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In (V), statistical properties of words generated by dynamical ssuace studied. This is done using generalized
Ruelle operators. The aim of this article is to generalize sources for wheatestults hold. First, we avoid the use of
Grotendieck theory and Fredholm determinants, this allows dynamicalesothat cannot be extended to a complex
disk or that are not analytic. Second, we consider general Markaeass: the language generated by the source over
an alphabefM/ is not necessarily/*.
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1 Introduction

Statistical properties of words describe the asymptoti@bior (or laws) of parameters like “most proba-
ble prefixes”, “coincidence probability”,... Such anafykas many applications in analysis of algorithms,
pattern matching, study of tries, optimization of algamith.. Of course, statistical properties of words
heavily depend on the way the words are produced.

In information theory contexts, a source is a mechanism hvlinits symbols from an alphak@f (finite

or infinite countable) to produce (infinite) words. The twda%sical” simpler models are memoryless
sources where each symbol is emitted independently of théqurs ones and Markov chains where the
probability for a symbol to be emitted depends on a boundetlgidhe past. Sources encountered in
practical situations are usually complex mechanism ancheeels general models to study the statistical
properties of emitted words (e.g. the distribution of thefixes of the same fixed length) and the pa-
rameters of the sources (e.g. entropy). In (V), B. &alintroduces a model girobabilistic dynamical
sourcewhich is based upon dynamical systems theory. It coversiclassources models (memoryless,
some Markov chains) and some other processes with unbouwtegeshdency on past history. A proba-
bilistic dynamical source consists in two parts: a dynaisgatem on the unit interva0, 1] representing
the mechanism which produces words and a probability meaddiore precisely, a dynamical source is
defined by:

(a) An alphabetM finite or infinite countable.
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(b) A topological partition of := [0, 1] into disjoint open intervaly, me M, i.e.T = UmearIm-
(c) A mappingo which is constant and equal toon each .
(d) A mappingT whose restriction to eadh, is aC? bijection fromly, to T (1) = Jn.
Let f be a probability density oh Words on the alphabe¥/ are produced in the following way: first,
x € | is chosen at random with respect to the probability of dgriitsecond, the infinite wor¥(x) =
(0(x),0(Tx),---,0(Tkx),---) is associated ta.
The main tool in the analysis of such sources is a “generajpegator”,the generalized Ruelle operator
depending on a complex paramesaand acting on a suitable Banach space. To derive resultg #imu
source, this operator must have a simple dominant eigea&) defined forsin a neighborhood of the
real axis. Thus some additional hypothesis on the mappilage needed. For example, in the context
of (V), branchesT . need to be real analytic with holomorphic extension to a dempeighborhood of
[0,1], need to be complete (i.&.(Im) =1) and need to satisfy a bounded distortion property (see ({OM
Such sources produce the §et* of all the words on the alphabgt. The analyticity ofT allows to use
the powerful Grotendieck theory and Fredholm theory on ajaes on spaces of holomorphic functions.
The aim of this work is to prove that the hypothesis of analijtiand completeness may be relaxed.
We extend the results of (V) to the larger clasgeheral Markov sourceee Definition 1). Our class
contain various classes of examples of interest like Madawces on a finite alphabet, Markov sources
with finitely many images or Markov sources with large imafgee Section 4 and Figure 1).

The dominant eigenvalue functien— A(s) is involved in all the results of the paper. First, parangeter

Markov sources with large images

Markov sources
with finitely
many images

Complete Markov sources
sources on a finite alphabet

General Markov sources
General sources

Fig. 1: Geometry of sources
of the source$ like entropyh(.§) or coincidence probabilitg,(.S) depends on this function:
h(S)=—N(1) and c,(S) = A(b).

Second, statistical properties of word emitted by the sedepend o (s):
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e the numbeB(x) of finite words whose probability is at leastxtpsatisfies

1
N(1)x

B(x) ~

if the source is not conjugated to some source with affinedires

e the random variableg, defined by: ¢((x) is the probability of words having the same prefix of
lengthk asx, follow asymptotically a log-normal law provided that thenttions — logA(s) is not
affine.

e the random variabl€(x,y) which is the length of the longest common prefix of the two vgord
associated ta, y € [0, 1] follow asymptotically a geometric law with ratio equalk?) if the x and
y are drawn independently.

These results proved by B. Va# for holomorphic dynamical sources remain valid in outirsgtand are
precised in the following main theorem. Before stating tre@mtheorem, let us recall that two dynamical
systemsT, T : 1 — | are conjugated if there exists an homeomorphisafi | such thaff =goTog™.
Roughly speaking, from a measurable dynamical point of vieyis piecewiseC! the systems are the
same.

Theorem Consider a general Markov source and f a density of probgbilvhich is bounded, Lipschitz
on each k with uniformly bounded Lipschitz constant. There existaiaalytic function s— A(s) on a
complex neighborhood & (s) > 1 such that:

e Either the map T is conjugated to a piecewise affine map wathes! of the forna®, a > 1, ke Z,
with the conjugacy €1 on each },. In that case, there exists A, B, such that

ABw<?®

X X
or 1

B(x) ~ N (DX

e If A”(1) — N(1)? # 0 then the variabldog/y follows asymptotically a normal law. Moreover
(1) —N(1)?2 = 0if and only if the map T is conjugated to a piecewise affine mip slopes
all equal, the conjugacy is€ P on each },.

e The variable C follows asymptotically a geometric law wigttio equal toA(2) if the x and y are
drawn independently.

As an immediate corollary we answer to Conjecture 2 of (V).

Corollary The exceptional sources are conjugated to piecewise affaps fnot necessarily complete)
with slopes of the forraX, a > 1, k € Z, with the conjugacy €1P on each ..

As a consequence of the proof of main theorem, we solve Camget of (V) (see Remark 2).
Let us quickly present the strategy underlying the proofref/jpus theorem. Important objects involved
in the analysis of the sources ddamental intervalsgiven a prefixh of lengthk € N, the set of



4 F. Chazal et V. Maume-Deschamps

words starting with this prefix is an interval j@, 1], the fundamental interval associatectdts measure
(with respect to the probability densify) is denoted by, It is not difficult to prove that all the studied
quantities can be expressed in terms of the Dirichlet sefidse fundamental measures:

N(F,s)= 3 uy and A(F,s)= 5 A(F.s)
hEZy K>0

where £y is the set of prefixes of length(lemma 2.1). For general Markov sources, these series define
holomorphic functions of the variabkwhich admit a meromorphic extension to a half plane. Next we
prove that these series can be expressed in terms of geedrRuelle operator. A careful study of spec-
tral properties of Ruelle operators is then used to desthibesingularities of Dirichlet series. Finally,
parameters of the source are derived by mean of “classiealiniques: Tauberian theorem and Mellin
transforms. This last part being exactly the same as in 8ot done in this paper. The reader is referred
to B. Vallée’s paper.

Let us mention that previous strategy initially developgdb Vallée also has various important applica-
tions in the area of analysis of algorithms (especially fithenetic algorithms), see (V2), (V3), (V4) for
example. At last, an important application of the asymptb&havior of the parameters of holomorphic
sources is the analysis of trie structures ((C,F,V), (Chisanalysis extends immediately to our setting.
The paper is organized as follows. In section 2, we give peedefinitions and statement of results. In
section 3, we analyze the parameters of the source assuonmgspectral properties of generalized Ru-
elle operators associated to our sources. In section 4 wadmrsome general classes of systems that
satisfy our hypothesis and give some specific examples (licpkar we exhibit a source that satisfy our
hypothesis but that does not admit a complex extensiongllijisection 5 contains the proof of the spec-
tral properties.

Acknowledgments: We are grateful to B. Vadle, P. Flajolet and J. €nent for interesting us to the theory
of dynamical sources and for fruitful discussions. Manyh#ge discussions were made possible thanks
to a partial financial support of ALEA project.

2 Dynamical sources, intrinsic parameters and transfer operators

Definition 1 A general dynamical Markov source is defined by the fourfadhg elements :
(a) An alphabetM, finite or infinite countable.
(b) A topological partition of .= [0,1] with disjoint open intervalsyl, me M, i.e. T = Upear Ims Im =
]am; bm[
(c) A mappingo which is constant and equal to m on eagh |
(d) A mapping T whose restriction to ealghis a C bijection fromiy, to T(Iry) = Jn. Let hy, be the local
inverse of T restricted th,. The mappingshsatisfy the following conditions.
(d1) Contracting. There exisD < nm < &m < 1 for which
Nm < |hL(X)] < 8y for x € I,
(d2) There existg < 1 such that forg (s) >y, the series
z dq, converge uniformly for x | and z |Im|® converges.

meM meM
PENT

H(d3) Bpunded distortion. There exists a constant +co such that for all me M and all xy € Jm,
IPm(X) /in(Y)] < A.
(d4) Markov property. The intervals g are union of some of the.|
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(d5) Positivity. See Condition 1 below.

A Markov source A non Markov source

Ja=J

Jo

la I Ie
Fig. 2: Markov and non Markov sources
Such a source produces words on the alphalbeto eachx € | we associate the infinite word
M(x) = (0(X),0(Tx),---,0(T*x),---).
Fork € N, thekth prefix ofM(x) is
P(X) = (0(x),0(Tx), -, (T 1x)).

We denote by, the subset of\* of prefixes of lengttk that may be produced by the dynamical source.
Remark that in our setting;x may be a strict subset @¥/*. For example in Figure 2, the wolit does
not belong taL,. In the following, each element afy will be identified with an inverse branch o of

the formh=hmy o---ohm,, m € M. LetJ, be the definition interval dfi € £ andlp = h(Jy) = [an, by]

the fundamental interval of. Hf h=hj, o---oh;, € £ thenJ, = J;,. Define alsa, = infyey, |0 (X)|, and

B = SURey, I (X).

We are now in position to express the positivity conditioB)(d

Condition 1 For all m € 91, there exists N= N such that

H S
inf hezLN Nh Lin(h(x)) > 0. (2.1)
Xedy

The following definition introduces the notion of fundam&nneasures and the main parameters of the
source ((V)).

Definition 2 Fundamental measures and parameters of the soae
Let f > 0 be a bounded, piecewise Lipschitz probability density ond B its associated distribution
function. The fundamental measures are:

up = |F(an) —F(bn)|, he U Ly.

keN*
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For b >y, denote by g F) the b-coincidence probability:

cb(F):m< 3 utﬁ)k.

he Ly

Let B(x) be the number of fundamental intervals whose measure issttégual to x.
For k € N*, ¢ is the random variable defined liy(x) = up if X € In, h € L.
Finally, C is the random variable onx |, defined by

C(x,y) =max{ke N / R(x) = R(y)}.
The parameters of the source are expressed in terms of Rirsgries of fundamental measures:

A(F,s)= % uy and A(F,s) = 5 Ax(F,s).
he Ly k>0

Lemma 2.1 (V) .
&o(F) = fim (A(F.b))¥.

A(F,s) = s/ B(x)x* tdx.
0

E(65) = A(F,s+1).
P(C > K) = A(F,2) and E(C) = A(F,2).

In (V), the asymptotic behavior of Dirichlet series is obdl from spectral properties of generalized
Ruelle operators associated to some analytic sourcefygagig, = M for all k. In this paper, we prove
that generalized Ruelle operators associated to genemddoMaources have the same dominant spectral
properties. We relate Dirichlet series to these operatpaaii setting. So the analysis on the parameters
of the source remain valid.

Generalized Ruelle operatd®s involve secants of inverse branches

hm(U) — hm(V)

Hm(u,v) := =y

and are defined by
Gs[®](u,v) i= 5 Hp(u,v)@(hm(u), hn(V)) Larxam (U, V).
meM

We are going to prove that these operators are quasi comftaaimque and simple dominant eigenvalue
A(s) that coincide with the dominant eigenvalue of the “cladéiRaelle operator:

Gs@(u) := Gg[P](u, u) with P(u,v) = @(u).

Recall that the spectru®p(P) of a linear operatoP acting on a Banach spaékeis the set of complex
numbersA such thatld — AP in not invertible. Such a spectral valdemay be either an eigenvalue
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(i.e. Id — AP is not injective) old — AP is not surjective.The spectral radiR§P) is the largest modulus
of an element oSP). An operatorP is compact if the elements @P) \ {0} are eigenvalues of
finite multiplicity. An operatorP is quasi-compact if there exists<0e < R(P) such that the elements of
SHP)\ B(0,¢) are eigenvalues of finite multiplicity. The smallest siadh called essential spectral radius
andSpP)NB(0,¢) is called essential spectrum.

A(s)

Eigenvalues

Fig. 3: Spectrum of a quasi compact operator

Remark that condition (d2) ensures that the opei@tas well defined forg (s) > yon bounded functions.
Condition (d2) together with Taylor equality ensure thaéi@orsGs are well defined forg (s) >y on
bounded functions.

Also, it is easy to see that:

GEP(xX) = 5 HR(xX)P(h(x), h(X)) Ly, (% X),
hET

whereHy, is the secant function associatedhtoln our setting, the relation between Dirichlet series and
Ruelle operators is given by the following proposition.

Proposition 2.2 For all R (s) >y, k>0,

Ner1(F,8) =3 [am—bm/°G<L(am, bm).
meM

[F(x) —F()|

with L(x,X) = X ¥
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Proof. — For anyme M, we have:

GeL(am,bm) = > Hi(@m,bm)L3(h(am), h(bm))
he

(am,bm)gthJh

_ |IF (h(am)) — F (h(bm))[*®
WeZ, |am — bm|*
amely,

_ _ Yoty
heZy |am - bm‘s
amely

(remark that{h(am), h(bm) } = {@hohy, Bhony, }). Now, anyh € £, 1 may be uniquely written as = ho hy,
for someh € £, andme M. O
Our main theorem extends B. Vad results to general Markov dynamical sources.

Theorem 2.3 Consider a general dynamical Markov source. There ex{sf > 0, ®(s) > 0and0 <
p(s) < 1 three analytic functions on a complex neighborhood of tHelime {s< R / s> y} such that for
any k> 1,

A(F,5) = N(9) (@(s) +O(p(9))) - (2.2)

A(s) is the dominant eigenvalue o&@n a suitable functional space.

A(F,s) is analytic onR® (s) > 1 and has a simple pole ats 1.

The variable C follows asymptotically a geometric law.

If A”(1) — N (1)? # 0 then the variabldog/y follows asymptotically a normal law. MoreoveY! (1) —

N (1)2=0ifand only ifthe map T is conjugated to a piecewise affine mitipagual slopes, the conjugacy
is C1HP on each .

Either 1 is the only pole of\(F,s) on R (s) = 1, in that case

or the map T is conjugated to a piecewise affine map with slopéise formak, a > 1, k € Z, with
conjugacy G*HP on each k. In that case, there exist A, B,

A B(x) < 5

X X
Theorem 2.3 is derived from dominant spectral propertiegeoferalized real Ruelle operators. We will
prove that these operators admit a unique maximal eigeavdia this aim, we use Birkhoff cones and
projective metrics ((Bil), (Bi2)). These techniques haeerbintroduced in dynamical systems by P.
Ferrero and B. Schmitt ((F,S)) and have been widely used bgpmijcians to study Ruelle operators in
many different situations. Here, we will use these techeéqto prove that both operatdés andGs are
quasi-compact and have a unique and simple dominant eigenvar reals > y. We will give the proofs
for Gg, the proofs forGs may be obtained in the same way. Even for the operd@grsur setting is not
covered by previous works (see for example (Br), (M), (S)).
Of course the spectral properties of the operat@ysand Gs depend on the space on which they act.
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Because the system is not assumed to be complete (i.e. wetdssumely, = | for all me M), the
operatorsGs and Gs do not act on continuous functions. Legw(l) be the space of functions that are
bounded and Lipschitz continuous on edghwith bounded Lipschitz constant. Denote byc | x |
the union of all set$y, x I, and letLpw (1) the space of functions of, that are bounded and Lipschitz
continuous on each, x I, with bounded Lipschitz constant. In both cases Ejpwill denote the sup of
the Lipschitz constants on thg's or on thely, x I's. These spaces are endowed with the norm:

11l = [l + Lip(f).

It is easy to see (and will in fact follow from Lemma 3.2) ti@&g(resp.Gs) acts onLpw (1) (resp.Lpw(1)).

Theorem 2.4 For real s> vy, the operatorsGs (resp. G) act on Lyw(7) (resp. Lpw(l)), they are quasi
compact and have a simple dominant eigenvalue. This dormn@igenvalue\(s) is the same foGs and
Gs. The corresponding eigenvectors are strictly positive belng to Low() (resp. Low(l)).

We postpone the proof of Theorem 2.4 to the end of the papers@etion 5). Let us show how to use it
to get Theorem 2.3.

3 Analysis of the parameters of the source

3.1 Preliminary results

The following lemma is an easy application of the derivatabrain rule, (d3) and the fact that i},
me M ared contractions withd = supy,c 4, 0m < 1.

Lemma 3.1 For allk € N*, forallh € £y, X,y € Jn,

N'(x)  A(d+A)
My = 15

Applying the integral Taylor formula at order 1 Ip the Taylor formula at order 1 ¢ and Lemma 3.1
gives: for allk e N*, forallh € £, X = (x,X),Y = (,Y) € Jp X Jn,

<1+4d(X,Y)B, (3.1)

whered(X,Y) = [x—y|+ X —Y]|.

The following lemma proves that the operat@s R (s) > y satisfy a “Doblin-Fortet” or “Lasota-Yorke”
inequality. We are going to use a result by Herthion ((H)) to conclude that they are quasi-compact for
some comples, R (s) >y. We could also use it to conclude thag are quasi-compact for real> y then

it would remain to prove that the dominant eigenvalue is uaignd simple. This can be done “by hand”
but we have preferred to give a self contained argument pgavi the same time the quasi compactness
and the dominant spectral property (see section 5).

Lemma 3.2 For all s, R (s) = 0 >, there exists K> 0 such that for all fe Lpy(7), forallne N,

Lip(Gsf)

IN

8"Gg 1l Lip(f) +KIIGG| ]l 3.2
8"|Gg1le Lip(f) +KI|GG1le [ ]loo-

IN
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Proof. — LetX = (x,X), Y = (y,Y) belong to the samig, x Ir. In that case, the sefh / |h| =nandX e
JhxJh} and{h/|h| =nandY € J, x J,} are the same. We compute:

GIf(X)=Gst(V)l = % [Ha(X)[°[f (h(x),h(x)) = f (h(y),h(y))]
heLn

© s I () -1
BLip(F)dX.YV)GRDX)
+0Bd(X,Y)(1+ |0 —1|B)Gg(|f|)(Y),

IN

(we have used (3.1)).
This gives the result witk = oB(1+|o — 1|B). O
Let us state nnion’s theorem and show that we can apply it.

Theorem 3.3 ((H)) Let(B, || - ||) be a Banach space, lét| be another norm on B and Q be an operator
on (B, | -||), with spectral radius RQ). If Q satisfies:

1. Qis compact fron(B, || -||) into (B,]-|),

2. for all ne N, there exist positive numbers, Bnd 1, such that r= Iiminf(rn)%

f € B,

< R(Q) and for all
IQf]| < Rl f[+ral/ ]|

then Q is quasi-compact and the essential spectral radilessthan r.

We will use this theorem witB = L (1) and|- | the sup norm. According to Lemma 3.2, in order to apply
Theorem 3.3, we have to prove that the opera@yare compact froniLpw(1), || - ||) into (Lpw(1), ]| ||e)-

In other words, consider a sequeriég)nen, fn € Lpw(7) with || f,|| < 1, we have to prove that there exists
a subsequenag such that the sequen¢€sfy,, ) converges for the sup norfn ||.. This will follow from

the following remark.

Remark 1 Condition (d2) is equivalent to:

lim sup Z o, =0. (3.3)

‘QHQ: ,QCM XEl meaf, xem
inite mzQ

Lemma 3.4 For all s such that® (s) > v, Gs is compact from{Lpw(1), || - ||) into (Lpw(1), ] - ||e)-

Proof. — Let (fn)nen, fn € Lpw(I) with || fa]| < 1, restricted to each, x Im the functionsf, are uniformly
equicontinuous. We may apply Ascoli's theorem on ekg¢hk I, and use a diagonal principle to find a
subsequenaog, such that the sequendg, converges to some functidnuniformly on eachim x I. Let us
prove thatGsf,, converges uniformly t6&sf. Denotes= o +it, let X = (x,x) € I andQ a finite subset
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of M,
|Gs fn (X) — Gsf (X)]

HR(X) (fay (M (%), hin(X)) = £ (hin(X), him (X))

meM
XeImxJIm

> HR(X) | fa (%), hm(X)) = f (An(x), hm(X)) |
meQ,

+ ; HR(X) | fiy (hm(X), Bn(X)) = £ (hin(X), (X)) |
mzQ

XeJm

IGolllw sup [fa(X)—f(X)[+2 5 &y
meQ,

Xelmxim memn{éé@m

IN

IN

(we have used thdtfy||« < 1 and Taylor equality). Fix > 0, chooseQ C M, Q finite, such that
; 39, < €, now chooség such that foik > ko,
mZQ,

XeIm

sup |fp(X)—f(X)|<¢
XETri%m

(this can be done because the convergence is uniform ongach, andQ is finite). We have:
[Gsfn (X) = Gst(X)| < &([|Gollle +2).

In other wordsGsfn, goes toGsf uniformly. O
Now the following result is a simple consequence of Theoredn Bor anys, R(s) denotes the spectral
radius ofGs.

Proposition 3.5 Let R (s) = 0 >y, either Rs) < 8R(0) or Gs is quasi-compact.

1
Proof. — We have thaR(0) = lim |Ga1]|&. Thus

Sl

liminf (8"|GR4)lw) 7 = 8R(0).

The result follows. |
Let use use Theorem 2.4 and Proposition 3.5 to obtain spectperties ofGg for complex parameters
S.

3.2 Spectral properties for complex parameters s and properties of Dirichlet
series

For reals >y, by Theorem 2.4, we have that for ak¢ N, f € Lpw(1),

GKf = AK(s) (ns(f)+§f),
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wherefls is the spectral projection on the maximal eigenvalue &ni$ an operator ot.py(/) whose
spectral radius strictly less thaiis) and such tha®so Mg = Mso S;= 0. Now Proposition 2.2 gives:

Aia(F9) = Y [an—bml"GEL(am, br)
meM

= 3 [am— bl () (Ms(L%) (@, br) + SEL(am, b))
meM

= W (S + 0 )

With @(s) = 5 e ar [am — bm[*T1s(L®) (am, bm) andp(s) the spectral radius & overA(s). Remark that we
have used that

z |am — bm|®
me M

converges which follows from (d2). Thus we have proved (8fZJheorem 2.3 for rea. The fact that it
holds on a complex neighborhood®# y follows from perturbation theory (see for example Kato (K))
We now prove Proposition 8, Proposition 9 and PropositiofL(/) in our context. Remark that her
proofs are based upon Fredholm determinant theory thus wetbause others arguments. Also, some
changes are due to the fact that we work with functibrikat are continuous on eatgh but not onl. In
particular, in general there does not exist | such thatf (x) = sup f.

Proposition 3.6
1. The function s+ A(s) is strictly decreasing along the real axissy.
2. On each vertical lineg (s) = o, we have Rs) < A(0).

3. If R(s) = A\(0) for s= o + it then Gs has an eigenvalud = €2A(0), a < R that belongs to the
spectrum of G

Proof. — ¢ From (2.2), we deduce that:
A(s) = lim A(L,9)k.
k—o0

Since for allme 9, hy, is ad-contraction, we deduce:

Als+u) = 5 [l
he Ly
< FH<dvy 5.

Thus,A(s+u) < 8"A(s) and we have proved item 1.

To prove item 2, it suffices to remark that fore Lpw(1), [|GKf||e < [|GE f||. This together with Lemma
3.2 givesR(s) < R(0) =A(0).

Finally, if R(s) = A(o) then by Proposition 3.5, the operatBk is quasi compact and thus admits a
eigenvalue\ = €2 (o) of modulusA(a). Let Ws be such thaGsWs = AWs ands(x) = Ws(x,X). Then
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quJs = )\qu- O
Let us study the spectral properties®ffor R (s) = 1. Let us remark that for any distributiéh we have
(see also Proposition 5 in (V)),
A(F,1)=1.
ThusA(1) =1.
Proposition 3.7 Let R (s) = 1, the operator may behave in two different ways.
1. Either for all s# 1, R (s) = 1, R(s) < 1 (the aperiodic case),

2. or the set of £ R such thatl belongs to the spectrum & is of the form ¢Z for some § (the
periodic case). In that case, the map T is conjugated to aepitse affine map with slopes of the
formak, a > 1, the conjugacy is P on each },. Moreover, there existsy < 1 such that on the
strip {0 < R (S) < 1} the operator(l — Gs)~* has no pole.

Proof. — Lets= 1+ it and assume that 1 belongs to the spectrui@f;. Then using Proposition 3.6
we have that there exisfse Ly (1) such thaiGsf = f. Let us prove thatf| is an eigenfunction fo6;
with eigenvalue 1. We have

] =1Gsf| < Galf]. (3.4)

Recall that the Lebesgue measure is invarianGpwo that

/G1|f|(x)dx:/\f|dx
| |

As a consequence, inequality (3.4) must an equality. Nowabse of Theorem 2.4, 1 is simple as an
eigenvalue ofG;. Thus, letf; > 0 be a dominant eigenfunction &;. Let p(x) = %(XX)) multiplying if

necessaryf; by some constant, we may assume tpats 1. Following B. Valke’s proof of Proposition
9, we obtain that for aline M, x €1,

()" Mo () = H(X). (35)

Reciprocally, lett be such that there exists a functiprsatisfying (3.5) for allme 2 thenf = - f;
satisfiesGy i f = f.

In other words, we have proved that 1 belongs to the spectf@a g if and only if there exists a function
u satisfying (3.5) for alime 9. This implies that the set of reabuch that 1 belongs to the spectrum of
G1.it is a subgroup oR: if

()™ e 0 hin(X) = (%) and iy ()" b 0 hin(X) = i (%)

() (f:) o hn(x) = (f:) ).

It cannot accumulate 0 because of the analyticitg-ef A(s) nears= 1. Thus it is of the formpZ.
Equation (3.5) may be rewritten as:
T/(X) _ (p(X) ak(X)

S @oT(x)

then
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where@ € Lpy(1), @ > 0 andk(x) € N is constant on each,. Indeed,u= €® where® is a real function
which belong td_pw(!) (recall thatu = fil € Lpw(l)). Equation (3.5) becomes:

logT'(x) = 8 _

wherek(x) € Z and is constant on ea¢h. Takep= exp(?) anda = exp(%”).
Now, we may find constart, anddy,, me M such that the function

X
g(x) = cm/O GOt + dm X € Iy

is continuous, mapkinto I, is invertible, is derivable on eadh, with Lipschitz derivative on each,.
DerivatingT = go T og~! we obtain thafl is piecewise affine with slopes-.

Let us prove the existence of a strip free of poles. Therasyis o1 < 1 such that for ang €]oy, 1], the
operatorGy has no eigenvalue of modulus 1. L@t < 6p < 1 being such thadA (o) < 1 for all o > 0p.
Let o €)oo, 1] ands= o +it. Proposition 3.5 implies that eith&s is quasi-compact dr(s) < 1 (in this
last case 1 does not belong to the spectrursgf So assume thdbs is quasi-compact. If 1 is in the
spectrum ofGg, then it is an eigenvalue @ (Theorem 3.3) and dBs. There exists € Lyw(l) such that
Gs(f) = f. Equation (3.5) implies that/|'T = expz'km Now, a simple computation shows thag"

is an eigenfunction fo&g with eigenvalue exﬁ"‘o—m which is a contradiction. |
We now prove the log-convexity &f— A(S). Such a property is necessary to study the random variable
log /.

Proposition 3.8 The function s- logA(s) is convex. Either it is strictly convex or it is affine. In thast
case, the map T is conjugated to a piecewise affine map witeskll equal. The conjugacy is¢P on
each .

Proof. — We have to prove that fdre [0,1] ands >y, s >,
Ats+ (1—1)) < A()'-A(S)F (3.6)

Consider the function
W= fisrqns(fs) (fg) "3

where f; denote a dominant eigenfunction 8. We may normalizep to have supp = 1. Consider a
sequence;, € | such thatp(x,) — 1.

Mts+(L=)8) fispa e (n) = 3 IW]00)ST 0 fig 1 g (h(xa)) (3.7)
he v
< S I 0) S Es(ha) - 1] () % £ (B
he
t 1-t
< (z h’|<xn)5fs<hxn>> -(Z |h’(xn>§fg<hxn>> (3.8)
he M he M

= A9 fs(xa) - M) g ()t
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(3.8) follows from Hblder inequality. Taking the limit when — o gives (3.6). A being analytic, if
equality holds in (3.6) for somsg s, t then log\ is affine. In this last case, it remains to prove that the
mapT is conjugated to a piecewise affine map with slopes all equal.

Assume that log is affine then there exists< 1 such thah(s) = a> . Chooses, 5, t such thats+ (1 —

t)s = 1, let us show thaf! - fs}*t is a dominant eigenfunction @;. Holder inequality implies that

Gy(fe- Y < fi-f3t.

As in the proof of Proposition 3.7, we use that leaves Lebesgue measure invariant to conclude that
Gy(fl-f3") = fL-f3". As a consequencel = 1 and equality holds in (3.7) for al € I. This implies
that there exists a functidn: | — R™ such that for alh € 4/,

IF 09[> fs(hx) = KO () s (0.

fs(x)

Summing oveh € M and notingp(x) = ()
¢

we get that

o) = k(05 S

and thenT satisfy a cocycle relation:

W (x)[5~S @o h(x) = ;\\((SS,))cp(x) forall he . (3.9)
Following the end of the proof of Proposition 3.7, we con€ldlatT is conjugated to a piecewise affine
map with slopes all equal té. |

Remark 2 By the way, the cocycle argument used in the proofs of Propons3.7 and 3.8 resolve Con-
jecture 1 of B. Vake:

A source is similar to a source with affine branches if and dhityis conjugated to a source with affine
branches. The conjugacy iS€&'P on each h,.

Figure 4 shows relations between sources conjugated tewise affine sources.
Now, with propositions 3.6, 3.7, 3.8 the analyses of parameatf the source done in sections 7, 8, 9 of
(V) apply to our setting without any change. This concludesyroof of Theorem 2.3.

4 Examples of general Markov sources.

It is straightforward that complete holomorphic sourcethwiounded distortion ((V), (C,M,V)) are gen-
eral Markov dynamical sources.

4.1 Some classes of example.

Let us give some large classes of examples satisfying owthgpis. The simplest class is given by finite
aperiodic Markov maps. Let us recall that a Markov map (i.edymamical system satisfying (d4)) is
strongly aperiodic if there existd € N such that for any, j € M, for anyn > M,

TNl £0.
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Periodic sources Log-affine sources

Sources similar to a source with affine branches

Fig. 4: Exceptional sources

The strong aperiodicity condition is natural in the contekMarkov maps (in some sense it means that
the systems is not decomposable). It may be rewritten ind@frinverse branches as: there exits N
such that fom > M, for anyi, j € M, there existdr € L, with |; C J, andh(Jp) C Ij. Let us show that it
suffices to ensure (d5) if the alphabet is finite, if the nunddemages is finite or if the system has large
branches.

Example 1 If M is finite and the system is strongly aperiodic then it defingsreeral Markov source.
Indeed, the only point to verify is (d5). The aperiodicitydition implies that for all > M, all x € | and
me M, there exists E L, with xe J, and k C Im. Thus we have: form M, xel,n> M,

51, (hx) > inf n3.

hean Nhdim (hx) > haﬂﬂh
Xedp

Remark that Markov chains on a finite alphabet may always berodd from an affine dynamical source.

Thus, aperiodic Markov chains are general Markov sources.

Example 2 If the set{Jy, / me M} is finite and the system is strongly aperiodic then it defingsreeral
Markov source provided (d2) and (d3) are satisfied.

Indeed, let ], ..., J, be the images of the system. The strong aperiodicity comditiplies that for all
n>M,allme M andall j=1,...,k, there exitsn € L such thatk](Jij) C Im. Now,

Milin(h¥) = inf 0j -
h =Ly

We would say that a source has large images if

inf {|Jm|} > 0.
inf (|3}

Example 3 If the source has large images and is strongly aperiodic theafefines a general Markov
source provided (d2) and (d3) are satisfied.

It suffices to remark that if the source has large branchesissttongly aperiodic then there exists finitely
many 4, whose union is I. Then the same argument has above showsi®)as Gatisfied.
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4.2 A general Markov source with small branches.

For0O<6<1,letC= lfle. Consider a partition of into intervalsly, with |I,| = C8™, m > 0. Consider
the piecewise affine map such thafT (Iom) = Im, m> 1, andT (Izmy1) =1, m> 0. We have for alim,

Nm = Om anddom = 8™, Som.1 = 82™ L. Condition (d2) is satisfied. Let us show that (d5) is alss&at!.
If m=2%2p+1),k>0thenforallxel,

S Milip(h(x) > 67 1eAZPHL . g2(2p+1).

heLiyy
Xedh

This source is represented in Figure 5.

Fig. 5: A source with small branches

From now on, we have emphasized that our hypothesis alloeusgeometric behavior of the branches,
let us now give an example showing that relaxing the holommiarpxtension hypothesis of (V) is a sub-
stantial gain.

4.3 A general Markov source with no extension on a complex neighborhood.

Consider the source whose alphabé¥tsand inverse branches are given by

(%) = 2+ CalfnX) ~ f(0)



18 F. Chazal et V. Maume-Deschamps
wheref, : [0,1] — R is defined by

1 1 2Iog(x\an 1)
CxyN+1 nxyn+1) NG

fn(x) =

andC, is a constant defined by
1 1 ) 1 B 1
n n+1"f,(1) - f(0)  2(n+1)y/n(y/n—log(y/n+1))

For alln € N, the brancth, maps! = [0, 1] onto interval[ -1~

Co=(

T n] The derivative ohy is

X+ =

/ Cf! C Vi
h = f —= —_—
n(X) n(X) (X+ %)2

andhj,(x) =0 if and only ifx=i//n or x= —i/¥n. Hence Ruelle operat@s cannot be extended to a
complex neighborhood d0, 1]. Note that for anyn,

% < hi(x) < 8, forall x € [0,1]

with &, = Cy4/n and forn sufficiently large,

on < an f forall x € [0, 1].

It follows that there existg < 1 such that the seri€g,y- O converges orR (s) >
Now for anyy € [0,1],

Cn 2y—1

Vi (y+ L)3

2 1

n R

IN"n(y)| =

IN

%\5 %\

IN

¢ From previous inequalities, it results that for any < [0, 1],

o) 8
M| = meyn =0

so that the source is a general Markov dynamical source.

IN

5 Spectral properties of real generalized Ruelle operators

The aim of this section is to prove Theorem 2.4. Let us redginitions and properties of cones and
projective metrics (see (L) or (L,S,V) for a complete prea&an).
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5.1 Cones and projective metrics

Definition 3 Let?’ be a vector space. We will call convex cone a subiset?’ which enjoys the following
properties

(iycn—Cc=0

(i VA>0AC=C

(iii) Cis a convex set

(iv)vf,ge C,VaneR, (ap—a, g—anf € C)= (g—af € CU{0}).

We now define the Hilbert metric ofi :

Definition 4 The distance d(f,g) between two points, § in C is given by

a(f,g) = supA>0g—AfecC}

B(f,g) = inf{u>0uf—-geC}
de(tg) = logh 9

where we taker = 0 or B = co when the corresponding sets are empty.
Remark 3 In the sequel we will use th( f,g) = a(g, f).

The distanceal is a pseudo-metric, because two elements can be at an irfisitaice from each other,
and it is a projective metric because any two proportiorainents have a null distance.

The next theorem, due to G. Birkhoff (Bi2), shows that eveogifive linear operator is a contraction,
provided that the diameter of the image is finite.

Theorem 5.1 Let 7 and 7% be two vector spaceg; C 14 and (G, C V5 two convex cones (see definition
above) and L 171 — 7% a positive linear operator (which implies(L1) C (). Let d; be the Hilbert
metric associated to the cong. If we denote

A= sup d,(f.9) ,
f.geL((y)

then
de,(Lf,Lg) < tanh(j)dcl(f,g) vVi.ge (1

(tanh(e) = 1).

Theorem 5.1 alone is not completely satisfactory: givenree@and its metriad,-, we do not know if
(C,d¢) is complete. This aspect is taken care by the following lemntach allows to link the Hilbert
metric to a suitable norm defined @n.

Lemma 5.2 (L,S,V) Let| - | be a norm on¥’ such that

vige? f-g g+feC=|g|<|fl
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and let? : ¢ — R™ be a homogeneous and order preserving function, i.e.
vfeC,VAeRT L) = NU(T)
vf,geC g-fecC =¢f) <o),
then
vi.ge C U(f)=£(g) > 0= ||f —g|| < (e%!"9 — 1)min([|f], |gl|)
5.2 Proof of Theorem 2.4

We are now going to use Theorem 5.1 and Lemma 5.2 to prove &medrd. We will prove the quasi
compactness of the operatd@sg and leave to the reader the proof fas.
Lemma 5.3 There exists a continuous linear for (resp./A2) on Lpw(l) (resp. Lyw(7)) and a positive
numberA1(s) (resp.Az(s)) such that for fe Lyw(l) (resp. fe Lpw(1)),

A1(Gsf) = Ai(s)- T (resp.Aa(Gsf) = Az(s) - ).
These linear forms are indeed measures.

Proof. — Let Lpw(1)* be the topological dual df (7). LetK C Lpyw(Z)* be the positive formg\ of
Low(1)* such that\(1) = 1. DefinePs which mapsK into itself by:

NA(Gsf)

A(Gsl)’

(remark that the positivity condition (d5) implies that(6k1) > 0). K is convex and weakly compa@s
is continuous on it for the weak topology. Then the Schadgehonoff theorem ((D,S)) implies that it
admits a fixed poinf\;.

Restricted to eachy, x I, A2 may be identified to a measure (by Riesz representationghgoin par-
ticular, we may computéz(1,«i1,,)- To conclude that it is a measure, it suffices to prove that:

Aoy Lipsim) = Y A2(Lipxin)-

meM meM

Ps/\(f) =

This will follow from:

|Q|—00 QCM

lim /\2( ; l|m><|m) =0.
Qfinite mEQ

We have:
N (G 1
No( g 1|m><|m) _ 2( S(Zf;ﬁQ Imxlm))
mZQ 2

andAz (Gs(¥ mzq Limxim)) < SUPGs(Y mzq Limxim)- Now, for all X = (x,X) € I,
Gs(g Lpxam)(X) =y Ha(X) ; iyt (P (%), hn (X))
mZQ. mzQ,

nem
XeInxdn

= Hn(X)
mzQ
XeImxIm
5.

mgQ
XeIm

IN
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The result follows from (3.3). This proves the lemma@y. The proof forGs is the same. O
Let Q be a finite subset aM such that:

sup § O, < A20.

Xel mgq
XeIm

The existence of such a subsgtollows from (3.3).
Fora>0,b> 0, letCy, be the set of function$ on I such that:

o felpw(l),

e V(uv)el, f(uv) >0,

o VYme M, Y(u,u) =U,(V,V) =V € Jnx I, f(uu) < UV f(v, V),
e forallm¢ Q, for (u,v) € Im x Im, f(u,v) < bA(f).

Remark thaCap C Lpw(7) is a cone.

Lemmab.4

1. Forallme M, Ap(Im x Im) > 0.

No(T)
. < ai.
2 ForfeC,mEfM,XEllem’f(X)—ez/\2(|m><lm)

Proof. — To prove Item 1, remark that (2.1) and Taylor equality imgigttfor allm € 2, there exists
N € N such that
)i(r;fIG’s\'l|mX|m(X) > 0.

NOW, A2 (Lxim) = A5 A2(GN L) > 0.

Item 3. directly follows from the definition of the cone ane ghositivity of A,. |
Lemma 5.5 For any s>y, for anyd < € < 1, there exists @> 0, by > 0 such that for all & ag, b > by
and for any ke N*, GX maps Gp into Geg5p.

Proof. — Let f € Cyp. Becaus&s, s C Cyp, it suffices to proof the lemma fér= 1. For anyX = (X, X),
Y =(Y,Y) € lmx Im, we have:

Gsf(x,X) f(hm(X),hm(X)) HZ(x,X)
Go (1Y) = mest (). Fnly)) FS.Y)’

Becausef belongs taC, b, and for eachm € 9, hy, is ad-contraction, we have:

(. Pn()) ooy,
W) ey =
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(3.1) implies that:
Ha(X.X) _ B
X) < esBaXY),
HR(y.Y) ~

. B
S0,Gsf (X) < 24X )Gt (Y) provideda > %
Now, letX € Im x Iywithm¢ Q. Letc:= infneq A2(Im X Im), € > 0 because of Lemma 5.4 and the fact
thatQ is finite. We have:

Gsf(X) = Z Hr%(x)f(hm(x)»hm()(,))
XeTring
+ z HS(X) f (hm(X), hm(X))
M7,
XeImxIm
ez.a
< —N(F)||Gsl]jw +bA2(f)sUP § O
c Xel m Q
XeIm
Now, we use thaf\y(f) = N2(Gsf) and since supy 3, < A20, we get:
)\2 xel mgZa
xedm
e%3||Gsl
Gt () < Aa(Gsf) (Lo 4b6) < bEL(GS1)
2
providedb > @!Sﬁ%‘; O

Lemma 5.6 Let a> ap, b > bg, there exists M such that fork M, the projective diametek of G'S‘Ca,b
into Gy is bounded.

Proof. — Let f,g € Cg,5p, l€t B > 0, we have thaf —g € C, if and only if:

9(x.x)
f(x,X)

edXYg(y,y) —g(x.X)
eadXY) f (yvy’) - f(X, X,)

m 1= V(X) for all (x,X) € Im x Im, ¢ Q.

1. B>

for all (x,x') € I.

2. B> =u(X,Y) forall (x,X),(y,y) € I.

3. B>

The quantityu(X,Y) may be rewritten as:
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using thatf,g € Cg, ¢, We get:

gly,y) e2d*Y) — g-akd(XY)

MY S ) @ — e
< g(yvy) (14€) 1+E
- fyy) 1-¢&

Moreover, because for a¥l € Iy x Iy, m¢ Q, 0 < f(X) < b&A,(f), we have that(X) < #ﬁ_a.

Remarking that
su 1+d)
(v,y) EI f(y7y/) E (y,y)

we have proven that if,g € Cg, ¢, then

9y-Y) aarel+€  N2(9)
B(f.0) <maxLysqu[ oy 1_5,/\2”)(1_&)].

The same computation (recall tratf,g) = B(g, f)) gives:

, 9y.Y) aaigl-¢€ /\2(9)(1—5)}
a(f,g)>min| inf e , .
(192 minf S0 e w9 MR
One sees that we have to control the quantitieg $umf; f with respect to\,(f). This cannot be done
for all functions inCg, ¢p, but it can be done fo@'s‘f for f € Cp andk > M, M large enough.
Lete = 2?126‘ Let Qbe a finite subset aM which containQ and satisfies:

1
mzQ

Sublemma 5.7 For all f € Cyp, there exists ne quch that for all X& I x I,

£(X) > ().

Proof. — If the sublemma where false then for atle Q, there would existXmn € Im X Iy such that
f(Xm) < N2(f). Then, we would have:

No(f) = 5 No(fhipay)
meM
= z No(f1x1m) + z Ao (fLipxim)
meqQ méZQ,
< Zf Xim) €321y, 1) + DAL (F) Z/\Z(llmxlm)
meqQ mZQ

Aa(f) < Ao(F)

< €2eNy(f) 5
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a contradiction. O
ChooseM > 0 such that,
inf inf 1, (h(x))Ni:=D>0
it inf 5 m(h00)N;
Xed
such aM exists because if (2.1) is satisfied forc QandN then (2.1) is also satisfied fon andkN for
all k e N*. SinceQ is finite, we may také/ a common multiple.

Sublemma 5.8 There exist constants;KK; such that for any k> M, for any fe Cy, forall X € 1,

KaA2(GKT) < GEF(X) < KiAo(GET).

Proof. — ¢From Lemma 5.5, we have thatfife Cy, thenG2f e Cyp for all pe N. So, it suffices to
prove the inequality fok = M.
SinceGY f € Cy ), we have for alX € I

GY (X) < Ap(GY'f) maxib, ?}-

Now, using Sublemma 5.7, we finty € Q such that forX e Iy X Iy, T(X) > €A2(f). Now, for all
Xel,

G (X) > eA2(F)GY' (L iy ) (X) > A2(F)eD.

So the sublemma is proved with

K1 = maxb, &) andK; = =5 0
2

LetK =log k!, A < 2K +2a(1+&) + 2log 1%, O

The following lemma shows that any functionlig,(7) may be pushed into the cofg.

Lemma 5.9 There exists K> 0 satisfying:
for any function fe Lpw(I), there exists Rf ) > 0 such that Rf) + f € Cypand R f) < Ks- [/ f]|.

Proof. — TakeR(f) satisfying:
R(f) > suplf],
R(F) > Lip(f) —ainf f'

a
R(f)ZSUPL_TnH- 0
We are now in position to prove th& is quasi compact and has a unique simple dominant eigenvalue
Letk = tanh%. Lemmas 5.5 and 5.6 and Theorem 5.1 give,m € N*,

de,,(GE™L,GI1) < K" Mdc,, (GI 11, Gsl) < AK™ L.

Now, apply Lemma 5.2 usinfj ||» andA; to get:

S Aanl )

[ee]

GImM Gl
AN

Gl
A

0
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is bounded:
Gsl
A==
B H A2
GN1

So, the sequen ASZ ) . is a Cauchy sequence (for the sup norm), thus it convergeste sunction
ne
Ws. This function satisfyiGsWs = AoWs and for anyf € Cy,

Now use again Lemma 5.2 to prove tﬁv

H G Gsl

[ee]

HGgf

-1
)\2 < DK™ Wyl ().

[oe]

—WsN\o(f)

Lemma 5.9 implies that for anf/ € Lpw(I),

— WAL ()] < AK"|Wgle (2K3+ 1) || F]. (5.1)

GIf
)\n

0

This, together with (3.2), proves that the operagaris quasi-compact and admitg as dominant eigen-
value. It is simple and the unique eigenvalue of maximal neglurhe proof is the same f@s. We will
denoteys the dominant eigenvector &s. We have

1
n

Sl

A2 = lim (GZ1(0,0))" andhs = lim (G11(0))

and the operatorGs andGs coincide on the diagonal, we conclude that=A; = A(S).
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