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Abstract

Let T be a measurable map on a Polish space X, let Y be a non trivial subset
of X. We give conditions ensuring existence of conditionally invariant probabil-
ity measures (to non absorption in Y ). We also supply sufficient conditions for
these probability measures to be absolutely continuous with respect to some regular
measure.



1 Introduction.

The notion of conditionally invariant probability measures c.i.p.m. was introduced for
countable state Markov chains with absorbing state in [9]. It was proven in [6] that ge-
ometric absorption was a necessary and sufficient condition for the existence of c.i.p.m.
for a wide class of Markov chains. In [7] and recently in [2, 3, 4] it was investigated
the existence of such measures for expanding dynamical systems and topolgical Markov
chains with holes. More recently, these questions were also studied for Anosov systems in
[1].
In this article, we are concerned with general dynamical systems. In the first section,
we give necessary and sufficient conditions of existence of a c.i.p.m. following closely the
ideas introduced in [6]. In the second one, we study existence and properties of c.i.p.m.
which are absolutely continuous with respect to some regular reference measure. The
construction of such measures is inspired by [8].

Let us introduce the framework and main definitions. Let (X, d) be a Polish space,
B be the Borel σ-field and T t : X → X be a measurable dynamics which may be either
continuous or discrete (i.e. t belongs either to N or R). Let Y ⊂ X a non trivial subset
of X. Denote X0 = X \ Y . Set τ(x) = inf{t ≥ 0 / T tx ∈ Y } for x ∈ X the time of
absorption at the hole and Xt = {x / τ(x) > t}. We have Xt =

⋂

0≤s≤t T
−sX0 and observe

that T−tXs ∩Xt = Xt+s.

Let M(X0) be the set of probability measures on X concentrated on X0. A probability
measure ν ∈ M(X0) is said to be a c.i.p.m. if

ν(T−tA ∩Xt) = ν(A)ν(Xt) ∀A ∈ B, ∀t,

i.e. when conditioned to be at Xt the measure remains invariant. By taking A = Xt, we
find that a c.i.p.m. verifies ν(Xt+s) = ν(Xt)ν(Xs) ∀s, t. Then ν(Xt) = αt for some α in
[0, 1].

2 Some properties of c.i.p.m. and existence condi-

tion.

For ν ∈ M(X0) consider the measures νt given by νt(B) = ν(T−tB∩Xt). We have ν0 = ν
and νt(X0) = ν(Xt) for every t ≥ 0. Since T−tXs∩Xt = Xs+t, we have νt(Xs) = ν(Xs+t) =
νs+t(X0). We denote by F ν the distribution function of τ , F ν(t) = Pν{τ ≤ t} = 1−ν(Xt),
then if ν is a c.i.p.m. the distribution F ν is exponential (of parameter θ0 for some θ0) i.e.
F ν(t) = 1 − eθ0t ∀t ≥ 0. Also Eν(τ) = θ−1

0 . For any probability distribution function F
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on R+ we put m1(F ) =

∞
∫

0

tdF (t) =

∞
∫

0

(1− F (t))dt. Assume m1(F ) <∞. We can define

the probability distribution ψF given by 1−ψF (t) = (m1(F ))
−1

∞
∫

t

(1−F (s))ds. Observe

that m1(F
ν) = Eν(τ), so 1−ψF ν(t) = (Eν(τ))

−1

∞
∫

t

(1−F ν(s))ds. Under this assumption

we can define the measure ϕν by

ϕν(B) = (Eν(τ))
−1

∞
∫

0

νt(B)dt.

Since

∞
∫

0

νt(X0)dt =

∞
∫

0

(1− F ν(t))dt = Eν(τ) we get that ϕν ∈ M(X0). Observe that

1− Fϕν(t) = ϕν(Xt) = (Eν(τ))
−1

∞
∫

0

νs(Xt)ds = (Eν(τ))
−1

∞
∫

0

νs+t(X0)ds

= (Eν(τ))
−1

∞
∫

t

νs(X0)ds = (m1(F
ν))−1

∞
∫

t

(1− F ν(s))ds.

Hence
if Eν(T ) <∞ then Fϕν = ψF ν . (1)

Lemma 2.1 ν ∈ M(X0) is a c.i.p.m. if and only if ϕν = ν.

Proof : Assume ν is a c.i.p.m. then for any B ⊂ X0, B ∈ B, νt(B) = ν(f−tB ∩ Xt) =
ν(B)ν(Xt), so

ϕν(B) = (Eν(τ))
−1

∞
∫

0

νt(B)dt = ν(B)(Eν(τ))
−1

∞
∫

0

ν(Xt) = ν(B).

Reciprocally assume that ϕν = ν. Fix B ⊂ X0, B ∈ B. Denote θ0 = (Eν(τ))
−1 and h(t) =

νt(B). From νt(B) = θ0

∞
∫

0

νt+s(B)ds, we get h(t) = θ0

∞
∫

t

h(s)ds. We get h′(t) = −θ0h(t)

for t ≥ 0 and h(0) = ν(B). Then h(t) = ν(B)e−θ0t for t ≥ 0. By applying it for B = X0

we find ν(Xt) = e−θ0t so νt(B) = ν(B)ν(Xt) and the result holds. △
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Theorem 2.2 Assume ν ∈ M(X0) is such that the trajectories are exponentially absorbed
starting from ν i.e. there exist C <∞, θ0 > 0 such that

(1− F ν(t)) ≤ Ce−θ0t for any t ≥ 0, (2)

and for t big enough X \Xt is contained in a compact set. Then there exists a c.i.p.m.

Observe that the condition “X \ Xt is contained in a compact set for t big enough” is
obviously verified if X is compact. It is also fulfilled when the hole Y is compact, T 1 is
continuous and time is dicrete.

For proving the theorem we shall use the following result shown in [6] (Proposition
3.3).

Lemma 2.3 If for some C <∞, θ0 > 0 a probability distribution function F verifies
1− F (t) ≤ Ce−θ0t for all t ≥ 0, then there exists θ ≥ θ0 and a sequence
N = {n1 < n2 < ..} such that ψnF converges to an exponential of parameter θ as
n→ ∞, n ∈ N .

Proof of Theorem 2.2: It is entirely similar to the proof given in [6] for Markov chains.
Denote νn = ϕnν. Let N be given by Lemma 2.3, so it satisfies that (F νn)n∈N converges
in distribution to an exponential of parameter θ with θ ≥ θ0. Let ε > 0 and take n big
enough in order that:

ε ≥ 1− F νn(t(ε)) = Pνn{τ > t(ε)} = νn(Xt(ε)),

hence {νn : n ∈ N} is tight. Let N ′ ⊂ N be a subsequence such that νn → ν∞ when
n→ ∞, n ∈ N ′. We have

F ν∞(t) = ν∞(X \Xt) = lim
n→∞

n∈N′

νn(X \Xt) = lim
n→∞

n∈N′

F νn(t) = 1− e−θt

Hence the set Kθ = {ν ∈ M(X0) : F
ν ∼ exponential of parameter θ} is non empty. From

(1) it follows

Pϕν{τ > t} = (Eν(τ))
−1

∞
∫

t

(1− F ν(s))ds = e−θt,

then ϕ : Kθ → Kθ. On Kθ we put the weak topology. Let us show ϕ is continuous on
Kθ. Let νk → ν, with νk, ν ∈ Kθ. We have Eνk(τ) = Eν(τ) = θ. Let Z ⊂ X0 be a Borel
set with ν(∂Z) = 0. We have

lim inf
k→∞

ϕνk(Z) = lim inf
k→∞

1

Eνk(τ)

∞
∫

0

νk(T
−tZ ∩Xt)dt

=
1

θ

∞
∫

0

lim inf
t→∞

νk(T
−tZ ∩Xt)dt ≥

1

θ

∞
∫

0

ν(T−tZ ∩Xt)dt = ϕν(Z).
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By taking X0 \Z we obtain lim inf
k→∞

ϕνk(X0 \Z) = 1− lim sup
k→∞

ϕνk(Z) ≥ 1−ϕν(Z). Hence

lim
k→∞

ϕνk(Z) = ϕν(Z) and the continuity follows. Now Kθ is convex, let us show it is also

compact. Since the weak topology is metrizable we must show that Kθ is sequentially
compact. But for the purpose it suffices to show that any sequence (νk) ⊂ Kθ is tight.
But this holds because F ν(t) = ν(X \Xt) = 1− eθt for any ν ∈ Kθ. Hence ϕ : Kθ → Kθ

has a fixed point ν, which is a c.i.p.m. △

Now we give a condition which ensure that (2) is verified. This condition is related with
mixing properties of the invariant probability measure for the original system (without
the hole).

Proposition 2.4 Consider X0 ∈ B and ν ∈ M(X) a T t-invariant probability measure
such that ν(X0) < 1. Assume that there exists εt = εt(X0) with εt → 0 as t → ∞, such
that ∀B ∈ B,

|ν(T−tX0 ∩B)− ν(X0)ν(B)| ≤ ν(B)εt ∀t ≥ 0.

Then there exists θ0 > 0, C <∞ such that

1− F ν(t) ≤ Ce−θ0t ∀t ≥ 0.

Proof : Fix r > 0 such that ε′ = ν(X0) + εr ∈ (0, 1). For t > 0 take q ∈ N such that
t = qr + r0 with r0 < r. We have

1− F ν(t) = ν(
⋂

0≤s≤t

T−sX0) ≤ ν(

q
⋂

ℓ=0

T−ℓrX0).

We have from hypothesis:
∫

ϕ · 1X0
◦ T rdν ≤ ε′

∫

ϕdν for ϕ ∈ L1
+(dν).

We can define the Perron-Frobenius operator P t : L1
+(dν) → L1

+(dν) as

P tϕ = dνϕ◦T
−t

dν
where νϕ is the measure νϕ(B) =

∫

B

ϕdν and νϕ ◦ T−t(B) = νϕ(T
−tB)

∀B ∈ B. We have

∫

1B · P tϕdν = νϕ ◦ T
−t(B) =

∫

1B ◦ T t · ϕdν. Since ν if T t-invariant

P t1 = 1. Now,

ν(

q
⋂

ℓ=0

T−ℓrX0) = ν(

q−1
⋂

ℓ=0

T−ℓrX0 ∩ T
−qrX0)

=

∫

P (q−1)r1q−1⋂

ℓ=0

T−ℓrX0

· 1X0
◦ T rdν
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≤ ε′
∫

P (q−1)r1⋂q−1

ℓ=0
T−ℓrX0

dν = ε′ν(

q−1
⋂

ℓ=0

T−ℓrX0).

From recurrence ν(

q
⋂

ℓ=0

T−ℓrX0) ≤ ε
′q and we find: 1− F ν(t) ≤ ε

′q = ε
′ t−r0

q and the result

follows. △

Our purpose is now to give a sufficient condition to ensure existence of a c.i.p.m., abso-
lutely continuous with respect to some reference probability λ (this will be denoted by
a.c.c.i.p.m.).

3 Absolutely continuous c.i.p.m.

In what follows, we are concern with discrete dynamics, so T n is the nth iterate of T :
X → X. Let λ be a regular probability on X. We assume that T is non singular with
respect to λ, that is λ(A) = 0 implies λ(T−1A) = 0. The Perron-Frobenius operator
P : L1(λ) → L1(λ) is defined by

∫

X

(Pf)gdλ =

∫

X

fg ◦ Tdλ ∀f ∈ L1(λ), g ∈ L∞(λ).

The operator P is a positive contraction of L1(λ). Moreover P n verifies
∫

X

(P nf)gdλ =

∫

X

fg ◦ T ndλ ∀f ∈ L1(λ), g ∈ L∞(λ) ∀n ∈ N. (3)

Let P0 : L
1(λ) → L1(λ) be defined by P0f = P (f1X0

), note that P n
0 f = P n(f1Xn−1

), thus
using (3), we get

∫

X0

(P n
0 f)gdλ =

∫

Xn

fg ◦ T ndλ ∀f ∈ L1(λ), g ∈ L∞(λ) ∀n ∈ N. (4)

Lemma 3.1 There exists an a.c.c.i.p.m. if and only if there exists h 6= 0 in L1
+(λ) such

that 1X0
P0h = αh1X0

with α ∈ [0, 1].

Proof : We can assume that h satisfies

∫

X0

hdλ = 1 and 1X0
P0h = αh1X0

with α ∈ [0, 1].

Then 1X0
P n
0 h = αnh1X0

∀n ≥ 1. Let ν be the probability defined by ν = (h1X0
)λ. Let

us prove that ν is a c.i.p.m. We have for B ∈ B,

ν(T−nB ∩Xn) =

∫

Xn

1B ◦ T nhdλ =

∫

X0

P n
0 h1Bdλ using (4) = αn

∫

X0

h1Bdλ = αnν(B).
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Taking B = X0, we obtain ν(Xn) = αn, thus ν(T−nB ∩ Xn) = ν(B)ν(Xn) which shows
that ν is a c.i.p.m.

Reciprocally, assume that ν is an absolutely continuous c.i.p.m. and let dλ
dν

= 1X0
h

(remind that ν is concentrated on X0, so we can assume dλ
dν

is zero on Y = X \X0). Using
(4) with g = 1B and f = h1X0

, we have

ν(T−nB ∩Xn) =

∫

Xn

h1B ◦ T ndλ

=

∫

X0

P n
0 h1Bdλ = ν(B)ν(Xn) since ν is a c.i.p.m.

Hence, we obtain 1X0
hν(Xn) = P n

0 h1X0
. Since ν is a c.i.p.m., ν(Xn) = αn for some

α ∈ [0, 1], so 1X0
P0h = α1X0

h. △

Definition 3.2 Let (µn)n∈N be a sequence of probabilities, absolutely continuous with re-
spect to λ. We say that the sequence (µn)n∈N is uniformly absolutely continuous with
respect to λ if

∀γ > 0, ∃δ > 0 such that λ(A) < δ implies µn(A) < γ ∀n ∈ N. (5)

For any n ∈ N, we define µn by µn(A) =
λ(T−nA ∩Xn)

λ(Xn)
.

Theorem 3.3 If the sequence (µn)n∈N is uniformly absolutely continuous with respect to
λ and X0 is compact then there exists an absolutely continuous c.i.p.m.

Remarks. 1. The asumption on uniformly absolue continuity of (µn)n∈N is related with
asymptotic laws of entrance times.
2. Note that if ν is an a.c.c.i.p.m. with density h bounded away from zero and infinity
then the sequence (µn)n∈N is uniformly absolutely continuous with respect to λ.
Indeed, let h be the density of an a.c.c.i.p.m. such that M−1 < h < M . Then

M−1(P n
0 h)1X0

≤ 1X0
(P n

0 1) ≤M(P n
0 h)1X0

M−2αn1X0
≤ 1X0

(P n
0 1) ≤M2αn1X0

,

thus,

λ(T nA ∩Xn)

λ(Xn)
=





∫

X0

(P n
0 1)dλ





−1 



∫

X0

(P n
0 1)1Adλ



 ≤M4λ(A),

this implies uniform absolute continuity of (µn)n∈N. △
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3.1 Proof of theorem 3.3

Proof of Theorem 3.3: The operator P0 acts on L1(λ), consider the canonic injection of
L1 into its bidual (L1)∗∗ = (L∞)∗. (L∞)∗ is identified with the space of finitely additive
bounded set function on B, which are absolutely continuous with respect to λ ([5] th IV
8.15-16, [10] 2.). The positive operator P0 may be continued to a positive operator on
(L∞)∗ by P0z(A) = z(T−1A∩X1). We will first obtain an eigenvalue for P0 in (L∞)∗ and
then use this eigenvalue to construct the a.c.c.i.p.m.

Consider the bounded sequence

an = 1/n
n−1
∑

i=0

λ(Xi+1)

λ(Xi)
(6)

and let α be any limit point of this sequence, α = limk ank
. In the following, α and the

subsequence nk are fixed. Now, let Qk be the following sequence in L1,

Qk =
1

nk

nk−1
∑

i=0

1

λ(Xi)
P i
01,

for any k,

∫

X0

Qk = 1. Thus, it admits limits points for the weak-∗ topology of (L∞)∗. Let

z be such a limit point, it verifies P0z = αz. Indeed, let A ∈ B and ϕ(k) a subsequence
such that

z(A) = lim
k→∞

1

ϕ(k)

ϕ(k)−1
∑

i=0

λ(T−iA ∩Xi)

λ(Xi)
and

z(T−1A ∩X1) = lim
k→∞

1

ϕ(k)

ϕ(k)−1
∑

i=0

λ (T−i[T−1A ∩X1] ∩Xi)

λ(Xi)
.

Now,

1

ϕ(k)

ϕ(k)−1
∑

i=0

λ (T−i[T−1A ∩X1] ∩Xi)

λ(Xi)
=

1

ϕ(k)

ϕ(k)−1
∑

i=0

λ (T−i−1A ∩Xi+1)

λ(Xi+1)

λ(Xi+1)

λ(Xi)
.

We have

1

ϕ(k)

ϕ(k)−1
∑

i=0

λ(Xi+1)

λ(Xi)
−→ α

7



and

1

ϕ(k)

ϕ(k)−1
∑

i=0

λ (T−i−1A ∩Xi+1)

λ(Xi+1)
−→ z(T−1A ∩X1).

This shows that P0z = αz. Moreover z have its support in X0, thus z also defines a linear
form on C(X0). Therefore there exists a regular measure µ on X0 such that

z(f) =

∫

X0

fdµ = µ(f), f ∈ C(X0). (7)

By z ∧ µ, we denote the infimum between z and µ in the lattice of bounded, finitely
additive set function on B, for the inclusion ordering ([10], [5] III.1.8 for the definition of
µ− = µ ∧ 0)

for A ∈ B, z ∧ µ(A) = inf
B⊂A

{µ(B) + z(A \B)}.

Since 0 ≤ z ∧ µ ≤ µ and 0 ≤ z ∧ µ ≤ z, z ∧ µ is a positive regular measure, absolutely
continuous with respect to λ. We claim that P0(z ∧ µ) ≤ α(z ∧ µ). Indeed, it suffices to
shows that ∀A ∈ B,

P0(z ∧ µ)(A) ≤ αz(A) and

P0(z ∧ µ)(A) ≤ αµ(A). (8)

The first inequality is trivial: P0(z ∧ µ)(A) ≤ P0z(A) (P0 is a positive operator) and
P0z = αz. If α = 0, it implies P0(z ∧ µ) = 0 and z ∧ µ is a a.c.c.i.p.m. provided it is not
zero. The fact that z ∧ µ(X0) 6= 0 will be clear at the end of the proof.
Let us consider the case α 6= 0. Remark that both sides of (8) define a regular Borel
measure on X0, so to establish (8), it suffices to prove it for compact sets. Let K ⊂ X0

be a compact set of X0, there exists a decreasing sequence (gn)n∈N of positive continuous
functions on X0 such that µ(K) = infn µ(gn). We get

µ(K) = inf
n∈N

µ(gn) = inf
n∈N

z(gn) ≥ z(K)

= α−1P0z(K) ≥ α−1P0(z ∧ µ)(K).

For A ∈ B consider the sequence

νn(A) =
P n
0

αn
(z ∧ µ)(A),

using the preceding remark, we get that this sequence is decreasing. Thus there exists a
regular absolutely continuous measure ν satisfying ν(A) = limn νn(A) for all A ∈ B and
P0ν = αν. To conclude the proof, it remains to show that 0 < ν(X0) < ∞. This will
follows from the uniform absolute continuity of µn. We will only consider the case α 6= 0,
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if α = 0, it may be proved that µ ∧ z(X0) 6= 0 in the same way.
We have ν(X0) = limn α

−n(z ∧ µ)(Xn), so ν(X0) ≤ 1 (note that P0z = αz implies
z(Xn) = αn). Let us assume that ν(X0) = 0. Let ε < 1/2 be fixed and n such that
z ∧ µ(Xn) < εαn. There exists A ⊂ Xn such that

µ(A) < εαn and z(Xn \ A) < εαn.

Let γ = αn(1 − 2ε) and δ > 0 associated to γ by the uniform absolute continuity of
(µk)k∈N. Since λ is regular, there exists a compact K ⊂ A such that λ(A \K) < δ. Since
K is compact, z(K) ≤ µ(K) ≤ µ(A) ≤ εαn, so,

z(A \K) = z(Xn \K)− z(Xn \ A) > αn(1− 2ε) = γ.

Yet, it follows from the construction of z and the choices of γ and δ that z(A \K) < γ,
which is a contradiction. So that ν is non zero. △

3.2 Uniqueness problem.

Proposition 3.4 Assume that T satisfies the hypothesis of theorem 3.3 and the following
“irreducibility” condition: for all A and B in B such that λ(A) > 0 and λ(B) > 0 there
exists k ∈ N such that

λ(B ∩ T−kA ∩Xk) > 0.

Then any limit point α of the sequence (an)n∈N (defined in (6)) is a simple eigenvalue of
P0.

Proof : Let us fix α a limit point of (an)n∈N. From section 3.1, α is an eigenvalue of P0.
Let us prove that it is simple.
First, we will show that if k if an eigenfunction of P0, so are k+ and k−, where k+ =
max(0, k) and k− = max(0,−k). Indeed, let k ∈ L1(λ) be such that P0k = αk. Since P0 is

a positive operator, P0k
ε ≤ αkε almost everywhere, ε = + or ε = −, so

∫

P0k
ε ≤ α

∫

kε.

Moreover,
∫

X0

P0k
+ − P0k

− =

∫

X0

P0k = α

∫

X0

k = α

∫

X0

k+ − α

∫

X0

k− (9)

and P0|f | ≥ |P0f | = α|f | , so

∫

X0

P0|f | ≥ α

∫

X0

|f | which is

∫

X0

P0k
+ +

∫

X0

P0k
− ≥ α

∫

X0

k+ + α

∫

X0

k− (10)
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then, adding (9) and (10) gives

∫

X0

P0k
+ ≥ α′

∫

X0

k+ we deduce

∫

X0

P0k
+ = α

∫

X0

k+ and thus

P0k
+ = k+, the same reasoning gives also P0k

− = αk−.
Now, let us prove that if k is an almost everywhere non negative eigenfunction of P0 then
k > 0 a.e. Let A = {x ∈ X0 / k(x) = 0}. Since k is no zero, λ(Ac) > 0, let us assume
that λ(A) > 0.

∫

A

kdλ = 0 = α−n

∫

Xn

1T−nAkdλ ∀n.

Since λ(Ac) and λ(A) are non zero, there exists n ∈ N such that

λ(Ac ∩ T−nA ∩Xn) > 0.

In particular, λ(T−nA∩Xn) > 0, since

∫

1T−nA∩Xn
h = 0, we deduce that T−nA∩Xn ⊂ A,

but this contradicts λ(Ac ∩ T−nA ∩Xn) > 0.
We may now prove that α is simple as an eigenfunction of P0. Let f ∈ L1(λ) be an

eigenvalue of P0 such that

∫

X0

fdλ 6= 0, we may assume that

∫

X0

f = 1, let h be the

density of the probability ν constructed in theorem 3.3. By considering separately real
and imaginary part, we may assume that f is a real function. Define k = h − f , k is
an eigenvalue of P0, by the preceding remarks, so are k+ and k−. For ε = + or ε = −,
kε is either zero a.e. or strictly positive a.e. Assume for example that k+ > 0 a.e., then

h > f a.e. but this is not possible since

∫

X0

h =

∫

X0

f = 1. The same reasoning proves that

k− > 0 a.e. is also impossible, we deduce that h = f a.e. It remains to consider the case
∫

fdλ = 0. We have that f+ and f− are eigenvalues of P0 and

∫

X0

f+ =

∫

X0

f− 6= 0. We

may assume that
∫

X0

f+ = 1 and the same arguments as above prove that f+ = f− = h

a.e. This concludes the proof of the proposition. △

Acknowledgements: The authors acknowledge support from Catedra Presidential Fel-
lowship, ECOS-CONICYT program and FONDAP in Applied Mathematics (Chile). The
last two authors are grateful to the Fonds National Suisse de la Recherche Scientifique for
support which allowed them to finish this work.

References

[1] N. Chernov, R. Markarian & S. Troubetzkoy. Conditionally invariant measures for

10



Anosov maps with small holes. Ergodic Theory Dynam. Systems18, 5, 1049-1073
(1998).

[2] P. Collet, S. Mart́ınez & B. Schmitt. The Pianigiani-Yorke measure for topological
Markov chains. Israel Journal of Math. 97, 61-70, (1997).

[3] P. Collet, S. Mart́ınez & B. Schmitt. The Pianigiani-Yorke measure and the asymp-
totic law on the limit Cantor set of expanding systems. Nonlinearity 7, 1437-1443,
(1994).

[4] P. Collet, S. Mart́ınez & B. Schmitt. Quasi-stationary distribution and Gibbs measure
of expanding systems. Instabilities and nonequilibrium structures 205-219, (1996)

[5] N. Dunford & J. T. Schwartz. Linear operators Part I. Interscience, New-York (1966).

[6] P.A. Ferrari, H. Kesten, S. Mart́ınez & P. Picco. Existence of quasi-stationary distri-
butions. A renewal dynamical approach. Annals of Probability 23, 501-521, (1995).

[7] G. Pianigiani & J.A. Yorke. Expanding maps on sets which are almost invariant:
decay and chaos. Trans. Amer. Math. Society 252, 433-497, (1989).

[8] E. Straube. On the existence of invariant, absolutely continuous measures. Commun.
Math. Phys. 81, 27-30, (1981).

[9] D. Vere-Jones. Geometric ergodicity in denumerable Markov chains. Quart. J. Math.
13, 2, 2, 7-28, (1962).

[10] K. Yosida & E. Hewitt. Finitely additive measures. Trans. Amer. Math. Soc. 72,
46-66, (1952).

11


