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Abstract

We study decay of correlations for towers. Using Birkhoff’s pro-
jective metrics, we obtain a rate of mixing of the form: cn(f, g) ≤
Ct α(n)‖f‖‖g‖1 where α(n) goes to zero in a way related to the

asymptotic mass of upper floors, ‖f‖ is some Lipschitz norm and ‖g‖1
is some L1 norm. The fact that the dependence on g is given by a L1

norm is useful to study asymptotic laws of successive entrance times.

AMS classification 1991: 28D05, 58F11: AMS classification 2000: 37A25, 37C30,

37C40 .

Keywords: decay of correlations, tower, transfer operator, projective metrics



Mixing properties on towers 1

Introduction

A powerful method to study non uniformly hyperbolic systems or hyperbolic
systems with singularities consists in conjugating the system to a tower (see
below the description of towers). Indeed, this strategy was initiated by F.
Hofbauer ([H]) to study piecewise expanding maps of the interval. It was
then used to study piecewise expanding maps in higher dimension ([Buz]),
stochastic stability of unimodal maps (([Ba,V], [Ba,Y]), to obtain exponential
decay of correlations for unimodal maps ([K,N],[Y1]), some billiards ([Y1],
[Ch]), Henon maps ([B,Y]), partially hyperbolic diffeomorphisms ([D], [Ca]).
In a recent paper, L.-S. Young ([Y2]) relates the decay of correlations for
some mixing towers to the asymptotics of return times on the base of the
tower. This gives, for example, polynomial decay of correlations for some
interval maps with neutral fixed points. To this aim, she uses a coupling
method.

We present a new approach to study mixing properties on towers “à la
Young”. Using Birkhoff cones and projective metrics instead of coupling,
we relate explicitly the rate of mixing to the mass of upper floors of the
tower (Theorem 1.4). Moreover, our method gives strong mixing properties:
the correlations depend of one observable solely through some L1 norm. This
is very useful to study asymptotic laws of return times and successive return
times (see [C], [C,G,S], [G,S], [Sau], [P]).

Section 1 contains the setting and precise statement of the results on de-
cay of correlations.
In section 2, we briefly recall definitions and properties of Birkhoff’s cones
and projective metrics.
Section 3 is devoted to the proof of the estimation of decay of correlations.
The strategy is the following: we construct a sequence of cones of locally Lip-
schitz functions Cj such that for some k ∈ N the transfer operator Lk maps
Cj into Cj+1 with contraction γj < 1. The rate of mixing is given by the
product of the γj’s. This product is easily related to the mass of the upper
floors. The rate of convergence of Lk to the spectral projection associated
with the invariant density is obtained in the uniform norm on each floor.
In section 4, we discuss specific rates of mixing and on lower bounds for uni-
form speed of convergence.

Acknowledgments: This article is an answer to a question that Viviane
Baladi asked to me. I thank her for this question and for many fruitful dis-
cussions on related topics. I also acknowledge support from the PRODYN
program of the European Science Foundation.



2 Véronique Maume-Deschamps

1 Setting, statement of the results

Let us describe the tower model. We follow Young’s setting.

A tower ∆ consists of floors Λℓ, ℓ ∈ N. The base Λ0 of the tower is a prob-
ability space, let m0 be the probability measure on Λ0. The tower structure
is given by a partition (Λj

0)j∈N (mod m0) of Λ0 and a return time function
defined on the base Λ0 of the tower R : Λ0 −→ N which is constant on each
Λj

0. The floors Λℓ are just copies of a part of Λ0:

Λℓ = {(x, ℓ) /x ∈ Λ0, R(x) > ℓ}.

We will denote by Λj
ℓ the copies of the Λj

0:

Λj
ℓ = {(x, ℓ) /x ∈ Λj

0, R(x) > ℓ} ⊂ Λℓ.

The dynamic on the tower is given by f0 : Λ0 −→ Λ0 such that f0 : Λj
0 −→ Λ0

is bijective (mod m0).

Remark 1.1 The assumption that f0 : Λj
0 −→ Λ0 is bijective may be

replaced by the Markov assumption: f0(Λ
j
0) is a union of some Λk

0’s and

some additional informations on the ratios
m0(f0Λ

j
0)

m0Λ
j
0

.

Let us consider F : ∆ −→ ∆ defined by

{
F (x, ℓ) = F (x, ℓ+ 1) for (x, ℓ) ∈ Λℓ and R(x) > ℓ+ 1

= f0(x, 0) =: FR(x, 0) otherwise.

On each floor Λℓ we put the σ-algebra of Λ0 pushed by F , so that ∆ is a
measurable space. We assume that the partition R = {Λj

ℓ} generates in the

sense that
∞∨

i=0

F−iR :=

{
∞∨

i=0

F−iAi, Ai ∈ R

}

, is the partition into points.

For k ∈ N, the elements of the partition R(k) =
k∨

i=0

F−iR are called cylinder

or k-cylinders. We denote by Ck(x) the element of R(k) which contains x.
The measure m0 is pushed on each floor by F , we assume that

∫
Rdm0 < ∞,

so that we obtain a finite measure on ∆. This measure will also be denoted
by m0 and we assume that it has been normalized (m0(∆) = 1).
The space ∆ may be endowed with a dynamical distance. For x and y in Λ0,
the separation time s(x, y) is the greatest integer n such that (FR)p(x) and
(FR)p(y) belong to the same Λj

0 for all p ≤ n. If x and y belong to Λℓ, ℓ ≥ 1
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then they have exactly one preimage x0 and y0 in Λ0, the separation time
between x and y is s(x, y) = s(x0, y0), if x and y are not in the same Λℓ then
s(x, y) = 0. The distance on the tower is defined by : d(x, y) = βs(x,y) for
some 0 < β < 1. Endowed with this metric, the space ∆ is separable (the
topology is generated by the cylinders).
We will always assume the following regularity condition on F :

FR : Λj
0 −→ Λ0

and its inverse are non singular, its Jacobian JFR satisfies the following
bounded distortion inequality: ∃C > 0 such that ∀j ∈ N ∀x, y ∈ Λj

0
∣
∣
∣
∣

JFR(x)

JFR(y)
− 1

∣
∣
∣
∣
≤ C d(FR(x), FR(y)). (BD)

The Ruelle-Perron-Frobenius operator or transfer operator associated to F is
defined in the standard way:

L0f(x) =
∑

F (y)=x

JF (y)−1f(y),

where JF is the Jacobian of F . Remark that except on Λ0, this Jacobian
is 1. The bounded distortion property implies that for any x ∈ Λj

ℓ with
R(j) = ℓ+ 1,

C−1m0(Λ
j
ℓ) ≤ JF (x)−1 ≤ Cm0(Λ

j
ℓ) (1.1)

and more generally, for any k ∈ N, for any x ∈ ∆ such that F k(x) ∈ Λ0,

C−1m0(Ck(x)) ≤ JF k(x)−1 ≤ Cm0(Ck(x)), (1.2)

so that L0 is well defined and acts continuously on the space Cu(∆) of uni-
formly continuous and bounded functions on ∆, it also acts on L1(m).
The following facts on L0 directly follow from the definitions:

•

∫

L0f · gdm0 =

∫

g ◦ F · fdm0 for all f and g in Cu(∆) (i.e. m0 is a

conformal measure),

• a measure µ = h0m0, h0 ∈ L1(m) is F invariant if and only if L0h0 = h0.

We expect that the mixing properties of an invariant measure absolutely
continuous with respect to m0 are related with the spectral properties of L0.
To be more precise, let us assume that there exists a fixed point h0 ∈ Cu(Σ)
for L0 which is normalized (m0(h0) = 1) and let µ = h0m0. For f ∈ Cu(Σ)
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and g ∈ L1(m0), the correlations of f and g measure the lack of independence
between f and g ◦ F n with respect to the invariant measure µ: for n ∈ N,

cn(f, g) =

∣
∣
∣
∣

∫

f(g ◦ F n)dµ−

∫

fdµ

∫

gdµ

∣
∣
∣
∣
.

The measure µ is mixing if and only if the coefficients cn(f, g) go to zero
for any f ∈ Cu(Σ) and g ∈ L1(m0). In this case, estimates on the speed
of convergence to zero of cn(f, g) or equivalently estimates on the decay of
correlations may lead to the Central Limit Theorem (see [Li2]) and to the
determination of asymptotic laws for entrance times (see [G,S] and [Sau]).
The following trivial computation relates the decay of correlations to the
asymptotic behavior of the iterates of L0:

cn(f, g) =

∣
∣
∣
∣

∫

[Ln
0 (fh0)− h0m0(fh0)]gdm0

∣
∣
∣
∣

(1.3)

so that if Ln
0f → h0m0(f) in some reasonable way then µ is mixing and

estimates on the speed of this convergence would precise the decay of corre-
lations.

We will denote by L the space of functions that are uniformly Lipschitz
(u.L.) and bounded on ∆. That is, bounded functions f satisfying the u.L.
condition:
there exists L(f) > 0, such that for x and y in the same Λℓ,

|f(x)− f(y)| ≤ L(f)d(x, y).

Let ‖f‖ = max(‖f‖∞, L(f)), this defines a norm on L which turns L into a
Banach space.

1.1 Invariant measure and decay of correlations

Under some additional assumptions, we will prove existence and uniqueness
on an F -invariant probability, absolutely continuous with respect to m0. We
will also give some estimations on the decay of correlations when this invari-
ant measure is mixing.

Following [A,D,U], we will say that the system (∆, F ) is irreducible if for
all i, j, ℓ, ℓ′, there exists an integer n such that F−nΛj

ℓ ∩ Λi
ℓ′ 6= ∅; we will

say that the system (∆, F ) is aperiodic if for all i, j, ℓ, ℓ′, there exists an in-
teger N such that for all n ≥ N , F−nΛj

ℓ ∩Λi
ℓ′ 6= ∅. Following Markov chains
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and positive matrices methods ([Se]), it may be proved that aperiodicity is
equivalent to L.-S. Young’s condition: g.c.d.R = 1 ([Y2]).
To study mixing properties of L, we will need to deal with more general
potentials.
Let Φ : ∆ −→ R satisfy the uniformly locally Lipschitz (u.l.L.) condition:
there exists a constant L > 0 such that, for all x and y in the same Λj

ℓ,

|Φ(x)− Φ(y)| ≤ Ld(x, y)

Let LΦ be the associated transfer operator:

LΦf(x) =
∑

Fy=x

eΦ(y)f(y).

Under some general conditions, the operator LΦ admits a unique non zero
positive fixed point.

THEOREM 1.2 Let Φ satisfy the u.l.L condition, have a conformal mea-
sure m′ (i.e. m′(LΦf) = m′(f) ∀f ∈ Cu(∆)), satisfy the “weak contribution
of infinity” condition:

∃n0 / ∀n ≥ n0 sup
x∈Λn

|LΦ1(x)| ≤ 1, (K)

and ‖LΦ1‖∞ < ∞, then LΦ admits a non zero positive fixed point hΦ ∈ L.
If (∆, F ) is irreducible then hΦ > 0, it is unique up to a multiplicative factor
and the invariant measure µ = hΦm

′ is ergodic.
If (∆, F ) is aperiodic then µ is mixing. Moreover Ln

Φf converges to hΦm
′(f)

uniformly on each compact subset of ∆ and in L1(m′) for any f ∈ Cu(∆).

The proof of theorem 1.2 is now more or less standard. It follows arguments
from [Sa] and [Ma1, Ma2] (see also [Y2] for a proof without transfer operator).
We will just sketch the different steps. We begin with the following lemma.

LEMMA 1.3 Let Φ satisfy hypothesis of theorem 1.2, then there exists
M > 0 such that ∀ k ∈ N, ‖Lk

Φ1‖∞ ≤ M .

Proof : First, let us note that the u.l.L condition implies the following
bounded distortion property: ∃C > 0 such that ∀x, y in the same Λℓ,

∀k ∈ N,

∣
∣
∣
∣

Lk
Φ1(x)

Lk
Φ1(y)

− 1

∣
∣
∣
∣
≤ Cd(x, y).

Let Φ satisfy the “weak contribution of infinity condition”. For any k ∈ N,
n ∈ N and x ∈ Λn, the bounded distortion property gives:

Lk
Φ1(x) ≤ C

1

m′(Λn)

∫

Λn

Lk
Φ1dm

′
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≤ C
1

m′(Λn)

∫

∆

Lk
Φ1dm

′

= C
1

m′(Λn)
because m′ is a conformal probability.

So, it exists M ′ > 0 such that supx∈Λn
Lk

Φ1(x) ≤ M ′ for all k ∈ N and for all
n ≤ n0. It remains to control Lk

Φ1(x) for k ∈ N and x ∈ Λn, n ≥ n0. Let us
denote by Mk = supx∈∆ Lk

Φ1(x) < ∞ because of ‖Lk1‖ < ∞ for all k. Since
Φ satisfies the weak contribution of infinity assumption, if x belong to Λn,
n ≥ n0 then LΦ1(x) ≤ 1 and

Lk+1
Φ 1(x) ≤ LΦ1(x) · sup

∆
Lk

Φ1 ≤ Mk.

So, Mk+1 ≤ max(M ′,Mk) which leads to Mk ≤ max(M ′, 1) which concludes
the proof. �

Sketch of proof of theorem 1.2 : From lemma 1.3, there exists M > 0 such
that ‖Lk

Φ1‖∞ ≤ M for all k ∈ N. It is then easy to see that LΦ acts on L.
Indeed, let f belong to L we have the following inequality: ∀k ∈ N

|Lk
Φf(x)− Lk

Φf(y)| ≤ d(x, y) Ct [‖f‖∞ + L(f)] ∀x, y in the same floor.

Ascoli theorem on separable spaces imply that there exists a sequence nk

such that Qnk
= 1

nk

∑nk−1
i=0 Li

Φ1 converges, uniformly on compact subsets of

∆ and in L1(m′), to some limit hΦ ∈ L. Using the fact that m′ is conformal,
we get that this limit is non zero (indeed, m′(hΦ) = 1 by Lebesgue theorem)
and satisfies LΦhΦ = hΦ. Let µ = hΦm

′, this is a F -invariant probability.
If (∆, F ) is irreducible then [A,D,U] (theorem 2.5) implies that µ = hm is
ergodic and h > 0.
Using [A,D,U] theorem 3.2 (see also Young’s arguments [Y2]), aperiodicity
of the system implies that (F, µ) is exact. So µ is mixing this implies that
Lk

Φf converges to hΦm
′(f) uniformly on each compact subset of ∆ (any

accumulation point of Lk
Φf must be hΦm

′(f) because of mixing). �

Recall that L0 is the transfer operator associated to the potential − log JF .

THEOREM 1.4 The operator L0 admits a non zero positive fixed point
h0 ∈ L.
If (∆, F ) is irreducible then h0 > 0, it is unique up to a multiplicative factor
and the invariant measure µ = h0m0 is ergodic.
If (∆, F ) is aperiodic then µ is mixing. Moreover Ln

0f converges to h0m0(f)
uniformly on each compact subset of ∆ and in L1(m0) for any f ∈ Cu(∆).
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For any increasing sequence (vn)n∈N such that
∑

ℓ∈N m0(Λℓ) ·vℓ < ∞, for any
f ∈ L and g such that gv ∈ L1(m0) (gv is defined by gv(x) = g(x)vℓ if x
belong to Λℓ), there exists 0 < γ < 1 such that

cn(f, g) ≤ Ct max[(vn)
−1, γn]‖f‖ ‖gv‖1.

We also estimate the speed of convergence of Ln
0f to h0m0(f) in the uniform

norm on each floor.
In particular,
• if there exist constants 0 < e1 and 0 < θ < 1 such that for all ℓ ∈ N,
m(Λℓ) ≤ e1θ

ℓ then there exists 0 < γ < 1 such that for any θ′ < θ, for g such

that g
θ
∈ L1(m) (where g

θ′
(x) = g(x)

θ′ℓ
for x ∈ Λℓ),

cn(f, g) ≤ Ct (θ′) γn ‖f‖
∥
∥
∥
g

θ′

∥
∥
∥
1
,

• if there exist constants 0 < e1, 0 < θ < 1 and 0 < β < 1 such that for all

ℓ ∈ N, m(Λℓ) ≤ e1θ
ℓβ then for any β′ < β, let vℓ = θ−ℓβ

′

,

cn(f, g) ≤ Ct (β′)θn
β′

‖f‖ ‖gv‖1,

• if there exist constants 0 < e1, β > 1 such that for all ℓ ∈ N, m(Λℓ) ≤ e1ℓ
−β,

then for any γ > 1, let vℓ =
[
(ln ℓ)γ

ℓβ−1

]−1

,

cn(f, g) ≤ Ct (γ)
(lnn)γ

nβ−1
‖f‖ ‖gv‖1.

Remark 1.5 On one hand, L-S. Young obtained a decay of correlations in
O(n−(β−1)) in the polynomial case above. Our result is a little bit slower in
this case. Except this, we recover her results. On the other hand, we get
that the decay of correlations is of the form cn(f, g) ≤ (vn)

−1C(f, g) where
the dependence of C(f, g) on g is given by ‖gv‖1. This kind of property is
very useful to study asymptotic laws of successive return times (see [C,G,S],
[G,S], [Sau], [P]) and was not obtained using coupling methods as in [Y2].

Existence and mixing properties of an invariant measure absolutely contin-
uous with respect to m0 follows form theorem 1.2. Remark that (1.1) and
(BD) imply that the hypothesis of lemma 1.3 are satisfied for Φ = − log JF
(obviously from definitions, m0 is a conformal probability).

Our estimation of the decay of correlations is based on Birkhoff’s cones and
projective metrics. Let us briefly recall basic definitions and facts on this
theory.
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2 Birkhoff’s cones and projective metrics

The theory of cones and projective metrics of G. Birkhoff [Bi1] is a power-
ful tool to study linear operators. P. Ferrero and B. Schmitt [F,S1] applied
it to estimate the correlation decay for random dynamical systems. Then,
this strategy had been used by many authors. Let us mention C. Liverani
[Li1] and M. Viana [V] for Anosov and Axiom A diffeomorphisms. They
used Birkhoff cones to obtain exponential decay of correlations. In [K,M,S]
the Birkhoff cones techniques were used in a different way to obtain sub-
exponential decay of correlations. The way we use cone techniques to prove
theorem 1.4 follows some ideas of P. Ferrero and B. Schmitt ([F,S2]) and
[Ma1, Ma2].

Let us recall definitions and properties of cones and projective metrics (see
[Li1] for a more complete presentation).

Let B be a vector space and C ⊂ B a cone with the following properties.

• C is convex,

• C ∩ −C = {0},

• if αn is a sequence of real numbers such that αn → α and x−αny ∈ C ∀n
then x− αy ∈ C. This property is called “integral closure”.

For such a cone, the pseudo-metric θC on C is defined in the following way.
Let x, y ∈ C,

µ(x, y) = inf{β > 0 such that βx− y ∈ C},

λ(x, y) = sup{α > 0 such that y − αx ∈ C},

with the convention: µ(x, y) = ∞ and λ(x, y) = 0 if the corresponding sets
are empty. Let θC(x, y) = log µ

λ
. θC is called pseudo-metric because it is not

necessarily finite. Moreover, it is a projective pseudo-metric: if x and x1 are
proportional then for any y ∈ C, θC(x, y) = θC(x1, y).

The following two results reveal the usefulness of projective metrics.
Let C and C ′ be two cones, P a linear operator P : C → C ′. Let ∆ denote
the diameter of PC in C ′:

∆ = sup
f,g∈C

θC′(Pf, Pg).
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THEOREM 2.1 [Bi1] For any f, g in C, we have:

θC′(Pf, Pg) ≤ tanh

(
∆

4

)

θC(f, g).

This theorem implies that P : C → C ′ is always a contraction (in wide sense)
for the projective metrics. If ∆ < ∞ then it is a strict contraction.
The following result relies the metric θC to certain norms on B. A norm ‖ ‖
on B is a norm adapted to C if for f and g in B such that if f + g belongs to
C and f − g belongs to C then ‖g‖ ≤ ‖f‖. ρ is a homogeneous form adapted
to C if ρ maps C to R

+, for any λ > 0 and f ∈ C, ρ(λf) = λρ(f) and if
f − g ∈ C implies ρ(g) ≤ ρ(f).

THEOREM 2.2 [Bi1], [Li1] Let C be a cone, let ‖ ‖ and ρ be adapted to
C. For any f and g in C such that ρ(f) = ρ(g) 6= 0 we have:

‖f − g‖ ≤ (eθ(f,g) − 1)min(‖f‖, ‖g‖).

3 Proof of theorem 1.4

We will now prove theorem 1.4. Let us begin with the following remark.

Remark 3.1 Let v = (vℓ)ℓ∈N be an increasing sequence of positive numbers
such that: ∑

ℓ∈N

m0(Λℓ) · vℓ < ∞.

We will consider such a v as a function on ∆: v(x) = vℓ if x belongs to
Λℓ. Let L be the transfer operator associated to the change of potential v:
Lf = v−1L0(fv). The measure m = vm0 is conformal for L and it follows
easily from (1.1) and lemma 1.3 that supk∈N ‖L

k1‖∞ < ∞. Moreover, h = h0

v

is an eigenvector for L. Theorem 1.2 implies that for any f ∈ Cu(∆),

Lkf −→ hm(f) uniformly on each compact set.

Throughout this section, we fix a strictly increasing sequence v = (vℓ)ℓ∈N
such that m(∆) < ∞ and the sequence ( vℓ

vℓ+1
)ℓ∈N is also increasing. We will

assume that m and h are normalized (m(∆) = 1 and m(h) = 1). We will
work with the transfer operator L.
As usual in these topics, the main tool is a “Lasota-Yorke” type inequality.
Before proving it, let us study a bit the distance on ∆.
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3.1 Some properties of the distance on ∆

Let us consider the following function on ∆: ρ(x) = β if x belongs to Λ0 and

ρ(x) = 1 otherwise. For k ∈ N, we will denote by ρ(k)(x) =
k∏

i=0

ρ(F ix). The

relation between ρ(k) and the distance on ∆ is the following:
if x and y are in Λ0, their preimages by F k are paired. If x′ is a preimage of
x, we will denote by y′ the preimage of y which belongs to Ck(x

′). We have:

d(x′, y′) = ρ(k)(x′) · d(x, y).

The following lemma proves that ρ(k)(x) is almost exponential.

LEMMA 3.2 There exists 0 < γ < 1 such that for all η > 0, there exists
Ωη ⊂ ∆ of m measure greater than 1− η and k0(η) such that for all k ≥ k0
and x ∈ Ωη, ρ

(k)(x) ≤ γk.

Proof : This is an easy consequence of Birkhoff’s ergodic theorem and Ego-
roff’s theorem applied to log ρ. �

Remark 3.3 A finer analysis on ρ(k) should allow one to avoid the use of
Birkhoff’s and Egoroff’s theorems and so give a constructive bound for k0.

3.2 A Lasota-Yorke type inequality

We are now in position to prove a Lasota-Yorke type inequality.

LEMMA 3.4 For any ε > 0, there exists C > 0, N ∈ N and k0 ∈ N such
that for all k > k0, for all f ∈ L, we have:

1. for ℓ ≥ k, x and y in Λℓ

∣
∣Lkf(x)− Lkf(y)

∣
∣ ≤

vℓ−k

vℓ
d(x, y)L(f),

2. for N ≤ ℓ < k, x and y in Λℓ

∣
∣Lkf(x)− Lkf(y)

∣
∣ ≤ ε d(x, y) [L(f) + sup |f |] ,

3. for ℓ < N , x and y in Λℓ

∣
∣Lkf(x)− Lkf(y)

∣
∣ ≤ d(x, y) [εL(f) + C sup |f |] .
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Proof : Let f belong to L. Item 1. directly follows from the definition of L
and d(x, y).
Let x and y be in Λℓ, ℓ < k, let us denote by x0 ∈ Λ0 (resp. y

0) the preimage
of x (resp. y) by F k−ℓ. We have:

∣
∣Lkf(x)− Lkf(y)

∣
∣ =

v0
vℓ

∣
∣Lk−ℓf(x0)− Lk−ℓf(y0)

∣
∣ . (3.4)

Let us consider x and y in Λ0, their paired preimages will be denoted by x′

and y′.

|Lkf(x)− Lkf(y)| =
1

v0
|
∑

Fkx′=x

v(x′)

JF k(x′)
f(x′)−

v(y′)

JF k(y′)
f(y′)|

≤
1

v0

∑

Fkx′=x

v(x′)

JF k(x′)
|f(x′)− f(y′)|

+
1

v0

∑

Fkx′=x

v(x′)

JF k(x′)
|f(y′)|

∣
∣
∣
∣

JF k(x′)

JF k(y′)
− 1

∣
∣
∣
∣

≤ L(f)d(x, y)
∑

Fkx′=x

v(x′)JF k(x′)−1ρ(k)(x′)

︸ ︷︷ ︸

(1)

+ C d(x, y) sup |f |
∑

Fkx′=x

v(x′)JF k(x′)−1

︸ ︷︷ ︸

(2)

.

The term (2) is bounded above by ‖Lk1‖∞ ≤ M .
Let us turn our attention to term (1). Let η > 0 to be fixed later, let Ωη

be given by lemma 3.2 and assume k ≥ k0(η). Recall (1.2): for z such that
F k(z) ∈ Λ0, JF

k(z)−1 ≤ Cm0(Ck(z)) and remark that ρ(k) is constant on
each k-cylinder. Using lemma 3.2 we get:

(1) ≤
∑

Fkx′=x

ρ(k)(x′)≤γk

v(x′)JF k(x′)−1ρ(k)(x′) +
∑

Fkx′=x
x′∈(Ωη)c

v(x′)JF k(x′)−1ρ(k)(x′)

≤ γkM + Cm(Ωc
η) ≤ C(γk + η).

We have proved that for x and y in Λ0, for any η > 0, provided k is large
enough,

|Lkf(x)− Lkf(y)| ≤ Cd(x, y)
[
(γk + η)L(f) + sup |f |

]
.

Remark that we have the following weak inequality for all k:

|Lkf(x)− Lkf(y)| ≤ Cd(x, y) [L(f) + sup |f |]

Let ε be fixed, choose :
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• η such that Cη < ε/2, let k1 = k0(η) be given by lemma 3.2,

• N > 0 such that C v0
vN

< ε,

• k0 > k1 +N and for k > k0 −N , γk < ε/2.

Let k > k0 and N ≤ ℓ < k, the choices above and (3.4) give

∣
∣Lkf(x)− Lkf(y)

∣
∣ ≤

v0
vℓ
Cd(x, y) [L(f) + sup |f |] ≤ εd(x, y) [L(f) + sup |f |] .

Let ℓ ≤ N , we have:

∣
∣Lkf(x)− Lkf(y)

∣
∣ ≤

v0
vℓ
Cd(x, y)

[
(γk−ℓ + η)L(f) + sup |f |

]

≤ d(x, y)[εL(f) + C‖f‖∞].

�

3.3 Construction of cones

We turn out to the hearth of the proof of theorem 1.4. Let us first introduce
a finite partition of ∆. Let η and t be given, let s be greater than k0(η) given
by lemma 3.2. Let P be the finite partition P = P1 ∪ P2 defined by:

• P2 =







⋃

R(j)≥t

⋃

ℓ∈N

Λj
ℓ ∪ {x / ρ(s)(x) > γs}






=: {P2},

• P1 is the partition of P c
2 into s-cylinders.

Because of lemma 3.2, the m measure of P2 is as small as we want, provided
t is large enough and η is small enough. We will denote by D1 the diameter
of P1 (which is smaller than γs by definition) and by D2 the m measure of
P2.
Theorem 1.2 implies the following mixing property: for α < 1 < α′ there
exists q0 such that for k > q0, for P and P ′ in P ,

α <
m(P ∩ F−kP ′)

m(P )µ(P ′)
< α′. (3.5)

Let a, b, c and d be positive numbers, k and j integers to be chosen later.
C(a, b, c, d, j) is the cone of functions in L such that:

1. 0 ≤
1

µ(P )

∫

P

fdm ≤ a

∫

fdm ∀P ∈ P ,
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2. for ℓ ≤ jk, for x and y in Λℓ,

|f(x)− f(y)| ≤ d(x, y)b

∫

fdm,

3. for ℓ ≤ jk, for x ∈ Λℓ ∩ P2 |f(x)| ≤ c

∫

fdm,

4. for ℓ > jk, |f(x)| ≤
vkj
vℓ
d

∫

fdm and |f(x) − f(y)| ≤
vkj
vℓ
d

∫

fdm, for

all x, y ∈ Λℓ.

Note that the cone also depends on s, t, k. We will choose a, b, c, d, k, j, s and
t in such a way that Lk in a contraction from C(a, b, c, j) to C(a, b, c, d, j+1).
Let us denote by δj =

vkj
vk(j+1)

< 1.

Remark 3.5 It will be clear from the proofs that if there exists 0 < β < 1
such that 0 < δj < β then condition 4 in the definition of the cone is useless.
This means that it is possible to work with the cone C(a, b, c) of functions f
such that:

1. 0 ≤
1

µ(P )

∫

P

fdm ≤ a

∫

fdm ∀P ∈ P ,

2. L(f) ≤ b

∫

fdm,

3. for x ∈ Λℓ ∩ P2 |f(x)| ≤ c

∫

fdm.

PROPOSITION 3.6 For any 0 < σ < δj, for any positive numbers a0, b0,
c0, d0, there exist an integer k0, positive numbers a ≥ a0, b ≥ b0, c ≥ c0,
d ≥ d0, integers s and t such that for all k > k0,

LkC(a, b, c, d, j) ⊂ C(σa, δjb, δjc, δjd, j + 1).

Moreover, for f ∈ LkC(a, b, c, d, j), we have

1

µ(P )

∫

P

fdm ≥ A for all P ∈ P ,

where A can be chosen arbitrarily provided it is strictly smaller than 1/2.

Remark 3.7 In fact, it is clear from the proof that modifying slightly the
argument the constant A above may be chosen as close as one which from 1.
This may be important to optimize the rate of convergence in the exponential
case.
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We begin with the following lemma which gives a control on the sup. of
functions in C(a, b, c, d, j). When there is no ambiguity, we will forget about
the dependence on a, b, c d and j and write C instead of C(a, b, c, d, j) or C(j)
if we wish to emphasize the dependence on j.

LEMMA 3.8 For any f ∈ C, for ℓ ∈ N and P ∈ P1, for x in Λℓ ∩ P we
have:

|f(x)| ≤
1

m(P )

∫

P

fdm+max[b, ].|P |

∫

fdm (3.6)

|f(x)| ≤ [Da+D1 max[b, d]]

∫

fdm. (3.7)

(where D = supP∈P
µ(P )
m(P )

). For any f ∈ C, for x ∈ P2 ∩ Λℓ, ℓ ∈ N,

f(x) ≥
1

m(P2)

∫

P2

fdm− 2max[c, d]

∫

fdm

f(x) ≤ max[c, d]

∫

fdm

(3.8)

Proof : Let f belong to C. For x ∈ P ∈ P1, equations (3.6) and (3.7) for
ℓ ≤ kj directly follow from definitions. Just write that for x and y in P ∈ P ,

f(y)− L(f)d(x, y) ≤ f(x) ≤ f(y) + L(f)d(x, y)

and integrate on P with respect to m these inequalities. Let x, y ∈ P2 ∩ Λℓ

with ℓ ≤ kj,
f(y)− 2 sup

Λℓ∩P2

|f | ≤ f(x) ≤ sup
Λℓ∩P2

|f |,

this leads to (3.8) for ℓ ≤ kj. Inequalities for ℓ > kj follow from 4 in the
definition of the cone. �

Let us begin with the proof of proposition 3.6.
Proof of proposition 3.6: We are going to check how the four conditions in
the definition of C evolute under the action of Lk. First of all, condition 4. of
the cone is very easy to check: if x ∈ Λℓ, ℓ > k(j+1) then Lkf(x) = vℓ−k

vℓ
f(x−)

so |Lkf(x)| and |Lkf(x) − Lkf(y)| are less than
vk(j+1)

vℓ
δjd

∫
fdm, for x and

y in Λℓ, ℓ > kj. It just remains to check the first three conditions. Assume
that d is fixed, b and c will be chosen to have d ≤ min[b, c].
We take f ∈ C. We fix 0 < σ < δj and ε < σ, α < 1 < α′ and q0 ∈ N such
that (3.5) is satisfied for k > q0. In what follows, k is greater than q0.
The following remark will be used many times in the proof: if f ∈ C then since
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we choose d ≤ max(b, c) we have that sup |f | ≤ c
∫
fdm and L(f) ≤ b

∫
fdm

(use also that if ℓ > kj then
vkj
vℓ

≤ 1).
Condition 1.
Let P ∈ P ,

1

µ(P )

∫

P

Lkfdm =
1

µ(P )

∫

F−kP

fdm =
∑

P ′∈P

1

µ(P )

∫

P ′∩F−kP

fdm

=
∑

P ′∈P1

1

µ(P )

∫

P ′∩F−kP

fdm+
1

µ(P )

∫

P2∩F−kP

fdm.

Using lemma 3.8, we get for P ′ ∈ P1:

m(F−kP ∩ P ′)

µ(P )m(P ′)





∫

P ′

fdµ−m(P ′)D1b

∫

fdm



 ≤
1

µ(P )

∫

P ′∩F−kP

fdm

1

µ(P )

∫

P ′∩F−kP

fdm ≤
m(F−kP ∩ P ′)

µ(P )m(P ′)





∫

P ′

fdµ+m(P ′)D1b

∫

fdm



 ,

using (3.5), this leads to

α





∫

P ′

fdm− α′bD1m(P ′)

∫

fdm



 ≤
1

µ(P )

∫

P ′∩F−kP

fdm

1

µ(P )

∫

P ′∩F−kP

fdm ≤ α′





∫

P ′

fdm+ bD1m(P ′)

∫

fdm



 .

For P2, we get:

α

∫

P2

fdm− 2cD2α
′

∫

fdm ≤
1

µ(P )

∫

P2∩F−kP

fdm ≤ α′cD2

∫

fdm.

Summing these inequalities for all P ∈ P1 and for P2, we get (one has to
notice that m(1P2 · f) ≥ 0):

[α− α′D1b− 2α′cD2]

∫

fdm ≤
1

µ(P )

∫

P

Lkfdm

1

µ(P )

∫

P

Lkf ≤ [1 +D1b+ cD2]α
′

∫

fdm (3.9)
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Condition 2.
Let x and y belong to Λℓ, ℓ ≤ k(j+1) using the fact that if x ∈ Λℓ, ℓ ≤ k(j+1)
then F kx′ = x with x′ ∈ Λℓ−k and lemma 3.4, we find k0 and N ∈ N such
that for k > k0,

|Lkf(x)− Lkf(y)| ≤
vℓ−k

vℓ
d(x, y)b

∫

fdm if ℓ ≥ k

≤ εd(x, y)[b

∫

fdm+ sup |f |] if N ≤ ℓ < k

≤ d(x, y)[εb

∫

fdm+ C sup |f |] otherwise.

Lemma 3.8 gives sup |f | ≤ max[c, bD1 + aD]

∫

fdm so we get:

|Lkf(x)− Lkf(y)| ≤
vℓ−k

vℓ
d(x, y)b

∫

fdm if ℓ ≥ k (3.10)

≤ εd(x, y)

∫

fdm[b+max(c, bD1 + aD)] if N ≤ ℓ < k (3.11)

≤ d(x, y)

∫

fdm[εb+ Cmax(c, bD1 + aD)] otherwise. (3.12)

Condition 3.
Let x ∈ Λℓ ∩ P2 with ℓ ≤ k(j + 1), if ℓ ≥ k, we have

|Lkf(x)| ≤
vℓ−k

vℓ
c

∫

fdm.

Let ℓ > k, we denote by x0 the preimage of x by F ℓ, x0 ∈ Λ0,

Lkf(x) =
v0
vℓ
Lk−ℓf(x0). (3.13)

For x ∈ Λ0 and q ∈ N,

|Lqf(x)| ≤
∑

Fqx′=x
x′∈P2

v(x′)

JF q(x′)
f(x′) +

∑

Fqx′=x
x′ /∈P2

v(x′)

JF q(x)
f(x′)

≤ c

∫

fdm C
∑

Fqx′=x
x′∈P2

m0(Cq(x
′))v(x′) +

∫

fdm[bD1 + aD] using (3.7).

So we have for x ∈ Λℓ, ℓ < k,

|Lkf(x)| ≤ [cCD2 + bD1 + aD]

∫

fdm. (3.14)

We are now in position to chose the parameters. Chose:
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• d > 0

• a >
α′ + 3/8α

σ
,

• c >
1 + aD

σ − ε
, c ≥ d

• b >
Cc

σ − ε
, b ≥ d

• η and t such that 2α′cD2 < α/4, and CD2 < ε,

• s such that s > k0(η) (k0(η) is given by lemma 3.2) and α′cD1 =
α′cγs < α/4,

• k > k0(η) and k > q0 given by (3.5).

With these choices, we have: for any P ∈ P ,

α/2

∫

fdm ≤
1

µ(P )

∫

P

Lkfdm ≤ (α′ + 3/8α)

∫

fdm by (3.9)

α/2

∫

fdm ≤
1

µ(P )

∫

P

Lkfdm ≤ σa

∫

fdm,

for x and y in Λq
ℓ , ℓ ≤ k(j + 1), using (3.10, 3.11, 3.12),

|Lkf(x)− Lkf(y)| ≤ δjb

∫

fdm if ℓ ≥ k

|Lkf(x)− Lkf(y)| ≤ σb

∫

fdm otherwise.

for any x ∈ P2 ∩ Λℓ, ℓ ≤ k(j + 1), using (3.13, 3.14),

|Lkf(x)| ≤ δjc

∫

fdm if ℓ ≥ k

|Lkf(x)| ≤ σc

∫

fdm otherwise.
(3.15)

This concludes the proof since σ < δj. �

It is easily seen that all the cones C(a, b, c, d, j) satisfy the properties of
section 2. In order to apply results from section 2, we have to estimate
the projective diameter of LkC(a, b, c, d, j) into C(a, b, c, d, j + 1) and to find
adapted homogeneous form and norm.



18 Véronique Maume-Deschamps

LEMMA 3.9 The projective diameter∆j of L
kC(a, b, c, d, j) into C(a, b, c, d, j+

1) is bounded above by

2 logmax

[
2(α′ + 3/8α)

α
,
1 + δj
1− δj

]

.

Moreover, the homogeneous form f 7→
∫
fdm is adapted, so is the norm

‖f‖e = max



e

∣
∣
∣
∣

∫

fdm

∣
∣
∣
∣
, m(P )−1

∫

P

fdm for P ∈ P , ‖f‖∞



 ,

where e ≥ max[c,D1b].

Proof : The proof is a straightforward computation, (see [K,M,S], [Li1],
[Ma1, Ma2] for similar computations). �

The following lemma proves that the cones C(a, b, c, d, j) are far from being
empty.

LEMMA 3.10 There exists a0, b0, c0, d0 such that for all a ≥ a0, b ≥ b0
and c ≥ c0, d ≥ d0 and for all j ∈ N, h ∈ C(j).
For any f ∈ L, there exists R(f) > 0 such that f

v
+ R(f)h belongs to C(j)

for all j ∈ N. Moreover, R(f) ≤ Ct ‖f‖.

Proof : Recall that h = h0

v
where h0 ∈ L is the fixed point for L0 (see

pages 3, 6 and 9). Condition 4. in the definition of the cone is satisfied for h
provided d ≥ ‖h0‖ (recall m(h) = 1). Condition 1. is satisfied for h provided
a ≥ 1. Condition 2. is satisfied for h provided b ≥ L(h). Condition 3. is
satisfied for h provided c ≥ ‖h‖∞.
Let f ∈ L, chose

R(f) ≥

‖f‖ − d

∫
f

v
dm

d− ‖h0‖
,

R(f) ≥

µ(P )−1

∫

P

f

v
dm− a

∫
f

v
dm

a− 1
for all P ∈ P .

R(f) ≥
L(f

v
)− b

∫
f

v
dm

b
and R(f) ≥

‖f
v
‖∞ − c

∫
f

v
dm

c− ‖h‖∞
,

so R(f) may be chosen such that there exists a constant (independent on f)
such that R(f) ≤ Ct‖f‖. �

We will denote by γj = tanh
∆j

4
.
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Remark 3.11 If the ratio vj/vj+1 goes to 1 when j goes to infinity then, for
any j ∈ N,

γj ≤
vjk

v(j+1)k

.

If the ration vj/vj+1 is smaller than some 0 < β < 1 then γj < γ for some
γ < 1.

In what follows, we assume that a, b, c and d are large enough to ensure that
h and f

v
+ R(f)h0 belong to C(j) for all f ∈ L. For j > 0, define α(j) = 1

vkj

if the ratio vj/vj+1 goes to 1, α(j) = γj (γ is given by the above remark) if
the ratio vj/vj+1 is smaller than some 0 < β < 1.

PROPOSITION 3.12 Let f ∈ C(1), p = kj + r, r < k then

‖Lpfv − hm(f)‖∞ ≤ Ctα(j)m(f).

For f ∈ L, let fv =
f
v
, then

‖Lpfv − hm(f)‖∞ ≤ Ctα(j)‖f‖.

Proof : Let f belong to C(1), proposition 3.6 implies that Ljkf and Ljkh
belong to C(j). Applying successively theorem 2.1, we get

θC(j)(L
kjf,Lkjh) ≤ γjθC(j−1)(L

k(j−1)f,Lk(j−1)h) ≤ · · · ≤

j
∏

i=2

γ+i ·∆1.

Since the adapted norm ‖ ‖e is equivalent to ‖ ‖∞ and the form f 7→ m(f)
is adapted, we get

‖Lkjf − h‖∞ ≤ Ctα(j)m(f).

This inequality leads to the estimate, writing p = kj + r and using that
supLr1 ≤ M , for functions in C(1). To get the estimate for all functions in
L, it suffices to apply the previous argument to f

v
+R(f)h (use lemma 3.10).

�

The decay of correlations follows from proposition 3.12 by using (1.3) with
L instead of L0 and m instead of m0.

COROLLARY 3.13 [decay of correlations] If f belongs to L and g ∈
L1(m) then

cp(f, g) ≤ Ctα([p/k])‖f‖‖g‖1.

Proof : It suffices to remember that

cp(f, g) =

∫

g [Lp(fh)− hm(fh)] dm
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and apply proposition 3.12 to fh = fh0

v
with fh0 ∈ L. �

We conclude this section with the estimations for functions in L and for the
initial transfer operator L0.

COROLLARY 3.14 For any f ∈ L and g such that gv ∈ L1(m0), for
p ∈ N, and any increasing sequence (vℓ)ℓ∈N such that

∑

ℓ vℓm0(Λℓ) < ∞, for
any ℓ ∈ N

sup
Λℓ

|Lp
0f − h0m0(f)| ≤ Ct vℓα([p/k])‖f/v‖,

and
cp(f, g) ≤ Ct α([p/k])‖f‖‖gv‖1.

Proof : It suffices to use that L0f = vℓL(f/v) for x ∈ Λℓ. �

4 Further discussions

To conclude, we will give some specific rates of mixing and some lower bounds
for the speed of convergence in the uniform norm.

4.1 Exponential decay

If there exist constants 0 < e1 and 0 < θ < 1 such that for all ℓ ∈ N,
≤ m(Λℓ) ≤ e1θ

ℓ then it may be taken vℓ = Θℓ provided Θ−1 < θ. In this sit-
uation, δj ≤ Θ−1 < 1. Following remark 3.5, it is sufficient to work with cones
C(a, b, c), we have: LkC(a, b, c) ⊂ C(σa,Θ−1b,Θ−1c) and the projective diam-

eter of LkC(a, b, c) into C(a, b, c) is bounded by 2 logmax
[
2(α′+3/8α)

α
, 1+Θ−1

1−Θ−1

]

,

where 0 < α < 1 < α′ are arbitrary. We obtain exponential decay of cor-
relations for functions in L. Moreover the norm ‖ ‖′e = max[‖ ‖e, L( )] is
adapted to the cone C(a, b, c). This implies that the transfer operator L on
L is quasi-compact. This quasi-compactness result has been proved by L.-
S. Young ([Y1]) by approximating L with finite rank operators. The cone
method gives an constructive bound for the second eigenvalue if it exists.
Some unimodal maps and Henon maps may be conjugating with tower with
such asymptotics for the measure of upper floors ([B,Y], [Y1]).

4.2 stretched exponential decay

If there exist constants 0 < e1, 0 < θ < 1 and 0 < β < 1 such that for all

ℓ ∈ N, m(Λℓ) ≤ e1θ
ℓβ then it may be taken vℓ =

(
1
θ

)ℓβ
′

provided β′ < β. We

obtain decay of correlations in θn
β′

for functions in L.
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4.3 Polynomial decay

If there exist constants 0 < e1, β > 1 such that for all ℓ ∈ N, m(Λℓ) ≤ e1ℓ
−β,

it may be take vℓ =
ℓβ−1

(ln ℓ)γ
provided γ > 1. We obtain decay of correlations

in (lnn)γ

nβ−1 for functions in L. L.-S. Young obtained decay of correlations in
1/nβ−1.

4.4 Lower bounds

We use a modification of L.-S. Young’s argument ([Y2]). Let f = h + c/vℓ
on Λℓ with ℓ ≥ 1, c is such that m(f) = 1, clearly f = f0

v
with f0 ∈ L. We

have Lnf = h+ c/vℓ on Λℓ for ℓ ≥ n. So, for ℓ ≥ n, Lnf − hm(f) = c/vℓ on
Λℓ. This implies that the bound given in proposition 3.12 is optimal if the
ratio vj/vj+1 goes to 1.
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[Ch] N. CHERNOV Statistical properties of piecewise smooth hyperbolic sys-
tems in high dimensions. Discrete Contin. Dynam. Systems (1999), 5,
2, 425-448.

[D] D. DOLGOPYAT On dynamics of mostly contracting diffeomorphisms.
Preprint (1998).

[F,S1] P. FERRERO, B. SCHMITT Ruelle Perron Frobenius theorems and pro-
jective metrics. Colloque Math. Soc. J. Bolyai Random Fields. Estergom
(Hungary) (1979).

[F,S2] P. FERRERO, B. SCHMITT On the rate of convergence for some limit
ratio theorems related to endomorphisms with a non regular invariant
density. Preprint (1994).

[G,S] A. GALVES & B. SCHMITT Inequalities for hitting time in mixing
dynamical systems. Random and Computational Dynamics (1997), 5, 4,
337-347.

[H] F. HOFBAUER On intrinsic ergodicity of piecewise monotonic trans-
formations with positive entropy. Israel J. Math. (1979), 34, 1, 213-237;
(1981), 38, 11, 107-115.

[K,N] KELLER, T. NOWISKI Spectral theory, zeta functions and the distri-
bution of periodic points for Collet-Eckmann maps. Comm. Math. Phys.
(1992), 149, 1, 31-69.

[K,M,S] A. KONDAH, V. MAUME & B. SCHMITT Vitesse de convergence vers
l’état d’équlibre pour des dynamiques markoviennes non höldériennes.
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http://www.u-bourgogne.fr/monge/v.maume/accueil.html.

[Ma2] V. MAUME-DESCHAMPS Correlation decay for
Markov maps on a countable state space. Preprint
http://www.u-bourgogne.fr/monge/v.maume/accueil.html.



Mixing properties on towers 23

[P] F. PACCAUT Statistics of return times for weighted maps of the interval
Preprint.

[Sa] O. SARIG Thermodynamic Formalism for Countable Markov Shifts.
(1997).

[Sau] B. SAUSSOL Étude statistique de systèmes dynamiques dilatants. PhD.
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