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Abstract

We study random dynamical systems which are assumed to have summable
continuity module. Existence of a unique equilibrium state in the rel-
ativized variationnal principle is obtained. Moreover, in the particular
case of small random perturbations, we obtain an estimation of the rate
of convergence to equilibrium and strong stability properties.
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Introduction

A random dynamical system (RDS) describes the successive application of dif-
ferent transformations chosen at random (see [12], [13] for a background on
RDS). Random perturbations appear as particular sorts of RDS ; transforma-
tions are chosen randomly in some neighborhood of a given transformation.
The concepts of equilibrium states and pressure arose from statistical me-
chanics and are fundamental for the ”thermodynamic formalism” on com-
pact spaces (in the sense of Bowen [7] and Ruelle [20]). These concepts were
extended to random dynamical systems using the "relativized” variationnal
principle of Ledrappier and Walters [16]. As in the deterministic case, exis-
tence and uniqueness of such an equilibrium state is related to existence and
uniqueness of generalized eigenvalues, eigenfunctions and conformal measures
for the random transfer operators L, (i.e., positive numbers c¢,, functions h,,
and measures v, verifying L,h, = c,hs,, Livs, = cul,), see [10], [14], [4].
Many results have been obtained for expanding RDS with Hoélder derivative
(see [2], [5], [10], [14]).



The present work is devoted to the non hoélderian case. We will be concerned
with interactions having summable continuity module (see section 1 for precise
definitions). This corresponds to dynamics whose derivative have summable
continuity module (this will be denoted by C'*5UM)  For example, we may
consider a piecewise C'' dynamic of the interval, whose derivative has conti-
nuity module in (1 + |log#])™* « > 0 ([8]). In this situation, even in the
deterministic case, exponential rates of convergence should not be expected
(see [11]). We will only be concerned with symbolic dynamics on a finite state
space but the reader should have in mind that this setting covers different
cases. In appendix A, we explain how to code small perturbations of a C*
Axiom A on a subshift of finite type.

We consider RDS with summable continuity module and some integrabil-
ity conditions. We show existence and uniqueness of generalized eigenval-
ues, eigenfunctions, conformal measures and convergence of the compositions
Lgn, 00 L, to arank one operator.

In the particular case of small random perturbations, we also obtain a uniform
bound for the rate of convergence on a dense subspace of C'(X), strong stabil-
ity properties (theorem 1.4) and the differentiability of the pressure function
p(t) = w(tF), t € R (proposition 1.5).

In order to prove these results, Birkoff cones techniques are used. These tech-
niques were introduced by Ferrero and Schmitt [10] and more recently exten-
sively applied by Liverani [17]. They were also employed in a random frame-
work in [2]. Here, we use a sequence of convex cones rather than a universal
one ; this allows us to capture non exponential rate of convergence. This mod-
ification of the Hilbert metric technique was introduced in [11].

Section 1 contains precise definitions, statement of results and recalls facts
on Birkoff cones. Generalized eigenfunctions, eigenvalues and conformal mea-
sures are constructed in section 2. Section 3 concerns small perturbations,
stability properties and the differentiability of the pressure.

[ am grateful to Bernard Schmitt for valuable suggestions and encouragement
during this work. I also thank Christian Bonatti for formulating most of the
ideas in the appendix and Patrick Gabriel for fruitful discussions.



1 Setting, statement of results and basic defi-
nitions and results on cones.

Let (X, 0) be an aperiodic subshift of finite type on a finite alphabet A i.e., let
B be a finite aperiodic (by aperiodic, we mean that BM > 0 for some integer
M) matrix with b;; € {0,1}, 7,7 € A, X is the set of B-admissible sequences
of elements of A :

X = {(xn)nEN € AN / bzi,xi+1 = 17 (S N}

This space X is endowed with the metric : d(z,y) = p", whenever z; = y; for
j=0,---,n—1and z, # y, with 0 < p < 1. We shall write z ~ y whenever

d(z,y) < p".
For any f € C(X) = C(X,R), the continuity module of f is the sequence

v(f) = (vn(f))nzo with :
oa(f) =sup | f(@) = f(y) | wo(f)=sup f—inff.

T~y

Given a weight function ¢ € C'(X), we consider the transfer operator associated
to ¢ and acting on C'(X) :

Lof(x)= > e f(az)for feC(X)

acA | azeX

where az is the concatenation of a and z, for a € A" and x € X ; its dual L}
is defined by :

/hd(ﬁg,u) = /£¢,hdu for h € C'(X) and p a Borel measure on X.

Transfer operators acting on spaces of functions having a given continuity
module will be studied.

To be precise, given any positive and decreasing toward zero sequence x(n),
the metric d'(x, y) = x(n) whenever d(xz,y) = p" and the space B, of functions
which are Lipschitz with respect to d’ may be considered. That is :

By={feC(X) /3K =0/VYn=1, v,(f) < Kx(n)}.
For any f € B,, set :
K, (f) =inf{K /Vn >0, v,(f) < Kx(n)} and

| f Nl = max([] f [loo, K (f))-



Clearly, || ||z, is a norm on B,. Endowed with this norm, B, is a Banach
space which is dense in C'(X) by the Stone-Weierstrass theorem.

Let also M(X) be the space of Borel measures on X and P(X) the subspace
of probabilities.

In what follows, we consider random weights whose continuity module are
comparable to a reference sequence y(n).

1.1 Statement of results.

Let x(n) be a positive and decreasing toward zero sequence, (2, F, P, S) an
abstract invertible ergodic dynamical system and F : Q — C(X) a measur-
able application. For w € 2 and n € N, we write v, (w) instead of v, (F,) and
x(0) = V. Let D > 1 be fixed.

We state the following hypothesis on F' (recall that M is the smallest inte-
ger such that BM > 0) :

o (H1) [||F,|sdP < .

?ip v;(S™w)
o (H2) sup,cy Z*XIT = C(w) € LY(Q).

o (H3) exp (2V[E5LC0 (W) + C(SMw)] + 2 D5 0 (S*Mw)) € L2(Q)
if M is greater than 1.

exp[2V (1 + D)C(w)] € L2(Q) if M = 1.

Remark 1.1 Assumption (H1) will be used to prove that logc, is in L'(Q)
where c,, w € Q are generalized eigenvalues for L, ; assumption (H3) will be
used in lemma 2.5 to prove that (L, s-nu1)nen-

Since C'(w) belongs to L*(€2), 2, v;(S™'w) is P-integrable so, for almost every
w, 322, vpyi(Sw) tends to zero as p tends to infinity. So, we may consider
the sequence 7*(p) = Y22, v,4:(S™'w) and the associated space B“. Let us
write L,,, = Lpgn-1,0---0Lp, w € ) the compositions of transfer operators.
It may easily be verified that £, ,, maps B“ into B%"¢ and that L, ., verifies
the cocycle relation

En—l—m,w = Em,S”w o £n,w-

Let us write B = U,ecq BY. We will obtain the following results.



Theorem 1.2 Under hypothesis (H1), (H2) and (H3), there exists unique
measurable maps :

H: Q—B C: Q—R/{0} v: Q—P(X)
w — h, € B¥ w —> C, W — Yy

such that :
1. Yw € Q, Lpyh, = cyhs, and L Vsy = Culy,
2. v,(hy) =1, logc, and || logh,|| are integrable,

3.
Lnwf

CSnflw X ... X Cw

Vf e O(X), 0. (1.1)

o0

_hS”w/fdl/w

4. The probability u defined on Q x X by u(G) = [o [x Gdu,dP for G in
L(Q2 x X) is the unique equilibrium state for F in the relativized varia-
tionnal principle of Ledrappier and Walters ([17], [16], see also [4]).

Remark 1.3 Recall that for G in L(Q x X), the pressure may be defined by
using the following variationnal principle (see [4] for details) :

m(F):= sup {hu(o) —i—/qu},
peM(P,o)

where h, (o) is the relativized entropy' and M(P, o) is the space of families
of Borel probabilities p, such that for any f in C(X) and any w in Q, [y fo
odp, = [x fdus, Yw € L.

Using standard arguments (see for example, [15], [14] or [4]), existence and
uniqueness® of (hy, Cu, Vo)wea given by theorem 1.2 and integrability of || log hy||
and log ¢, imply that p = hv is the unique equilibrium state for F' and n(F') =
[log c,dP(w).

Let p: Q x X — Q be the canonical projection and © the product map : ©(w,z)
(Sw, o), then the relativized entropy h,(c) is the entropy of © relative to S : h,(o)
B (Olp~ 1 ).

2Tt may be easily seen that under properties 1. and 2. of theorem 1.2, convergence (1.1)
implies uniqueness of (h, ¢y, Vy)wea-



1.2 Random perturbations.

Now we will emphasize the improvements obtained in the particular case of
Random Perturbations.
Let ¢ € C(X) be a given weight function which is assumed to have summable
continuity module : Y, <, v,(¢) =V < oco. It will be randomly perturbed by
functions having close continuity module.
We will especially consider the following two spaces :
B = B, with x(n) = > v,(¢) and E = Byy).

p=n+1
For small ¢, we consider an e-neighborhood B. of ¢ in the space E. We
assume that (., F., P., S:) - abstract invertible ergodic dynamical systems
- and F. : Q). — B. - measurable applications - are given. Let us write
Lywe=Lpgn-1,0-0Lp, wEe .
We have, v, (w) < v,(¢)(1 +¢) and ||[Fowl|oo < ||@|loo + €. So (H1), (H2) and
(H3) are verified and we have theorem 1.2. It will be clear from the proofs that
the rate of convergence in (1.1) is bounded by Ly"™||f||g, for f € B, where
(I(n))nex is a strictly increasing sequence of integers, L > 0 and 0 <y < 1, L
and v depend neither on w, nor on .

Let (hg, c,v) be the triple associated to ¢, i.e. hov is the unique equilibrium
state associated to ¢ and Lyhg = chg (see [11]). It is then natural to wonder
about the stability of A, c,, V.

Theorem 1.4 We have the following strong stability results.

lim sup ||ho — hylleo =0,
E—)OweQE

) c
lim sup — =1,
£204eQ, Cu

\V/f S O(X)v lim sup |l/(f) - Vw(f)| = 0.

e—0 weQ.

Finally, we are concerned with the differentiability of the pressure which is
useful to obtain large deviations theorems.

Let € be fixed, we write F' instead of F. and we consider the function p(t) =
7(tF), t € R. Using theorem 1.4, we obtain the following result.

Proposition 1.5 The function p is differentiable with derivative p'(t) = tpp(F).

Theorem 1.2 is proved by using Birkoff cones techniques in a very similar way
as in [11] (deterministic case). We refer the reader to this article for the proofs
of lemmas that go verbatim along the deterministic lines.



1.3 Basic definitions and results on cones.

Let A be a closed cone of positive functions and A its projective space :

A:{feA//fdm:1}

for a finite measure m on X whose support is X.
For any f and g in A, there exists a largest A\(f, g) (maybe zero) and a smallest

1(f, ) (maybe, u(f, g) = oo) such that :
Mf9)f <g<u(f.9)f and g—A(f,9)f €A u(f,9)f —g€A.
The Hilbert pseudo-metric #, on A is defined by :

n(f.9)
Af.g)

The importance of this metric is due to the following three propositions from
Birkoff which we state in the particular case of cones of continuous functions.

Or(g, f) = log

Proposition 1.6 [3] Let 0, denote the projective metric on the cone CT(X)
and f € CH(X). The set iy ={g € A/ 0:(g,f) < oo} is a complete metric
space for the metric 0, .

Remark 1.7 It will be useful to remark that for f € CH(X), 6,(f,1) =
sup f
inf

log

On the other hand, let P be a positive operator on C*(X) and A, A’ two cones
such that PA Cc A’. We set :

diamy,, (PA) = sup Oy (Pf, Pg).

fgeh
We have the following fundamental result of contraction.
Proposition 1.8 [3] Let P be a positive operator on C(X) and A, A" two
cones such that PA C A" then for any f and g € A, we have :
L.
QA’(va Pg) < tanh demeA, (PA) 9A(f7 g)

Finally, the following proposition gives a comparison between 6, and || |-

Proposition 1.9 /3] For any f and g in A such that [ fdm =1 and [ gdm =
1, we have :

1f = glloo < ("9 — 1)l g]|oc.



2 Proof of theorem 1.2.

In order to prove theorem 1.2, we construct h, as the projective limit of
L, s-n,1, this also gives existence of ¢,,. Then v,(f) is obtained as the limit of
w; and A\; where y; and \; are the real numbers used to compute the projective
distance between L,,)whe and Lp,qy.f. The method is adapted from [11],
we will emphasize the arguments due to the random situation and refer the
reader to [11] for the other computations.

For any D > 1, we construct inductively a sequence of metrics (m;(p))en and
of positive integers (n;)en~ :

* m(p) = x(p)
e ny =inf{n > M / Dny(n) <V} where V = sup x(n) = x(0).

* 11(p) = D(m(p) + mo(n1 + p))
ne = inf{n > M / Dn;(n) <V}

e 12(p) = D(no(p) + mo(n2 +p))

e n(p) = D(no(p) + m-1(mu + p)) with oy = inf{n > M / Dy_1(n) <V} .
Remark 2.1 By construction, the sequences n; verify for any l > 1,
m(0) = D(no(0) + m-1(m)) < V(D +1).

Remark 2.2 For example, if the sequence x(n) is geometric, we can take
n; = M, Vi e N.

If the sequence x(n) is in L

-, we obtain ny in logl.

2.1 Construction of h, and c,.

For almost every w € €, let :

Ay ={g€CH(X) / glx) < exp(ng(p)g(y) it Ly p> 1]

with 78 (p) = 322, vp4:(S'w). It may be easily verified that AY C B“ and
that £, ,A% C A" but the finiteness of the diameter is not assured by our



assumptions®.
Moreover, for f € AY, pe N, £ 5 and w € Q we have :

Lo wf(@) < Lowf(y)explng(ni+p) +n5“(p)).

We are led to consider the following cones :

AT = {g e CH(X) / g(x) < exp(n™“(p))g(y) if = £y p > 0}

with n7"*%(p) = D(n5"*“(p) + n¢(ny +p)) and D > 1. We have L,, ,AY C
A7™'@. We need to estimate eAfnlw(ﬁnl’wf, L, w9) for fand ¢g in A§. The
following lemma is proved by using that by construction of n; and (H2),
n?"@(0) < VO(S™w)(D + 1) and remarking that if f € A%, since ny > M,

Supﬁnl,u}f (n1—M),
P Lo o (55 (0)

H#AM exp( T vp(SMMHL)) = L(S™w).  (2.2)

k=1

Lemma 2.3 For any w € €2, we have

D+1 p2_1
diamfyoes Loy Ny < 2log D—fl + 2V[C(5n1w)% L O(stm M)
M-—1
+2M log #A + Y vp(ST™MRyw) := M(S™w).
k=1

We then construct inductively a sequence of positive cones.
Proposition 2.4 There exists a family AY of sub cones in C*(X) such that :
o LAY CA,
o Vf, g €AY, we have One (Lnywf, Lnjwg) < M(S™Mw).
Now, for any n € N, there is a unique integer [(n) such that :
ny+ ey Sn<ng+ e+ Ny 4-

Set y(w) = (1 —e M®) > tanh @. Using proposition 1.8, for f and g in A{
and w € 2, we obtain the following inequality :

[
HAignlJr--'nzw (£n1+...+n1,wf; £nl+...+n1,wg) S H V(Sm(Z)w) M(Snlw) = -Pl(w)

1=2

3In fact, if x(n) is a geometric sequence then diampw £, ,AY is finite but there is a large

g & hn,wilo g
class of sequences for which we know that this diameter is not finite (this is the case for
x(n) = = see [11]).



Now, AP, C C*(X), thus using proposition 1.8, we get 6, < f» and for
any f,g € AY, we have

9+(£n,wfa £n,wg) < P(w). (2.3)

Clearly, at this step, we have to prove that P,(w) goes to zero P-a.e. as [ goes
to infinity. This follows from hypothesis (H3)*.

Lemma 2.5 Pj(w) converges a.e to zero as | goes to infinity.

Proof : We just have to prove that [T._, 7(S™®?w) converges a.e. to zero. Let

A= UﬂU{wEQ/HZI log (5™ )<c}

CENnEN[>n

Following the strategy of the Borel-Cantelli lemma, to show that P(A) = 0,
it is enough to obtain :

I+1
ZP{wEQ/ Z log ~v(S™®) )<C}<oof0ranyC’.

>1

But,

I4+1
P {Z—logv(sm(i)w) < C} < (- 1)P{—log7(w) < l%} :
i=2
now, ¥, nP{—logy(w) < £} < oo if and only if (—logy(w))™" € L*(Q).
Hypothesis (H3) implies that e ¢ L? and this gives the result since
Y(w) = (1 — e M), We used the fact that for a measurable real func-
tion f, [o f2dP = Jooo tP(f > t)dt and thus f € L?(Q) if and only if
Yoo NP(f >n) < oo. O

Now, we want to obtain h,, as the 6 -limit of £, g-n,1.
Let p>n, we write n=mny+---+m+r=m(l)+randp=n;+---+n +
- +ng +s=m(k) + s, then we have :

9+(‘Cn5 "u)]-aEpS Pw]-) =

2.4
9+ ([' ),§— Dy © £7'S w1, 'C ),§—m By © ['p—m(l),SPwl) . ( )

4If the sequence x(n) is geometric, then n; = 1 for any [ thus, P(w) =
Hiﬁ v(Siw) M(Sw) ; under the assumption that logy € L'(f), the ergodic theorem may
be used to prove that Hi:z v(Siw) goes to zero exponentially fast (see [10]).



Thus, using (2.3) and the fact that £, g-n,1 and L, , ., +ss-m1,1 belong
to AS™""%  we obtain

90+(X)(‘Cn,5*"w15['p,S*PUJI) < PZ(Sim(l)w).

But, since Pj(w) — 0 a.e. and is decreasing, it goes to zero in L'. Besides, P
is S-invariant, so P,(S™™w) — 0in L', thus there exists a subsequence p([)
such that Pp(l)(S_m(p(l))w) — 0 a.e. Now, for any n € N, there is a unique
integer k(n) such that :

ny+ o Npkn)) SN <N+ F Npk(n)+1)-
Using the subsequence m(p(k(n))) in (2.4) instead of m(l(n)), we obtain :
Oc+(x)(Ln,s-rwl, Ly g-ru1) < Pp(l)(S’m(p(l))w) % 0 as | goes to infinity.
Moreover, using (2.2), we get for any n € Nand z,y € X, n > M,
L(w) 'L s—rul(y) < Ly s—rul(z) < L(W) Ly s-nu1(y), (2.5)

thus we obtain 0+ (x)(Ly s-nu1,1) < 00.

So, using proposition 1.6, we may consider h,, the 6 -limit of £, g-»,1 which
verifies L, h, = c,hg,.

Because of proposition 1.9, we get that h,, is also the || ||s-limit of the sequence

]
[ Lns—n,tdm )
This implies that h, is in AY for any [ ; also using (2.5),we get :
L(w)? <inf h, <suph, < L(w)?, (2.6)

and thus, ||logh,|| is integrable using (H3).

We may now construct the measures v,,.

2.2 construction of the measures v,,.

For f € Ay, let A\; and p; be the real numbers used to define the projective

Afm(l)“’—distance between L), f and cp)whgm,, we get :

I+1 4
(:U’l-i-l - )‘l-l-l) < (Ml _ )\1) H(l B @_M(Sm(l)w);

=2



using lemma 2.5, this product goes to zero and we may consider A ) <
Vo (f) = Hm Ay oy = lim gy ) < i)

We have :
ﬁm l ,wf T - "
‘ c ((l)) N hs’"(’)w’/w(f)H < (1 — A1) H(l —e M ) [rgm|[oo-
m(l),w 00 i=2

We get the following estimates :

D + 1 v 2_ "l n
pw < e enPTUEETL(SMG)|| o
D—-1
= K(W)[|flleo
ALw) = K(w)inf f
|01 sup hy, 4
— = < < L .
Cryw — infh, ()
To conclude, set
® h, = h,v,(1)
_ Cwlw(1
¢ G = VSu)((]-))
e V,= Vw”‘(”l),
then, for n = m(l) + r,
Loowf — _ L, smo || | Lmpywf + _
‘ — : f - hS"wl/w(f)H || S || ‘ —_ 0. f - hSm(l)wyw(f)H
Cnw 50 Cr,5m )y Cm(l)w 00
oL T (0570 1 (500 oo o)
vo(1) 5
L M(5mO) (1), 16 0),) 1
< T = e LS™Vw)?| flloo K (S™Pw) : (2.7)
1l K(w)
Now, we have that
p(l)+1 0
[T (1= e ME"P9)) LM y)0 K (§™PM)y) 2% 0 in LY
i=2

thus we may find a subsequence p'(l) such that it goes to zero a.e. But in-
equality (2.7) remains true for any subsequence (k;);ex, thus we have :

'an 7 — n—oo
|= / — hsn T (f)|loo %0 for any f € Ag.

Cn,w




Finally, for any positive function f € B“, f + ||f|ls» € A§ and we get the
convergence (1.1) for f € B*, thus for f € C'(X) by density of BY in C(X)
(remark that ¢, = vg,(L,1) and integrability of loge, directly follows from
(H1) ). O

3 Random Perturbations and Stability prop-
erties.

In this section, we use the setting and definitions of section 1.2 and prove
theorem 1.4. The transfer operator associated to ¢ is written £ and (hy,c, V)
is the triple associated to. Let us recall that :

"1 —ngpl
h= lim £ hy = lim ZmsTel (3.8)
n—oo cn n—00 Cn,5—nw
c= /Eldu Co = /Ewldugw. (3.9)
We also have for any n € N, w € 2, x € X,
L,.,1(x)
el = < e 3.10
=) CF (3.10)

The stability result on ¢ directly follows :

e / / L1 dvdvs, < / Lldy = / / Lldvdyg, < ¢ / / £,1 dvdvs,

thus : e f¢, < c¢ <efe,. O

3.1 Stability of h,.

In the particular case of random perturbations, we have : C(w) < 1+ ¢,
vo(w) < (€ + 1)vg(¢), thus M(w) is bounded by some M > 0, let v = tanh &L,
we have that P(w) <!, 0 <~ < 1. So, we get for any n and w :

‘ En,S—”wl B hw < Cte’yl(n)il,
Cn,S—”u) 00
L£"1
— hy < Ctey/™!
" 00

where the constant depends neither on w, nor on €. Moreover, we have

L'l L, 5-n,1 < ‘5“1 ‘ Ln5-n,1 "

B cn L'l ¢y 5-ny
< V(e —1).

n
C Cn,S—” ‘OO

oo



Then, for any n, w we obtain : [|hy — hylle < Ctey!™ + € (" — 1), where
the constant depends neither on w, nor on . So, for § > 0, choose ny such
that 7/(") < § and then, choose gy such that for ¢ < g¢, (e?™° — 1) < § to
obtain :

lim sup ||hy — hylleo = 0. O

e=0 0.

3.2 Stability of v,.

%:f — hSnwuw(f)Hoo con-

verges toward 0 uniformly in w and . Let f € C(X), we write for any n

From section 2, we have that, for any f € C(X),

i LM Lnwf Lnwf
() =ve(DI < |v(f) = 3 | T ()
& h[] 00 c hO Cn,whS"u) 00 Cn,u)hS"w 00
L f Acn,wf L"1 Ln,wl
On the O-ther hancll,‘ we have m - m 00 = hy m o ||f||oo and
the previous stability results imply :
. L1 L,.,1
lim sup — . =0.
e=0,ec0 || "ho Cn,u)hS"w 0

At last, proceeding as before, we get :

limsup |v(f) — v, (f)] = 0

e—0 we

This concludes the proof of theorem 1.4.

3.3 Differentiability of the pressure.

Let F': Q — Bg(¢,1) where Bg(¢, 1) denotes the ball of radius 1, centered
at ¢ in the space E. For any ¢t € R*, tF belongs to Bg(t¢,t) ; replacing € by ¢
in section 2, we get that tF' as a unique equilibrium state p;. We consider the
function p(t) = 7 (tF), t € R. Clearly, p is convex.

Let tp € R, a € R is in the sub gradient dp(ty) of p at ¢, if and only if :

Vt € R p(t) > p(to) + a(t — to).

Since p is convex, it is differentiable at ¢, if and only if dp(ty) reduces to one
element. It is easily verified that py, (F') € dp(to).

Now, let ¢, ¢, hy, and v, denote the generalized eigenvalues, eigenfunctions
and conformal measures associated to L, ; = L;r,. We have for f € B :

‘ 'Cn,w,tf

Cn,w,t

- hsnw,tuw,xf)H < O™ £l

o0



and it follows from the constructions of section 2 that C(¢) and -, may be
bounded by some constants C' > 0 and 0 < v < 1 independent of ¢ for ¢ in
a compact. Using this remark and proceeding as in the proof of the stability
properties, we obtain that ¢ — u(F’) is continuous.

The fact that g, is the only element of Op(ty) follows from the upper semi-
continuity of the entropy map (see [4]) and the continuity of ¢ — u(F) at
to. O

A Coding construction for small random per-
turbations of Axiom A diffeomorphisms

Let f bea C' Axiom A diffeomorphism on a compact Riemannian manifold M,
with hyperbolic set A(f) = N,ez f"U, where U is a fundamental neighborhood
of A(f). We give a coding construction for small random perturbations of f.

Let (€2, S, P) be an abstract invertible ergodic dynamical system, B a small
C'-neighborhood of f. We consider a measurable application g : Q — B and
write g(n,w) = ggn-1, 00 g, for n > 0 and g(n,w) = gga, © - gg:,, for
n < 0. Let A, = Npez9(n,w)™'U. Clearly, g, maps A, into Ag,. Let (2, 0)
be the subshift of finite type associated to f (see Bowen [7]), we will construct
continuous and surjective maps 7, such that the following diagram commutes :

y 5 %
Tw 4 1 Tsw
Ao 25 Age.

Bogenschiitz and Gundlach [6] obtained such a coding for expanding random
dynamical systems (not necesseraly perturbations) to a random subshift of
finite type with bounded symbols. In [9], P. Collet construct random finite
Markov partitions for an Axiom A perturbeted by independent noise.

Recall that there exists a continuous and surjective application 7 from ¥ to
A(f) such that fom = moo. Thus it is enough to construct a homeomorphism
Y, : Ay +— A(f) such that ¢, 09, = fot,. This construction is made by two
”Random Shadowing lemmas”, see Anosov ([1]), Bowen ([7]) and Newhouse
([18]) for the ”classical” Shadowing Lemma. The proof of the folllowing lemma
is directly adapted from Newhouse’s proof of Theorem 3.7 (Stability) in [18].

Lemma A.1 Let ¢ be an expansivity constant for f. If B is sufficently small,
for any z € A, there exists a unique v = Y,z € A(f) such that :

Vn € Z,d(f "z, g(n,w)z) < e/2.

Moreover, 1, is continuous.



It remains to prove that 1, is bijective.

Lemma A.2 For small enough n and ball B, for x € A, there exists a unique
z € N, such that Vn € 7 d(f"z, g(n,w)z) < n.

In order to prove this lemma, we recall some results which follow straightfor-
ward from the theory of hyperbolic sets and Axiom A diffeomorphisms (see
Newhouse [18]).

If B is small enough, there exists a fundamental neighborhood U of A(f),
A > 1 such that :

1. The hyperbolic splitting T, M = E* @ EZ, v € A(f) may be extended to
a continuous splitting T,M = E! & E? z € U,

2. for g € B, x € U, T,qg preserves the unstable cone field and is a A-
expansion on it i.e.

Cro= {v=v +v, € T,M, v, € EL, vy € E* / |vy| < a|vs|}

T.9(Cy,) C Cy, , and for v e Cy , |Tygv| > Alv],

gz, a0

3. for ¢ € B, x € U, T,g~" preserves the stable cone field and is a -
expansion on it i.e.

Cra={v=vi+v €T, M, v1 € E}, vy € £} [ [v1] > alvy|}

and for v € C¢

T,

Tog™"v] > Al

T.g~'(C;,) C Cs

—lz,a

Let z € A(f) and L(z,7n) be a small Liapunov neighborhood (see for example
Pollicott [19]) of 2, included in U, (i.e. f(L(x,n)) meet L(fz,n) transversely



in the sense that their configuration is homeomorphic to the picture above.
We will call stable disk (resp. unstable disk) any C' disk D such that for
any v € DnU, T,D C C;, (resp. T,D C Cy,). For A C M, we will
call u-width (resp s-width) {*(A) = max{diamD"N A, D" unstable disk} (resp
I*(A) = max{diamD*® N A, D?® stable disk}).

Clearly, I* (g, L(f ", n)) <AL~ a, n) and I*(g, " L(fx,m)) < A I“L(f2,m).
For w € Q, z € A(f), let L (z) = g '[L(fz,n)] N L(z,n) (see picture) and
by induction, L*(x) = g, '[L%)(f" ‘o)) N L(z,n). We get a decreasing se-
quence of subset of L(z,n) whose u-width go to zero (I*(LI'(x) < A7").
Similarly, let R! (z) = gg-1,[L(f~'z,n)] N L(z,n) and by induction, R"(z) =
gs—1u[REZh o (f" )] N L(x,n). We get a decreasing sequence of subset of
L(x,n) whose s-width go to zero (I*(R"(z) < A™™). Now, Npeny L2 (x) N R (2)
is non empty and has diameter zero. Moreover, any z satisfying the lemma
needs to belong to M,,ey L (2) N R (x) so we get the existence and uniqueness
of . O
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