where Cy xr(€) > 1 depends on the Lipschitz constants of ¢ and ¢'. This dependence
may be removed if we consider i > ig(A, ).

Lemma 7.4 (Relating stopping times and return times). Let A, X be absolutely

continuous probability measures on {A,}, with densities @, ¢ in ]-'5’. For eachT € =¥,
we have

()\ X A/)w({Ti—i—l —T; > 60 + n} | F)
S C)\,A’ (G)Leb({Ra“'ﬂL[Ow > 'I’L}) ' Leb(Aa-"'i‘HOw)a

where Cx x/(€) depends on the Lipschitz constants of ¢, ¢'. This dependence may be
removed if we consider i > ig(A, \').

The proofs of Lemmas 7.3 and 7.4 are based on the following sublemma, which is a
randomised version of Sublemmas 1 and 2 in [Yo2] (recall that the bounded distortion
inequality (A.IV) is uniform in w).
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Sublemma 7.5 (Consequences of bounded distorsion).
(1) There is My such that for alln € Z, and w € €,

d(F).(Leb)

< .
dLeb < MO Leb(Aw)

(2) Let X be a family of absolutely continuous probability measures on {A,}, with den-
sities @ in ]-'5“. There is Cx(€) > 1 so that for each w € Q, every k € Z,, letting

I'e ZF71 be such that FET = Ay, o, and setting vy, = (FE).(Au|T), then for all z,

ye Aa'kw,O
dv dv
ovw ovw _ 1 < C .
‘dLeb(m) / dLeb(y) ‘ < O(e)
The dependence of Cy(e) on X may be removed if the number of i < k such that FiT' C
Agiy0 is greater than some jo = jo(A).

Proof of Sublemma 7.5. The proof of (1) follows verbatim the proof of Sublemma 1 in
[Yo2] (making use of (5.6)), we omit it.

We sketch how to prove (2). Let zg and yo € T' be such that F¥(xy) = z and
FF(yo) = y. It is not difficult to check that

Qow(.TO) QOw(yo) B . ) .
‘JF£<xo>/JF£<yo) 1‘ < (1+Cpf%) Cle) + Cpf,

where C(€) only depends on the constants from (A.IV). O

Proof oflLemma 7.3. Assume for definiteness that ¢ is even. ForI" € éi, let S\w = Ay XA,
80 Ty (Aw|T) = Ct(Ay|mw(T)). Let vorii, = Fo' ™ w(Aw|mw(T)), we have:

1

Vafi—lw(AoTi—lw,O)

—(Ti—Ti71)A

()‘ X )‘/)w({Tw = TZ}|F) = oTi—1y ofiw,O)v

. Va‘fi—1w(AJ‘fi71w,0 N

Sublemma 7.5 (2) applies to v and the result follows from the definition of V7, 7', 0O

oTimlw
We omit the proof of Lemma 7.4 which is based on Sublemma 7.5 (1) and (2).
The main estimate of this subsection follows (see Proposition 7.7 for its relevance):

Proposition 7.6 (Joint return time asymptotics). There ezist Ca(e) < Ci(e), a
subset Qg C Qy N Qs of full measure, and a random variable ng > max(ng, ns) on Qg so
that

P({ng(w) > n}) < Ce~ (5 /Ca(e))

and such that for every pair A, X' of absolutely continuous probability measures on {A,}
having densities "in FrX 0 Lke there is Cy. (€), so that for each w € Qg and all
g @7 (IO ,8 oo ! ) ’
n > ng(w)
(A x N)o({T,, > n}) < Chx (e)e_("g/cl(e)) .
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Moreover, Cy x depends on A and X' only through the Lipschitz constants of ¢ and ¢'.

Proof of Proposition 7.6. We use the notation A = A x \. For 0 < v < 1/4 to be fixed
later, we have, just like (4.2):

AT, > n)) = 3 AT > 0} 0 {72, <n <)) + A{TL > 0} 0 {78 < n))

1<n?

=:(I) + (II).

The key remark to estimate (I) and (IT) is that for a fixed w € Q, the points (z,z’) of

each element of & are either all good or all bad for the condition S,%Tf(m’m’)}(w) > mp.
T —Ti—1

Moreover, V_z, \' " depends only on 7; for 1 < j <i. For w and 7 < m, we say that an
(w)

7

other I' € ;Z(. “) are called m-good.

element I' € =/ is m-bad if it only contains points such that ST{nTiw (@,2)} < mp. The

Fixing w € Q5 N Q4, we omit the dependence of A, T', and 7; on w from the notation.
Let us focus first on the term (II). Since the densities of A and A’ are in L&« for n
such that n¥ > ns(w), Corollary 7.2 gives

(H) = 5‘({Tw > n} N {T[n”] < n}) < Cgo,go’ H[nv/z] + Z X({Tw > T[nv]} N F).

Now, denoting by T'; the element of E‘Z" containing I' € éﬁbv] for i < [n¥], we may
decompose

[n”]

MAT > 7} N = AT > 72} 1) [ x<{Az(v{Z >{ : E)) |

Ti—1

Therefore for each [n¥]-good T, using V' i1y, associated to the corresponding stopping

times, we obtain from Lemma 7.3,

A{T > 1} NT)

[n?] "] 5 , .
= 30) 3T > e [[ AT > mlr > may ry [ 5=t
(] ml 5 | |
< A\(T2) H(1 — V0 /) H X?{(;T:T,Tj}mm;i)'
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Hence (making use of the consequences of i > ig(A, \') in Lemma 7.3),

> AT > 70T

- 2{T r
<Y A Y A{T > 7} 0l)
r,Cl rocr, A{T > 7} NTy)
good good

5 ']

A{T > 7111} NT S
% Z _ ({ T[ ] 1} ) % H(]_ _ Vaii_lz“—)l/c)‘,A,)
AT > Tpe—1} N Lpey—1)

=2

FcI‘[nv],l
good

< e—In"Wo/c

where we used w & ]\Af[nv] and also the fact that

S A Y i({T > 7} NT3) 3 A{T > -1} NT)

Focl sl ({T > Tg} N Fz) o TCT o) 5\({T > T[(n“]—l} N F[n'u]_l) B

good good good

Finally, we get (IT) < Cy yx[?" /2 4 e=In"1/C.

Let us turn our attention to the term (I). Fix 0 < i < n” and decompose

M{T >n; iiy <n<m)})

1—1
= Z 5\({7’1—7','_1>n—ij;Tj—Tj_1:kj,jzl,...,i—1}>

(ky - kj_1) j=1
ijgn
Fixing ki, ..., ki—1, conditioning, using Lemma 7.4 and the asymptotics (A.V) on the
return times, we get if n > > k; + ng(oTi-1H0w) 4 4y
i—1
)\({Ti_Ti—l >TL—ij;Tj—Tj_1 :kj ,j: 1,... ,i—l})
j=1
i—1
< H CLeb(Aorj+zow) H 6_[kj_£0]1/4/01
j=1 j=1,...i—1

k;j >ngq (JTj_1+l0w)+€0

e ([ k=] /1) 7

i—1 .
< H nS(O_Tj-l-Kow) e‘"1/4/01(6) (C’(e)&é”/&(e))’
§=0

e( > (11 <to+na (o7 -170w)] 1/4/01(6)) .
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Now, since P({n4(w) > n}) < Ce=(/"/C2(9), conditioning with respect to elements of
the partition é[nv] and proceeding as in the proof of Proposition 4.3, we get for 0 < p < 1
a subset Qg C Q5 N Q4 of full measure with the following property: For w € (g, there
exists ng(w) > max(ns(w), ng(w)) (with the bounds stated in Proposition 7.6) such that

Vn > ng(w), the A-measure of the cylinders in (I) which violate the condition

7 i—1
Z(n4(0_7j+ﬂow))1/4 < /377/1/4 and H ns(O.Tj-l-ﬂow) < en” log(pn) : Vi < nv (76)
j=0 j=0

is less than e~ (""" "/C(e)),

Next, summing (7.5) over the k; such that n > Y k; + n4(c7—1Fw) + £y, the
contribution of those cylinders which satisfy (7.6) is not larger than

Cenw env 10g(n)ﬁ e_(n%/cl) <C 663/4)’” enveé/4eﬁn1/4 S C(E)e_(n1/4/al (6)) :

where the factor e with v < w < 1/4 comes from the different choices for (ki, - , k;).

It only remains to consider the sum over terms with n < Y k; + ny(oc7i-1Thw) + £,
which may be estimated by

2_1 . 1 L T
( Hn3(a7'j+fow)> (Ceﬂé/l)z o QK]S /01)6(2 k! |kj<to+na(o Jfluo“’)) /€
=0

i—1 ' Lo
< H n3(0.7'j+€ow) (0633/4)1 e_(n1/4/c,1)e(zj:0 nf (o ]+Z0w)> /C .
3=0

So, if n > ng(w) the contribution to the sum over those terms of the cylinders sat-
isfying (7.6) is not larger than Ce=(""/C1(9) . Finally, we get that (I) is less than
C(e—(n1/4/01(6)) + e—("l/‘k"/ol(e))). Combining this with the estimate on (IT) ends the

proof of Proposition 7.6 with upper bound max (e_("v/él(e), e_("l/%v/@l(e))). The op-
timal choice is v =1/4 — v, ie.,, v =1/8. O

7.C Random coupling: matching (F?).(\,) with (F).(\,).

Let A, A" be absolutely continuous probability measures on {A,} with densities ¢,
¢ in .7-';' N LX< Tn this subsection, we shall match (F*),()\,) with (F?),(\.). We
just summarise the strategy, since the computations follow straightforwardly along the
lines of [Yo2, § 3.4]). The relevant dynamical system is F, = (F, x F,)T¢ which maps
A, x A, into Ap, x Ar, . The “matching” is done using a sequence of (joint) stopping
times which are the successive entrance times into A. g x A. o:

Tl,w = Tw, Tn,w = 1In—1w + Ta-Tn o ﬁn_l-

-1y

Denote by é‘;’ the largest partition of A, x A, on which Ty ,---,T;, are constant.
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Proposition 7.7 (Matching, joint return times, joint stopping times). Let A, X’
be absolutely continuous probability measures on {A,} with densities ¢, ¢’ in }—BL NLke,

and let i1(p, ") be such that max(Cy,, Cy,)B < C. There exists 0 < 0 < 1 such that
for almost all w, all © > i1 and all n

[(FD) (M) = ()] < 2000 x X)) ({Tiw > n})

+2z: 0) T Ao X M) {Tjw <10 < Tjgr10})-

(7.7)

Proof of Proposition 7.7. Just rewrite the proofs of Lemmas 3 (3’) and 4 in [Yo2],
remarking that the constants appearing there do not depend on w in our context. [

The following lemma is proved in the same way as Lemma 7.4 (see [Yo2, Sub-
lemma 4]).

Lemma 7.8 (Relating joint stopping times and joint return times). Let A\, X’ be
absolutely continuous probability measures on {A,} with densities ¢, ¢’ in .7-"; N LKe.
Then there is Cy o, depending only on the Lipschitz constants of ¢, ¢', so that for
almost all w, all ¢, each T' € E;, and all n

A X N)o({Tit10 — Tiw > nT}) < Cpor (Leb x Leb)({T, 2., > n})

Proposition 7.9 (Matching). There exist Cy(€) < C1(€), Q7 of full measure, and a

1~

random variable ny = Q7 — Zy with P({n7(w) > n}) < Ce=(1/C2()) " sych that, for
each pair X\, X' of absolutely continuous probability measures on {A,} with densities ¢
and ¢’ in .7-'; N LK« there is Cx x (), depending only on the Lipschitz constants of ¢,

/

¢, so that for each w € Q7 and n > nyz(w),
1~
I(F™)e (M) — (1) (AL)] < Caar(e)e™ 10/

Sketch of proof of Proposition 7.9. The proof follows that of Proposition 7.6, using
Proposition 7.7 and Lemma 7.8. We just sketch how the random variable nz(w) is
constructed.

Let 0 < s < 1/8 and let ng(w), p be as in the proof of Proposition 7.6. The random
variable n7(w) is characterized by the following property: For n > n;(w) and for i < n®

(ne(0™=w))s < jm*

ML

2. additionally the mass of the “bad” atoms
of the partition 2@ is less than e~ ("

4 YETH/0) . As in the proof of Proposition 7.6, the
optimal choice is for s =1/8 — s, i.e., s = 1/16. O

for the “good” atoms of the partition =
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7.D Future random correlations.

Our key lemma is now a corollary of Proposition 7.9:
Corollary 7.10 (“Future” correlations). Let IC,, be as in Theorem 5.1. There are
C(e), v>1, and Qg C Q7 of full measure, and for each w € Qg there is C(w) with

C(e)

P{CW) > ) < 57,

so that for each o € LK, 4 € féc‘”, and all n

‘/‘panw OF(ZL -/(/}w dLeb — /gOa-nwd'Ll,o-nw/’(/}w dLeb‘
1
< CW)C(e) lellew 9l e/,

Proof of Corollary 7.10. We start by showing that for all ¢ € LX< ¢ € .7-";36“’, and all
n, there are C'(w) (as in the statement) and C, 4 (€) > 0 such that

< C(w) Cpy(e) e=10/CE),

(7.8)
Assume first that ¢ € .7-'; NLK«. Proposition 7.9 applied to A, = (f e dLeb) _11,bwLeb
and p,, gives that for n > ny(w),

‘ / Qone 0 F™ -1, dLeb — / Done dfigne, / ., dLeb

‘ / Oone 0 F -1, dLeb — / Donw digne / e dLeb‘
— / o dLeh | / oo [(F2)2 (M) — (F). (1)
L
< Cypule) - /¢w dLeb - sup|<po.nw|e_("16 /C1)

< Oxu(€)CyLeb(A,) K, C;/canwe—(nﬁ/a) _

Now, define ng(w) = inf{k > ny(w) | Kyr,, < k}. By (5.7) and the bounds on n7 from
a1~
Proposition 7.9, we get P({ng(w) > k}) < e~ 6/C2) We find for n > ng(w),

e
‘/%nw o F™ .4, dLeb — /%nwduanw/% dLeb| < Cyp(€)Kyn e~ (n70/C1),

If n < ng(w),

‘/%nwoFZ}-ww dLeb — /Qoa”wdﬂa"w/wdeeb‘

1 o~
< Cpp(e) - Clw)e” /D,
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setting
4~
C(w) = e @ T/C) K, max Kon.

n<ng(w)
This gives (7.8) if ¢ belongs to .7-'; N LX< For non negative real-valued v € }—ng
remark that ¢, = ¢, + (Cy + 1)K, belongs to .7-"; N LK« and apply the above estimate

to 1/: General real-valued functions are decomposed into positive and negative parts.
Complex-valued functions are decomposed into real and imaginary parts.
Next, we prove that C'(w) has the announced behaviour. Fix 0 < u < 1 such that

%((1)“) > 1, and use (5.7) and Proposition 7.9 again

P({C(w) > m})
<P sup Kony >mb}) + P({e @/ 5 mi=nyy 4 p({K, > m?})

n<ng(w)

P({na(i) > m}) + 32 P({ons > m D

3

,_A

+ P({n7( ) > [(1 = u)Cy logm]'°}) + P({K,, > m*})

< o= (mT5/Ca) | o—(m¥/C(e) | —llogmCr(1-u)/Cs] | ,—m¥ /C(e).

This proves the claim on the random variable C(w), taking v = Cy (1 — u)/Cs > 1.
To conclude, it remains to show that Cyy(€) < C(e)|l¢llz.||¥]|F. We adapt to our
random setting an argument of Collet [Co2] based on the uniform boundedness principle.

Fix ¢ € féc“’ and define

1 ~
(n16/Cy)
" _ ¢
pn,w((p) C(Ld)

/soanw o -1, dLeb — /(-Panw duanw/ww dLeb| .

It follows from (7.8) that sup,, ,cq, P4, () < oo for all ¢ € LK. The uniform bound-
edness principle gives a constant D, (e) such that

sup  ph () < Dy. (7.9)
n’7w6987”§0”£oo Sl

Forn € Z,, w € Qg and ¢ € LK« with |||z <1, set

o(nT6/C1)
Qn,w,cp(w) = W

/%nwoFﬂ-ww dLeb — /%nw duanw/% dLeb| .

It follows from (7.9) that for any 1 € féc‘“,

n,w€s,[[o|l £, <1
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Using once more the uniform boundedness principle, we conclude that there exists C'(€)
so that

sup Qn,w,np(w) < C(f)

n,wEQs,[l¢ll Lo <LLl1Yll 7 <1

This ends the proof of Corollary 7.10. [J

8. RANDOM COUPLING ARGUMENT, “PAST” CORRELATIONS

The estimates for the “past” correlations are obtained by recycling the arguments of
Section 7:

Lemma 8.1 (Lower bound for P({T, = 7;})). Let X\, X' be absolutely continuous

probability measures on {A,}, with densities ¢, @' in .7-"[;". For each i, if T € é;’ @ s

i—1
n

such that (T,—n,,)|r > Ti—1, then, associating V;ii_jl, ., toT as usual,

A X XY ({Tonp > i} T} < 1=VITEL /Cix(e),

o

where Cy x1(€) > 1 depends only on the Lipschitz constant of ¢, ¢'. This dependence
may be removed if we consider i > ig(A, \').

Lemma 8.2 (Relating stopping times and return times). Let A, X be absolutely
continuous probability measures on {A,}, with densities ¢, ¢’ in .7-';. For each T' €

=, —n
=7 ¥, we have for all ¥

A X X) gy ({Tig1—7i > Lo + £} | T)
S CA,)\’ (E)Leb({R07i+l07nw > g}) . Leb(Ag"'i‘l’ZO*"w)'

where C x(€) depends on the Lipschitz constants of ¢, ¢'. This dependence may be
removed if we consider i > ig(A, \').

Proposition 8.3 (Joint return time asymptotics). For every pair A\, X' of abso-
lutely continuous probability measures on {A,} having densities ¢, ¢’ in .7-'; NLE« there
is Cx x(€) so that for each w € Qg and all n > ng(w)

()‘ X )‘/)J*"w({TJ*"w > E}) S C)\,)\’(f) e_wg/C(E)) .

Moreover, C xi(€) depends on A and X' only through the Lipschitz constants of ¢, ¢'.
Proof of Proposition 8.3. This is just Proposition 7.6 written for ™ "w. U

Proposition 8.4 (Matching). There exist Cy(€) < Ci(c), a subset Qo C Qg of full

measure and a random variable ng : Qg — Z, with P({ng(w) > n}) < C’e_(”ﬁ/aﬂe))
such that for each pair X, X' of absolutely continuous probability measures on {A,} with
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densities @, ¢’ in }'g' N E’OCO“J, there exists Cy x (€), depending on X and X' only through
the Lipschitz constants of ¢, ¢', such that, for each w € Qg and all n > ng(w),

[(F0 ) o) = (Fa)o(X)] < Cay(e)e™ T /C1 (0D,

Proof of Proposition 8.4. The proof is along the lines of that of Proposition 7.9, we
just discuss the random variable ng. Let the sequence of successive joint entrance times
Tiw, -y Thw, --+, in Ay g X Ay o be as in Section 7. For fixed ¢ < n, let éf_nw be
the largest partition of A, o X Ay o on which the Ty ,—n, - -+, T; ;-n,, are constant. Let
ne(w) be as defined by Proposition 7.6. The random variable ng(w), defined on Qg, is
such that, on the one hand, for i < n? (where 0 < ¢t < 1/8 will be fixed later on) and all
n > ng(w)

for the “good” atoms of the partition é‘i’f"“’, and, on the other hand, the mass of the
“had” atoms of the partition Z¢ "¢ is less than e~m'"7'/C Choose t = 1/8—t=1/16
to get the optimal rate. [J

Corollary 8.5 (“Past” correlations). Let K, be given by Theorem 5.1. There are
C(e), v > 1, Q19 C Qg of full measure and a random variable C(w) on Q1o satisfying
P({C(w) > £}) < &, and such that for each p € LK« ¢ € féc“’ and all n

| [ 0wo P o vwdieb = [ oudps [ o dLeb)
< C)COelles ]|z e /)
Proof of Corollary 8.5. As in the proof of Corollary 7.10, we show that

< C(w)Cypyy(e) =17/
(8.1)

‘ [ oo B tomsdieb— [ gudn, [ GyrdLed

and deduce the result from the uniform boundedness principle.
Let 1) € .7-'; N LX<, Proposition 8.4 applied to u, and A, = ([ 1, dLeb) =14, Leb
implies that for n > ng(w) ,

‘ [ w0 B bonsdieb — [ pudps [ el

< Ciule) - /wanw dLeb - sup |pu| e—(n15/C1)

S Ck,u(e) C‘/JLeb(AJ*"w)ICJ*"w C:OICw e_(nl_6 /61 (<) .
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Now, define nig(w) = inf{k > ng(w) | K,-+, < k}. The properties of IC, (see (5.7))
1~
and ng(w) give P({nio(w) > k}) < e~ (k76/C2),

- 1

Replacing C; by a slightly larger positive number in e~ /¢1) we find for alln € Z
‘/% o F™ -4y, dLeb — /%duw/%_nw dLeb‘

1
< Cpy(e)Clw)e /D,

where

C’(w) ‘= maXx <K:W7 max e(ng(w)ﬁ/aﬂx
n<nip(w)

‘ [ oo B tomsdieb— [ oudn, [ GyndLed

The claim on the distribution of C(w) is proved as in Corollary 7.10. This gives (8.1)
for ¢ € }'g' N LK« For real-valued non negative 1 € fg «_ remark that ¢, = 9, +

(Cy + 1)K, belongs to .7-';' N LK« and apply the above estimate to . Complex-valued
functions are decomposed as in Corollary 7.10. [

REFERENCES

[A] Alves J.F., SRB measures for nonhyperbolic systems with multidimensional expansion, Ph.D.
thesis (1997), to appear Annales scient. Ecole normale sup. (4).

[Ba] Bahnmtller J., Pesin’s entropy formula of expanding maps, Random Comput. Dynam. 4 (1996),
99-108.

[BKS] Baladi V., Kondah A., and Schmitt B., Random correlations for small perturbations of expand-
ing maps, Random & Computational Dynamics 4 (1996), 179-204.

[BV] Baladi V. and Viana M., Strong stochastic stability and rate of mizing for unimodal maps,
Annales scient. Ecole normale sup. (4) 29 (1996), 483-517.

[BaY] Baladi V. and Young L.-S., On the spectra of randomly perturbed expanding maps, (see also
Erratum, Comm. Math. Phys., 166, 219-220 (1994)), Comm. Math. Phys. 156 (1993), 355-385.

[BC1] Benedicks M. and Carleson L., On iterations of 1 — az? on (-1,1), Ann. of Math. (2) 122
(1985), 1-25.

[BC2] Benedicks M. and Carleson L., The dynamics of the Hénon map, Ann. of Math. (2) 133 (1991),
73-169.

[BeY] Benedicks M. and Young L.-S., Absolutely continuous invariant measures and random pertur-
bations for certain one-dimensional maps, Ergodic Theory Dynam. Systems 12 (1992), 13-37.

[BL] Blokh A.M. and Lyubich M.Yu., Measurable dynamics of S-unimodal maps of the interval,
Ann. Scient. Ecole Norm. Sup. 24 (1991), 545-573.

[Bo]  Bogenschiitz T., Stochastic stability of equilibrium states, Random Comput. Dynam. 4 (1996),
85-98.

[BoL] P. Bougerol and J. Lacroix, Products of random matrices with applications to Scrhodinger
operators, Birkhduser, Boston, 1985.

[BLS] Bruin H., Luzzatto S., and van Strien S., Decay of correlations in one-dimensional dynamics,
Preprint (1999).

52



[Bul] Buzzi J., SRB measures for random Lasota-Yorke maps, Preprint (1998), to appear Trans.
Amer. Math. Soc.

[Bu2] Buzzi J., Exponential decay of correlations for random Lasota-Yorke maps, Preprint (1998), to
appear Comm. Math. Phys.

[Col] Collet P., Ergodic properties of some unimodal mappings of the interval, Preprint 11 Institute
Mittag Leffler (unpublished) (1984).

[Co2] Collet P., A remark about uniform de-correlation prefactors, Preprint (1999).

[He] H. Hennion, Limit theorems for products of positive random matrices, Ann. Probab. 25 (1997),
1545-1587.

[KaK] Katok A. and Kifer Y., Random perturbations of transformations of an interval, J. Analyse
Math. 47 (1986), 193-237.

[KhK] Khanin K. and Kifer Y., Thermodynamic formalism for random transformations and statistical
mechanics, Sinai’s Moscow Seminar on Dynamical Systems, Math. Soc. Trans. Ser. 2, 171,
Amer. Math. Soc., Providence, RI, 1996, pp. 107-140.

[Ki] Kifer Y., Limit theorems for random transformations and processes in random environments,
Trans. Amer. Math. Soc. 350 (1998), 1481-1518.

[LY] Ledrappier F. and Young L.-S., Entropy formula for random transformations, Probab. Theory
Related Fields 80 (1988), 217—240.

[PY] Pollicott M. and Yuri M., Dynamical systems and ergodic theory, London Mathematical Society
Student Texts 40, Cambridge University Press, Cambridge, 1998.

[S] Seneta E., Nonnegative matrices and Markov chains, Second Edition (Springer Series in Sta-
tistics), Springer Verlag, New York-Berlin, 1981.

[V] Viana M., Multidimensional nonhyperbolic attractors, Inst. Hautes Etudes Sci. Publ. Math. 85
(1997), 63-96.

[Yol] Young L.-S., Statistical properties of systems with some hyperbolicity including certain billiards,
Ann. of Math. (2) 147 (1998), 585—650.

[Yo2] Young L.-S., Recurrence times and rates of mizing, Israel J. Math. 110 (1999), 153-188.

V. BALADI:

SECTION DE MATHEMATIQUES, CH-1211 GENEVA 24, SWITZERLAND

CURRENT ADDRESS:

LABORATOIRE DE MATHEMATIQUES, UMR 8628 CNRS, UNIVERSITE PARIS-SUD, F-91405 ORsAY,
FRANCE

E-mail address: Viviane.Baladi@math.u-psud.fr

M. BENEDICKS:

DEPARTMENT OF MATHEMATICS, ROYAL INSTITUTE OF TECHNOLOGY, S-100 44 STOCKHOLM,
SWEDEN

E-mail address: michaelbOmath.kth.se

V. MAUME-DESCHAMPS:

SECTION DE MATHEMATIQUES, CH-1211 GENEVA 24, SWITZERLAND

CURRENT ADDRESS:

LABORATOIRE DE TOPOLOGIE, UNIVERSITE DE BOURGOGNE, F-21078 DijoN, FRANCE
E-mail address: Veronique.Maume@u-bourgogne.fr

53



