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Summary. We prove exponential inequalities inspired from [DP] to obtain esti-
mators of conditional probabilities for weak dependant sequences. This generalize
results from Csiszár ([Cs]). For Gibbs measures and dynamical systems, these results
lead to construct estimators of the potential function.

This paper deals with the problems of typicality and conditional typicality
of “empirical probabilities” for stochastic process and the estimation of po-
tential functions for Gibbs measures and dynamical systems. The questions of
typicality have been studied in [FKT] for independent sequences, in [BRY, R]
for Markov chains. In order to prove the consistency of estimators of transition
probability for Markov chains of unknown order, results on typicality and con-
ditional typicality for some (Ψ)-mixing process where obtained in [CsS, Cs].
Unfortunately, lots of natural mixing process do not satisfy this Ψ -mixing con-
dition (see [DP]). We consider a class of mixing process inspired from [DP].
For this class, we prove strong typicality and strong conditional typicality. In
the particular case of Gibbs measures (or complete connexions chains) and for
certain dynamical systems, from the typicality results we derive an estimation
of the potential as well as a procedure to test the nullity of the asymptotic
variance of the process.

More formally, we consider X0, ...., Xn, ... a stochastic process taking values
on an complete set Σ and a sequence of countable partitions of Σ, (Pk)k∈N
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answered my questions on weak-dependence coefficients. I whish also to thank
the referees of this paper for many interesting remarks and for the suggestion of
the proof of Corollary 1.2.9.
Keywords : Exponential inequalities, weak dependent sequences, dynamical sys-
tems.
AMS clasification : 37A50, 60E15, 37D20



2 V. Maume-Deschamps

such that if P ∈ Pk then there exists a unique P̃ ∈ Pk−1 such that almost

surely, Xj ∈ P ⇒ Xj−1 ∈ P̃ . Our aim is to obtain empirical estimates on
the probabilities :

P(Xj ∈ P ), P ∈ Pk,

the conditional probabilities :

P(Xj ∈ P | Xj−1 ∈ P̃ ), P ∈ Pk

and the limit when k → ∞ when it makes sense.
We shall define a notion of mixing with respect to a class of functions. Let C
be a Banach space of real bounded functions endowed with a norm of the
form :

‖f‖C = C(f) + ‖f‖,
where C(f) is a semi-norm (i.e. ∀f ∈ C, C(f) ≥ 0, C(λf) = |λ|C(f) for λ ∈ R,
C(f + g) ≤ C(f) + C(g)) and ‖ ‖ is a norm on C. We will denote by C1 the
subset of functions in C such that C(f) ≤ 1.
Particular choices of C may be the space BV of functions of bounded variation
on Σ if it is totally ordered or the space of Hölder (or piecewise Hölder)
functions. Recall that a function f onΣ is of bounded variation if it is bounded
and

∨
f := sup

n∑

i=0

|f(xi) − f(xi+1)| <∞,

where the sup is taken over all finite sequences x1 < · · · < xn of elements of
Σ. The space BV endowed with the norm ‖f‖ =

∨
f + ‖f‖∞ is a Banach

space.
Inspired from [DP], we define the ΦC-mixing coefficients.

Definition 1 For i ∈ N, let Mi be the sigma algebra generated by X1, ...,
Xi. For k ∈ N,

ΦC(k) = sup{|E(Y f(Xi+k)) − E(Y )E(f(Xi+k))| i ∈ N Y is

Mi − measurable with ‖Y ‖1 ≤ 1, f ∈ C1}. (*)

Our main assumption on the process is the following.

Assumption 1
n−1∑

k=0

(n− k)ΦC(k) = O(n).

Remarks 1 Assumption 1 is equivalent to (ΦC(k))k∈N summable. We prefer
to formulate it in the above form because it appears more naturally in our
context.
Our definition is inspired from Csiszár’s (which is Ψ -mixing for variables tak-
ing values in a finite alphabet) and Dedecker-Prieur. It covers lots of natural
systems (see Section 1.2 for an example with dynamical systems and [DP]
for further examples). Our definition extends Csiszár’s which was for random
variables on a finite alphabet.
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We consider a sequence (Pk)k∈N of countable partitions of Σ such that : almost
surely, for all j, k ∈ N, we have

for any P ∈ Pk there exists P̃ ∈ Pk−1 , Xj ∈ P ⇒ Xj−1 ∈ P̃ . (**)

For i, ` ∈ N, for P ∈ Pk, consider the random variable :

N `
i (P ) =

`+i−1∑

j=i

1P (Xj).

Our aim is to have quantitative informations on how close are the empirical

probabilities
Ni+n

i (P )

n to the expected value Qi+n
i (P ) := E

(
Ni+n

i (P )

n

)
. We are

especially interested in “large scale typicality”: k will grow with n. We wonder
also about “conditional typicality”, for P ∈ Pk, let

ĝn(P ) =
Nn+1

1 (P )

Nn−1
0 (P̃ )

n− 1

n
.

Our main result is that ĝn(P ) is a consistent estimator of the conditional prob-

abilities Qn(P |P̃ ) :=
Qn+1

1 (P )

Qn−1
0 (P̃ )

. This follows from an exponential inequality

(see Theorem 1.1.5). If the conditional probabilities Qn(P |P̃ ) converge when
k → ∞, we may obtain an estimator of the limit function. This is the case for
certain dynamical systems (see Section 1.2) and g-measures (see Section 1.3).
In these settings, we obtain a consistent estimator of the potential function.
This may leads to a way of testing the nullity of the asymptotic variance of
the system (see Section 1.4 for details).
Section 1.1 contains general results on typicality and conditional typicality
for some weak-dependant sequences. In Section 1.2, we apply these results
to expanding dynamical systems of the interval. Section 1.3 is devoted to
Gibbs measures and chains with complete connections. Finally, in Section 1.4
we sketch an attempt to test the nullity of the asymptotic variance of the
system.

1.1 Typicality and conditional typicality via exponential

inequalities

Following Csiszár, we wonder about typicality that is : how close are the

“empirical probabilities”
Nn+i

i (P )

n to the expected probability Qn+i
i (P ) ? This

is done via a “Hoeffding-type” inequality for partial sums.
The following Proposition has been obtained in [DP], we sketch here the proof
because our context is a bit different.
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Proposition 1.1.1 Let (Xi) be a sequence a random variables. Let the coef-
ficients ΦC(k) be defined by (*). For ϕ ∈ C, p ≥ 2, define

Sn(ϕ) =

n∑

i=1

ϕ(Xi)

and

bi,n =

(
n−i∑

k=0

Φ(k)

)
‖ϕ(Xi) − E(ϕ(Xi))‖ p

2
C(ϕ).

For any p ≥ 2, we have the inequality :

‖Sn(ϕ) − E(Sn(ϕ))‖p ≤
(

2p

n∑

i=1

bi,n

) 1
2

≤ C(ϕ)

(
2p

n−1∑

k=0

(n− k)ΦC(k)

) 1
2

. (1.1)

As a consequence, we obtain

P (|Sn(ϕ) − E(Sn(ϕ))| > t)

≤ e
1
e exp

(
−t2

2e(C(ϕ))2
∑n−1

k=0(n− k)ΦC(k)

)
. (1.2)

Proof (Sketch of proof). There are two ingredients to get (1.1). Firstly we
need a counterpart to Lemma 4 in [DP].

Lemma 1.1.2

ΦC(k) = sup {‖E(ϕ(Xi+k)|Mi) − E(ϕ(Xi+k))‖∞ , ϕ ∈ C1} .
We postpone the proof of Lemma 1.1.2 to the end of the proof of the propo-
sition.
Secondly, we apply Proposition 4 in [DD] to get : (let Yi = ϕ(Xi)−E(ϕ(Xi)))

‖Sn(ϕ) − E(Sn(ϕ))‖p ≤
(

2p

n∑

i=1

max
i≤`≤n

‖Yi

∑̀

k=i

E(Yk|Mi)‖ p
2

) 1
2

≤
(

2p

n∑

i=1

‖Yi‖ p
2

n∑

k=i

‖E(Yk|Mi)‖∞
) 1

2

≤
(

2p

n∑

i=1

bi,n

) 1
2

(we have used that by Lemma 1.1.2, ‖E(Yk+i|Mi)‖∞ ≤ C(ϕ)ΦC(k)). To ob-
tain the second part of inequality (1.2), use ‖Yi‖ p

2
≤ ‖Yi‖∞ ≤ C(ϕ)ΦC(0)).

The second inequality (1.2) follows from (1.1) as in [DP].
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Proof (Proof of Lemma 1.1.2). We write

E(Y f(Xi+k)) − E(Y )E(f(Xi+k)) = E(Y [E(f(Xi+k)|Mi) − E(f(Xi+k))])

≤ ‖E(f(Xi+k)|Mi) − E(f(Xi+k))‖∞.

To prove the converse inequality, for ε > 0, consider an event Aε such that
for ω ∈ Aε,

|E(f(Xi+k)|Mi)(ω) − E(f(Xi+k))| ≥ ‖E(f(Xi+k)|Mi) − E(f(Xi+k))‖∞ − ε,

and consider the random variable

Yε =
1Aε

P(Aε)
sign(E(h(Xi+k)|Mi)(ω) − E(f(Xi+k))).

Yε is Mi-measurable, ‖Yε‖1 ≤ 1 and

E(Yεf(Xi+k)) − E(Yε)E(f(Xi+k)) ≥ ‖E(f(Xi+k)|Mi) − E(f(Xi+k))‖∞ − ε.

Thus, the lemma is proven.

We shall apply inequality (1.2) to the function ϕ = 1P , P ∈ Pk.

Corollary 1.1.3 If the process (X1, . . . , Xn, . . .) satisfies Assumption 1, if
the sequence of partitions (Pk)k∈N satisfies (**) and for all P ∈ Pk, 1P ∈ C,
then, there exists a constant C > 0 such that for all k ∈ N, for all P ∈ Pk,
for any t ∈ R, for all i, n ∈ N,

P

(∣∣∣∣
Nn+i

i (P )

n
−Qn+i

i (P )

∣∣∣∣ > t

)
≤ e

1
e e

“
− Ct2n

C(1P )2

”

. (1.3)

Proof. It follows directly from (1.2) applied to ϕ = 1P and Assumption 1.

Let us denote by P̂
n+i
i (P ) =

Nn+i
i (P )

n . The following corollary is a counterpart
to Csiszár’s result (Theorem 1 in [Cs]) in our context.

Corollary 1.1.4 There exists C > 0 such that for all P ∈ Pk for which(
Qn+i

i (P )

C(1P )

)2

n ≥ ln2 n, we have :

P

(∣∣∣∣∣
P̂

n+i
i (P )

Qn+i
i (P )

− 1

∣∣∣∣∣ > t

)
≤ e

1
e e(−Ct2 ln2 n).

Proof. We apply Corollary 1.1.3 with t ·Qn+i
i (P ) instead of t. We get :

P

(∣∣∣∣∣
P̂

n+i
i (P )

Qn+i
i (P )

− 1

∣∣∣∣∣ > t

)
≤ e

1
e exp

(
−Ct

2(Qn+i
i (P ))2n

(C(1P ))2

)
.

The result follows.
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Remark 1 Let us consider the case where C = BV . If the partition Pk is a
partition into interval, then for all P ∈ Pk, C(1P ) = 2.

We are now in position to prove our theorem on conditional typicality. Recall
that

ĝn(P ) =
n− 1

n

Nn+1
1 (P )

Nn−1
0 (P̃ )

.

Theorem 1.1.5 Let the process (Xp)p∈N satisfy Assumption 1, let the se-
quence of partitions (Pk)k∈N satisfy (**) and assume that if P ∈ Pk then
1P ∈ C. There exists K > 0 such that for all ε < 1, for all P ∈ Pk for which

Qn−1
0 (P̃ )

C(1P )
and

Qn−1
0 (P̃ )

C(1 eP )
≥ n− ε

2 ,

we have

P

(∣∣∣ĝn(P ) −Qn(P |P̃ )
∣∣∣ > t

)
≤ 4e−Kt2n1−ε

+ 2e−Kn1−ε

.

If the sequence is stationary, the result may be rewritten as :

P

(∣∣∣ĝn(P ) − P(X1 ∈ P | X0 ∈ P̃ )
∣∣∣ > t

)
≤ 4e−Kt2n1−ε

+ 2e−Kn1−ε

.

Proof. Fix R > 0, let us bound the probability

P

(∣∣∣ĝn(P ) −Qn(P |P̃ )
∣∣∣ > t

)

with the sum of the probabilities :

(1) = P

(∣∣∣P̂n+1
1 (P ) −Qn+1

1 (P )
∣∣∣ > t ·Qn−1

0 (P̃ )

2

)
,

(2) = P

(∣∣∣P̂n−1
0 (P̃ ) −Qn−1

0 (P̃ )
∣∣∣ > tQn−1

0 (P̃ )R

2

)
,

(3) = P

(
P̂

n−1
0 (P̃ )

P̂
n+1
1 (P )

< R

)
.

The terms (1) and (2) are easily bounded using Corollary 1.1.3 : we get

(1) ≤ e
1
e exp

(
−Ct

2n1−ε

4

)
(2) ≤ e

1
e exp

(
−Ct

2R2(n− 1)1−ε

4

)
.

It remains to bound the term (3). We have (recall that almost surely, Xj ∈
P ⇒ Xj−1 ∈ P̃ ) :
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P̂
n+1
1 (P )

P̂
n−1
0 (P̃ )

≤ n− 1

n

(
1 +

1{Xn∈P}

Nn−1
0 (P̃ )

)
.

So we have that
P̂

n+1
1 (P )

P̂
n−1
0 (P̃ )

< 2 unless if Nn−1
0 (P̃ ) = 0. Take R = 1

2 , we have :

(3) ≤ P(Nn−1
0 (P̃ ) = 0) and

P(Nn−1
0 (P̃ ) = 0) ≤ P

(
P̂

n−1
0 (P̃ ) ≤ Qn−1

0 (P̃ )

2

)
.

Apply Corollary 1.1.3 with t =
Qn−1

0 ( eP )
2 (of course our hypothesis imply that

Qn−1
0 (P̃ ) > 0) to get

(3) ≤ e
1
e e−Cn1−ε

.

These three bounds give the result (we have bounded e
1
e by 2).

1.2 Applications to dynamical systems

We turn now to our main motivation : dynamical systems. Consider a dynam-
ical system (Σ,T , µ). Σ is a complete space, T : Σ → Σ is a measurable
map, µ is a T -invariant probability measure on Σ. As before, C is a Banach
space of bounded functions on Σ (typically, C will be the space of function of
bounded variations or a space of piecewise Hölder functions, see examples in
Section 1.2.1). It is endowed with a norm of the form :

‖f‖C = C(f) + ‖f‖,

where C(f) is a semi-norm (i.e. ∀f ∈ C, C(f) ≥ 0, C(λf) = |λ|C(f) for
λ ∈ R, C(f + g) ≤ C(f) + C(g)) and ‖ ‖ is a norm on C. In addition, we
assume that the norm ‖ ‖ on C is such that for any ϕ ∈ C, there exists a real
number R(ϕ) such that ‖ϕ + R(ϕ)‖ ≤ C(ϕ) (for example, this is the case if
‖ ‖ = ‖ ‖∞ and C(ϕ) =

∨
(ϕ) or ‖ ‖ = ‖ ‖∞ and C(ϕ) is the Hölder constant).

We assume that the dynamical system satisfy the following mixing property :
for all ϕ ∈ L1(µ), ψ ∈ C,

∣∣∣∣∣∣

∫

Σ

ψ · ϕ ◦ Tndµ−
∫

Σ

ψdµ

∫

Σ

ϕdµ

∣∣∣∣∣∣
≤ Φ(n)‖ϕ‖1‖ψ‖C , (1.1)

with Φ(n) summable.
Consider a countable partition A1, . . . , Ap, . . . of Σ. Denote by Pk the count-
able partition of Σ whose atoms are defined by : for i0, . . . , ik−1, denote

Ai0,...,ik−1
= {x ∈ Σ / for j = 0, . . . , k − 1, T j(x) ∈ Aij

.}
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We assume that for all i0, . . . , ik−1, f = 1Ai0,...,ik−1
∈ C and note C(ii0 , . . . , ik−1) =

C(f). Consider the process taking values into Σ : Xj(x) = T j(x), j ∈ N,
x ∈ Σ. Clearly if Xj ∈ Ai0,...,ik−1

then Xj+1 ∈ Ai1,...,ik−1
. That is for any

P ∈ Pk, there exists a unique P̃ ∈ Pk−1 such that Xj ∈ P ⇒ Xj+1 ∈ P̃ .
Condition (1.1) may be rewritten as : for all ϕ ∈ L1(µ), ψ ∈ C,

|Cov(ψ(X0), ϕ(Xn))| ≤ Φ(n)‖ϕ‖1‖ψ‖C .

Moreover, we assume that for ψ ∈ C, there exists a real number R(ψ) such
that ‖ψ +R(ψ)‖ ≤ C(ψ). We have :

|Cov(ψ(X0), ϕ(Xn))| = |Cov([ψ(X0) +R(ψ)], ϕ(Xn))|
≤ Φ(n)‖ϕ‖1‖ψ +R(ψ)‖C
≤ 2Φ(n)‖ϕ‖1C(ψ). (1.2)

Using the stationarity of the sequence (Xj), we have for all i ∈ N, for ψ ∈ C1,
ϕ ∈ L1, ‖ϕ‖1 ≤ 1,

|Cov(ψ(Xi), ϕ(Xn+i))| ≤ 2Φ(n). (1.3)

So, our Assumptions 1 and (**) are satisfied for a “time reversed” process: con-
sider a process (Yn)n∈N such that (Yn, · · · , Y0) as the same law as (X0, · · · , Xn),
then Cov(ψ(Xi), ϕ(Xn+i)) = Cov(ψ(Yi+n), ϕ(Yi)) and the process (Yn)n∈N

satisfies our Assumptions 1. Using the stationarity, it satisfies also(**), see
[BGR] and [DP] for more developments on this “trick”. Applying Theorem
1.1.5 to the process (Yn)n∈N and using that

n∑

j=1

1P (Yj)
Law
=

n−1∑

0

1P (Xj)

and
n−2∑

j=0

1 eP (Yj)
Law
=

n−2∑

j=0

1 eP (Xj),

we obtain the following result.

Theorem 1.2.1 There exists a constant C > 0, such that for all k, n ∈ N,
for any sequence i0, . . . , ik−1, for all t ∈ R,

P

(∣∣∣∣
Nn

0 (Ai0,...,ik−1
)

n
− µ(Ai0,...,ik−1

)

∣∣∣∣ > t

)
≤ e

1
e e

− Ct2n

C(i0,...,ik−1)2 .

Let ĝn(Ai0,...,ik−1
) =

Nn
0 (Ai0,...,ik−1

)

Nn−1
0 (Ai1,...,ik−1

)
n−1

n , there exists K > 0 such that for all

ε < 1, if
µ(Ai1,...,ik−1

)

C(i0, . . . , ik−1)
and

µ(Ai1,...,ik−1
)

C(i1, . . . , ik−1)
≥ n− ε

2 ,
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then we have :

P
(∣∣ĝn(Ai0,...,ik−1

) − P(X0 ∈ Ai0 |X1 ∈ Ai1 , . . . , Xk−1 ∈ Aik−1
)
∣∣ > t

)

≤ 4e−Kt2n1−ε

+ 2e−Kn1−ε

.

Let us terminate this section with a lemma stating that the elements P ∈ Pk

are exponentially small. It indicates that we might not expect to take k of
order greater than lnn in the above theorem.

Lemma 1.2.2 Assume that Cmax = max
j=1,...,

C(1Aj
) < ∞. There exists 0 <

γ < 1 such that for all P ∈ Pk, we have

µ(P ) ≤ γk.

Proof. The proof of Lemma 1.2.2 follows from the mixing property. It is in-
spired from [Pa]. Let n0 ∈ N to be fixed later. Let P ∈ Pk, for some indices
i0, . . . , ik−1, we have that

P = {x ∈ Ai0 , . . . , T
k−1x ∈ Aik−1

}.

Then, let ` = [ k
n0

],

µ(P ) = P(X0 ∈ Ai0 , . . . , Xk−1 ∈ Aik−1
)

≤ P(X0 ∈ Ai0 , Xn0
∈ Ain0

, . . . , X`n0
∈ Ai`n0

)

Now, the random variable

Y =
1Ain0

(Xn0
) · · ·1Ai`n0

(X`n0
)

P(Xn0
∈ Ain0

, . . . , X`n0
∈ Ai`n0

)

is M`n0
-measurable with L1 norm less than 1 and

1Ai0

Cmax
is in C1. From the

mixing property (1.3), we get : (let s = supj=1,... µ(Aj) < 1)

P(X0 ∈ Ai0 , Xn0
∈ Ain0

, . . . , X`n0
∈ Ai`n0

)

≤ P(Xn0
∈ Ain0

, . . . , X`n0
∈ Ai`n0

) · (ΦC(n0)Cmax + s).

Choosing n0 such that ΦC(n0)Cmax+s < 1, we obtain the result by induction.

1.2.1 Expanding maps of the interval

In this section, we consider piecewise expanding maps on the interval I = [0, 1].
That is, T is a piecewise expanding map, defined on a finite partition into
intervals A1, . . . , A`. Pk is the partition of I with atoms : Ai0 ∩ T−1Ai1 ∩
· · · ∩ T−(k−1)Aik−1

. If for all j = 1, . . . , `, T (Aj) is a union of the Ap’s, T is
said to be a Markov map. For x ∈ I, let Ck(x) be the atom of the partition
Pk containing x. Under an assumption of aperiodicity in the Markov case or
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covering in general, the map T admits a unique invariant measure absolutely
continuous with respect to the Lebesgue measure m. Let h be the invariant
density. The potential of the system is g = h

|T ′|·h◦T , we have also that g−1 is

the Radon-Nikodym derivative of µ◦T with respect to µ (if µ = hm). We shall
prove that g(x) may be estimated by ĝn,k(x) := ĝn(Ck(x)) for k = Θ(lnn).
Formally the assumptions on the system are the following.

Assumption 2 1. the restriction of T to each Aj is a C2 one-to-one map
from Aj to T (Aj) =: Bj.

2. T is expanding: there exists 1 < θ−1 such that for all x ∈ I, θ−1 ≤ |T ′(x)|.
3. If T is a Markov map, we assume that it is aperiodic: there exists N ∈ N

such that for all i, j = 1, . . . , `, for all n ≥ N ,

T−nAi ∩Aj 6= ∅.

4. If T is not Markov, we assume that it satisfies the covering property : for
all k ∈ N, there exists N(k) such that for all P ∈ Pk,

TN(k)P = [0, 1].

The above conditions are sufficient to ensure existence and uniqueness of an
absolutely continuous invariant measure as well as an estimation of the speed
of mixing (see for example [Sc] for the Markov case and [Co], [Li] for the
general case). Under more technical assumptions, these results on existence
and uniqueness of an absolutely continuous invariant measure as well as an
estimation of the speed of mixing remain valid, with an infinite countable
partition ([Br], [L,S,V], [Ma1]).

Theorem 1.2.3 ([Sc], [Co], [Li]) Let C be the space of functions on [0, 1]
of bounded variations. Let T satisfy the assumptions 2. Then we have the
following mixing property : there exists C > 0, 0 < ξ < 1 such that for all
ϕ ∈ L1(µ), ψ ∈ C,

∣∣∣∣∣∣

∫

Σ

ψ · ϕ ◦ Tndµ−
∫

Σ

ψdµ

∫

Σ

ϕdµ

∣∣∣∣∣∣
≤ Cξn‖ϕ‖1‖ψ‖C .

Moreover, we have that the invariant density h belongs to BV and 0 < inf h ≤
suph <∞. If the map is Markov, then h is C1 on each Bj.

In other words, our system satisfy (1.1) for bounded variation functions. More-
over, for any k ∈ N, the element P of Pk are subintervals, so the indicators
1P belong to BV and C(1P ) =

∨
(1P ) = 2. So, we shall apply Theorem 1.2.1,

this will lead to the announced estimation of the potential g.
Let us also introduce a very useful tool in dynamical systems : the transfer
operator. For f ∈ BV , let
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L(f)(x) =
∑

y/T (y)=x

g(y)f(y).

We have L(1) = 1, for all f1 ∈ BV , f2 ∈ L1(µ),
∫

I

L(f1) · f2dµ =

∫

I

f1 · f2 ◦ Tdµ.

The process (Yn)n∈N introduced after Lemma 1.2.2 is a Markov process with
kernel L (see [BGR]). The following three lemmas are the last needed bricks
between Theorem 1.2.1 and the estimation of the potential g.

Lemma 1.2.4 Assume that T satisfies Assumption 2 and is a Markov map,
let γ be given by Lemma 1.2.2. There exists K > 0 such that for all k ∈ N,
for all x ∈ I,

(1 −Kγk)g(x) ≤ µ(Ck(x))

µ(Ck−1(Tx))
≤ (1 +Kγk)g(x) (1.4)

Proof. Because the map is Markov, for all x ∈ I, T (Ck(x)) = Ck−1(Tx). We
have :

µ(T (Ck(x))) =

∫
1

g
1Ck(x)dµ,

min
y∈Ck(x)

1

g(y)

∫
1Ck(x)dµ ≤

∫
1

g
1Ck(x)dµ ≤ max

y∈Ck(x)

1

g(y)

∫
1Ck(x)dµ.

Since the map is Markov, h and h ◦ T are C1 on each Ck(x), so g is C1 on
Ck(x) and since T is expanding, we conclude that

max
y∈Ck(x)

1

g(y)
≤ (1 +Kγk)

1

g(x)

and min
y∈Ck(x)

1

g(y)
≥ (1 −Kγk)

1

g(x)
.

The result follows.

If the map T is not Markov, we shall prove a result not so strong (but sufficient
for our purpose). To deal with non Markov maps, we have to modify the above
proof at two points : firstly, we have not T (Ck(x)) = Ck−1(Tx) for all x (but
for lots of them) ; secondly, g = h

|T ′|h◦T is not smooth (due to h). The following

lemma shows that we control the irregularity of h.

Lemma 1.2.5 Let a =
∨
h, for any interval P , let

∨

P

h be the variation of h

on P . For all k ≥ 1, for all uk > 0,

µ{x ∈ [0, 1] /
∨

Ck(x)

h ≥ uk} ≤ γk

uka
.
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Proof. We have :

µ{x ∈ [0, 1] /
∨

Ck(x)

h ≥ uk} =
∑

P∈PkW
P h≥uk

µ(P ).

a =
∨
h ≥

∑

P∈Pk

∨

P

h

≥ #{P ∈ Pk /
∨

P

h ≥ uk}uk.

In other words, #{P ∈ Pk /
∨

P h ≥ uk} ≤ a

uk
. Using Lemma 1.2.2, we get :

µ{x ∈ [0, 1] /
∨

Ck(x)

h ≥ uk} ≤ #{P ∈ Pk /
∨

P

h ≥ uk}γk

≤ γk

uka
.

Corollary 1.2.6 For all κ > γ, there exists a constant K > 0 and for all

k ∈ N
∗, a set Bk such that µ(Bk) ≤ γk

κka
and if x 6∈ Bk, y ∈ Ck(x),

(1 −Kκk) ≤ g(x)

g(y)
≤ (1 +Kκk). (1.5)

Proof. Recall that g = h
|T ′|h◦T . Because T is piecewise C2 and expanding, 1

|T ′|

satisfies an equation of the type (1.5) for all x ∈ [0, 1], for κ = γ. We just have
to prove that h satisfies such an inequality. Fix κ > γ, let

Bk = {x ∈ [0, 1] /
∨

Ck(x)

h ≥ κk}.

Let x 6∈ Bk and y ∈ Ck(x).

|h(x) − h(y)| ≤
∨

Ck(x)

h ≤ κk.

Now, h(x)
h(y) = 1 + h(x)−h(y)

h(y) , thus

1 − 1

suph
κk ≤ h(x)

h(y)
≤ 1 +

1

inf h
κk.

Of course, the same equation holds for h ◦ T by replacing k with k − 1,
combining this equations (for h, h ◦ T and |T ′|) gives the result.
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Lemma 1.2.7 Assume that T satisfies Assumption 2 and is not necessary a
Markov map. There exists K > 0 such that for all k ∈ N, for all κ > γ,

µ

{
x ∈ I / (1 −Kκk)g(x) ≤ µ(Ck(x))

µ(Ck−1(Tx))
≤ (1 +Kκk)g(x)

}

≥ 1 − (2`γk + a
(γ
κ

)k

).

Proof. We begin with a simple remark. Let us denote ∂P the union of the
boundaries of the Aj ’s. For x ∈ [0, 1], if Ck(x) ∩ ∂P = ∅ then T (Ck(x)) =
Ck−1(Tx), otherwise, T (Ck(x)) is strictly included into Ck−1(Tx). This ele-
mentary remark is very useful in the study of non Markov maps. The points
x such that T (Ck(x)) = Ck−1(Tx) will be called k-Markov points. If the map
is Markov then all points are k-Markov for all k ∈ N. For k-Markov points,
we may rewrite the proof of Lemma 1.2.4 to get the inequalities :

min
y∈Ck(x)

1

g(y)
µ(Ck(x)) ≤ µ(Ck−1(Tx)) ≤ max

y∈Ck(x)

1

g(y)
µ(Ck(x)).

Now, we use Corollary 1.2.6 and we have that if x is a k-Markov point that
do not belong to Bk then

(1 −Kκk)g(x) ≤ µ(Ck(x))

µ(Ck−1(Tx))
≤ (1 +Kκk)g(x). (1.6)

So, we have that the set Dk of points not satisfying 1.6 for one k is included
into the set of points x such that Ck(x)∩∂P 6= ∅ or in Bk (given by Corollary
1.2.6). Clearly, there are at most 2` elements P of Pk such that P ∩ ∂P 6= ∅,
moreover, by Lemma 1.2.2, we have for P ∈ Pk, µ(P ) ≤ γk. We have proven

that µ(Dk) ≤ 2`γk + γk

κka
.

We are now in position to prove that ĝn,k(x) is a consistent estimator of the
potential g(x).

Theorem 1.2.8 For all κ > γ, there exists Dk and Ek finite union of ele-

ments of Pk satisfying µ(Dk) ≤ 2`γk + a
(

γ
κ

)k
, µ(Ek) ≤ γk and there exists

L > 0 such that if

• x 6∈ Dk ∪ Ek,

• ln( t
2K )

ln(κ)
≤ k ≤ ε

2

ln 2n

ln( `
γ )

then
P(|ĝn,k(x) − g(x)| > t) ≤ 4e−Lt2n1−ε

+ 2e−Ln1−ε

Proof. Fix κ > γ, let Dk be given by Lemma 1.2.7 : if x 6∈ Dk then

(1 −Kκk)g(x) ≤ µ(Ck(x))

µ(Ck−1(Tx))
≤ (1 +Kκk)g(x),
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let Ek be the set of points x such that µ(Ck(x)) ≤ γk

`k . Clearly, if x ∈ Dk then
Ck(x) ⊂ Dk and if x ∈ Ek then Ck(x) ⊂ Ek, so Dk and Ek are finite union
of elements of Pk.

Let x 6∈ Dk ∪ Ek, then µ(Ck(x)) > γk

`k . If k ≤ ε
2

ln 2n
ln( `

γ
)

then µ(Ck(x)) ≥ 2n− ε
2 .

Since Ck(x) is an interval, we have C(1Ck(x)) =
∨

(1Ck(x)) = 2 and then

µ(Ck−1(Tx))

C(1Ck(x))
=
µ(Ck−1(Tx))

C(1Ck−1(Tx))
≥ µ(Ck(x))

2
≥ n− ε

2 .

We shall use Theorem 1.2.1.

P(|ĝn,k(x) − g(x)| > t)

≤ P(|ĝn,k(x) − µ(Ck(x))

µ(Ck−1(Tx))
| > t− | µ(Ck(x))

µ(Ck−1(Tx))
− g(x)|)

≤ P(|ĝn,k(x) − µ(Ck(x))

µ(Ck−1(Tx))
| > t−Kκk) because x 6∈ Dk

≤ 4e−L(t−Kκk)2n1−ε

+ 2e−Ln1−ε

we have used Theorem 1.2.1.

If
ln( t

2 )

ln( 1
κ )

≤ k, we conclude

P(|ĝn,k(x) − g(x)| > t) ≤ 4e−Lt2n1−ε

+ 2e−Ln1−ε

.

We derive the following corollary. Fix κ > γ.

Corollary 1.2.9 Let α = c
2(1+c) with c = ln(1/κ)

ln(l/γ) and k(n) be an increasing

sequence such that
ln
(

1
2Knα

)

ln(κ)
≤ k(n) ≤ ε

2

ln 2n

ln( `
γ )
,

let ĝn = ĝn,k(n), then |ĝn(x) − g(x)| = OP(n−α).

Proof. It suffices to prove that :

lim
M→∞

lim sup
n→∞

P(nα|ĝn(x) − g(x)| > M) = 0.

We chose t = n−α in Theorem 1.2.8 and obtain :

P(nα|ĝn(x) − g(x)| > M) ≤ P(|ĝn(x) − g(x)| > 1

nα
) ≤ 4e−Ln1−ε−2α

+ o(1).

The best rate is obtained for α = c
2(1+c) with c = ln(1/κ)

ln(l/γ) .

Remark 2 In [CMS], an exponential inequality is proven for Lipschitz func-
tions of several variables for expanding dynamical systems of the interval. We
can not use such a result here because characteristic functions of intervals are
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not Lipschitz, the result could maybe be improved to take into consideration
piecewise Lipschitz functions. The Lipchitz constant enter in the bound of the
exponential inequality and any kind of piecewise Lipschitz constant would be
exponentially big for 1P , P ∈ Pk. Nevertheless, such a result for functions of
several variables could be interesting to estimate the conditional probabilities
and potential g : we could construct an estimator by replacing N `

j (Ai0,...,ik−1
)

with

Ñn
j (Ai0,...,ik−1

) =
∣∣{p ∈ {j, ..., n+ j − k} / Xj ∈ Ai0 , . . . , Xj+k−1 ∈ Aik−1

}∣∣ .

1.3 Gibbs measures and chains with complete

connections

In this section, we state our results in the particular setting of Gibbs measures
or chains with complete connections. Gibbs measures and chains with com-
plete connections are two different point of view of the same thing - consider
a stationary process (Xi)i∈N or Z taking values into a finite set A satisfying :
for all a0, ..., ak, ... in A. If P(X0 = a0, . . . , Xk = ak) 6= 0 for all k, then

lim
k→∞

P(X0 = a0|X1 = a1, . . . , Xk−1 = ak−1) = P(X0 = a0|Xi = ai, i ≥ 1),

exists. Moreover, there exists a summable sequence γk > 0 such that if a0 = b0,
..., ak = bk, ∣∣∣∣

P(X0 = a0|Xi = ai, i ≥ 1)

P(X0 = b0|Xi = bi, i ≥ 1)
− 1

∣∣∣∣ ≤ γk. (1.1)

Define Σ ⊂ AN be the set of admissible sequences :

Σ = {x = (x0, . . . , xk, . . . , ) ∈ AN /

for all k ≥ 0, P(X0 = x0, . . . , Xk = xk) 6= 0}.

Σ is compact for the product topology and is invariant by the shift map
σ : σ(x0, x1, . . .) = (x1, . . .). We denote by µ the image measure of the Xi’s.
We assume that the process is mixing : there exists N > 0 such that for all
i, j ∈ A, for all n > N ,

P(X0 = i and Xn = j) 6= 0.

We shall denote by

Aj = {x ∈ Σ / x0 = j} and Ai0,...,ik−1
= {x ∈ Σ / xj = ij j = 0, . . . k − 1}.

As before, Pk is the partition of Σ whose atoms are the Ai0,...,ik−1
’s and Ck(x)

is the atom of Pk containing x.
We assume also that the process has a Markov structure : for x = (x0, . . . , ) ∈
Σ, ax = (a, x0, . . .) ∈ Σ if and only if ay ∈ Σ for all y ∈ Ax0

.
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For x ∈ Σ, let g(x) = P(X0 = x0|Xi = xi, i ≥ 1). We shall prove that ĝn,k is
a consistent estimator of g.
It is known (see [KMS], [Ma2], [BGF], [Po]) that such a process is mixing for
suitable functions.
Let γ?

n =
∑

k≥n γk, define a distance on Σ by d(x, y) = γ?
n if and only if

xj = yj for j = 0, . . . , n − 1 and xn 6= yn. Let L be the space of Lipschitz
functions for this distance, endowed with the norm ‖ψ‖ = sup |ψ| + L(ψ)
where L(ψ) is the Lipschitz constant of ψ.

Theorem 1.3.1 ([KMS], [Ma2], [BGF], [Po]) A process satisfying (1.1), be-
ing mixing and having a Markov structure is mixing for functions in L in the
sense that equation (1.1) is verified for ϕ ∈ L1(µ) and ψ ∈ L with Φ(n)

n→∞−→ 0.
If γ?

n is summable, so is Φ(n).

In what follows, we assume that γ?
n is summable. For any ψ ∈ L, let R =

− inf ψ then sup |ψ + R| ≤ L(ψ), then we have (1.3) for the process (Xi)i∈N

and ψ ∈ L such that L(ψ) ≤ 1 and Theorem 1.2.1 is satisfied.
We have that

L(1Aj
) ≤ 1

γ?
0

and L
(
1Ai0,...,ik−1

)
≤ 1

γ?
k

.

Equation (1.1) gives the following lemma which will be used instead of Corol-
lary 1.2.6.

Lemma 1.3.2 For all x ∈ Σ, for all k ∈ N, y ∈ Ck(x),

1 − γk ≤ g(x)

g(y)
≤ 1 + γk.

Following the proof of Lemma 1.2.4, we get : for all x ∈ Σ, for k ∈ N,

(1 − γk)g(x) ≤ µ(Ck(x))

µ(Ck−1(T (x)))
≤ (1 + γk)g(x). (1.2)

Let γ < 1 be given by Lemma 1.2.2, let ` = |A|.
Theorem 1.3.3 Assume that γ?

k is summable, and that the process satisfy
(1.1), is mixing and has a Markov structure. Then there exists L > 0 such
that if :

1. µ(Ck(x)) ≥ γk

`k ,

2.
(γ
`

)k

γ?
k ≥ n− ε

2 ,

3. γk ≤ t
2 .

we have
P(|ĝn,k(x) − g(x)| > t) ≤ 4e−Lt2n1−ε

+ 2e−Ln1−ε

.

Moreover,

1. µ{x ∈ Σ / µ(Ck(x)) < γk

`k } ≤ γk,
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2.
(γ
`

)k

γ?
k ≥ n− ε

2 if k ≤ a lnn for suitable a > 0,

3. γk ≤ t
2 if k ≥ bt−

1
2 for suitable b > 0.

Proof. The proof follows the proof of Theorem 1.2.8 using Lemma 1.3.2 in-
stead of Lemma 1.2.7. The estimates on k are obtained by noting that since
γ?

k is summable then γk = o( 1
k2 ) and γ?

k = o( 1
k ). Of course, better estimates

may be obtained if γk decreases faster.

As in Section 1.2.1, we derive the following corollary.

Corollary 1.3.4 For k = Θ(lnn), there exists α > 0 such that ĝn,k goes to
g(x) in probability at rate 1

nα .

1.4 Testing if the asymptotic variance is zero : the

complete case

In this section, we study the problem of testing whether the asymptotic vari-
ance of the process is zero. This is motivated by the fact that for the process
studied in the previous sections, we may prove a central limit theorem pro-
vided the asymptotic variance is not zero (see [Br], [V] for examples). We are
concerned with a process (Xj)j∈N satisfying Conditions of Section 1.2.1 or
Section 1.3. We assume moreover that the system is complete: T (Ai) = I for
all i if we are in the context of Section 1.2.1 or σ(Ai) = Σ if we are in the
context of Section 1.3. Our arguments should probably be generalized to non
complete situations. In what follows, we shall denote T for T : I → I as well
as σ : Σ → Σ.

Definition 2 ([Br]) Let

Sn =

n−1∑

j=0

(Xj − E(X0)) and Mn =

∫ (
Sn√
n

)2

dP.

The sequence Mn converges to V which we shall call the asymptotic variance.

Proposition 1.4.1 ([Br], [CM]) The asymptotic variance V is zero if and
only if the potential log g is a cohomologous to a constant : log g = log a+u−
u ◦ T , with a > 0, u ∈ BV or u ∈ L.

Because we are in a stationary setting, we have that the asymptotic variance
is zero if and only if g is indeed constant (the fact that the system is complete
is here very important). We deduce a way of testing if the asymptotic variance
is zero. Using Theorem 1.2.8 or Theorem 1.3.3, we have that if g is constant,

P(| sup ĝn,k − inf ĝn,k| > t) ≤ 2 · (4e−Lt2n1−ε

+ 2e−Ln1−ε

) + γk.
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To use such a result, we have to compute sup ĝn,k and inf ĝn,k, so we have
`k computations to make with k = Ω(lnn). A priori, all the constants in
the above inequality, may be specified. In theory, for t > 0, we may find
k, n satisfying the hypothesis of Theorem 1.2.8 or Theorem 1.3.3 so that
P(| sup ĝn,k − inf ĝn,k| > t) is smaller than a specified value. If the computed
values of sup ĝn,k and inf ĝn,k agree with this estimation this will indicates
that g is probably constant so that the asymptotic variance is probably 0.
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