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Abstract

Let T be a measurable map on a Polish space X, let Y be a non trivial subset
of X. We give conditions ensuring existence of conditionally invariant probabil-
ity measures (to non absorption in Y). We also supply sufficient conditions for
these probability measures to be absolutely continuous with respect to some regular
measure.



1 Introduction.

The notion of conditionally invariant probability measures c.i.p.m. was introduced for
countable state Markov chains with absorbing state in [9]. It was proven in [6] that ge-
ometric absorption was a necessary and sufficient condition for the existence of c.i.p.m.
for a wide class of Markov chains. In [7] and recently in [2, 3, 4] it was investigated
the existence of such measures for expanding dynamical systems and topolgical Markov
chains with holes. More recently, these questions were also studied for Anosov systems in
[1].

In this article, we are concerned with general dynamical systems. In the first section,
we give necessary and sufficient conditions of existence of a c.i.p.m. following closely the
ideas introduced in [6]. In the second one, we study existence and properties of c.i.p.m.
which are absolutely continuous with respect to some regular reference measure. The
construction of such measures is inspired by [8].

Let us introduce the framework and main definitions. Let (X,d) be a Polish space,
B be the Borel o-field and T : X — X be a measurable dynamics which may be either
continuous or discrete (i.e. t belongs either to N or R). Let Y C X a non trivial subset
of X. Denote Xg = X\ Y. Set 7(z) = inf{t > 0 / T'z € Y} for x € X the time of
absorption at the hole and X; = {z / 7(x) > t}. We have X; = [ .,, T~ °Xo and observe
that T/ X, N X, = X, ys. o

Let M(Xj) be the set of probability measures on X concentrated on Xy. A probability
measure v € M(Xj) is said to be a c.i.p.m. if

v(T'AN X,) = v(A)v(X,) VA € B, Vt,

i.e. when conditioned to be at X; the measure remains invariant. By taking A = X;, we
find that a c.i.p.m. verifies v(X;1s) = v(X;)v(X;) Vs, t. Then v(X;) = o for some « in
[0, 1].

2 Some properties of c.i.p.m. and existence condi-
tion.

For v € M(Xy) consider the measures v; given by 14(B) = v(T"*BNX;). We have vy = v
and v,(Xo) = v(X;) for every t > 0. Since T'X,NX, = Xy, we have 1(X) = v(Xypy) =
Vs11(Xo). We denote by F" the distribution function of 7, F”(t) = P, {7 <t} = 1—-v(X}),
then if v is a c.i.p.m. the distribution F” is exponential (of parameter 6, for some 6y) i.e.
Fr(t) =1—e% ¥t > 0. Also E, (1) = 6;"'. For any probability distribution function F



e o]

on R, we put my(F) = /tdF / ))dt. Assume mq(F') < oo. We can define
0

the probability distribution ¢ F given by 1 — ¢ F(t) = (m(F))™* /(1 — F(s))ds. Observe

t
00

that m;(F") = E,(7), so 1 =y F"(t) = (E,(7)) ! /(1 — F"(s))ds. Under this assumption

we can define the measure pv by

Since /I/t(Xo)dt = /(1 — F"(t))dt = E,(7) we get that v € M(Xj). Observe that
=P = () = @)™ [ nds = )7 [ ralXo)ds

— (B () / vy(Xo)ds = (my (F”))™ / (1— FY(s))ds.

t t

Hence
if E,(T) < oo then F* = F". (1)
Lemma 2.1 v € M(Xy) is a c.i.p.m. if and only if pv = v.

Proof: Assume v is a c.i.p.m. then for any B C Xo,B € B, (B) = v(f'BNX,) =
v(B)v(Xy), so

o0 oo

ov(B) = (B, (7)) / w(B)dt = v(B)(E,(r))" / v(X,) = v(B).

0 0

Reciprocally assume that v = v. Fix B C Xy, B € B. Denote 6y = (E,(7))"! and h(t) =

v (B). From 14(B) = HO/VHS(B)ds, we get h(t) = QO/h(s)ds. We get h/(t) = —60oh(t)

0 ¢
for t > 0 and h(0) = v(B). Then h(t) = v(B)e %! for t > 0. By applying it for B = X,
we find v(X;) = e7% so v,(B) = v(B)v(X;) and the result holds. A



Theorem 2.2 Assumev € M(Xy) is such that the trajectories are exponentially absorbed
starting from v i.e. there exist C' < 00,0y > 0 such that

(1 —F¥(t)) < Ce ™" for any t > 0, (2)
and for t big enough X \ X; is contained in a compact set. Then there exists a c.i.p.m.

Observe that the condition “X \ X, is contained in a compact set for ¢ big enough” is
obviously verified if X is compact. It is also fulfilled when the hole Y is compact, T is
continuous and time is dicrete.

For proving the theorem we shall use the following result shown in [6] (Proposition
3.3).

Lemma 2.3 If for some C < 00,8y > 0 a probability distribution function F' verifies
1— F(t) < Ce % for allt > 0, then there exists 6 > 0y and a sequence

N = {n; < ny < ..} such that Y"F converges to an exponential of parameter 0 as
n— oo,n €N.

Proof of Theorem 2.2: Tt is entirely similar to the proof given in [6] for Markov chains.
Denote 1" = ¢"v. Let N be given by Lemma 2.3, so it satisfies that (F""),cx converges
in distribution to an exponential of parameter  with 6 > 6,. Let ¢ > 0 and take n big
enough in order that:

e>1—F"(t(e)) =Puu{r > t(e)} = V" (X)),

hence {v" : n € N} is tight. Let N/ C N be a subsequence such that v™ — v>° when
n — oco,n € N'. We have
Fr () = v™(X \ X)) = Jim v"(X \ X) = Jim F*" (1) =1 — "
neN’ neN’

Hence the set Ky = {v € M(Xy) : ¥ ~ exponential of parameter 6} is non empty. From
(1) it follows

o0

P, {r >t} = (E,(r)"" /(1 ~F(s))ds = e ™,
t
then ¢ : Ky — Ky. On Ky we put the weak topology. Let us show ¢ is continuous on
Ky. Let vy — v, with v, v € Ky. We have E,, (1) = E,(7) = 0. Let Z C X, be a Borel
set with v(0Z) = 0. We have

li]gn inf vy (2) = hm mf /yk T'Z N Xy)dt
—00
0

1 [e.@] ' . ) 1 oo
= §/I1I¥I_1>Cl>£1fyk(T 'Z N Xp)dt > 5/1/ 7N Xy)dt = pv(2).
0 0



By taking X, \ Z we obtain hm 1nf ovE(Xo\ Z) = 1 —limsup g (Z) > 1—pv(Z). Hence
k—o0
khrn wvp(Z) = pv(Z) and the contmulty follows. Now Kj is convex, let us show it is also
—00

compact. Since the weak topology is metrizable we must show that Ky, is sequentially
compact. But for the purpose it suffices to show that any sequence (1) C Ky is tight.
But this holds because F”(t) = v(X \ X;) = 1 — €% for any v € K. Hence ¢ : Ky — K
has a fixed point v, which is a c.i.p.m. A

Now we give a condition which ensure that (2) is verified. This condition is related with

mixing properties of the invariant probability measure for the original system (without
the hole).

Proposition 2.4 Consider Xy € B and v € M(X) a T'-invariant probability measure
such that v(Xo) < 1. Assume that there exists e, = £,(Xo) with e, — 0 as t — oo, such
that VB € B,

lv(T7'Xo N B) — v(Xo)v(B)| < v(B)e; VYt >0.

Then there exists 0y > 0,C' < oo such that
1—F¥(t) < Ce ™ vt >0.

Proof: Fix r > 0 such that ¢’ = v(Xy) +¢, € (0,1). For t > 0 take ¢ € N such that
t = qr 4+ ro with ro < r. We have

L—F"(t)=v( ) T™Xo) < v( ﬂT—f’"X)
0<s<t —

We have from hypothesis:

/90'1Xo oT"dr < 5’/g0d1/ for p € L. (dv).

We can define the Perron-Frobenius operator P! : L! (dv) — L! (dv) as
Plp = M where v, is the measure v,,(B) = /gpdu and v, o T7H(B) = v,(T'B)
B

VB € B. We have /13 -Plodv =v,0T Y (B) = / 1poT" - pdv. Since v if T'-invariant
P1 = 1. Now,

q—1

ﬂT”X ()T Xo N T~ Xo)
=0
= /P(Q—l)qul . 1X0 o T"dv
m TferO

£=0



q—1

<¢ / PO L1 dv = v ([T Xo).
- =0

t—mn

q
From recurrence V(ﬂ T X,) <e?and we find: 1 — F*(t) <4 = ¢ and the result

£=0
follows. A

Our purpose is now to give a sufficient condition to ensure existence of a c.i.p.m., abso-
lutely continuous with respect to some reference probability A (this will be denoted by
a.c.c.i.p.m.).

3 Absolutely continuous c.i.p.m.

In what follows, we are concern with discrete dynamics, so 7" is the nth iterate of T
X — X. Let X\ be a regular probability on X. We assume that T is non singular with
respect to A, that is A(A) = 0 implies A(T"'A) = 0. The Perron-Frobenius operator
P: L'Y(\) — L'()) is defined by

/(Pf)gdA - /fg o TANYf € L'(\), g € L=(\).
X

X

The operator P is a positive contraction of L*(\). Moreover P™ verifies

/(P”f)gdA = /fg oT"dAVf € L'(\),g € L™(\) Vn € N. (3)
X X

Let Py : L*(\) — LY()\) be defined by Py f = P(f1x,), note that B}'f = P"(f1y,_,), thus
using (3), we get

/(Pg;f)gcm _ /fg o TdAVf € L'()), g € L®(\) ¥n € N. ()
X() Xn

Lemma 3.1 There ezists an a.c.c.i.p.m. if and only if there exists h # 0 in L1 (\) such
that 1x,Pyh = ahlx, with « € [0, 1].

Proof: We can assume that h satisfies /hd)\ =1 and 1x,Pyh = ahly, with o € [0, 1].

Xo
Then 1x,Pih = a™hlx, Vn > 1. Let v be the probability defined by v = (hlx,)A. Let
us prove that v is a c.i.p.m. We have for B € B,

v(T™"BNX,) = /13 o T"hd\ = /Pg‘hle)\ using (4) = a”/hle)\ = o"v(B).

Xn Xo Xo



Taking B = Xy, we obtain v(X,,) = o, thus v(T"B N X,,) = v(B)v(X,) which shows
that v is a c.i.p.m.

Reciprocally, assume that v is an absolutely continuous c.i.p.m. and let Z—i = 1x,h

(remind that v is concentrated on X, so we can assume 2 is zero on Y = X \ X;). Using

dv
(4) with ¢ =15 and f = hlx,, we have

v(TT"BNX,) = /hlB o T™d\
Xn
= /Ponhle)\ = v(B)v(X,) since v is a c.i.p.m.

Xo

Hence, we obtain 1x,hv(X,) = FPlhlx,. Since v is a c.ip.m., v(X,) = a" for some
o€ [O, 1], SO 1X0P0h:a1X0h. A

Definition 3.2 Let (i,)nen be a sequence of probabilities, absolutely continuous with re-
spect to A. We say that the sequence (fi,)nen is uniformly absolutely continuous with
respect to A if

Yy > 0,30 > 0 such that \(A) < 6 implies pu,(A) <~y Vn € N. (5)

ANT"ANX,)
A(Xn)

For any n € N, we define u,, by p,(A) =

Theorem 3.3 If the sequence (p,)nen s uniformly absolutely continuous with respect to
A and Xq is compact then there exists an absolutely continuous c.i.p.m.

Remarks. 1. The asumption on uniformly absolue continuity of (1, )nen is related with
asymptotic laws of entrance times.

2. Note that if v is an a.c.c.i.p.m. with density A bounded away from zero and infinity
then the sequence (i, )nen is uniformly absolutely continuous with respect to .

Indeed, let h be the density of an a.c.c.i.p.m. such that M~! < h < M. Then

M_l(P(?h)lXo < 1X0(P(;Ll> S‘]\4(P(;lh)1Xo
M2a"ly, < 1x,(Py1) < M?*a™1y,,
thus,
-1
MTAN X,) A
_— = Pl1)d\ P'1)14d)\ | < M*M\(A
o= | fa (X/<0>A < MAA)
0 0

this implies uniform absolute continuity of (g, )nen- A

6



3.1 Proof of theorem 3.3

Proof of Theorem 3.3: The operator Py acts on L'()), consider the canonic injection of
L' into its bidual (L')** = (L>)*. (L*)* is identified with the space of finitely additive
bounded set function on B, which are absolutely continuous with respect to A ([5] th IV
8.15-16, [10] 2.). The positive operator Py may be continued to a positive operator on
(L*>)* by Pyz(A) = 2(T"*ANX;). We will first obtain an eigenvalue for Py in (L>)* and
then use this eigenvalue to construct the a.c.c.i.p.m.

Consider the bounded sequence
n—1
A(Xit1)
pr— 1
an /n ;:0 X (6)

and let a be any limit point of this sequence, a = limy, a,, . In the following, o and the
subsequence ny, are fixed. Now, let Q5 be the following sequence in L?,

1wl
= — Pi1
Qk Ny ; )\(XZ) 0

for any k, /Qk = 1. Thus, it admits limits points for the weak-* topology of (L*)*. Let

Xo
z be such a limit point, it verifies Pyz = az. Indeed, let A € B and (k) a subsequence

such that

1 )\(T_iA N X;)
2(A) = lim — A
( ) k—o0 go(k) i—0 A(XJ
k)—1 it
1 S ANTHT AN XN X))
A(T'ANX;) = lim —— .
( 1) k—o0 gp(k‘) i=0 /\(XZ)
Now,
1 PO AN XN X))
k) 2 AX)
1 5"%1 MT7TAN X)) M Xig)
o(k) = A Xit1) ACON
We have




and
o(k)—1

1 A (T_i_lA N Xi+1) _1
—_— — 2(T7TAN Xy).
EOR ooy ( %

This shows that FPyz = az. Moreover z have its support in Xg, thus z also defines a linear
form on C'(Xy). Therefore there exists a regular measure p on X, such that

— [ fan=n(p). 1 € Clxa). (7)

By 2z A u, we denote the infimum between z and p in the lattice of bounded, finitely
additive set function on B, for the inclusion ordering ([10], [5] III.1.8 for the definition of
p~=pA0)
for Ae B, zAp(A) = Eigan{u(B) + z(A\ B)}.
C

Since 0 < zApu < pand 0 < zAp <z zApuis a positive regular measure, absolutely
continuous with respect to A. We claim that Py(z A 1) < a(z A p). Indeed, it suffices to
shows that VA € B,

Py(z Ap)(A) < az(A) and
Fo(z Ap)(A) < ap(A). (8)

The first inequality is trivial: Py(z A p)(A) < Pyz(A) (Fp is a positive operator) and
Pyz = az. If a =0, it implies Py(z A ) =0 and z A p is a a.c.c.i.p.m. provided it is not
zero. The fact that z A p(Xy) # 0 will be clear at the end of the proof.

Let us consider the case @ # 0. Remark that both sides of (8) define a regular Borel
measure on Xj, so to establish (8), it suffices to prove it for compact sets. Let K C X
be a compact set of Xy, there exists a decreasing sequence (g, )nen of positive continuous
functions on Xy such that u(K) = inf, u(g,). We get

IAIA

uK) = inf pu(gs) = inf 2(g.) 2 2(K)
= a 'Pz(K) > a 'Py(z A p)(K).

For A € B consider the sequence

n

va(A) = == (2 A p)(A),

an
using the preceding remark, we get that this sequence is decreasing. Thus there exists a
regular absolutely continuous measure v satisfying v(A) = lim, v,(A) for all A € B and
Pov = av. To conclude the proof, it remains to show that 0 < v(Xy) < oco. This will
follows from the uniform absolute continuity of u,,. We will only consider the case o # 0,

8



if =0, it may be proved that pu A z(Xy) # 0 in the same way.

We have v(Xy) = lim,a™™(z A p)(X,), so v(Xy) < 1 (note that Pyz = az implies
2(X,) = a"). Let us assume that v(Xy) = 0. Let ¢ < 1/2 be fixed and n such that
2z A u(X,) < ea”. There exists A C X, such that

u(A) < ea” and z(X, \ A) < ea™.

Let v = o™(1 — 2¢) and § > 0 associated to 7 by the uniform absolute continuity of
(g )ken- Since A is regular, there exists a compact K C A such that A\(A\ K) < 4. Since
K is compact, z(K) < p(K) < p(A) < ea™, so,

2(A\K) =2(X, \ K) —2(X, \ 4) > a"(1 — 2¢) = .

Yet, it follows from the construction of z and the choices of v and § that z(A\ K) < 7,
which is a contradiction. So that v is non zero. A

3.2 Uniqueness problem.

Proposition 3.4 Assume that T satisfies the hypothesis of theorem 3.3 and the following
“irreducibility” condition: for all A and B in B such that \(A) > 0 and \(B) > 0 there
exists k € N such that

MBNT*ANX,) > 0.

Then any limit point v of the sequence (an)nen (defined in (6)) is a simple eigenvalue of
F.

Proof: Let us fix a a limit point of (a,),en. From section 3.1, «v is an eigenvalue of F.
Let us prove that it is simple.

First, we will show that if k if an eigenfunction of Py, so are k™ and k~, where kT =
max (0, k) and k= = max(0, —k). Indeed, let k¥ € L'()\) be such that Pyk = ak. Since P is

a positive operator, Pyk® < ak® almost everywhere, € = 4+ or € = —, so /Pok;5 <a / kF.
Moreover,
/Pok:+—P0k:/Pok:a/k:oz/k+—oz/k: 9)
Xo Xo Xo Xo Xo
and Polf] > |Bof] = alf] . so/P0|f\ > a/m which is
Xo Xo
/P0k++/P0]€_ZO{/k3++(I/I€_ (10)
Xo Xo Xo Xo



then, adding (9) and (10) gives /Pok’Jr > o / k* we deduce /Pok:+ = oz/k:Jr and thus

Xo Xo Xo Xo

Pyk™ = k™, the same reasoning gives also Pok™ = ak™.

Now, let us prove that if k is an almost everywhere non negative eigenfunction of F, then
k>0 ae. Let A= {x € Xy / k(x) = 0}. Since k is no zero, A\(A°) > 0, let us assume
that A(A) > 0.

/k:d)\ =0=a" / 1p-nakd) Vn.
A X
Since A(A°) and A(A) are non zero, there exists n € N such that

AMA°NTT"ANX,) > 0.

In particular, \(T""ANX,,) > 0, since / 17-nanx, h = 0, we deduce that T7"ANX,, C A,
but this contradicts A(A°NT"ANX,) > 0.

We may now prove that a is simple as an eigenfunction of Py. Let f € L'()\) be an
eigenvalue of F, such that / fd\ # 0, we may assume that / f =1, let h be the

X, X,
density of the probability v coonstructed in theorem 3.3. By consoidering separately real
and imaginary part, we may assume that f is a real function. Define k = h — f, k is
an eigenvalue of Py, by the preceding remarks, so are k™ and k~. For ¢ = + or ¢ = —,
ke is either zero a.e. or strictly positive a.e. Assume for example that kT > 0 a.e., then

h > f a.e. but this is not possible since /h = /f = 1. The same reasoning proves that

Xo Xo
k=~ > 0 a.e. is also impossible, we deduce that h = f a.e. It remains to consider the case

/fd)\ = 0. We have that f* and [~ are eigenvalues of Py and /f+ = /f # 0. We

Xo Xo

may assume that [ fT =1 and the same arguments as above prove that f© = f~ =h
Xo

a.e. This concludes the proof of the proposition. A
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