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A stronger ergodi
 property is mixing. If � is mixing, we have 
onvergen
e to equilibrium:limn!1 Z ' Æ fn dLeb = Z 'd� ; (1.2)and more generally, for any pair of square integrable observables we have de
ay of theoperational 
orrelations:limn!1�Z ' Æ fn  dLeb� Z 'd� Z  dLeb� = 0 : (1.3)(Essentially equivalently, the 
lassi
al 
orrelations tend to zero, whi
h is the same aslimn!1 R ('Æfn) d� = R 'd� R  d�. The proofs below (see e.g. (7.1)) apply to bothnotions, and we 
on
entrate on the operational 
orrelations, more a

essible experimen-tally.) When (1.2{1.3) hold, a natural question is: \how fast does the 
onvergen
e takepla
e?" Su
h quanti�ed information on rates of mixing may sometimes be obtained forsmooth enough observables, and often yields a 
entral limit theorem for them. See e.g.[Yo1℄ and referen
es therein for a dis
ussion of this 
lass of problems and some spe
i�
examples of uniformly and nonuniformly hyperboli
 dynami
al systems where the rateof mixing is exponential. One of these examples is the quadrati
 family x 7! a� x2 onthe interval for \good" (so 
alled Collet{E
kmann or Benedi
ks{Carleson) values of theparameter a, or more generally unimodal maps satisfying 
ertain axioms.Our present obje
t of study is small random perturbations of dynami
al systems.Sin
e our results are for independent identi
ally distributed perturbations of good uni-modal maps, we 
an be a little more spe
i�
 without being too te
hni
al: let f : I ! Ibe a smooth dynami
al system with f(I) a subset of the interior of I. For small � > 0,let �� be a probability measure on [��; �℄. We may 
onsider two models for the random
ompositions of f + !0 with !0 sele
ted in [��; �℄ following the law ��:Markov 
hain. In words, we are averaging over all possible random realisations.Be
ause of the i.i.d. setting, this 
an be done by averaging at ea
h time-step. Moreformally, this means 
onsidering the Markov 
hain fXng1n=1 with transition probabilities(here, x 2 I and E � I with 
hara
teristi
 fun
tion �E)Prob (Xn+1 2 E j Xn = x) = Z ��� �E(f(x) + !0) d��(!0) : (1.4)Under rather weak assumptions, it is possible to show that the Markov 
hain admits aunique invariant probability measure, i.e., a measure �� on I with��(E) = Z ��� Z �E(f(x) + !0) d��(!0) d��(x):Writing f!(x) = f(x) + !0, and by indu
tion fn! (x) = fn�1�! Æ f!(x), one de�nes opera-tional 
orrelation fun
tionsZ ' Æ fn!  dLeb n�1Yi=0 d��(!i)� Z 'd�� Z  dLeb : (1.5)2



for the Markov 
hain. It is of obvious interest to study sto
hasti
 stability, i.e., whether�� ! � (at whi
h speed? in whi
h topology?) and whether the rate of de
ay of
orrelations is stable as �! 0.Random skew produ
t. Alternatively, we may wish to state \almost sure" results.Formally, we 
onsider the skew produ
t T : I � 
! I � 
, with 
 = [��; �℄Z,T (x; !) = (f!(x); �(!)) ; where (�!)k = !k+1 : (1.6)The natural obje
ts of study are the invariant probability measures for T of the form�!(dLeb)P (d!) with P = �Z� , in parti
ular those for whi
h almost ea
h �! is absolutely
ontinuous with respe
t to Lebesgue measure. In the present i.i.d. setting su
h a fam-ily of absolutely 
ontinuous quasi-invariant measures �! = h!dLeb (so 
alled be
ause(f!)��! = ��!) may be obtained by disintegrating a natural extension of �� � �Z+� . Itis natural in this 
ontext to 
onsider both the future (\aiming at a moving target"), andthe past rates of 
onvergen
e to equilibrium:R(f)! (n) = j(fn! )�(dLeb)� ��n!j and R(p)! (n) = j(fn��n!)�(dLeb)� �!j ; (1.7)where j � j denotes the total mass of a signed measure. We may also 
onsider the \future"and \past" random operational 
orrelations:C(f)!;'; (n) = ���� Z (' Æ fn! ) dLeb� Z 'd��n! Z  dLeb����C(p)!;'; (n) = ���� Z (' Æ fn��n!) dLeb� Z 'd�! Z  dLeb���� : (1.8)The aim here is to obtain for P -almost all !, upper bounds of the type C! � �(n) orC'; C! � �(n) on the expressions (1.7) respe
tively (1.8), where �(n) ! 0 at a 
ertainrate, independently of !. (In general it is not immediate to obtain bounds on the futurerandom 
orrelation fun
tions from estimates on the past random 
orrelation fun
tions,and vi
e versa.) Asymptoti
 bounds onP (f! j C! > ng) (1.9)are also desirable. The sto
hasti
 stability questions mentioned in the framework of theMarkov 
hain may also be asked here.Obviously, 
ontrolling (1.5) is not enough to estimate (1.8). In the other dire
-tion, averaging estimates (1.8) yield 
orresponding bounds for (1.5) whenever the 
on-trol in (1.9) is enough to guarantee that C! 2 L1(P ). (In fa
t, some additionalinformation is needed { and often available { to estimate expressions of the typeR �1(�n!)�2(!) dP�(!)� R �1(!) dP�(!) R �2(!) dP�(!).) Also, it may be argued thata 
ontrol of \almost all random itineraries" with information of the type (1.9) is morerelevant to an a
tual physi
al experiment (e.g.) than bounds for the the averages (1.5).After all, only �nitely many experiments may be a
tually realised!3



Before we state our main new results, let us re
all previously known fa
ts. Forsmooth expanding (in any dimension) or pie
ewise smooth and pie
ewise expanding one-dimensional maps, the Markov 
hain was studied by Baladi{Young [BaY℄ who provedexponential de
ay of 
orrelations and strong sto
hasti
 stability. Baladi{Viana [BV℄then extended these results to a positive measure set of nonuniformly expanding uni-modal maps, for whi
h Benedi
ks{Young [BeY℄ had previously obtained a weaker formof sto
hasti
 stability. (We also refer to results of Katok-Kifer [KaK℄ for more generalperturbations, but under a Misiurewi
z assumption, as well as to work of Collet [Co1℄.)Let us now dis
uss random skew produ
ts for whi
h a large body of literature isavailable (in parti
ular by Kifer, and the s
hool of L. Arnold in Bremen), we restri
t toresults related to the physi
al measures of small random perturbations of strongly mixingdis
rete-time dynami
s. Bogens
h�utz [Bo℄ and Baladi et al. [BKS℄ studied random
orrelations for smooth expanding dynami
s, proving exponential de
ay of future andpast 
orrelations together with a strong form of sto
hasti
 stability (this was done byusing a very naive idea: all transfer operators in play map a given fun
tion 
one stri
tlyinside itself). We mention also the work of Khanin{Kifer [KhK℄ who were interested inmore general equilibrium states for random 
ompositions of maps expanding in average(they studied neither stability nor rates of mixing). More re
ently, Buzzi [Bu1, Bu2℄
onsidered random 
ompositions of pie
ewise monotone interval maps (not ne
essarily
lose to a �xed map) having some expansion in average property. He showed existen
eof absolutely 
ontinuous quasi-invariant measures and exponential de
ay of both futureand past 
orrelations, using a probabilisti
 approa
h.Informal statement of resultsStarting from a \good" unimodal map f (our assumptions are stated in an axiomati
way, see (H1){(H4) in Se
tion 2, they apply to a positive measure set of parametersof the quadrati
 family) and an atomless probability measure �� on [��; �℄ (the pre
iseassumption is given in (2.1)), we 
onsider for small enough � the i.i.d. 
ompositions off + !0. We show that for almost every ! 2 
:(1) There is a unique family of quasi-invariant densities h�n! for n 2 Z.(2) We have stret
hed exponential de
ay for the rates of mixing. More pre
isely,there are 0 < u < 1, v > 1, C(�) > 1, and a random variable C! withP (f! j C! > ng) � C(�)nv su
h that for all Lips
hitz test fun
tions ',  , thereis C(';  ), depending only on their Lips
hitz 
onstants so that with R(f)! (n)R(p)! (n), C(f)!;'; (n), C(p)!;'; (n) as in (1.7), (1.8) we havemax �R(f)! (n); R(p)! (n); C(f)!;'; (n); C(p)!;'; (n)� � C(�)C! C(';  ) e�nu ; 8n 2 Z+ :In fa
t, we 
an prove the bounds for the universal exponent u = 1=16 if we allow afa
tor C(�) � 1 as follows:max �R(f)! (n); R(p)! (n); C(f)!;'; (n); C(p)!;'; (n)� � C(�)C! C(';  ) e�n1=16=C(�) :4



We believe that this is the �rst time that estimates have been obtained for the almostsure rates of mixing in a 
on
rete nonuniformly hyperboli
 dynami
al setting. We hopethat they may be used to prove a random 
entral limit theorem (see Kifer [Ki℄).Sin
e the bound on C(f;p)!;'; is integrable, averaging our results on the random 
orre-lations gives that the Markov 
hain 
orrelation de
ays faster than C(�)e�nu for some0 < u < 1 a result not as good as the exponential de
ay obtained in [BV℄. Note alsothat our upper bounds for the various 
onstants C!(�), C(�) blow up when � ! 0. (Inparti
ular, we do not address in the present paper the question of sto
hasti
 stability.)In view also of the fa
t that the transition from exponential (Lemma 3.8) to stret
hedexponential bounds o

urs rather late in the proof (it is a 
onsequen
e of the waitingtimes interfering with the 
ombinatorial bounds e.g. in the proof of Proposition 4.3), itis not 
lear whether the subexponentiality is an artifa
t of our proof.One of the advantages of this work as 
ontrasted to the previous studies ([BV, BaY,BeY℄, et
.) of the Markov 
hain approa
h is that it is naturally suited to extensions tothe non-autonomous 
ase. More pre
isely, instead of assuming full i.i.d., that is P = �Z� ,we 
ould suppose that (�; P ) is \strongly" mixing, and try to implement a variant ofthe geometri
 
onstru
tion of Viana [V℄ to repla
e e.g. Lemma 3.4.The basi
 idea in our proof is to 
onstru
t a random version of the towers of Young[Yo2℄, showing that the 
oupling method she introdu
ed 
an be randomised. The �rstdiÆ
ulty here is to modify the standard partition (see e.g. [Yo1℄) and obtain goodestimates on points with large return times. Here, a beautiful idea due to Alves [A℄was instrumental. He studied (maps 
lose to) a deterministi
 skew produ
t T (x; �) =(a�x2+��;D� mod 1) where D � 1 gives a \strongly mixing" deterministi
 dynami
alsystem on the 
ir
le. In order to 
onstru
t absolutely 
ontinuous invariant measure forT on the 
ylinder, Alves introdu
ed good partitions into re
tangles, involving a 
ru
ialnotion of \hyperboli
 times" (an abstra
tion of the es
ape times relevant for unimodalor H�enon maps, whi
h was later applied by Alves-Bonatti-Viana and Castro to analyzepartially hyperboli
 systems). He also exploited bounds on \ex
eptional sets" previouslyobtained by Viana [V℄, who was the �rst to study this skew produ
t model and provedthat it possesses two positive Lyapunov exponents. Although we 
onsider a slightlymore general framework than the Misiurewi
z in [A℄ and [V℄, many properties be
omeeasier to prove in our i.i.d. setting (see Lemma 3.4). The key observation then is thatthe bounds obtained on the set of ! su
h that a given x behaves well by following[A℄, [V℄ are uniform in x, so that a 
areful appli
ation of Fubini's theorem allows us toex
hange x and ! (up to a zero-measure residue of bad !:s whi
h may be ex
luded). Onthe other hand, we are for
ed to introdu
e \waiting times" (see Lemma 3.7) whi
h makethe 
oupling argument more intri
ate. Finally, one surprising fa
t was that an estimateof Young (see the \
hoi
e of n0" in [Lemma 1, Yo2℄) whi
h was a trivial 
onsequen
eof the mixing property of the measure, be
omes more troublesome in the random 
ase.To deal with this, we bootstrap from the mixing property of the Markov 
hain on thetower (whi
h follows from mixing of the random skew produ
t in Se
tion 6) applied in(yet) another large deviation argument (Se
tions 7{8) within the 
oupling estimates.5



Sket
h of 
ontentsThe arti
le is organised as follows. In Se
tion 2 we give pre
ise statements of ourhypotheses and results, in
luding an appli
ation to random 
ountable Markov 
hains.Se
tion 3 is devoted to 
onstru
ting random partitions of the interval, and estimat-ing random return times to a well-
hosen subinterval (adapting the hyperboli
 timeste
hniques in [A℄, and the bounds in [V℄), after suitable \waiting times." Se
tion 4 is
entered around Proposition 4.3 whi
h gives upper bounds on the random re
urren
easymptoti
s. In Se
tion 5, we �rst exploit Se
tions 3{4 to 
onstru
t towers satisfying arandom version of the axioms in [Yo2℄, and then use these towers to exhibit (saturatinga quasi-invariant measure for the return map) and study the quasi-invariant measuresfor our i.i.d. unimodals. Se
tion 6 is devoted to general remarks on random mixingand random exa
tness, followed by a proof that the skew produ
t on the tower is exa
t(and thus mixing) if the original dynami
s is topologi
ally mixing. These remarks areused in a large deviations argument in Se
tion 7, where the 
oupling method of [Yo2℄is implemented on the towers from Se
tion 5 to study the rate of de
ay of the \future"
orrelation fun
tion. Finally, in Se
tion 8 we further adapt the 
oupling method tostudy the\past" 
orrelations.Our main theorem follows from 
ombining Lemma 5.3 with Corollaries 7.10 and 8.5.To keep the length of this arti
le within reasonable bounds, we put the emphasis onthose of our arguments whi
h are new or di�er nontrivially from previous ones, givingpre
ise referen
es to published 
omputations (in parti
ular in [A, BeY, V, Yo2℄).2. Setting and statement of resultsLet I = [�1; 1℄ and f : I ! I be a C2 unimodal map (i.e., f is in
reasing on [�1; 0℄,de
reasing on [0; 1℄) satisfying f 00(0) 6= 0, and,(H1) There are 0 < � < 1, K > 1, and ~� � � � 4 with 200� < (log ~�)2, andsupI jf 0j � ~�K < 8 so that(i) j(fn)0(f(0))j � ~�n for all n 2 Z and � = limn!1 j(fn)0(f(0))j1=n.(ii) jfn(0)j � e��n, for all n � 1.(H2) For ea
h small enough Æ > 0, there is M =M(Æ) 2 Z+ for whi
h(i) If x; : : : ; fM�1(x) =2 (�Æ; Æ) then j(fM)0(x)j � ~�M ;(ii) For ea
h n, if x; : : : ; fn�1(x) =2 (�Æ; Æ) and fn(x) 2 (�Æ; Æ), then j(fn)0(x)j � ~�n.(H3) f(I) is a subset of the interior of I.(H4) f is topologi
ally mixing on [f2(0); f(0)℄.Examples of unimodal maps satisfying (H1){(H4) are quadrati
 maps a � x2 for apositive measure set of parameters a. (See e.g. [BV℄ for notations similar to those of thepresent paper; the estimate 200� < (log ~�)2 used here in Lemmas 3.1{3.4 
orrespondsin [BV℄ to e2� < ~�.) Condition (H2) is in fa
t implied by the existen
e of Æ > 0 andM 2 Z+ su
h that (H2)(i){(ii) hold. See the remark in Se
tion 3.A.Fixing �0 > 0 small enough to guarantee f(x)� �0 2 I for all x 2 I, we assume thatwe are given a 
onstant C > 0 and for ea
h 0 < � < �0 a probability measure �� on6



[��; �℄ and su
h that for any subinterval J � [��; �℄,��(J) � CjJ j� : (2.1)(This is used in Lemma 3.4.) Assumption (2.1) may be relaxed, but we do not pursuethis aim here. It 
annot be 
ompletely suppressed sin
e there are open intervals ofparameters 
orresponding to periodi
 attra
tors arbitrarily 
lose to a. Assumption(2.1) holds if �� has a density with respe
t to Lebesgue whi
h is bounded above by C=�.It does not imply that 0 belongs to the support of ��.For �xed � > 0, we write 
 = 
� = [��; �℄Z, � : 
 ! 
 for the shift to the left, andP = P� = �Z� . Our aim is to study the random 
ompositions of maps f!(x) = f(x)+!0with ! 2 
 following the law P . For n � 1 we write fn! (x) = f!n�1Æ� � �Æf!0(x). DenotingLebesgue measure on I by dLeb, and j�j for the total mass of a signed measure, our �rstmain result is stret
hed exponential bounds for the speed of approa
h to equilibrium(as usual, Lips
hitz 
an be repla
ed by H�older):Main Theorem. (Stret
hed exponential mixing for i.i.d. unimodals). If �is small enough (depending on f) then for P�-almost ea
h ! 2 
� there is a quasi-invariant density h! 2 L1(dLeb). There exist C(�) � 1 and, for almost every ! 2 
�,C(1)! = C(1)! (�) > 0 su
h that for ea
h Lips
hitz fun
tion ' : I ! C , and all n � 1,��(fn��n!)�('dLeb)� (h! dLeb)�� � C(1)! Lip' e�(n1=16=C(�)) : (2.2)Additionally, for almost every ! 2 
, there are C(2)! > 0, C(3)! > 0 (depending on �)su
h that for ea
h Lips
hitz fun
tion  : I ! C and every bounded fun
tion ' : I ! C ,the \past" and \future" random 
orrelation fun
tion satisfy for all n � 1���� Z 'Æfn��n!  dLeb�Z 'h! dLeb Z  dLeb���� � C(2)! sup j'jLip e�(n1=16=C(�)) ; (2.3)and���� Z ' Æ fn!  dLeb � Z 'h�n! dLeb Z  dLeb���� � C(3)! sup j'jLip e�(n1=16=C(�)) : (2.4)There are C(�) and v > 1 so that the maximum C! = max(C(1)! ; C(2)! ; C(3)! ) satis�esP (f! 2 
� j C! > ng) � C(�)nv : (2.5)Finally, there is 0 < u < 1=16 so that the fa
tor e�(n1=16=C(�)) in (2.2{2.4) may berepla
ed by e�nu .Remarks.(1) Our proof gives the same upper estimates for the \
lassi
al" 
orrelations.7



(2) See e.g. [BKS℄ for the operational signi�
an
e of, and experimental a

ess to,the rates in (2.2{2.4).(3) The almost everywhere existen
e of the quasi-invariant measure 
an be obtainedby disintegrating the skew-produ
t invariant measure whi
h 
an be 
onstru
tedfrom the Markov 
hain invariant measure in [BV℄ or [BeY℄. Our proof givesadditional information, in parti
ular it produ
es the quasi-invariant measure onthe tower whi
h is used to 
ontrol rates of mixing.(4) By the work of Bahnm�uller [Ba℄ (who extended previous work of Ledrappier andYoung [LY℄ to noninvertible situations), the Pesin formula holds for the randomskew produ
t invariant measure h!(dLeb)P (d!).(5) If (H4) does not hold, a result of Blokh-Lyubi
h [BL℄ says that f is renormalis-able, i.e., that there is a 
y
le of intervals fIigmi=0, f : Ii ! Ii+1, Im = I0, wherefIig have disjoint interiors. This is re
e
ted in the greatest 
ommon denomina-tor G 6= 1 of return times, also for the random towers (see (A.VI), (4.10)). Ourproof yields stret
hed exponential de
ay of 
orrelation and speed of mixing forthe Gth iterate fG! of the random system.A simpli�
ation of our proof produ
es a result on random 
ountable Markov 
hainswith estimates on the re
urren
e times (after waiting times) whi
h we were unable tolo
ate in the literature. The setting is the following: Let � : 
 ! 
 with 
 = QZE,where (E; �) is a probability spa
e, be a two-sided Bernoulli shift preserving a probabilitymeasure P = QZ�. Let X(n)! be a random Markov 
hain for (�;
) on the 
ountablestate spa
e Z+ given by the random transition probabilitiesProb �X(n+1)! = j j X(n)! = i� = pij;�n! ; 8n 2 Z+ :(In parti
ular, for almost all ! and all i, �1j=1pij;! = 1.) The random Markov 
hainis 
alled irredu
ible if for all i, j and almost all ! there is n with Prob �X(n)! = j jX(1)! = i� > 0 and irredu
ible aperiodi
 if for almost all ! and all i, j the g.
.d. offn j Prob �X(n)! = j j X(1)! = i� > 0g is one.Main Corollary (Appli
ation to i.i.d. 
ountable Markov 
hains). Let X(n)! bea random irredu
ible aperiodi
 Markov 
hain for (�;
) on Z+. Assume that there are0 < u0; v0 � 1 and a random variable n1 : 
! Z+ withP (f! j n1(!) > ng) < e�nv0su
h that for P -almost every ! 2 
Prob (X(0)! = 0;X(k)! 6= 0 ; 8k = 1; : : : ;m) < e�mu0 ; 8m � n1(!) : (2.6)Then, for almost all ! 2 
, there is a unique stationary probability measure �! on Z+,with density h! 2 `1(Z+). Also, writing, for n 2 Z+, ! 2 
, and ' in `1(Z+)E ['(X(n)! )℄ = X(j0;::: ;jn)2Zn+1+ '(jn)�n�1Yk=0 pjkjk+1;�k!�h!(j0) ;8



there are 0 < u < u0 and C(4)! � 1 su
h that for ea
h ' and  in `1(Z+), the pastrandom 
orrelations satisfy���E�'(X(n)��n!) (X(0)��n!)�� E ['(X(0)! )℄E [ (X(0)��n!)℄��� � C(4)! sup j j sup j'je�nu : (2.7)Finally, there are v > 1, C > 1 so thatP (f! 2 
� j C(4)! > ng) � Cnv :Remarks.(1) Obviously one may formulate the main 
orollary for future 
orrelations, ap-proa
h to equilibrium, et
., for i.i.d. 
ountable Markov 
hains. The main 
orol-lary 
an be also expressed as a result on speed of 
onvergen
e to the maximaleigenve
tor of random produ
ts of sto
hasti
 matri
es having a \tower stru
ture"as in (2.6). The slightly 
umbersome exer
ise is left to the reader. We refer tothe papers of Hennion [He℄ and the book of Bougerol-La
roix [BoL, espe
iallyChapter A.III℄ for referen
es on the 
lassi
al work of Furstenberg, Kesten, Guiv-ar
'h, Ledrappier, and others, on appli
ations of the Oselede
 theorem yieldingexponential bounds for the speed of 
onvergen
e to the maximal eigenve
tor ofrandom produ
ts of �nite sto
hasti
 matri
es, under assumptions guaranteeingthat the maximal Lyapunov exponent is simple.(2) Adapting Se
tions 7 and 8 similarly as the 
orresponding proofs of Theorem 2(II)of [Yo2℄, we may also obtain exponential (respe
tively polynomial) estimates in(2.7) if we 
hange the assumptions a

ordingly.Open questions.(1) As mentioned in the introdu
tion, by adapting Kifer's methods in [Ki℄, we expe
tthat it is possible to prove a random 
entral limit theorem in the setting of thepresent paper.(2) We also pointed out already that it is of obvious interest to generalise our i.i.d.setting to weaker forms of mixing. One 
ould also attempt to study non-additiveperturbations.(3) We have restri
ted ourselves to perturbations of exponentially mixing maps. Itwould be interesting to see if our approa
h 
an be extended to unimodal mapswith slower rates of mixing. See the re
ent study by Bruin, Luzzatto, and vanStrien [BLS℄, based on Young's 
oupling argument [Yo2℄.3. Fubini and Partitions via random hyperboli
 times3.A Preliminary estimates.In Lemmas 3.1 and 3.3, we extend to our situation (using te
hniques of Benedi
ksand Young [BeY℄) basi
 estimates from Viana [V, Lemmas 2.4 and 2.5℄ and Alves [A,Lemma 2.1℄ proved there under a Misiurewi
z assumption. Most of the ideas used goba
k to [BC1, BC2℄. (We do not require the topologi
al mixing assumption (H4) at thisstage.) 9



Lemma 3.1 (Starting in (�p�;p�)). Assume (H1), (H2), and (H3). For2�log ~� < � < 14 ;there are a 
onstant C > 1 and for ea
h small enough � > 0 an integer N(�) with�C + log(1=�)(K + 1) log ~� � N(�) � C + 2 log(1=�)log ~�su
h that for all ! 2 
 and ea
h x with jxj < 2p�8<: ����fN(�)! �0(x)��� � jxj��1+� ;��f j!(x)�� > p� ; 8j = 1; : : : ; N(�) :In the proof of Lemma 3.4 below, it will be useful to take � = log �=(4 log 32) for� > ~�1=5 from Lemma 3.3. This is the reason for the 
ondition on � in (H1). The lowerbound N(�) � log(1=�)= log 32 (sin
e ~�K+1 < 8 � 4) is also 
onvenient in the proof ofLemma 3.4.To prove Lemma 3.1, we shall use the following result adapted from Lemma 4.4 in[BeY℄, whi
h will also help to get the \large image" property in Lemma 3.10:Sublemma 3.2 (Random bound period). Assume (H1), (H2), (H3) and let 2�log ~� <� < 1=4. For k su
h that e�k < Æ, let Jk;� be the intervalJk;� = h� �+min�f�e�k�; f�� e�k��; f(0) + �i ;and let p = p(k; �) be the largest integer p su
h that���� [!2
 f j�!(Jk;�)���� < ~���j ; 8 j 2 [0; p℄ : (3.1)Then there is C > 1, independent of Æ, su
h that for all small enough �:(1) For all ! 2 
, all y 2 Jk;� and ea
h 0 � j � p(k; �)1C � j(f j�!)0(y)jj(f j)0(f(0))j � C :(2) �C + min(2k;log(1=�))(K+1) log ~� � p(k; �) � C + min(2k;log(1=�))log ~� .(3) For all ! 2 
 and all y 2 Jk;����fp(k;�)�! �0(y)�� � 1C max(e(2�2�)k; ��1+�) :10



Proof of Sublemma 3.2. This is an adaptation of the usual \bound period estimates" of[BC1, BC2℄. The starting point is the 
laim that there is C > 1, independent of � andÆ, and su
h that for every y; ~y 2 Jk;�, all !; ~! 2 
, and all 1 � j � p(k; �) + 1��f j�!(y)� f j�~!(~y)�� � C��(f j�1)0(f(0))�� �max(e�2k; �) : (3.2)To 
he
k (3.2), we �rst verify indu
tively that��f j�!(y)� f j�~!(~y)�� � �dj(� � � (d2(d1+1) � � � )+1�C max(e�2k; �) =: [mj ℄C max(e�2k; �) ;where di = jf 0�i!(xi)j = jf 0(xi)j for some xi 2 [f i�1�! (y); f i�1�~! (~y)℄.Then, to estimate mj , we let d̂i = jf 0(f i(0))j, and we note that sin
e jf i(0)� xij <~��i� for 1 � i � p + 1, by de�nition of p, and jd̂ij � e��i=C by (H1)(ii), standardarguments involving (H2) and using e�j� log ~� < e�2�j (see [BeY, Lemma 1.3℄) give thatthere is C > 1 with C�1 � Qji=1 diQji=1 d̂i � C ; 8 1 � j � p(k; �) + 1 : (3.3)In fa
t, the proof of (3.3) also gives assertion (1) of the sublemma. (Note that theproof of [BeY, Lemma 1.3℄ may require taking a smaller value of Æ in (H2), in orderto guarantee that jf j(0)j > Æ for j � M0, where M0 is a large integer, making use of(H1)(ii).) Now, by de�nition and (H1)(i)mj = dj�1mj�1 + 1 � dj�1mj�1�1 + C~��j� ;so that mj � �j�1Yi=1 dj� j�1Yi=1(1 + C~��i) ; showing our 
laim (3.2).We may now prove assertions (2) and (3) of the sublemma. Assumption (H1)(i),together with (1), that we already proved, and the fa
t that jJk;�j � max(e�2k; �)=C,yield max(e�2k; �) ~�p�1C � 1 ;so that p(k; �) � 1 + log(Cmin(e2k; ��1)) 1log ~� ; (3.4)showing the upper bound in (2). For the lower bound, use (H1) jJk;�j � Cmax(e�2k; �),the de�nition of p(k; �) and ~�K~�� < ~�K+1.For (3), letting 1 � j � p(k; �) + 1 it follows from (3.2) that for y; ~y 2 Jk;� andarbitrary !; ~! 2 
,jf j�!(y)� f j�~!(~y)j � Cj(f j)0(f(0))j max(e�2k; �) � C2j(f j�!)0(y)jmax(e�2k; �) :11



Thus, the de�nition of p(k; �) givesC2j(fp(k;�)+1�! )0(y)j �max(e�2k; �) � ~���(p(k;�)+1) :Finally (3.4) implies~���(p(k;�)+1) � e�(� log ~�)�C+log �min �e2k;��1���= log ~� � max(e�2�k; ��)C ;and we 
on
lude thatj(fp(k;�)�! )0(y)j � 1C max(e(1��)2k; ��1+�) : �Proof of Lemma 3.1. This will easily follow from Sublemma 3.2, taking k = k(�) 2 Z+maximal so that p� < e�k. Indeed, for any jxj < 2p�, writing y = f!(x) 2 Jk;�, andsetting N(�) = p(k(�); �) + 1 we get from (3), that for ea
h !j(fN(�)! )0(x)j = j(fp(k(�))�! )0(y)jjf 0!(x)j � Cjxj��1+� ; (3.5)for some 
onstant C, independent of �, Æ, !, and whi
h may be removed by workingwith a slightly smaller � in Sublemma 3.2 and taking small enough �.To 
he
k the se
ond assertion, we de
ompose for ea
h 1 � j � N(�)jf j!(x)j � jf j(0)j � jf j(0)� f j!(x)j :Now, there are two 
ases. Either j � log(1=�)=(4K log ~�), and then by using (H1)(ii)and Sublemma 3.2(2) (re
all (3.2))jf j(0)j � jf j(0)� f j!(x)j � e��N(�) � C�j(f j)0(f(0))j � �� � C�3=4 > p� ;sin
e � < 1=4, if � > 0 is small enough. The other possibility is j > log(1=�)=(4K log ~�),but then, using (H1)(ii) and the de�nition of p(k(�)), we get for small enough �jf j(0)j � jf j(0)� f j!(x)j � e��j � e�2�j � ��(1� ��=(4K log ~�)) > p� : �We now divert to verify the statement about varying Æ in (H2)(i),(ii).Remark. If there is Æ = Æ1 so that (H1) holds with ~�1 satisfying ~�1 > e20� and (H2)holds for a �xed Æ = Æ1 and ~� = ~�1 then for all Æ = Æ2 < Æ1 (H1) and (H2)(i),(ii) holdwith ~� = ~�2 = � 12�4�1 .Sket
h of proof. Take a point x 62 (�Æ2; Æ2). If x; fx; : : : ; fM�1x 62 (�Æ1; Æ1) there isnothing to prove. Suppose that k < M � 1 is the �rst index so that fk(x) 2 (�Æ2; Æ2) n12



(�Æ1; Æ1). Then by (H2)(ii) for Æ = Æ2, j(f j)0(x)j � ~�k1 . With y = fk(x) and thebound period p = p(y) de�ned in the usual way it is easy to verify that j(fp+1)0(y)j �~�( 12�4�)(p+1)1 . We 
on
lude that with ~�2 = ~� 12�4�1 , j(fk+p+1)0(x)j � ~�k+p+12 . Moreoverwith an argument similar to that in the proof of the se
ond assertion in Lemma 3.1,fk+j(x) will never hit (�Æ2; Æ2) for j � p. We 
on
lude that (H2)(i) holds with M =M(Æ2) =M(Æ1) + p(Æ2).The proof of (H2)(ii) uses the same type of arguments. Ea
h bound period oflength pi following a return yi to (�Æ1; Æ1) n (�Æ2; Æ2) gives a derivative 
ontributionj(fpi+1)0(yi)j � ~�pi+12 . The derivative during the \free" period following ea
h boundperiod of this type lasting until the next return to (�Æ1; Æ1) (and eventually to (�Æ2; Æ2))is estimated using (H2)(ii) with Æ = Æ1. �Lemma 3.3 (\Outside" lemma). Let f satisfy (H1), (H2), and (H3) and assume2�= log ~� < � < 1=10. There are C > 1 and � > ~�1=5 > 1 su
h that for all � > 0, all! 2 
, x 2 I, and k 2 Z+jf j!(x)j � p�=2 ; 8j = 0; : : : ; k � 1 =) j(fk!)0(x)j � p��kC : (3.6)There is 0 < Æ1 < Æ (independent of �, !) su
h thatjf j!(x)j � p�=2 ; 8j = 0; : : : ; k � 1 and jfk!(x)j < Æ1 =) j(fk!)0(x)j � �kC : (3.7)Proof of Lemma 3.3. We 
laim that it suÆ
es to see that there are 0 < Æ1 << Æ and~� > ~�1=5 su
h that if p�=2 < jxj < Æ1 then there is ~p(x) � C log(1=�) withjf j!(x)j > Æ1 ; 80 � j � ~p� 1 and ~p�1Yj=0 jf 0�j!(f j!(x))j � ~� ~p ; 8! 2 
 : (3.8)Indeed, (H2)(i) and (ii) imply by a 
ontinuity argument that for small enough � (andup to slightly redu
ing ~�) for ea
h ! and y if y, f!(y); : : : ; fn�1! (y) =2 (�Æ; Æ) thenj(fn! )0(y)j � ~�n=C :If, additionally, fn! (y) 2 (�Æ; Æ) then j(fn! )0(y)j � ~�n. Using this fa
t and (3.8) (whi
hplays the role of Lemma 2.4(b) in [V℄), Lemma 3.3 may be proved as Lemma 2.5 in [V℄using ideas going ba
k to [BC1, BC2℄.But now, (3.8) may be obtained for any � < ~�� if 2� < 1=2��, by the arguments usedto show Sublemma 3.2(3), taking k = k(�) maximal so that p� < e�k and 
onsideringy 2 Jk(�);� n Ĵ� with Ĵ� = [��+ f(p�=2); f(0) + �℄ (see [BeY, Lemma 4.4 (ii)℄). �13



3.B Estimating bad sets.We now prepare the 
onstru
tion of the random dynami
al partitions of the interval,in view of obtaining in Se
tion 5 a tower suitable for the 
oupling argument [Yo2℄. Westart with the exponential partition Q of I (modulo zero measure sets) into intervalsde�ned for r 2 Z by Ir = (p�e�r;p�e�(r�1)), r � 1, Ir = �I�r, r � �1, I+0 =(p�;p�e), I�0 = �I+0 , I+ = (p�e; 1), I� = �I+. For jrj � 1 we write I+r = Ir [Ir+1 [ Ir�1. For m � 1, we also introdu
e the fun
tions rm : 
 � I ! R, by settingrm(!; x) = jrj if fm! (x) 2 Ir and 0 otherwise, and setsGm(!; x) = G�m(!; x) = (1 � j � m j rj(!; x) � max�1;�12 � 2�� log 1�!): (3.9)Re
all that (2�= log ~�) < � < 1=10 appeared in Lemmas 3.1 and 3.3. In view of theproof of Lemma 3.4, we take � = log �=(4 log 32) for � > ~�1=5 from Lemma 3.3 (sin
e5 � 8 � log(32) < 200, assumption (H1) guarantees that we may do this).The reader is invited to 
he
k (see [V, x 2.4℄, and also [A, x 2℄) that for suitably small
 > 0, large C > 1, small � > 0, Lemma 3.1 and the de�nition of Gn(!; x) imply thatfor ea
h large enough n� C log(1=�) and all (!; x) for whi
hXj2G�n(!;x) rj(!; x) � 
n ; (3.10)we have j(fn! )0(x)j > en=C . Hint: The key step is the �rst of the following bounds,re
orded here for future use,8>><>>: j(fn! )0(x)j � exp�4
n�Pj2Gn(!;x) rj(!; x)� 2 log 1�� ;jfn! (x)j < p� =) j(fn! )0(x)j � exp�4
n�Pj2Gn(!;x) rj(!; x)� C� : (3.11)Our next aim is to show that for all x the set of ! su
h that (3.10) is violated hassmall measure. The i.i.d. setting together with the assumption on �� give:Lemma 3.4 (Estimates on \bad !-sets"). There are C(�) > 1, 
(�) > 1C log(1=�) ,and for ea
h x 2 I and all n � 1 sets En(x) � 
 with P (En(x)) � C(�)e�
(�)n, su
hthat if ! =2 En(x) then 
ondition (3.10) holds for (!; x) and n.Proof of Lemma 3.4. The 
ru
ial point is the fa
t that there are C > 0 and 0 < � < 1so that for small enough �, there isM(�) � C log(1=�), so that for ea
h interval Ir withjrj � (1=2� 2�) log(1=�), and all x, !P (f! 2 
 j fM(�)! (x) 2 Irg) � Ce�4�r : (3.12)14



(Note that an obvious upper bound is (C=�)p�e�r if r > log(1=p�), with C the 
onstantfrom (2.1). We need the better estimate (3.12) to deal with (1=2� 2�) log(1=�) � r �(1=2) log(1=�).) See Lemmas 2.3 and 2.6, and espe
ially the bound on line 3 of p. 77 in[V℄ (note that this bound is in fa
t a 
onditional probability) for deterministi
 analoguesof (3.12), obtained using a notion of admissible 
urves whi
h we do not require.Let us sket
h how to adapt the proof of Lemma 2.6 in [V℄ to obtain (3.12). Westart by observing that (2.1) implies that there are 
onstants C1 > 1 and C2 > 1so that for ea
h � > 0 there are subsets H1 = H1(�), H2 = H2(�) of [��; �℄, with��(Hi) > 1=C1 for i = 1; 2, and the distan
e d(H1; H2) > �=C2. This immediatelyimplies that jf!(x) � f~!(x)j > �=C2 if !0 2 H1 and ~!0 2 H2. (This is Lemma 2.7 in[V℄ with C1 = 16 and C2 = 100.) Then, taking M =M(�) to be the maximum integerso that 32M(�)� � 1, we observe that M(�) is smaller than the 
onstant N(�) fromLemma 3.1. Sin
e our 
hoi
e of � and M impliesr +M(�) log � � 12 log 1� � �r ;for all r � (1=2�2�) log(1=�), we may just follow the proof of Lemma 2.6 in [V℄, makinguse of (H1)(ii) in lieu of the �nite post
riti
al assumption there (
learly, � < (log 32)=4),and of our Lemma 3.3 in pla
e of his Lemma 2.5.Now, to dedu
e Lemma 3.4 from (3.12), we may simplify Viana's large deviationargument [V, Theorem A x 2.4℄. In parti
ular, our i.i.d. setting allows us to suppressthe time-shift \l = m �M(�)" (with l � m � pn) in [V℄. As a 
onsequen
e, we getexponential bounds (our rate depends on �) instead of the stret
hed exponential boundin [V℄.More pre
isely, we now sket
h how (3.12) gives 
(�) � C= log(1=�) and C > 1 so thatfor ea
h �xed small enough �, all x 2 I, and all n� log(1=�)P�n! j Xi2Gn(!;x)ri(!; x) � 
no� � C log(1=�)p� e�
(�) n :\Large deviations" here is just the remark that for any � > 0 and all 0 � q �M(�)� 1(see Lemma 7.1 for a similar 
omputation)P�n! j Xi2Gn;q(!;x) ri(!; x) � 
nM(�)o� � e� �
nM(�) ZfGn;q(!;x)6=;g e�Pi2Gn;q(!;x) ri dP (!) ;where Gn;q(!; x) is the set of those i 2 Gn(!; x) for whi
h i � q modulo M(�). Thus,setting 
(�) = 
�=M(�), it suÆ
es to showZ
\fGn;q(!;x)6=;g e�Pi2Gn;q(!;x) ri dP (!) � 1 ;for some � > 0 and all � > 0, x, 0 � q < M(�), and n � log(1=�). In order toobtain the above bound, we introdu
e some notation. For �xed �, n, q, and x, !, let15



t(x; !) = t�;n;q(x; !) be the 
ardinality of Gn;q(!; x) = fi1 � i2 : : : � it(x;!)g, and setr̂` = r`M+q if r`M+q � (1=2� 2�) log(1=�) and r̂` = 0 otherwise.Next, it is easy to dedu
e from (3.12) and independen
e that there is C > 0 so thatfor all �, every n� log(1=�), ea
h 0 � q �M(�)�1, every 1 � t � n, and any sequen
e�i with either �i = 0 or �i � (1=2� 2�) log(1=�),P��! j t�;n;q(x; !) = t and r̂i` = �i` ; ` = 1; : : : ; t	�� Ce��i1p� t�1Ỳ=1P��! j fM(�)�Mi`+q(!)(x) 2 I�i`+1	�� Ctp�e�4�Pi �i :(We used the trivial fa
t (`+ 1)M+ q = `M+ q +M.) ThusZ
\fGn;q(!;x)6=;ge�Pi2Gn;q(!;x) ri dP (!)� ��1=2X�i Cte�3�Pi �i � ��1=2Xt;R �(t; R)Cte�3�R ;where �(t; R) is the number of integer solutions of the equation Pti=1 �i = R satisfying�i � (1=2� 2�) log(1=�) for all j. Sin
e R=t � (1=2 � 2�) log(1=�), taking � > 0 smallenough ensures that (re
all 1 � t � R and R � (1=2� 2�) log(1=�)� 1)Xt;R �(t; R)Cte�3�R �Xt;R e��R �XR Re��R � 1 : �Corollary 3.5 (Bad (!; x) sets). Let C = C(�) and 
(�) be as in Lemma 3.4. Thereis 
 > 0 and for ea
h m � 1 there is Em � 
� I with (P �Leb)(Em) � Ce�
(�)m su
hthat for all (!; x) =2 Em we have Xj2Gm(!;x) rj(!; x) � 
m :Proof of Corollary 3.5. Just write Em = f(!; x) j ! 2 Em(x)g and use Fubini to applyLemma 3.4: (P � Leb)(Em) = RI P (Em(x)) dLeb. �Corollary 3.6 (Bad x sets and bad ! sets). Let C = C(�) and 
(�) be as inLemma 3.4. For ! 2 
, and m � 1, set Em(!) = fx 2 I j (x; !) 2 Emg. ThenP (f! 2 
 j Leb(Em(!)) > pCe�
(�)mg) � pCe�
(�)m.Proof of Corollary 3.6. This is Fubini again! Indeed, if P (f! 2 
 j Leb(Em(!)) >pCe�
mg) > pCe�
m then (P � Leb)(Em) = R
 P (Em(!)) dP (!) would imply (P �Leb)(Em) > pCe�
mpCe�
m, 
ontradi
ting Corollary 3.5. �16



Lemma 3.7 (Parameter ex
lusion { Waiting times). Let 
(�) be as in Lemma 3.4.There is C = C(�) > 1 and a full measure subset 
0 � 
 su
h that for ea
h ! 2 
0there is n0(!) su
h that for all m � n0(!)Leb(Em(!)) < Ce� 
(�)2 m :Additionally, there are C = C(�) > 1 and �(�) > (C log(1� ))�1 su
h that the randomvariable n0(!) satis�es for all n 2 Z+P �f! 2 
 j n0(!) � ng� � Ce��(�)n : (3.13)The lower bound n0(!) is 
alled a waiting time. It will have to be modi�ed beforewe rea
h the �nal waiting time fun
tion n4(!) whi
h will play a role in the re
urren
easymptoti
s of our random towers (see (A.V) in Subse
tion 5.B).Proof of Lemma 3.7. Using C = C(�) from Corollary 3.6, de�ne for ea
h n a \bad set"Bn = n! 2 
 j 9m � n ;Leb(Em(!)) > pCe�
mo :Corollary 3.6 says that P (Bn) �P1k=n C(�)e��(�)k . Therefore limn!1 Bn = 0. Setting
0 = Sn(
 nBn), and for ea
h ! 2 
0,n0(!) = inf �n 2 Z+ j ! =2 Bn� ;we easily get (3.13). �De�nition (Random hyperboli
 (return) times). Fix 
0 > 
. We say that m is ahyperboli
 time for (!; x) if for ea
h 0 � k � m� 1 we haveXi2Gm(!;x) ;k�i�m�1 ri(!; x) � 
0(m� k) :(This 
ondition depends on � through G�m.) We say thatm is a hyperboli
 return time for(!; x), or a hyperboli
 return if m is a hyperboli
 time and, additionally, rm(!; x) � 1.For ! 2 
, a �xed p0(�) (the 
hoi
e of p0 o

urs later in Lemma 3.9 and 5.3), and allm we de�neHm(!) = fx 2 I j m is the �rst hyperboli
 time � p0 for (!; x)gH�m(!) = fx 2 I j m is the �rst hyperboli
 return � p0 for (!; x)g :Finally, we set E�m(!) = I nSmk=p0 H�k (!). 17



Lemma 3.8 (Hyperboli
 return estimates). Let 0 < �(�) � 
(�)=2 be as inLemma 3.7. There is C(�) > 1, su
h that for all ! 2 
0 and all m � n0(!) + C(�), wehave Leb(E�m(!)) � C(�)e��(�)m.Proof of Lemma 3.8. Applying Pliss' Lemma as in [A, Proposition 2.6℄, we �ndI nEm(!) � m[k=p0Hk(!) ; 8m � p0 :Next, we shall show that if jfm! (x)j > p� at the hyperboli
 time m, then there is a �rstiterate 1 � j � C log(1=�) for whi
h jfm+j! (x)j < p�. Of 
ourse, m+ j is then not onlya return but also a hyperboli
 return (use Lemma 3.3), so that we getm[k=p0H�k(!) � m�C log(1=�)[k=p0 Hk(!) :If y = jfm! (x)j > p� then the interval [�y � p�=2;�y + p�=2℄ does not interse
t(�p�=2;p�=2). The heart of the proof lies in the observation that there is C > 1(independent of !, m) su
h that Hm(!) � Sm+C log(1=�)k=m H�k (!). For this, we applyLemma 3.3 whi
h gives � > 1, C > 1 so that if jf j�m!(z)j > p� for 0 � j � k � 1 thenj(fk�m!)(z)j > p��k=C. If k > log(2=C�)= log � � C log(1=�) then Cp�p��k > 2 = jIjso that our interval of length p� 
entered at y will have interse
ted (�p�;p�) for the�rst time by the time C log(1=�).To �nish, sin
e Smk=p0 H�k(!) � Sm�C log(1=�)k=p0 Hk(!) and I nE�m(!) = Smk=p0 H�k (!),we have E�m(!) � Em�C log(1=�)(!)giving the 
laim, with C(�) = log 1=�, by de�nition of the Bn, see Lemma 3.7. �3.C The random partitions.The �rst step is to obtain for �xed ! 2 
, and ea
h m � p0 a mod-0 partition of Iinto intervals I = m[k=p0 [J�Rk(!) J [ [L�Sm(!)L :The families of intervalsRk = Rk(!) and Sm(!) are 
onstru
ted indu
tively, simplifyingthe strategy in [A, x3℄ (in parti
ular the distin
tion between Rk and R�k does not existhere). We �rst list their key properties, valid for p0 � k � m (re
all the de�nitionsgiven before Lemma 3.4):(P.I) H�k(!) � SJ2Rk(!) J and J \ H�k (!) 6= ; for ea
h J 2 Rk. (In parti
ular, if! 2 
0 then Lemma 3.8 implies that Leb Sm(!) � Ce��(�)m, if n � n0(!). Asa 
onsequen
e, S1k=p0 SJ�Rk(!) J is a partition of I modulo zero measure sets.)18



(P.II) For ea
h J 2 Rk(!) and 0 � j � k � 1, there is Irj 2 Q su
h that f j!(J) � I+rj .(P.III) For ea
h J 2 Rm(!), there exist 0 � j � m� 1 and Irj with f j!J � Irj .(P.IV) For ea
h J 2 Sm(!), either J 2 Q or J is subordinate to some J� 2 R` forsome ` � m. (By de�nition, J is subordinate to J� 2 R` if J and J� have a
ommon endpoint and there are 0 � j � `� 1 and rj � 1 with f j!J � Irj+1 orf jJ � Irj�1 where Irj � f j!J�.)Constru
tion of the initial partition:First step: We �rst 
onstru
t Rp0 and Sp0 , by using an auxiliary sequen
e of familiesof intervals J` for 1 � ` � p0. For this, start with the family of intervals J1 =fIr 2 Q j Ir \ H�p0(!) 6= ;g. For ea
h J1 2 J1, we 
onsider f!(J1). If it does not
ontain any interval of Q we put the interval J1 in J2. Otherwise, we subdivide J1into subintervals having as image either exa
tly one element of Q or one element of Qand part of either of the elements of Q whi
h interse
t the boundary of f!(J1), and weput into J2 those intervals in the de
omposition whi
h 
ontain an element of H�p0(!).Then, for ea
h J2 2 J2 we 
onsider f2!(J2), putting it into J3 if it 
ontains no intervalof Q, and otherwise de
omposing J2 as in the �rst step and putting into J3 thosesubintervals whi
h interse
t H�p0(!). We 
ontinue in this way until rea
hing the iteratefp0�1! , obtaining a family of intervals Jp0 . We de�ne Rp0 = Jp0 and setSp0 = (Q n J1) [ f
onne
ted 
omponents of J1 n [J2Jp0 J j 8J1 2 J1g :Properties (P.I{IV) are satis�ed by 
onstru
tion for Rp0 and Sp0 (we set R` = J` for1 � ` � p0 � 1 in the formulation of (P.IV)).Indu
tive step: Assume that Rk, p0 � k � m, and Sm have been de�ned and satisfy(P.I{IV). We shall 
onstru
t Rm+1 and Sm+1. For this, let Jm 2 Sm. By 
onstru
tion,Jm � Ir 2 Q. If Jm \H�m+1(!) = ; we put this interval into Sm+1 (no subdivision hasbeen made, so that (P.IV) still holds). Otherwise, we observe that (P.IV) implies thatthere are 0 � j � m and Irj 2 Q with f j!(Jm) � Irj (indeed, if Jm 2 Q we may just takej = 0 and otherwise we apply the de�nition of \subordinate"). We take the smallestsu
h j and pro
eed as in the �rst step, de
omposing Jm into subintervals having imageeither exa
tly one element of Q or one element of Q and part of one of the adja
entelements of Q, putting in Sm+1 the 
onne
ted 
omponents of the 
omplement of thoseintervals, J 0m;i, in the de
omposition whi
h 
ontain a point in H�m+1(!), and 
ontinuingthe pro
edure until we exhaust all j0 � m with f j0! (Jm) � Irj , de�ning thus Rm+1 andSm+1. Properties (P.I{IV) hold by 
onstru
tion, and we are done.De�nition (Uniform 
ontra
tion and bounded distortion). Let n, ! and aninterval J � I be su
h that fn! is inje
tive on J . We say that fn! jJ enjoys uniform
ontra
tion along inverse bran
hes for 0 < � < 1 and C > 1 if for every x 2 J and all0 � j � m� 1 m�1Yi=j ��f 0(f i!(x))�� � �j�mC : (3.14)19



We say that fn! jJ enjoys bounded distortion for K > 1 if for all y 2 fm! (J)���� ddy ( 1�0 Æ ��1)(y)���� � ���0 Æ ��1(y)�� � K : (3.15)We list for further use the key property of the partition, adapted from [A℄.Lemma 3.9 (Intermediate size { Bounded distortion { Uniform 
ontra
tion).There are C > 1, 0 < � < 1 and for ea
h � there are p0(�) � 1 and C(�) su
h that forall !, ea
h m � p0, and every J 2 Rm(!):(1) fm! jJ is inje
tive, jfm! (J)j � �1�2�=C, and fm! (J)j interse
ts (�p�;p�).(2) fn! jJ enjoys uniform 
ontra
tion along inverse bran
hes for � and C.(3) fn! jJ enjoys bounded distortion for C(�).Proof of Lemma 3.9. Inje
tiveness is by 
onstru
tion. For the rest, we require inparti
ular the following 
onsequen
e of (P.I{P.II): For ea
h x 2 J 2 Rm(!) there isz 2 J \H�m(!) withri(!; x) � ri(!; z)+2 ; 80 � i � m�1 ; and ri(!; xj) � ri(!; zj)+2 ; 80 � i � m�j�1 ;where we set xj = f j!(x), zj = f j!(z). Assertion (2) on the 
ontra
tion of inversebran
hes is then obtained from (3.11) (adapting the proof of Lemma 3.7 in [A℄): It isnot diÆ
ult to get (see [A, Lemma 2.3℄, observing that m� j is a hyperboli
 return for(�j!; zj) be
ause m is a hyperboli
 return for (!; z))m�1Yi=j ��f 0(f i!(x))�� = m�j�1Yi=0 ��f 0(f i�j!(xj))��� exp�3
(m� j)� Xi2Gm�j ri(�j!; zj)� C�� exp�3
(m� j)� 
0(m� j)� C� � exp�3
(m� j)=2� C� :(3.16)The 
laim on the length of the image follows from enhan
ing the bounds of [A,Proposition 3.8℄ by making use of the hyperboli
 returns. Indeed, (P.III) implies thatthere is 0 � j � m � 1 and Irj with Irj � f j!(J). Then, by the mean value theorem,there is x 2 J with jfm! (J)j = ��(fm�j�j! )0(f j!(x))�� � jf j!(J)j :Next, applying (3.16), ��(fm�j�j! )0(f j!(x))�� � e2
(m�j)=C :It remains to obtain a lower bound for jf j!(J)j. For this, it suÆ
es to 
ontrol jIrj j.By 
onstru
tion, there is x 2 J with rj(!; x) = rj and there is y 2 J \ H�m(!) with20



rj = rj(!; x) � rj(!; y) + 2. If j 2 Gm(!; y), sin
e m is a hyperboli
 time for (!; y) wehave rj(!; y) � 
0(m� j), so that, using � < 1=4,jIrj j � p��e�rj(!;y)�2 � e�rj(!;y)�3�� p�(e�1 � e�2)e�
0(m�j) � �1�2�(e�1 � e�2)e�
0(m�j) :If j =2 Gm(!; y) then rj(!; y) � (12 � 2�) log(1=�) andjIrj j � e�22 �1�2� :Finally, the distortion 
ontrol (3) with C(�) � ��7=2 is obtained by a one-dimensionalversion of the proof of Proposition 4.2 in [A℄, adapting the estimates for the term A2there. (We leave the details to the reader.) �Let us de�ne the basi
 subintervals �� on whi
h our random towers will be 
on-stru
ted. For this, we partition (�Æ; Æ) (Æ as in (H2) and small enough) into Sjkj�K0 Îkwith Îk = (e�k�1; e�k), Î�k = �Îk and then we subdivide Îk = Sk2`=1 Îk;` so that theÎk;` are disjoint and jÎk;`j = k�2 j Îkj. (Note that � does not intervene.) We set �� tobe the rightmost and leftmost intervals of this partition of (�Æ; Æ), i.e.,�+ = ÎK0;K20 ; �� = Î�K0;1 : (3.17)We also de�ne ~�+ to be the interval of length 3j�+j 
entered at �+, similarly for ~��.We 
lose this se
tion with a lemma that will be instrumental to prove Lemma 4.1(repla
ing ideas in the Appendix of a preprint version of [A℄ whi
h 
ir
ulated in 1997;note that we do not use the topologi
al mixing assumption (H4)):Lemma 3.10 (Large size of image). Assume (H1)-(H3) and let � < 1 be as inLemma 3.9. Then there is C > 1 and for every small enough � and large enough jkjthere is a 
onstant C(k) > 1 (independent of �) so that for ea
h ! 2 
, and everyinterval Îk;` there are a time t(k) = t�Îk;`; !� � Cjkj ;and a subinterval ~U! � Îk;` su
h that( jeU!j > 1=C(k) ;f t(k)! � ~U!� = ~�+ or ~�� : (3.18)Furthermore, � = f t!j ~U! is inje
tive and enjoys both uniform 
ontra
tion on ba
kwardsbran
hes (3.14) for C and �, and distortion bounds (3.15) for K = C(k).Proof of Lemma 3.10. We shall use again the random bound period ideas from [BeY℄.We �rst state an easy 
onsequen
e of Sublemma 3.2 (3). For every 1=4 > �0 > � > 021



(re
all that � was �xed in the proof of Lemma 3.4) ea
h small enough �, all ! 2 
, andevery Îk;`, taking p(k; �) as in Sublemma 3.2:��fp(k;�)+1! (Îk;`)�� � e�2�0jkj : (3.19)Indeed, just observe that��fp(k;�)+1! (Îk;`)�� � inf ��(fp(k;�)�! )0�� e�jkj�1C e�jkj�1k2 � e(2�2�)jkjC e�2(jkj+1)Ck2 > e�2�0jkj :(3.20)Next, we 
laim that there is an integer i = i0 � Cjkj, so that for some k1 and `1fp(k;�)+1+i0! (Îk;`) � Îk1;`1�1 [ Îk1;`1 [ Îk1;`1+1 ; and jk1j � 2�0jkj (3.21)(with the obvious interpretation if `1 = 1 or `1 = k21).To 
he
k (3.21) we �rst note that there is a �rst iterate j0 � Cjkj so thatfp(k;�)+1+j0! (Îk;`) \ (�Æ; Æ) 6= ; :Indeed, while fp(k;�)+1+i! (Îk;`) stays outside of (�Æ; Æ) we have, setting i = qM(Æ) + rwith 0 � r < M(Æ) and applying (H2)(i),��fp(k;�)+1+i! (Îk;`)�� � ~�qM(minjxj�Æ jf 0(x)j)M ��fp(k;�)+1! (Îk;`)�� � ~�qM(minjxj�Æ jf 0(x)j)M e�2�0jkj :Now, if fp(k;�)+j0! (Îk;`) � (�Æ; Æ)[�++[���, where �++ is the interval to the rightof �+ in an augmented partition, and ��� is the 
orresponding interval to the left of��, we set i0 = j0, and by (H2)(ii)��fp(k;�)+1+i0! (Îk;`)�� � ~�i0 ��fp(k;�)+1! (Îk;`)�� � ~�i0e�2�0jkj : (3.22)In the other 
ase, ex
ept if fp(k;�)+1+j0! (Îk;`) 
overs ~�+ or ~�� (in whi
h 
ase we wouldstop, having proved Lemma 3.10), we repla
e fp(k;�)+1+j0! (Îk;`) byfp(k;�)+1+j0! (Îk;`) n (�Æ; Æ) (3.23)and 
ontinue iterating until we interse
t (�Æ; Æ) again. The loss in length 
aused by(3.23) is insigni�
ant sin
e there is a minimal time between su

essive returns to (�Æ; Æ).We may thus assume that we are in the situation (3.22) for some i0 � Cjkj and thatthere is (k0; `0) with jk0j � �0jkj andfp(k;�)+1+i0! (Îk;`) ( Îk0;`0�1 [ Îk0;`0 [ Îk0;`0+1 (3.24)22



(sin
e otherwise (3.21) would be proved). Applying Lemma 3.2 (3) to Îk0;`0 we get (re
all(3.20)) ��fp(k;�)+1+i0+p(k0;�)+1! (Îk;`)�� � e�2�0jkj :Continuing the pro
edure, we eventually �nd subintervals U0 � eU0 � Îk;`, an iteratei = i0, and (k1; `1) with i0 � Cjkj and jk1j � 2�0jkj,fp(k;�)+1+i0! (U0) = Îk1;`1 ; fp(k;�)+1+i0! (eU0) = Îk1;`1�1 [ Îk1;`1 [ Îk1;`1+1 ; (3.25)ending the proof of (3.21). We take k1 so that jk1j is minimal with the property (3.25).We may now 
on
lude the proof of Lemma 3.10: Repeating the pro
edure leading to(3.25), we obtain sequen
es8><>: U1; U2; : : : eU1; eU2; : : : ;k0 = k ; k1 ; k2 ; : : : ; with jkm+1j < 2�0jkmj ;i0; i1; i2; : : : ; with im � Cjkmj : (3.26)The only way this 
an stop is that the se
ond line of (3.18) be satis�ed. The total timespent before this happens ist = sXm=0(p(km; �) + 1 + im)� C sXm=0 jkmj � C sXm=0(2�0)mjk0j � Cjk0j :Sin
e s � s(k) � Cjk0j, the lower bound on the length of U! follows from the remarkand 
hoi
e just after (3.23) and (3.25). The assertions on inje
tivity, distortion and
ontra
tion are immediate by 
onstru
tion, see in parti
ular (3.24). �4. Es
ape and re
urren
e times asymptoti
sLet �� and ~�� be de�ned by (3.17). We take as our referen
e interval � = �+ � I,For small enough � and for all ! 2 
 we subdivide � into subintervals of points havingthe same return times to �, using the partitions Rm(!) and Sm(!) from the previousse
tion. Our aim is to 
ontroll asymptoti
ally the Lebesgue measure of points havinglarge return time. We �rst use Lemmas 3.9 and 3.10 to show:Lemma 4.1. (Covering e�� by iterating J 2 Rm(!)). There are C > 1, and forea
h � > 0 a 
onstant C(�) > 1 su
h that, for all !, all m � p0, ea
h interval J inRm(!), the following holds:There are a subinterval eJ � fm! (J) and an iterate t(J) � C log(1=�) su
h that j eJ j �C(�)�1 and for whi
h f t�m! maps eJ inje
tively onto either ~�+ or ~��.23



Furthermore, the restri
tion of � = f t�m! on eJ enjoys both distortion bounds (3.15)for K = C(�) and uniform 
ontra
tion on ba
kwards bran
hes (3.14) for the 
onstant� < 1 from Lemma 3.9.Proof of Lemma 4.1. By Lemma 3.9, the interval fm! (J) has length > �1�2�=C and in-terse
ts (�p�;p�). It thus 
ontains an interval J 0 � (�2p�; 2p�) of length > �1�2�=C,disjoint from (��1�2�=C; �1�2�=C). Now an easy modi�
ation of the beginning of theproof of Lemma 3.10 may be applied to J 0, giving an iterate t0 � C log(1=�) and asubinterval J 00 � J 0 with jJ 00j > 1=C(�) and su
h that f t0�m!(J 00) = Îk;` inje
tively, withjkj � C log(1=�) minimal for this property, and good distorsion and expansion for therestri
tion to J 00 of this t0th iterate. (In parti
ular, (3.20) is repla
ed by the observa-tion that jfp�m!(J 0)j > �1�3�=C.) We may then apply Lemma 3.10 to Îk;` and get asubinterval eU � Îk;` and a time t1 � C log(1=�) so that jf t1�m+t0!(eU)j is exa
tly one ofthe intervals ~��. Take t(J) = t0+ t1 and eJ = J 00 \ (f t0�m!)�1(eU). The assertions on thelength of eJ , distortion, and 
ontra
tion follow from Lemmas 3.9 and 3.10. �De�nition (Es
ape time). For ! 2 
, m � p0 and J 2 Rm(!), let t(J) be as givenby Lemma 4.1. We say (J; !) has (equivalently, (x; !) for all points x 2 J have) es
apedat time m + t(J). (By Lemma 4.1, fm+t! (J) 
ontains ~�+ or ~��, and we have gooddistortion and expansion 
ontrol along the way.)Lemmas 3.8 and 4.1 together with the remark in Property (P.I) immediately imply:Corollary 4.2. (Basi
 es
ape time asymptoti
s). For all ! 2 
0 and m � n0(!)+2C log(1=�)Leb��(x; !) 2 I j x es
apes at time � m	� � C exp�� �(�)�m� 2C log�1��� :Proof of Corollary 4.2. If m � n0(!) + 2C log(1=�),Leb(f(x; !) 2 I j x es
apes at time � mg)� Leb��I n m�2C log(1=�)[k=p0 Rk(!)��� Leb(fSm�2C log(1=�)(!)g) � C exp(��(m� 2C log(1=�)) : �For ea
h m � p0, we shall de�ne the return times of all x 2 J 2 Rm(!) abstra
tly(and independently of �).De�nition (Return time{Partition �i(!){ Abstra
t return time R!). Fix ! 2
, m � p0(�). For x 2 J 2 Rm(!), 
onsider all those t � m su
h that f t! maps Jinje
tively onto an interval 
ontaining ~� and for whi
h there exists a nontrivial interval24



Ĵ = Ĵ(t) � J 
ontaining x with f t!(Ĵ) = � and f t!jĴ enjoys bounded distortion (3.15)and uniform 
ontra
tion on inverse bran
hes (3.14), with the 
onstants from Lemma 4.1.The return time R!(x) is then the minimum of those t whi
h appear. It is in�nite ifthe set is empty.For ea
h !, de�ne a 
ountable partition of � into subintervals f�i = �i(!) j i 2 Z+g ,by 
onsidering the 
onne
ted 
omponents of the sets ffx 2 � j R!(x) = rg j r � p0g.Proposition 4.3 shows in parti
ular that for ! 2 
0, the �i(!) form a partition of �modulo zero Lebesgue measure sets, and that the return times are almost everywherede�ned:Proposition 4.3 (Return time asymptoti
s). There exists 
2 � 
0 of full measure,a random variable n2(!), and 
onstants C(�) � 1, C1(�) > C2(�) > 1 su
h that for all! 2 
2, and all ` � n2(!),Leb(fx 2 � j R!(x) > `g) < C(�)e�(` 14 =C1(�)) ;and P (f! j n2(!) > `g) < C(�)e�(` 14 =C2(�)) :We may repla
e the right-hand-sides in both inequalities by C(�)e�`u for 0 < u < 1=4.The fa
t that C2(�) < C1(�) will be 
ru
ial to obtain the asymptoti
s (2.5) for C!(see Corollary 7.10).Proof of Proposition 4.3. We �rst estimate auxiliary 
on
rete (�-dependent) return timesbR!(x), 
orresponding to the �rst time when one of the �� is guaranteed by Lemma 4.1to be \well" 
overed (with good expansion and distortion 
ontrol). After that we shallde�ne se
ond auxiliary 
on
rete return times R�!(x) 
orresponding to the �rst time that� = �+ is well-
overed and estimate them using the information on the bR!(x). Sin
e, byde�nition, the \abstra
t" return times satisfy R! � R�!, this will prove Proposition 4.3.Good returns to �+ [ �� (estimating bR!):Fix ! 2 
. For ea
h m � p0, and J 2 Rm(!), we now de�ne the auxiliary returntime bR!(x) 2 Z+ [ f1g of all x 2 J indu
tively. Let t(J), and eJ be as in Lemma 4.1.Then, if fm! (x) 2 eJ , and fm+t! (x) 2 �+ or �� we setbR!(x) = m+ t(J) :If fm! (x) 2 eJ , but fm+t! (x) =2 �� (for all r) thenbR!(x) = m+ t(J) + bR�m+t!�fm+t! (x)� :Finally, if fm! (x) =2 eJ , we set bR!(x) = m+ bR�m!�fm! (x)� :25



We introdu
e a sequen
e of stopping times bTi = bT!;i : �+ [ �� ! f0; : : : ; ng [ f1gwith 0 � bT!;0 � bT!;1(x) < bT!;2(x) < � � � < bT!;kmax(x)(x) = bR!(x) ; (4.1)su
h that for all `, k 2 Z+�x 2 �+ [ �� j bR!(x) > `	� �x 2 �+ [ �� j k � kmax(x) ; 9i � kmax(x) ; bT!;i(x) > `	[ �x 2 �+ [ �� j bR!(x) > bT!;k(x)	 : (4.2)Using standard ideas, it will be easy to bound the mass of the se
ond set in the abovede
omposition by showing that the probability that bT!;k < bR! (that is, k < kmax(x))de
ays exponentially fast in k. That is, we shall �nd � = �(�) < 1 so that for all k 2 Z+and all ! 2 
0 Leb��x 2 �+ [ �� j bR!(x) > bT!;k(x)	� � �k : (4.3)Then, using the basi
 bound on es
ape times from Corollary 4.2, we shall 
ontrol themass of the �rst set. More pre
isely, we shall exhibit a random variable n1(!) on afull measure set 
1 (with 
ontrolled distribution, see (4.8)), and C(�) � 1, so that for` > n1(!)Leb��x 2 �+ [ �� j p` � kmax(x)and 9i � kmax(x) with bT!;i(x) > `	� � C(�)e�p`=C(�) : (4.4)Putting together (4.4) and (4.3) for k = p` proves that there is C3(�) � 1, so that forall ` > n1(!) Leb��x 2 �+ [ �� j bR!(x) > `	� � C(�)e�p`=C3(�) : (4.5)Let us now de�ne the stopping times, using again the notation from Lemma 4.1. Wesay that bT!;1 is de�ned at x 2 �+ [ �� if there is m1 � p0 and J1 2 Rm1(!) withx 2 J1 (hen
e, the 
omponent of fm+t(J1) 
ontaining fm+t(x) 
overs e�+ or e��). Wethen set bT!;1(x) = � m if fm! x =2 eJ;m+ t(J1) otherwise.Clearly, bR!(x) � bT!;1(x), and equality is only possible in the se
ond 
ase: There,at time bT1(x), part of the 
omponent of f bT1(x)! (J1) 
ontaining f bT1(x)! (x) returns to�+ [ ��. We shall estimate the \over
owing parts" using the distortion 
ontrol fromLemmas 3.9 and 4.1. For this, let �!;1 = fx 2 �+ [ �� j bT!;1(x) is de�ned g. Forx 2 �!;1 n fR(x) = bT1(x)g, we say that bT2 is de�ned at x if there are m2 > p0 and26



J2 2 Rm2(�bT1(x)!) with f bT1(x)! (x) 2 J2, setting bT2(x) to be either bT1(x) + m2, orbT1(x) + m2 + t(J2). For general k � 2, we let �!;k = fx j bT!;k(x) is de�nedg, andwe de�ne bT!;k+1 on �k+1;! � �k;! n f bR!(x) = bT!;k(x)g if there is mk � p0 andJk 2 Rmk(�bTk(x)!) with f bTk(x)! (x) 2 Jk. The relation (4.1) (and thus (4.2)) is animmediate 
onsequen
e of the de�nition.Estimate (4.3) for bR!:The estimate (4.3) 
an be restated as Leb(�!;k) � �k for some 0 < � < 1 and allk 2 Z+, n 2 Z+, ! 2 
0. This exponential bound will be an easy 
onsequen
e ofLemma 4.1. Indeed, for all ! 2 
0, n0, and p0 � m, if J is an interval of Rm(�n0!), theuniform distortion bounds from Lemma 4.1 imply (using the notation there) thatLeb�L0 := eJ \ (f t)�1�n0+m!(�+ [ ��)� > 1C(�) j�+ [ ��j2 Leb( eJ)� 1C(�)2 j�+ [ ��j2 ;Leb�J \ (fm)�1�n0!L0� > 1C(�) 1C(�)2 j�+ [ ��j4 Leb(J) :(In the above bounds, J may be repla
ed by a subinterval L � J with jLj � jJ j=C, upto adapting the 
onstants 
orrespondingly.)Therefore, setting n0(x) = bT!;k�1(x) for x 2 �!;k�1, we haveLeb�f bTk�1! (�!;k�1) \ �y 2 ��n0!;1 j bR�n0!(y) = bT�n0!;1(y)	�Leb�f bTk�1! (�!;k�1)� > j�+ [ ��j4C3(�) > 0 :Sin
e �!;k � �!;k�1 \ f bR�n0! Æ fn0! > bT�n0!;1 Æ fn0! g, setting� = 1� j�+ [ ��j4C(�)6 < 1 ;one more (indu
tive) appli
ation of the distortion bounds yields Leb(�!;k) � �k, as
laimed. (Note that � is uniform in ! but tends to 1 as j�+ [ ��j ! 0 or �! 0.)Estimate (4.4) for bR!:We now move to the estimate (4.4). For �xed `; i � 1, �xed 0 = �0 � p0 � �1 < �2 <� � � < �i � `, and � � `, de�ne k(�) = maxf0 � k � i j �k � �g andA� (�1; : : : ; �i) = fx 2 �+ [ �� j k(�) + 1 � kmax(x) ; bT!;k(�)+1(x) > � ;and bT!;j(x) = �j ; 8�j � �g :27



Applying the absolute bound in Corollary 4.2 we �nd that, whenever �1 � 1 > n0(!) +2C log(1=�),Leb(A�1�1(�1; : : : ; �i)) = Leb(fx 2 �+ [ �� j bT!;1(x) > �1 � 1g)� Ce��(�1�1)�2C log(1=�) :For j � 2, we let L be a 
omponent of A�j�1(�1; : : : ; �i) with bT!;j�1jL = �j�1, andde
ompose L � f bR! = �j�1g into 
onne
ted 
omponents Sr Lr (with possible timesbTj�1 = m, and m + t). We apply again the absolute bounds from Corollary 4.2 to` = �j and f�j�1Lr and get, using on
e more the distortion 
ontrol in Lemma 4.1 whenpulling ba
k that whenever �j � �j�1 > n0(��j�1!) + 2C log(1=�)Leb(Lr \A�j�1(�1; : : : ; �i)) � C(�) Leb(Lr)Leb(f�j�1! (Lr))e��(�j�1��j�1)�2C log(1=�) :If �j � �j�1 � n0(��j�1!) + 2C log(1=�), we only have, by the distortion 
ontrol fromLemma 4.1, that Leb(Lr \ A�j�1(�1; : : : ; �i)) � C(�) Leb(Lr)Leb(f�j�1! (Lr)) :Thus, by de�nition of the Lr and A� , and using the \large image" properties inLemma 4.1, there is C(�) su
h that for all j � 2,8<: Leb(A�j�1(�1;::: ;�i))Leb(A�j�1�1(�1; :::;�i)) � C(�)e��(�j��j�1�1) if �j � �j�1 � 1 � n0(��j�1!) ;Leb(A�j�1(�1;::: ;�i))Leb(A�j�1�1(�1; :::;�i)) � C(�) if �j � �j�1 � 1 < n0(��j�1!) :Therefore for any 0 < �1 < � � � < �i � `Leb(A`(�1; : : : ; �i)) � C(�)ie��` � exp ��(�) X�j��j�1�1�n0(��i�1!)(�j � �j�1)�;and (we shall soon 
hoose k = k(`))Leb�fk � kmax ;9i � kmax ; bT!;i > `g� � kXi=0 X0��1<���<�i�`Leb(A`(�1; : : : ; �i))� kXi=0 X0��1<���<�i�`C(�)ie��` � exp �� iXj=1 n0(��i�1!)� : (4.6)28



We now estimate the last fa
tor in (4.6), i.e., the e�e
t of the random waiting times:This is where we shall lose the exponential de
ay. Fix 0 < � < 1. Sin
e P (fn0(!) >ng) � Ce��n, for ea
h �xed 1 � i � k and �1; � � � ; �i,P � iXj=1 n0(��j�1!) > � `�! � iXj=1 P�nn0(��j�1!) > � `i o�� C(�) k e��(�) �k̀ : (4.7)Consider the partition of � into maximal atoms �! = �!(k) on whi
h the bT!;j(x) are
onstant for 0 � j � k. We will say that su
h an atom � is (`; k)-good if for all x 2 �!and i � k, iXj=1 n0(�bT!;j�1!) � �` :The other atoms are 
alled (`; k)-bad. De�ning M`;k � 
�I to be the set of (!; x) su
hthat x belongs to an (`; k)-bad �!, (4.7) implies that (P�Leb)(M`;k) � Cke� ��`k . Usinga Fubini argument as in Corollaries 3.5{3.6, we get that the set M 0̀;k of ! su
h thatZ �M`;k(!; x) dLeb(x) > ke� ��3 k̀ has P -measure smaller than e� 2��3 k̀ . Therefore, thereis a set of full measure 
1 � 
0 su
h that for ea
h ! 2 
1, there exists n1(!) � n0(!)with the property that ! =2M 0̀;k for all ` � n1(!). Now, for ! 2 
1 and ` � n1(!)Leb(fk � kmax ; 9i � kmax ; bT!;i > `g) � kXi=0 X0��1<���<�i�`(`;k)-good �! Leb(A`(�1; : : : ; �i) \ �!)+ X(`;k)-bad �! Leb(�!) :Therefore, taking k = p`, applying (4.6), and using the Stirling formula we get for1=2 < v < 1 and ` � n1(!)Leb��k = p` � kmax ;9i � kmax ; bT!;i > `	�� p`e`v [C(�)℄p`e�`(1��)�(�) +p`e� �(�)�3 p`� C(�)e�(p`=C3(�)) :Combining this with (4.3) ends the proof of the bound (4.5) for the return times bR!.Moreover, we may estimate P (fn1(!) > `g):P �f! j n1(!) > `g� � P ��9j > ` j ! 2M 0j;p`	�+ P��n0(!) > `	��Xj>` e� 2�(�)�3 pj + Ce��(�)` � C(�) e�(p`=C4(�)) : (4.8)29



Note that C4(�)�1 > C3(�)�1.Good returns to �+ (estimating R�!):For x 2 �+ [�� we now 
onsider the \
on
rete" return times R�!(x) to � = �+. Asobserved in the beginning of the proof, the abstra
t times satisfy R!(x) � R�!(x). Toprove the desired asymptoti
s for R�!(x), following x 7.6 in [Yo1℄, we introdu
e se
ondstopping times S!;i on �+ [ �� by setting S!;0 � 0, andS!;k(x) = S!;k�1(x) + bR�S!;k�1(!)(fSk�1! (x)) :If � is the partition �+ [��, and if we de�ne �k(!) = �W f�S1! (�)W � � �W f�Sk�1! (�),then fSk maps ea
h element � of �k(!) onto �+ or ��, and fSk! restri
ted to ea
h su
h� has bounded distortion and uniform 
ontra
tion in the sense of Lemma 3.9. With thehelp of ideas already dis
ussed, these two fa
ts yield the following two 
laims:(i) The map f bR�j!�j! behaves like an irredu
ible two-state random Markov 
hain. Con-sider for a moment the unperturbed map f , writingR� and Sk for its return and stoppingtime. Sin
e the intervals �� are independent of � there are �-independent return timesT+ and T� withmin Leb��x 2 �+ j R�(x) = ST+(x)	� ;Leb��x 2 �� j R�(x) = ST�(x)	�! > 0 :Thus, if � is small enough,inf�;!2
2 Leb�x 2 �� j R�!(x) = S!;T�(x)	 � 1C > 0 :Hen
e, there is K0 � 1 so that for all ! and k,Leb��x 2 � j R�! > S!;kK0	� � �1� 1C �k : (4.9)Note also for further use that if (H4) holds, then there is N1(f;�) so that (q �1=C; q + 1=C) � fn(�) for all n = N1(f;�), and thus for n � N1(f;�), where q > 0 isthe repelling �xed point of f . (Indeed, take A to be the interior of � and, for B, take�rst B1 = (q � 2=C; q � 1=C), and then B2 = (q + 1=C; q + 2=C). For large enoughC � 1, topologi
al mixing gives L(�; C) so that f `(�) interse
ts both B1 and B2 forall ` � L(�; C). Sin
e f `(�) is 
onne
ted, it must 
ontain (q � 1=C; q + 1=C) for all` � L(�). Take N1 = L(�).) If � is small enough this 
onsequen
e of (H4) also holdsfor fn! . Clearly, there is N2(f;�) so that fN2 sends a subinterval of (q � 1=C; q + 1=C)inje
tively onto e� with bounded distorsion and uniform expansion. Thus, if � > 0 issmall enough, for all n � N3 = max(p0(�); N1 +N2)inf! Leb�fx 2 � j R�!(x) = S!;1(x) = ng� � Leb��� \ f�1! (�)	� � 1C : (4.10)30



(ii) The tail estimate already obtained for bR! gives C(�) > 1 su
h that for all ! 2 
1,x 2 �, ` � n1(�S!;k(!)), k 2 Z+, writing �k(x) for the atom of �k(!) 
ontaining x,Leb(fy 2 �k(x) j S!;k+1 � S!;k > `g)Leb(�k(x)) < C(�) e�(p`=C1(�)) :Therefore, similarly as in the proof of (4.4), we �nd a set 
2 of full measure andn2 : 
2 ! Z+ with n2(!) � n1(!) su
h that for all ` � n2(!) and 0 < w < 1=2,Leb�fx 2 � j S!;[`w℄ > `g� < (C(�))`w`we�(p`=C03(�;w)) + C(�; w)e�(`1=2�w�=(3C4(�)) :(4.11)Combining (4.9) for k = [`w=K0℄ with (4.11), the optimal 
hoi
e being for w =1=2�w = 1=4, gives the �rst inequality of Proposition 4.3. The 
laim on P (fn2(!) > `g)is proved just like the estimate on P (fn1(!) > `g). �5. Random towers with waiting times { the quasi-invariant measure5.A NotationFrom the 
ountable partition � = �j(!) and the fun
tion R! : � ! Z+ [ f1g, wede�ne tower extensions F! : �! ! ��! over f!. Set�! = �(x; `) 2 �� Z+ j x 2[j �j(��`!) ; 0 � ` 2 Z+ ; ` � R��`!(x)� 1� :(I.e., layer R!(x)�1 disjoint 
opies of �j(!) in Pisa tower fashion.) Denote by �!;` the`th level of the tower f(x; `) 2 �!g. We sometimes slightly abuse notation and identify�!;` with fx 2 � j R��`!(x) > `g = fx j (x; `) 2 �!g; in parti
ular �!;0 = � for all !.� will denote the family f�!g!2
.The dynami
s F! : �! ! ��! 
onsists in hopping from one tower to the next above(x; 0), stopping at level R!(x) � 1 if R!(x) < 1, and falling down to the zeroth levelof ��R!(x)! using the return map fR! : �! � de�ned byfR! (x) = fR!(x)! (x) :In other words, we setF!(x; `) = � (x; `+ 1); if `+ 1 < R��`!(x) ;(fR��`!(x); 0); if `+ 1 = R��`!(x) :(In parti
ular, FR!! j�!;0 = fR! j�.)Clearly, the proje
tion �! : �! ! [�1; 1℄ de�ned by �!(x; `) = f�̀�`!(x) satis�esf! Æ �! = ��! Æ F! and �!(�!) = S`�0 f�̀�`!(Sj �j(��`!)) = S`�0 f�̀�`!(�).31



For ea
h ` we 
onsider the 
ountable partition Z!;` of �!;` indu
ed by Sj �j(��`!)�!;` = [j s.t. R!j�j(��`!)�`+1�j(��`!) ;we also let Z!, Z be the 
orresponding partitions of �!, respe
tively �.Without risk of 
onfusion, denote by Leb the lift of Lebesgue measure on �! (sup-pressing the dependen
e on ! from the notation) and by d the lift to �! of the distan
ed(x; y) = jx � yj on I. Observe that sup! Leb(�!) is not �nite (this plays a role e.g.in the proof of Proposition 7.6, (7.5{7.6)). Sin
e 
ountable sets have zero Lebesguemeasure, we sometimes impli
itly repla
e open intervals by 
losed intervals.In view of �rst bounding Leb(�!) and then extending the asymptoti
s of Proposi-tion 4.3 to the a return-time fun
tion de�ned on all levels of �!, re
all that there existfor small enough � 
onstants C(�) > 1, C1(�) > C2(�) > 1 and a random variable n2(!)su
h that for all ! 2 
2, ` � n2(!):Lebfx 2 � j R!(x) � `g � C(�)e�(` 14 =C1(�)) : (5.1)Now, the estimate P (fn2(!) > ng) � C(�)e�(n 14 =C2(�)) from Proposition 4.3 impliesthat for ea
h �xed N3 2 Z+ (N3 = N3(�) from (4.10), see (A.VI) and the proof ofProposition 6.3 below), there are 
3 � 
2, of full measure, and a random variablen3 � n2 on 
3, so that( n2(��`!) � ` and n2(�N3+`!) � ` ; 8` � n3(!) ;P �fn3(!) > ng� � Ce�(n 14 =C2(�)) ; 8n : (5.2)Indeed, just setn3(!) = inff` � n2(!) j 8n � ` ; n2(��n!) � n and n2(�N3+n!) � ng ;and use thatP �fn3(!) > `g� �Xn�`P �fn2(��n!) > ng�+Xn�`P �fn2(�N3+n!) > ng��Xn�`P �fn2(!) > ng�+Xn�`P �fn2(!) > ng� :Now, if ! 2 
3 Leb(�!) = X`2Z+Leb(fR��`! > `g)� n3(!) + C(�) X`>n3(!) e�(` 14 =C1(�)) <1 : (5.3)32



Next, we extend R! to �! (keeping the same notation without risk of 
onfusion) bysetting R!(x; `) = R��`!(x; 0)� `. (I.e., R!(x; `) is the �rst positive integer for whi
hFn! (x; `) 2 ��n!;0.) We 
laim that there is a random variable n4 � n3 on a full measuresubset 
4 � 
3 so that( Leb(fx 2 �! j R!(x) > ng) � Ce�(n 14 =C1(�))Leb(�!); 8n � n4(!) ;P (fn4(!) > ng) � Ce�(n 14 =C2(�)) ; 8n (5.4)up to taking slightly larger 
onstants 1 � C2(�) < C1(�). Indeed, just setn4(!) = minfm � n3(!) j 8n � m and 8` � 0 ; n3(��`!) � n+ `g :For ea
h !, we introdu
e a separation time s! : �! ��! ! Z+ [ f1g bys!(x; y) = min�n � 0 j Fn! (x) and Fn! (y) lie in distin
t elements of Z	 :5.B AxiomsWe list the 
ru
ial properties of the tower:(A.I) [Return and separation times℄ R! : �! ! Z+ is 
onstant on ea
h intervalof the partition Z!; with R! � p0(�). If (x; `) and (y; `) are both in the sameinterval of the partition Z!, then s!((x; 0); (y; 0)) � `. For any (x; 0); (y; 0) inthe same interval of Z!,s!(x; y) = R!(x) + s�R! (!)�fR!(x)(x); fR!(y)(y)� :(A.II) [Markov property℄ For ea
h element �j(!) of Z!, the map FR!! j�j(!) :�j(!)! � is a bije
tion.(A.III) [Weak forward expansion℄ The partition Z! is generating for F! in the sensethat the diameters of the partitions Wnj=0 F�j��j!Z! tend to zero as n!1.(A.IV) [Bounded distortion℄ By Lemma 3.9 and Proposition 4.3, there are C(�) > 1and 0 < � < 1 (� is independent of �) su
h that for all ! and ea
h element�j(!) of Z!, the map FR! j�j(!) and its inverse are nonsingular with respe
tto Lebesgue measure, and, writing JFR > 0 for its ja
obian, we have for ea
hx; y 2 �j(!), writing s for s�R!(x)(!),����JFR!! (x)JFR!! (y) � 1���� � C(�) �s(FR!! (x);FR!! (y)) : (5.4)(A.V) [Return times asymptoti
s℄ For small enough �, 
onsequen
es (5.1{5.2) ofProposition 4.3 give 
4 of full measure and a random variable n4 � n3 on 
4 sothat for ea
h ! 2 
4:8>><>>: n2(��`!) � ` and n2(�N3+`!) � ` ; 8` � n3(!) ;Leb(fx 2 �! j R!(x) > ng) � Ce�(n 14 =C1(�))Leb(�!); 8n � n4(!) ;P (fn4(!) > ng) � Ce�(n 14 =C2(�)) ; 8n : (5.5)33



Re
all also (5.3) whi
h implies (\summability") that for almost all !Leb(�!) � n3(!) + C(�) <1 : (5.6)(A.VI) [G
d(Return times)=1 (mixing)℄ There are N0 � 1 and fti 2 Z+ ; i =1; : : :N0g with g
d ftig = 1 su
h that for all ! 2 
3, all n 2 Z all 1 � i � N0 wehave Leb(fx 2 � j R!(x) = tig) > 0. In fa
t, we have by (4.10), the followingstronger property: there is N3(�) � 1 so that for almost all ! and ea
h r � N3the set of x 2 � with R!(x) = r has positive Lebesgue measure.5.C Dynami
al Lips
hitz and bounded random fun
tion spa
esConsider the following \dynami
al Lips
hitz" spa
e of densities on � (with � < 1 asin (A.IV), writing x, y instead of (x; `), (y; `) for simpli
ity):F+� = f'! : �! ! C j 9C' > 0 ; 8J! 2 Z! ; either '!jJ! � 0 ;or '!jJ! > 0 and ���� log '!(x)'!(y) ���� � C'�s!(x;y) ; 8x; y 2 J!g ;For a random variable K! : 
! R+ with inf
K! > 0 andP �f! j K! > ng� � P �f! j n3(!) > n=3g� � C(�)e�(n 14 =C(�)) ; (5.7)we introdu
e on the one hand a spa
e of random Lips
hitz fun
tions:FK!� = f'! : �! ! C j 9C' > 0 ;j'!(x)� '!(y)j � C'K!�s!(x;y) ; j '!(x) j� C'K! ; 8x; y 2 �!g ;and on the other, a spa
e of random bounded fun
tions:LK!1 = f'! : �! ! C j 9C 0' > 0 ; supx2�! j'!(x)j � C 0'K!g :Note for further use (in Se
tion 7) that (5.7) together with (A.V) give that LK!1 , andthus FK!� , is a subset of L2(�;Leb).Slightly abusing language (see Lemma 5.3) we refer to the smallest possible C' or C 0'as the Lips
hitz 
onstant, or supremum, of ' in F+� or FK!� , respe
tively LK!1 . Clearly,FK!� and LK!1 with the norms k'kF = C' respe
tively k'kL1 = C 0' are Bana
h spa
es.5.D Constru
ting the absolutely 
ontinuous quasi-invariant measureTheorem 5.1. (Quasi-invariant measure). Let fF! : �! ! ��!g satisfy axioms(A.I){(A.IV) together with the summability 
ondition (5.6) in (A.V). Then there is foralmost ea
h ! 2 
 an absolutely 
ontinuous probability measure �! = h! dLeb on �!whi
h is quasi-invariant, i.e., (F!)�(�!) = ��! .Additionally, fh!g 2 F+� , and there is a random variable K! satisfying (5.7) so thatboth h! and 1=h! belong to FK!� � LK!1 .From now on, K! will refer to the random variable from Theorem 5.1.34



Corollary 5.2. The measure (�!)��! on [f!(0); f2!(0)℄ is an absolutely 
ontinuousquasi-invariant measure for f! : I ! I.Proof of Corollary 5.2. Quasi-invarian
e is 
lear, and absolute 
ontinuity follows from((�!)��!)(E) =P1̀=0 �!(f�`��`!j�!;`(E)) and absolute 
ontinuity of �!. �Proof of Theorem 5.1. Let FR! : �!;0 ! Sn�p0��n!;0 denote the return map FR! (x; 0).If the meaning is 
lear, we just write FR.For any E � � (re
all ���n!;0 = � for all ! and n)�(FR)�1�!(E) = �(x; n) 2 ���n!;0 � Z+ j R��n!(x) = n and FR��n!(x; 0) 2 E	 :We de�ne [(FR)�j ℄!(E) by indu
tion, and for probability measures f���n! j n 2 Z+gon Fn2Z+���n!;0, we set ([(FR)j℄!)��(E) =Pn ���n!([(FR)�j ℄!(E) \���n!;0).Let Leb0 be the probability measure Lebj�!;0=Leb(�!;0) on �!;0 = �. For ea
h !,set �̂! to be an a

umulation point of1n n�1Xj=0 �h�FR�ji!��(Leb0)for the weak-* topology. (Probability measures on the 
ompa
t set �!;0 form a 
ompa
tspa
e.) Using the distortion bound (5.4), we next show that the density of �̂! is boundedfrom above and from below on �, and also that this density belongs to F+� (�). Forthis, let A � Fn2Z+���n!;0 with A 2 _j�1`=0 [(FR)�`℄!Z! and set�j;A = ddLeb0�h�FR�ji!��(Leb0 j A) :For x; y 2 �!;0, letting x0; y0 2 A be su
h that x0 2 [(FR)�j ℄!(x), y0 2 [(FR)�j ℄!(y),and setting n to be so that x0; y0 2 ���n!;0, we �nd for a suitable sequen
e 0 � n` � n,log �j;A(y)�j;A(x) = log (J(FR��n!)j)(x0)(J(FR��n!)j)(y0) = j�1X̀=0 log JFR��n`!�(FR��n`�1!)`(x0)�JFR��n`!�(FR��n`�1!)`(y0)�� j�1X̀=0 C(�)�s!(x;y)+(j�`)�1 � C(�)�s!(x;y) ; (5.8)
whi
h is uniform in j, A, and !. Then, we saturate (see e.g. the proof of Theorem 1 in[Yo1℄ or [Yo2℄) to 
onstru
t a measure on S`2Z��`!:�̂! = 1X̀=0(F�̀�`!)�(�̂��`! j R��`! > `) :35



Property (5.6) in (A.V) implies�̂!(�!) � C 1X̀=0 Leb(fR��`! > `g) <1 ;In parti
ular, �̂! 
an be normalised to get an absolutely 
ontinuous probability measure�!. Its density satis�es the 
onditions needed to be in F+� (whi
h only involve ratios).The upper and lower bounds for the density of �̂! and its Lips
hitz 
onstant translateinto bounds for that of �̂��n!, depending on ! through n3(��n!), and we get the �nal
laim in the theorem by setting K! to be the maximum of the upper bounds for h! andits Lips
hitz 
onstant, and the 
orresponding bounds for 1=h!. �5.E Lifting Lips
hitz and bounded fun
tions to the tower.In 
ombination with Corollary 7.10 and Corollary 8.5, the following lemma gives ourmain theorem:Lemma 5.3 (Lifting bounded and Lips
hitz fun
tions). There is p0(�) so thatif inf! inf R! � p0(�) then for ea
h Lips
hitz � : I ! C , the family of lifted fun
tions~�! = � Æ �! : �! ! C belongs to FK!� , for K! from Theorem 5.1. Furthermore, C~� isbounded by an expression depending only on � and (linearly) on the Lips
hitz 
onstantof �. If � is bounded on I then ~� 2 LK!1 and sup� j~�j � sup j�j.Proof of Lemma 5.3. The 
laim on bounded fun
tions is trivial and we 
on
entrate onLips
hitz fun
tions. The statement is an immediate 
orollary of the following assertion:There is C(�) > 0 so that for all x; y in �, and ` for whi
hR��`!(x) ; R��`!(y) � ` ; and s��`!�(x; 0); (y; 0)�� ` ;we have,d�f�̀�`!(x); f�̀�`!(y)� � C(�)�s��`!((x;0);(y;0))�` = C(�)�s!((x;`);(y;`)) :To 
he
k the assertion, �rst assume that s��`!((x; 0); (y; 0)) = p = R��`!(x) � `. ByProposition 4.3, we have uniform ba
kwards 
ontra
tion: for all 0 � j � p and z su
hthat (z; 0) belongs to the same element of Z as (x; 0) and (y; 0),����fp�j��`+j!�0(f j��`!(z))��� � �j�pC(�) :Let x` = f�̀�`!(x), y` = f�̀�`!(y), we haved�fp�`! (x`); fp�`! (y`)� � �`�pC(�) d(x`; y`);36



whi
h gives the result.In general, de
ompose s��`!((x; 0); (y; 0)) = p into the sum of su

essive return timesof (x; 0) and (y; 0) to �!;0, invoking uniform ba
kwards 
ontra
tion su

essively andassuming that the minimal return time p0(�) has been 
hosen large enough to guaranteethat C(�)�p0(�) < 1 (where 0 < � < 1 and C(�) are the 
ontra
tion and distortion
onstants from (A.IV): there is no loophole here, as in
reasing p0 when de�ning thepartition for a �xed � does not make C(�) or � larger). �6. Mixing for the skew produ
t: random exa
tnessIn the previous se
tion, we built a random tower (�!)!2
 and maps F! : �! �!��!. The random skew produ
t is the �bered map F = (F!)!2
 on �. Let B! bethe Borel �-algebra of �!, and let B be the family of �-algebras B!. In Theorem 5.1we 
onstru
ted absolutely 
ontinuous �bered invariant measures (�!)!2
. Let � bethe 
orresponding invariant measure for the random skew produ
t: �(A) = Z
 �!(A!),for A 2 B. Let L2(�) be the Hilbert spa
e of � = (�! : �! �! C )!2
 su
h that�! 2 L2(B!; �!) for almost all !, and R
 R�! j�!j2d�!dP (!) <1.For n 2 Z+ we denote by F�n(B) the family ([F�n�1! Æ � � � Æ F!℄�1(B�n!))!2
 andby Fn! the 
ompositions F�n�1! Æ � � � Æ F!.We re
all de�nitions whi
h are standard for deterministi
 dynami
s:De�nitions (Random exa
tness, mixing).(1) The random skew produ
t (F; �) = (F!; �!)!2
 is exa
t if ea
h B 2 B whi
hbelongs to all F�nB, n 2 Z+ is trivial. (I.e., for almost all !, either �!(B!) = 0 or�!(B!) = 1.)(2) The random skew produ
t (F; �) is mixing if for all ' and  in L2(�),limn!1 ���� Z
 Z�! '�n! Æ Fn! �  ! d�!dP (!)� Z
 Z�! '! d�!dP (!) Z
 Z�!  ! d�!dP (!)���� = 0 :Remark. In our parti
ular 
ase of random towers, instead of a random dynami
al sys-tem, we may 
onsider a skew-produ
t map F a
ting on �� Z+� 
, endowed with theinvariant measure � = �! � P , where �! has support on �! � � � Z+ � f!g. Thenthe de�nition redu
es to the usual de�nitions of exa
tness and mixing.The following proposition may be proved as in the deterministi
 
ase (see e.g. [PY℄):Proposition 6.1. If F is exa
t then it is mixing.The following result is less standard. We shall not need it (our main theorem saysmu
h more), but we in
lude it for 
ompleteness:37



Lemma 6.2 (Forward �bered mixing). Assume that the random skew produ
t (F; �)is exa
t. Then for all ' su
h thatsup! Z j'!j2d�! <1 ;and all  in L2(�), we have for almost all ! 2 
:limn!1 ���� Z�! '�n! Æ Fn! �  ! d�! � Z��n! '�n! d��n! Z�!  ! d�!���� = 0 :Proof of Lemma 6.2. This goes along the lines of the 
lassi
al proof of Proposition 6.1(see [PY℄). Indeed, exa
tness implies that for almost all !,L2(B!; �!) � L2(F�1! B�!) � � � � � L2(F�n! B�n!) � � � � � C :Choose fk�! ; � 2 Z+g an orthonormal basis of L2(B!)	L2(F�1! B�!), then fk��!ÆF! ; � 2Z+g is an orthonormal basis of L2(F�1! B�!)	L2(F�2! B�2!), and fk��j!ÆF j! ; � 2 Z+ ; j 2Z+g is an orthonormal basis of L2(B!) 	 C . Writing '�n! and  ! in these bases, weget: ������Z�! '�n! Æ Fn!  ! d�! � Z��n! '�n! d��n! Z�!  ! d�!������� Z��n! j'�n!j2 d��n! Xj; � ���� Z k��n+j! Æ Fn+j! �  ! d�!����2 n!1���! 0: �Proposition 6.3 (Exa
tness of random map). Let (F; �) satisfy (A.I){(A.IV) andthe summability 
ondition (5.6) from (A.V), with � from Theorem 5.1. If (A.VI) holdsthen (F; �) is exa
t and thus mixing.Proof of Proposition 6.3. First we prove: if, for every � > 0 and almost all !, thereexists an integer t(�; !) su
h that Leb(F t!(�!;0)) > 1� �, then F is exa
t.We adapt Young's proof ([Yo2, Theorem 1 (iii)℄) to our random setting. Let A 2Tn F�nB. Fixing ! su
h that �!(A!) > 0, we are going to prove that for any � > 0,�!(A!) > 1 � �. Let t(!; �=2) be given by hypothesis. For ea
h n 2 Z+ we haveA! = (Fn+t! )�1(B�n+t!) and�!(A!) = ��n+t!(B�n+t!) = ��n+t!(F t�n! Æ Fn! (A!)) :Now, the non singularity of F t�n!, the absolute 
ontinuity of ��n+t! with respe
t to Lebon ��n+t!, and the de�nition of t imply the existen
e of �(�; !; t; n) > 0 su
h thatLeb(��n!;0 nD�n!) < � ) ��n+t!(F t�n!D�n!) > 1� 2� :38



Thus, if we 
an �nd n 2 Z+ su
h that Leb(��n!;0nFn! (A!)) < �, then we shall 
on
ludethat �!(A!) > 1� �. Let us prove the existen
e of su
h an integer n.Sin
e we assumed that �!(A!) > 0, we may 
hoose �! 2 �n(�n!) with Fn! (�!) =��n!;0 and Leb(A! \ �!) =Leb(�!) > 1��=2. If n is large enough we may assume thats!j�! is large enough so that C(�)�s! < �. Then, the bounded distortion estimate (5.8)gives Leb�Fn! (A! \ �!)�Leb(��n!;0) > (1� �)Leb(A! \ Z!)Leb(Z!) > 1� 2�:Finally, we prove that for any � > 0 and all ! 2 
3, there exists an integer t(�; !)su
h that Leb(F t!(�!;0)) > 1� �, following ideas from Markov 
hains. By 
onstru
tion(see (4.10)), Leb(�!;0 \ F�t! (��t!;0)) > 0 for all t � N3. Let `0 � max[N3; n3(!)℄, thetower stru
ture gives FN3+`0! (�!;0) � [`�`0��N3+`0!;`Be
ause `0 � n3(!) and by de�nition of 
3 we have n2(�N3+`0!) � `0 Therefore,P`�`0 Leb(��N3+`0!;`) � Ce�`w0 . (This is where we used the presen
e of N3 in thede�nition of n3 in Subse
tion 5.A.)If we repla
e the assumption that all return times � N3 o

ur with positive proba-bility by the weaker \g.
.d.=1" assumption, we may use the following argument: De�neU = nt 2 Z+ j 8! 2 
3 ;Leb��!;0 \ (F t!)�1(��t!;0)� > 0o :The Markov property (A.II) of the tower gives that U is stable under addition, and itfollows from the assumption in (A.VI) that g.
.d. U = 1. Then, Lemma A.3 in Seneta[S℄ gives that U 
ontains all but a �nite number of positive integers, so that there existst0 su
h that for all t � t0 and all !Leb(�!;0 \ F�t! (��t!;0)) > 0 :Repla
ing N3 by t0 in the previous paragraph 
ompletes the argument. (The de�nitionof n3 should be modi�ed a

ordingly.) �7. Random 
oupling argument, \future" 
orrelations7.A Large deviations and joint returns to the basis.Adapting Young's de�nitions ([Yo2, x3.3℄) to our random setting, we introdu
e stop-ping times �!i and a joint return time T! on �! ��! for ea
h ! and x; x0 2 ���, asfollows. Set �!1 (x; x0) = inffn � `0 j Fn! (x) 2 ��n!;0g ;�!2 (x; x0) = inffn � `0 + �!1 (x; x0) j Fn! (x0) 2 ��n!;0g ;�!3 (x; x0) = inffn � `0 + �!2 (x; x0) j Fn! (x) 2 ��n!;0g ;39



and so on, with the a
tion alternating between x and x0. De�ne then T!(x; x0) to bethe smallest integer n � `0 su
h that (Fn! (x); Fn! (x0)) belongs to ��n!;0 ���n!;0.For �xed ! and m 2 Z+, 
onsider also the partition e�!m of �! � �! into maximalsubsets on whi
h the �!i (x; x0) are 
onstant for 0 � i � m.In order to make use of the random mixing properties, for ` 2 Z+, 
onsider therandom variable:V!̀ = Leb(�!;0 \ F�`! (�!;0)) = Z (���`�1!;0 Æ F!̀) � ��!;0 dLeb:Re
all that �� is the invariant measure for the Markov 
hain and �!;0 = � for all !.For small 
 > 0, to be 
hosen later, sin
e F is mixing by Propositions 6.1 and 6.3, thereexists `0 su
h that for all ` � `0, the expe
tation of V!̀ satis�es���� Z
 V!̀ dP (!)� Leb(�) � ��(�)���� < 
: (7.1)(In order to dedu
e (7.1) from mixing of F , we also used that h�1! � ��!;0 belongs toL2(�). This follows from Theorem 5.1.)For any m 2 Z+ and ea
h �xed sequen
e of integers �0 = 0 < �1 < � � � < �m su
hthat �i+1 � �i � `0, de�ne: Sf�igm (!) = mXi=1 V �i��i�1��i�1! :Lemma 7.1 (Large deviations for Sf�igm ). There exist � > 0 and 0 < � < 1 su
hthat for ea
h m and all �0 = 0 < �1 < � � � < �m su
h that �i+1 � �i � `0,P (fSf�igm (!) < m�g) � �m : (7.2)Proof of Lemma 7.1. The random variable V!̀ depends only on !0; : : : ; !`�1, so V!̀and V k�j! are independent provided j � `. In parti
ular, Sf�igm is a sum of independentrandom variables.For any � > 0 and t > 0,P (fSf�igm (!) < tg) � Z exp[�(t� Sf�igm (!))℄ dP (!)� e��t Z exp[��Sf�igm (!)℄ dP (!)� e��t m�1Yi=0 Z exp[��V �i��i�1��i�1! ℄ dP (!) (by independen
e):40



We have 0 � V!̀ � Leb(�) and, by (7.1), Z V!̀ dP (!) � Leb(�) � ��(�) � 
, provided` � `0. Now, sin
e 0 � �V �i��i�1��i�1! � 1,Z exp[��V �i��i�1��i�1! ℄ dP (!) � 1� �hLeb(�)��(�)� 
 � Leb(�)2 �2 i =: a(�; 
) :Choose � < 2��(�) and then 
 > 0 small enough so that 0 < a(�; 
) < 1. Weget P (fSf�igm (!) < m�g) � (e�� � a(�; 
))m � �m; for some 0 < � < 1 by 
hoosing0 < � < 1� log(1=a(�; 
)). �We shall now use Lemma 7.1 to perform yet another parameter ex
lusion whi
hwill be useful later on to estimate the joint return time on � � �. First observe thatthe lemma may be reformulated as follows: For ea
h m, and every �xed sequen
e ofintegers �0 = 0 < �1 < � � � < �m su
h that �i+1 � �i � `0, there is a set Mf�igm � 
 withP (Mf�igm ) � �m and su
h that if ! 62Mf�igm then Sf�igm (!) � m � �. Next de�neM 0m = f(!; x; x0) 2 [!2
(f!g ��! ��!) j ! 2Mf�!i (x;x0)gm g :Corollary 7.2. Let K! be given by Theorem 5.1. There is 0 < � < 1 su
h that forea
h large enough m the set fMm � 
 de�ned byfMm = f! 2 
 j Z�!��! �M 0m(!; x; x0)K2! dLeb2(x; x0) > �m=2g (7.3)has P -measure smaller than �m=4. Furthermore, there is a random variable n5 de�nedon a full measure set 
5 � 
 and su
h that( n � n5(!) =) ! 62 fMn ;P (fn5(!) > ng) � C�n=2 : (7.4)Proof of Corollary 7.2. The �rst 
laim is on
e more a Fubini argument. Indeed, if fMmhad P -measure greater than �m=4, thenZ eMm Z�!��! �M 0m(!; x; x0)K2! dLeb2(x; x0) dP (!) > �m=2 � �m=4:However, denoting by P the �nite measure on [!2
(f!g ��! ��!) de�ned by:P(A) = Z
 Z�!��! �A(!; x; x0)K2! dLeb2(x; x0) dP (!) ;41



using (5.6) and (5.7), we �nd for large enough mP(M 0m) = Z �M 0m(!; x; x0)K2! dLeb2(x; x0) dP (!)= X�1<���<�m P(M 0m \ f�!i (x; x0) = �i ; i = 1; : : : ;mg)� �m � sup!2
3(K2!�Leb(�!))���m=8 X�1<���<�mK2! � Leb2((�! ��!) \ f�!i (x; x0) = �i ; ig)+ P (fK2!Leb2(�!) > ��m=8g)� �3m=4 ;a 
ontradi
tion. Setting 
5 = f! j 9n5(!) so that 8n � n5(!); ! 62 fMng, a largedeviations argument as in Lemma 7.1 together with the �rst 
laim of the 
orollary givesthe se
ond 
laim. �7.B Estimates on stopping times and joint return times.From now on, the notations �, �0, ~� will be used to denote probability measures,absolutely 
ontinuous with respe
t to Leb on � or Leb� Leb on ���. There shouldbe no 
onfusion with the 
onstants from (H1){(H2) whi
h will not appear anymore.Before proving the main estimate of this se
tion (Proposition 7.6), we state two lemmaswhi
h are randomised versions of Lemmas 1 and 2 in [Yo2℄.Lemma 7.3 (Lower bound for P (fT! = �ig)). Let �, �0 be absolutely 
ontinuousprobability measures on f�!g, with densities ', '0 in F+� . If � 2 e�!i is su
h that(T!)j� > �i�1, then, letting V �i��i�1��i�1! be asso
iated to the �j(�),(�� �0)(fT! > �igj�) � 1� V �i��i�1��i�1! =C�;�0(�) ;where C�;�0(�) > 1 depends on the Lips
hitz 
onstants of ' and '0. This dependen
emay be removed if we 
onsider i � i0(�; �0).Lemma 7.4 (Relating stopping times and return times). Let �, �0 be absolutely
ontinuous probability measures on f�!g, with densities ', '0 in F+� . For ea
h � 2 e�!i ,we have (�� �0)!(f�i+1 � �i > `0 + ng j �)� C�;�0(�)Leb(fR��i+`0! > ng) � Leb(���i+`0!);where C�;�0(�) depends on the Lips
hitz 
onstants of ', '0. This dependen
e may beremoved if we 
onsider i � i0(�; �0).The proofs of Lemmas 7.3 and 7.4 are based on the following sublemma, whi
h is arandomised version of Sublemmas 1 and 2 in [Yo2℄ (re
all that the bounded distortioninequality (A.IV) is uniform in !). 42



Sublemma 7.5 (Consequen
es of bounded distorsion).(1) There is M0 su
h that for all n 2 Z+, and ! 2 
,d(Fn! )�(Leb)dLeb �M0 Leb(�!):(2) Let � be a family of absolutely 
ontinuous probability measures on f�!g, with den-sities ' in F+� . There is C�(�) > 1 so that for ea
h ! 2 
, every k 2 Z+, letting� 2 Zk�1! be su
h that F k!� = ��k!;0, and setting ��k! = (F k! )�(�!j�), then for all x,y 2 ��k!;0 ���� d��k!dLeb(x)� d��k!dLeb(y) � 1���� � C�(�):The dependen
e of C�(�) on � may be removed if the number of i � k su
h that F i!� ���i!;0 is greater than some j0 = j0(�).Proof of Sublemma 7.5. The proof of (1) follows verbatim the proof of Sublemma 1 in[Yo2℄ (making use of (5.6)), we omit it.We sket
h how to prove (2). Let x0 and y0 2 � be su
h that F k! (x0) = x andF k! (y0) = y. It is not diÆ
ult to 
he
k that���� '!(x0)JF k! (x0)� '!(y0)JF k! (y0) � 1���� � (1 + C'�k)C(�) + C'�k;where C(�) only depends on the 
onstants from (A.IV). �Proof of Lemma 7.3. Assume for de�niteness that i is even. For � 2 e�i, let ~�! = �!��0!,so �!�(~�!j�) = Ct(�!j�!(�)). Let ���i�1! = F �i�1! �(�!j�!(�)), we have:(�� �0)!(fT! = �igj�) = 1���i�1!(���i�1!;0) � ���i�1!(���i�1!;0 \ F�(�i��i�1)��i�1! ���i!;0);Sublemma 7.5 (2) applies to � and the result follows from the de�nition of V �i��i�1��i�1! . �We omit the proof of Lemma 7.4 whi
h is based on Sublemma 7.5 (1) and (2).The main estimate of this subse
tion follows (see Proposition 7.7 for its relevan
e):Proposition 7.6 (Joint return time asymptoti
s). There exist bC2(�) < bC1(�), asubset 
6 � 
4 \
5 of full measure, and a random variable n6 � max(n4; n5) on 
6 sothat P (fn6(!) > ng) � Ce�(n 18 =bC2(�))and su
h that for every pair �, �0 of absolutely 
ontinuous probability measures on f�!ghaving densities ', '0 in F+� \ LK!1 , there is C�;�0(�), so that for ea
h ! 2 
6 and alln > n6(!) (�� �0)!(fT! > ng) � C�;�0(�)e�(n 18 =bC1(�)) :43



Moreover, C�;�0 depends on � and �0 only through the Lips
hitz 
onstants of ' and '0.Proof of Proposition 7.6. We use the notation ~� = �� �0. For 0 < v < 1=4 to be �xedlater, we have, just like (4.2):~�(fT! > ng) = Xi�nv ~�(fT! > ng \ f�!i�1 � n < �!i g) + ~�(fT! > ng \ f�![nv℄ � ng)=: (I) + (II):The key remark to estimate (I) and (II) is that for a �xed ! 2 
, the points (x; x0) ofea
h element of e�(!)m are either all good or all bad for the 
ondition Sf�!i (x;x0)gm (!) > m�.Moreover, V �i��i�1��i�1! depends only on �j for 1 � j � i. For ! and i � m, we say that anelement � 2 e�(!)i is m-bad if it only 
ontains points su
h that Sf�!i (x;x0)gm � m�. Theother � 2 e�(!)i are 
alled m-good.Fixing ! 2 
5 \
4, we omit the dependen
e of ~�, T , and �i on ! from the notation.Let us fo
us �rst on the term (II). Sin
e the densities of � and �0 are in LK!1 , for nsu
h that nv � n5(!), Corollary 7.2 gives(II) = ~�(fT! > ng \ f�[nv℄ � ng) � C';'0 �[nv=2℄ + X�2e�![nv ℄� [nv ℄-good ~�(fT! > �[nv℄g \ �):
Now, denoting by �i the element of e�!i 
ontaining � 2 e�![nv ℄ for i � [nv℄, we mayde
ompose~�(fT > �[nv℄g \ �) = ~�(fT > �2g \ �2) [nv ℄Yi=3 ~�(fT > �ig \ �i)~�(fT > �i�1g \ �i�1) :Therefore for ea
h [nv℄-good �, using V �i��i�1��i�1! asso
iated to the 
orresponding stoppingtimes, we obtain from Lemma 7.3,~�(fT > �[nv ℄g \ �)= ~�(�2) ~�(fT > �2gj�2) [nv℄Yi=3 ~�(fT > �igjfT > �i�1g \ �i) [nv ℄Yi=3 ~�(fT > �i�1g \ �i)~�(fT > �i�1g \ �i�1)� ~�(�2) [nv℄Yi=2(1� V �i��i�1��i�1! =C�;�0) [nv℄Yi=3 ~�(fT > �i�1g \ �i)~�(fT > �i�1g \ �i�1) :44



Hen
e (making use of the 
onsequen
es of i � i0(�; �0) in Lemma 7.3),X�2e�![nv ℄� [nv ℄-good~�(fT > �![nv℄g \ �)� X�2��good ~�(�2) X�3��2good ~�(fT > �2g \ �3)~�(fT > �2g \ �2) � : : :� X���[nv ℄�1good ~�(fT > �[nv℄�1g \ �)~�(fT > �[nv℄�1g \ �[nv ℄�1) � [nv℄Yi=2(1� V �i��i�1��i�1! =C�;�0)� e�[nv ℄�=C ;where we used ! 62 fM[nv℄ and also the fa
t thatX�2��good ~�(�2) X�3��2good ~�(fT > �2g \ �3)~�(fT > �2g \ �2) : : : X���[nv ℄�1good ~�(fT > �[nv℄�1g \ �)~�(fT > �[(nv℄�1g \ �[nv ℄�1) � 1 :Finally, we get (II) � C�;�0�[nv=2℄ + e�[nv ℄�=C .Let us turn our attention to the term (I). Fix 0 � i � nv and de
ompose~�(fT > n; �i�1 � n < �ig)= X(k1 ::: ki�1)P kj�n ~��f�i � �i�1 > n� i�1Xj=1 kj ; �j � �j�1 = kj ; j = 1; : : : ; i� 1g�Fixing k1; : : : ; ki�1, 
onditioning, using Lemma 7.4 and the asymptoti
s (A.V) on thereturn times, we get if n >P kj + n4(��i�1+`0!) + `0:~�(f�i � �i�1 > n� i�1Xj=1 kj ; �j � �j�1 = kj ; j = 1; : : : ; i� 1g)� i�1Yj=1CLeb(���j+`0!) Yj=1;:::i�1kj>n4(��j�1+`0!)+`0 e�[kj�`0℄1=4=C1� Ce���n�P kj�`0�1=4=C1(�)�� 0�i�1Yj=0n3(��j+`0!)1A e�n1=4=C1(�) �C(�)e`1=40 =C1(�)�i� e�Pj �kj jkj�`0+n4(��j�1+`0!)�1=4=C1(�)� :
(7.5)
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Now, sin
e P (fn4(!) > ng) � Ce�(n1=4=C2(�)), 
onditioning with respe
t to elements ofthe partition e�[nv ℄ and pro
eeding as in the proof of Proposition 4.3, we get for 0 < �̂ < 1a subset 
6 � 
5 \ 
4 of full measure with the following property: For ! 2 
6, thereexists n6(!) � max(n5(!); n4(!)) (with the bounds stated in Proposition 7.6) su
h that8n � n6(!), the ~�-measure of the 
ylinders in (I) whi
h violate the 
onditioniXj=0(n4(��j+`0!))1=4 � �̂n1=4 and i�1Yj=0n3(��j+`0!) � env log(�̂n) ; 8i � nv (7.6)is less than e�(n1=4�v=C(�)).Next, summing (7.5) over the kj su
h that n > P kj + n4(��i�1+`0!) + `0, the
ontribution of those 
ylinders whi
h satisfy (7.6) is not larger thanCenwenv log(n)�̂ e�(n 14 =C1) �C e`1=40 �nv env`1=40 e�̂n1=4 � C(�)e�(n1=4=bC1(�)) ;where the fa
tor enw with v < w < 1=4 
omes from the di�erent 
hoi
es for (k1; � � � ; ki).It only remains to 
onsider the sum over terms with n �P kj + n4(��i�1+`0!) + `0whi
h may be estimated by i�1Yj=0n3(��j+`0!)! �Ce`1=40 �i e�(P k 14j =C1)e�P k 14j jkj�`0+n4(��j�1+`0!)�=C� 0�i�1Yj=0n3(��j+`0!)1A �Ce`1=40 �i e�(n1=4=C1)e�Pij=0 n 144 (��j+`0!)�=C :So, if n � n6(!) the 
ontribution to the sum over those terms of the 
ylinders sat-isfying (7.6) is not larger than Ce�(n1=4=bC1(�)). Finally, we get that (I) is less thanC�e�(n1=4=bC1(�)) + e�(n1=4�v=bC1(�))�. Combining this with the estimate on (II) ends theproof of Proposition 7.6 with upper bound max �e�(nv=bC1(�); e�(n1=4�v=bC1(�))�. The op-timal 
hoi
e is v = 1=4� v, i.e., v = 1=8. �7.C Random 
oupling: mat
hing (Fn! )�(�!) with (Fn! )�(�0!).Let �, �0 be absolutely 
ontinuous probability measures on f�!g with densities ','0 in F+� \ LK!1 . In this subse
tion, we shall mat
h (Fn! )�(�!) with (Fn! )�(�0!). Wejust summarise the strategy, sin
e the 
omputations follow straightforwardly along thelines of [Yo2, x 3.4℄). The relevant dynami
al system is 
F! = (F! � F!)T! whi
h maps�! ��! into �T! ��T! . The \mat
hing" is done using a sequen
e of (joint) stoppingtimes whi
h are the su

essive entran
e times into ��;0 ���;0:T1;! = T!; Tn;! = Tn�1;! + T�Tn�1! Æ bFn�1:Denote by �̂!i the largest partition of �! ��! on whi
h T1;!; � � � ; Ti;! are 
onstant.46



Proposition 7.7 (Mat
hing, joint return times, joint stopping times). Let �, �0be absolutely 
ontinuous probability measures on f�!g with densities ', '0 in F+� \LK!1 ,and let i1('; '0) be su
h that max(C'; C'0)�i1 < C. There exists 0 < � < 1 su
h thatfor almost all !, all i � i1 and all nj(Fn! )�(�!) � (Fn! )�(�0!)j � 2(�! � �0!)(fTi;! > ng)+ 2 1Xj=i(1� �)j�i+1(�! � �0!)(fTj;! � n < Tj+1;!g):(7.7)Proof of Proposition 7.7. Just rewrite the proofs of Lemmas 3 (3') and 4 in [Yo2℄,remarking that the 
onstants appearing there do not depend on ! in our 
ontext. �The following lemma is proved in the same way as Lemma 7.4 (see [Yo2, Sub-lemma 4℄).Lemma 7.8 (Relating joint stopping times and joint return times). Let �, �0 beabsolutely 
ontinuous probability measures on f�!g with densities ', '0 in F+� \ LK!1 .Then there is C';'0 , depending only on the Lips
hitz 
onstants of ', '0, so that foralmost all !, all i, ea
h � 2 �̂i, and all n(�� �0)!(fTi+1;! � Ti;! > nj�g) � C';'0(Leb� Leb)(fT�Ti! > ng)Proposition 7.9 (Mat
hing). There exist eC2(�) < eC1(�), 
7 of full measure, and arandom variable n7 : 
7 ! Z+ with P (fn7(!) > ng) � Ce�(n 116 =eC2(�)), su
h that, forea
h pair �, �0 of absolutely 
ontinuous probability measures on f�!g with densities 'and '0 in F+� \ LK!1 there is C�;�0(�), depending only on the Lips
hitz 
onstants of ','0, so that for ea
h ! 2 
7 and n � n7(!),j(Fn! )�(�!)� (Fn! )�(�0!)j � C�;�0(�)e�(n 116 =eC1(�)) :Sket
h of proof of Proposition 7.9. The proof follows that of Proposition 7.6, usingProposition 7.7 and Lemma 7.8. We just sket
h how the random variable n7(!) is
onstru
ted.Let 0 < s < 1=8 and let n6(!), �̂ be as in the proof of Proposition 7.6. The randomvariable n7(!) is 
hara
terized by the following property: For n � n7(!) and for i � nsi�1Xj=0(n6(�Tj;!!)) 18 � �̂n 18 ;for the \good" atoms of the partition �̂!i ; additionally the mass of the \bad" atomsof the partition �̂!i is less than e�(n1=8�s=C). As in the proof of Proposition 7.6, theoptimal 
hoi
e is for s = 1=8� s, i.e., s = 1=16. �47



7.D Future random 
orrelations.Our key lemma is now a 
orollary of Proposition 7.9:Corollary 7.10 (\Future" 
orrelations). Let K! be as in Theorem 5.1. There areC(�), v > 1, and 
8 � 
7 of full measure, and for ea
h ! 2 
8 there is C(!) withP (fC(!) > `g) � C(�)`v ;so that for ea
h ' 2 LK!1 ,  2 FK!� , and all n��� Z '�n! Æ Fn! �  ! dLeb � Z '�n!d��n! Z  ! dLeb���� C(!)C(�) k'kL1 k kF e�(n 116 =C(�)):Proof of Corollary 7.10. We start by showing that for all ' 2 LK!1 ,  2 FK!� , and alln, there are C(!) (as in the statement) and C'; (�) > 0 su
h that����Z '�n! Æ Fn! �  ! dLeb � Z '�n! d��n! Z  ! dLeb���� � C(!)C'; (�) e�(n 116 =C(�)):(7.8)Assume �rst that  2 F+� \LK!1 . Proposition 7.9 applied to �! = � R  ! dLeb��1 !Leband �! gives that for n � n7(!),��� Z '�n! Æ Fn! �  ! dLeb� Z '�n! d��n! Z  ! dLeb���= Z  ! dLeb �� Z '�n!d�(Fn! )�(�!)� (Fn! )�(�!)���� C�;�(�) � Z  ! dLeb � sup j'�n!je�(n 116 =eC1)� C�;�(�)C Leb(�!)K! C 0'K�n!e�(n 116 =eC1) :Now, de�ne n8(!) = inffk � n7(!) j K�k! � kg. By (5.7) and the bounds on n7 fromProposition 7.9, we get P (fn8(!) > kg) � e�(k 116 =eC2). We �nd for n > n8(!),����Z '�n! Æ Fn! �  ! dLeb � Z '�n!d��n! Z  ! dLeb���� � C'; (�)K!n e�(n 116 =eC1):If n � n8(!),��� Z '�n! Æ Fn! �  ! dLeb � Z '�n!d��n! Z  !dLeb���� C'; (�) � C(!)e�(n 116 =eC1);48



setting C(!) := e(n7(!) 116 =eC1) � K! � maxn�n8(!)K�n! :This gives (7.8) if  belongs to F+� \ LK!1 . For non negative real-valued  2 FK!� ,remark that ~ ! =  ! +(C +1)K! belongs to F+� \LK!1 and apply the above estimateto ~ . General real-valued fun
tions are de
omposed into positive and negative parts.Complex-valued fun
tions are de
omposed into real and imaginary parts.Next, we prove that C(!) has the announ
ed behaviour. Fix 0 < u < 1 su
h thateC1(�)(1�u)eC2(�) > 1, and use (5.7) and Proposition 7.9 againP (fC(!) > mg)� P (f supn�n8(!)K�n! > mu2 g) + P (fen7(!) 116 =eC1 > m1�ug) + P (fK! > mu2 g)� P (fn8(!) > mg) + mXn=1P (fK�n! > mu2 g)+ P (fn7(!) > [(1� u) eC1 logm℄16g) + P (fK! > mu2 g)� e�(m 116 =eC2) +me�(m u8 =C(�)) + e�[logmeC1(1�u)=eC2℄ + e�mu8 =C(�):This proves the 
laim on the random variable C(!), taking v = eC1(1� u)= eC2 > 1.To 
on
lude, it remains to show that C' (�) � C(�)k'kL1k kF . We adapt to ourrandom setting an argument of Collet [Co2℄ based on the uniform boundedness prin
iple.Fix  2 FK!� and de�nep n;!(') = e(n 116 =eC1)C(!) ���� Z '�n! Æ Fn! �  ! dLeb � Z '�n! d��n! Z  ! dLeb���� :It follows from (7.8) that supn;!2
8 p n;!(') <1 for all ' 2 LK!1 . The uniform bound-edness prin
iple gives a 
onstant D (�) su
h thatsupn;!2
8;k'kL1�1 p n;!(') � D : (7.9)For n 2 Z+, ! 2 
8 and ' 2 LK!1 with k'kL1 � 1, setqn;!;'( ) = e(n 116 =eC1)C(!) ���� Z '�n! Æ Fn! �  ! dLeb � Z '�n! d��n! Z  ! dLeb���� :It follows from (7.9) that for any  2 FK!� ,supn;!2
8;k'kL1�1 qn;!;'( ) � D (�) :49



Using on
e more the uniform boundedness prin
iple, we 
on
lude that there exists C(�)so that supn;!2
8;k'kL1�1;k kF�1 qn;!;'( ) � C(�):This ends the proof of Corollary 7.10. �8. Random 
oupling argument, \past" 
orrelationsThe estimates for the \past" 
orrelations are obtained by re
y
ling the arguments ofSe
tion 7:Lemma 8.1 (Lower bound for P (fT! = �ig)). Let �, �0 be absolutely 
ontinuousprobability measures on f�!g, with densities ', '0 in F+� . For ea
h i, if � 2 e���n!i issu
h that (T��n!)j� > �i�1, then, asso
iating V �i��i�1��i�1�n! to � as usual,(�� �0)(fT��n! > �igj�g) � 1� V �i��i�1��i�1�n!=C�;�0(�) ;where C�;�0(�) > 1 depends only on the Lips
hitz 
onstant of ', '0. This dependen
emay be removed if we 
onsider i � i0(�; �0).Lemma 8.2 (Relating stopping times and return times). Let �, �0 be absolutely
ontinuous probability measures on f�!g, with densities ', '0 in F+� . For ea
h � 2e���n!i , we have for all `(�� �0)��n!(f�i+1��i > `0 + `g j �)� C�;�0(�)Leb(fR��i+`0�n! > `g) � Leb(���i+`0�n!):where C�;�0(�) depends on the Lips
hitz 
onstants of ', '0. This dependen
e may beremoved if we 
onsider i � i0(�; �0).Proposition 8.3 (Joint return time asymptoti
s). For every pair �, �0 of abso-lutely 
ontinuous probability measures on f�!g having densities ', '0 in F+� \LK!1 thereis C�;�0(�) so that for ea
h ! 2 
6 and all n > n6(!)(�� �0)��n!(fT��n! > `g) � C�;�0(�) e�(` 18 =C(�)) :Moreover, C�;�0(�) depends on � and �0 only through the Lips
hitz 
onstants of ', '0.Proof of Proposition 8.3. This is just Proposition 7.6 written for ��n!. �Proposition 8.4 (Mat
hing). There exist eC2(�) < C1(�), a subset 
9 � 
6 of fullmeasure and a random variable n9 : 
9 ! Z+ with P (fn9(!) > ng) � Ce�(n 116 =eC2(�))su
h that for ea
h pair �, �0 of absolutely 
ontinuous probability measures on f�!g with50



densities ', '0 in F+� \ LK!1 , there exists C�;�0(�), depending on � and �0 only throughthe Lips
hitz 
onstants of ', '0, su
h that, for ea
h ! 2 
9 and all n � n9(!),��(Fn��n!)�(�)� (Fn��n!)�(�0)�� � C�;�0(�)e�(n 116 =C1(�)):Proof of Proposition 8.4. The proof is along the lines of that of Proposition 7.9, wejust dis
uss the random variable n9. Let the sequen
e of su

essive joint entran
e timesT1;!, � � � , Tk;!, � � � , in �!;0 � �!;0 be as in Se
tion 7. For �xed i � n, let �̂��n!i bethe largest partition of �!;0��!;0 on whi
h the T1;��n , � � � , Ti;��n! are 
onstant. Letn6(!) be as de�ned by Proposition 7.6. The random variable n9(!), de�ned on 
9, issu
h that, on the one hand, for i � nt (where 0 < t < 1=8 will be �xed later on) and alln � n9(!) i�1Xj=0(n6(��n+Tj;��n!!))1=8 � �̂n1=8for the \good" atoms of the partition �̂��n!i , and, on the other hand, the mass of the\bad" atoms of the partition �̂��n!i is less than e�n1=8�t=C . Choose t = 1=8� t = 1=16to get the optimal rate. �Corollary 8.5 (\Past" 
orrelations). Let K! be given by Theorem 5.1. There areC(�), v > 1, 
10 � 
9 of full measure and a random variable C(!) on 
10 satisfyingP (fC(!) > `g) � C̀v , and su
h that for ea
h ' 2 LK!1 ,  2 FK!� and all n��� Z '! Æ Fn��n! �  ��n! dLeb� Z '!d�! Z  ��n! dLeb���� C(!)C(�)k'kL1k kF e�(n 116 =C(�)) :Proof of Corollary 8.5. As in the proof of Corollary 7.10, we show that����Z '! Æ Fn��n! �  ��n! dLeb� Z '!d�! Z  ��n! dLeb���� � C(!)C'; (�) e�(n 116 =C(�))(8.1)and dedu
e the result from the uniform boundedness prin
iple.Let  2 F+� \ LK!1 . Proposition 8.4 applied to �! and �! = (R  ! dLeb)�1 !Lebimplies that for n � n9(!) ,���� Z '! Æ Fn��n! �  ��n! dLeb � Z '!d�! Z  ��n! dLeb����� C�;�(�) � Z  ��n! dLeb � sup j'!j e�(n 116 =eC1)� C�;�(�)C Leb(���n!)K��n! C 0'K! e�(n 116 =C1(�)) :51



Now, de�ne n10(!) = inffk � n9(!) j K��k! � kg. The properties of K! (see (5.7))and n9(!) give P (fn10(!) > kg) � e�(k 116 =eC2).Repla
ing eC1 by a slightly larger positive number in e�(n 116 =C1), we �nd for all n 2 Z+��� Z '! Æ Fn��n! �  ��n! dLeb� Z '!d�! Z  ��n! dLeb���� C'; (�)C(!)e�(n 116 =C(�)) ;whereC(!) := max�K!; maxn�n10(!) e(n9(!) 116 =C1)�����Z '! Æ Fn��n! �  ��n! dLeb� Z '!d�! Z  ��n! dLeb���� � :The 
laim on the distribution of C(!) is proved as in Corollary 7.10. This gives (8.1)for  2 F+� \ LK!1 . For real-valued non negative  2 FK!� , remark that ~ ! =  ! +(C + 1)K! belongs to F+� \ LK!1 and apply the above estimate to ~ . Complex-valuedfun
tions are de
omposed as in Corollary 7.10. �Referen
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