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Abstract

We establish upper bounds on the rate of decay of correlations of tower systems with summable
variation of the Jacobian and integrable return time. That is, we consider situations in which
the Jacobian is not Hölder and the return time is only subexponentially decaying. We obtain a
subexponential bound on the correlations, which is essentially the slowest of the decays of the
variation of the Jacobian and of the return time.

Introduction

In this paper we study the speed of mixing, more precisely the rate of decay of correlations, of
tower systems, a special class of countable Markov systems which naturally arise in the study of
many dynamical systems by the procedure of induction – see [Y1]. There are two sources of loss of
exponential speed: large return times and bad smoothness. Our result is fully general in that it deals
with both difficulties, in contrast to previous works [KMS, BFG, Po, Y1, Y2]. Let us state informally
a corollary of our result:

Theorem 0.1 Consider a tower system F with a mixing invariant probability measure µ̂. Assume
that the oscillation of the Jacobian on n-cylinders is bounded by n−α and the probability of return time
n decays like n−β. Then, for sufficiently smooth observables, the rate of decay of correlations is:

∣

∣

∣

∣

∫

φ · ψ ◦ Fn dµ̂−

∫

φ dµ̂

∫

ψ dµ̂

∣

∣

∣

∣

≤ C ·K(φ)‖ψ‖L1 ·
1

nmin(α,β−ε)−1
,

for any ε > 0. K(φ) is some finite number depending only on φ ; ‖ψ‖L1 is the L1 norm w.r.t. the
reference measure.

Remarks.
1. Our result allows returns which are not onto, which is quite convenient for applications.
2. The fact that the above bound depends on ψ only through its L1-norm is important for the study
of asymptotic laws of return times [C, CGS, Pa].
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Section 1 contains the precise statement of our results. We briefly recall definitions and properties
of Birkhoff’s cones and projective metrics (section 2) and the construction of the a.c.i.m., establishing
regularity of the invariant density (section 3). We define a sequence of cones Cj of “Lipschitz” functions
(w.r.t. to an ad-hoc metric) in section 4 and then establish that the transfer operator iterated some
kj times sends one cone into the next by a γj-contraction in section 5 for some semi-explicit γj < 1.

Finally in section 6, we deduce from this a convergence in the uniform norm at speed
∏j

p=1 γp, with
j largest such that k1 + · · · + kj ≤ n, and make this estimate explicit in the exponential, stretched
exponential and polynomial cases.

Acknowledgments: The authors are grateful to program ESF/PRODYN which has partially
supported the International Conference on Dynamical Systems, Abbey of “La Bussière” where part
of this work was carried through.

1 Setting, statement of the results

Let us describe our tower model which follows Young’s [Y1]. A tower is defined by:

• a basis, which is a probability space (∆0,m0) together with a non-singular self-map f0;

• a partition ∆0,j , j ∈ N such that f0 : ∆0,j → f0(∆0,j) is one-to-one and satisfies f(∆0) is a
union of some ∆0,k, for some k’s;

• a return time, i.e., a function R : ∆0 → N, constant on each ∆0,j , j ∈ N.

The tower is then the disjoint union of the floors ∆ℓ, ℓ ∈ N:

∆ℓ = {(x, ℓ) | x ∈ ∆0, R(x) > ℓ}.

It is endowed with the measure ν̂ which is just the copy of m0 on each floor. We will denote by ∆ℓ,j ,
ℓ < R|∆j

0
the copy of ∆0,j inside ∆ℓ:

∆ℓ,j = {(x, ℓ) | x ∈ ∆0,j , R(x) > ℓ}.

The dynamics on the tower, F : ∆ −→ ∆, is defined by
{

F (x, ℓ) = F (x, ℓ+ 1) if R(x) > ℓ+ 1
= f0(x) =: FR(x, 0) otherwise.

One can think of F as the unfolding of the underlying induction: in applications, F will be often
conjugate to the original map, which f0 is some (variable) power. We assume that the partition

R = {∆ℓ,j} generates in the sense that

∞
∨

i=0

F−iR is the partition into points mod ν̂. For k ∈ N, the

elements of the partition R(k) =

k−1
∨

i=0

F−iR are called cylinders or k-cylinders. We denote by Ck(x)

the element of R(k) which contains x. Let JF be the Jacobian of F with respect to ν̂ (this Jacobian is
well defined because of the non singularity of f0). The modulus of continuity of JF will be controlled
by the following, dynamics-dependent sequence:

ωn = sup
C∈Rn

sup
x,y∈C

log
JF (x)

JF (y)
.

For x, y ∈ ∆ the separation time s(x, y) is the largest integer n ≥ 0 such that for all 0 ≤ j ≤ n, F j(x)
and F j(y) belong to the same atom of the partition R. Set

d0(x, y) =
∑

j≥s(x,y)+1

ωj .
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Note that the metric d0 is designed so that the family of functions:

log JFn = log
n−1
∏

i=0

JF ◦ F i.

are uniformly Lipschitz w.r.t. it.
Let us summarize our assumptions on the tower.

(A.I) Summability of upper floors.

∑

ℓ∈N

ν̂ ({x ∈ ∆0 | R(x) > ℓ}) = 1.

(A.II) Generating Partition. The partition R generates under F i.e.: the partition
∨∞

n=0 F
−nR is

the partition into points. In particular, d0 defines a metric on ∆.

(A.III) Summable variation. Let JF be the Jacobian of F with respect to ν̂. We assume that JF
satisfies:

∑

n∈N

ωn <∞.

(A.IV) Large image and Markov properties. Each FR∆0,j is a union of some ∆0,p, p ∈ N, (Markov
property) and (Large image):

η := inf
j∈N

ν̂(FR(∆0,j)) > 0.

Contrarily to [Y2] we do not assume the Bernoulli property: f0(∆0,j) = ∆0, but only the weaker
Markov property above. The collection of sets f0(∆0,j) defines a partition B which is less refined than
{∆0,j}j∈N, so that it is in particular countable B = {B1, B2, . . . }. Remark that, by an easy induction,
if x, y are contained in the same element of B, then the pre-images of all orders of x and y are paired
in the following sense.

Observe that (A.III) implies that for x, y ∈ ∆0 and x′, y′ ∈ ∆ paired pre-images defined as follows:
Fnx′ = x, Fny′ = y and F k(x′) and F k(y′) belong to the same element of R for all 0 ≤ k < n, we
have:

∣

∣

∣

∣

JFn(x′)

JFn(y′)
− 1

∣

∣

∣

∣

≤ C · d0(x, y), with C = exp
∑

j≥1

ωj . (1.1)

This is “bounded distortion”.

Remark In [BM], we proved that multi-dimensional piecewise expanding maps in higher dimension
are (under quite general hypothesis) conjugate to such a tower map.

Let L(d0) be the space of bounded functions on ∆ that are locally Lipschitz with respect to the metric
d0, i.e., for some K <∞, for all x, y in the same Bj,ℓ,

|ϕ(x)− ϕ(y)| ≤ Kd0(x, y).

K(ϕ) is the smallest number K such that the above inequality is satisfied. Let ‖ϕ‖L(d0) = K(ϕ) +
‖ϕ‖∞ be the norm on L(d0).

To study the ergodic properties of F , we have to decompose it into topologically mixing compo-
nents. Observe that R has a natural graph structure: P → Q iff F (P ) ⊃ Q. Its (restricted) spectral

decomposition is P = Pt ∪
⋃

i

⋃pi−1
j=0 P

(i)
j , where:
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• Pt is the set of transient elements of P, i.e., elements P such that there exists a path from P
going to some Q ∈ P and there is no path from Q to P (observe that we don’t decompose this
part into irreducible subsets). The elements that are not transient are called recurrent.

• for each i,
⋃pi−1

j=0 R
(i)
j is the set of P ∈ R such that there exist paths from P to Q and Q to

P , for some fixed Q = Q(i) (i.e., these unions are the irreducible components of R which are
maximal w.r.t. the precedence ordering).

• if there is an arrow from R
(i)
j to R

(k)
l then k = i and l = j + 1 mod pi.

Finally, ∆
(i)
j is the union of the elements of R

(i)
j . Observe that, up to trivialities, it is enough to study

the dynamics of F pi : ∆
(i)
0 → ∆

(i)
0 for each i. We call this the spectral reduction.

Our main result is the following theorem.

Theorem 1.1 Let (∆, F, ν̂) be a tower system satisfying (A.I - IV). First, there exists an invariant
probability measure absolutely continuous with respect to ν̂ (a ν̂-a.c.i.m. for short).
Second, any ν̂-a.c.i.m. µ̂, up to the spectral reduction, is mixing, with the following speed estimate:
for all ϕ ∈ L(d0) and ψ ∈ L∞(∆),

∣

∣

∣

∣

∣

∣

∫

∆

ϕ ◦ Fn · ψ dµ̂−

∫

∆

ϕdµ̂

∫

∆

ψ dµ̂

∣

∣

∣

∣

∣

∣

≤ C · ‖ψ‖L(d0)‖ϕ‖L1(µ̂) · un for all n ≥ 0

for some C <∞ and a sequence u = (un)
∞
n=0 converging to zero which can be explicited:

• if ωn = O(ρn) for some 0 < ρ < 1 and ν̂(∆n) = O(αn) for some 0 < α < 1 then un = κn for
some 0 < κ < 1,

• if ωn = O(n−α) for some α > 1 and ν̂(∆n) = O(n−β) for some β > 1 then un = n−min(α,β−ε)−1

for all ε > 0.

• if ωn = O(e−nα

) and ν̂(∆n) = O(e−nβ

) for some 0 < α, β < 1, then un = e−nmin(α,β)−ε

for all
ε > 0.

2 Birkhoff’s cones and projective metrics

The main tool for the proof of Theorem 1.1 will be the theory of cones and projective metrics of
Garrett Birkhoff [Bi]. P. Ferrero and B. Schmitt [FS] applied it to estimate the correlation decay
for random products of matrices. Recently this strategy has been used by many authors to obtain
exponential decay of correlations (see for example [Li1]). We are closer to [KMS] and [M] which have
used these techniques in a different way to obtain sub-exponential decay of correlations. Let us recall
definitions and properties of cones and projective metrics (see [Li1] for a more complete presentation).
Let B be a vector space and let C ⊂ B be a Birkhoff cone, i.e., a cone with the following properties.

• C is convex,

• C ∩ −C = {0},

• if αn is a sequence of real numbers such that αn → α and x−αny ∈ C for all n, then x−αy ∈ C.
This property is called “integral closure”.

Such a cone is endowed with the pseudo-metric δC on C defined in the following way (it is pseudo
because it is not necessarily finite and it does not separate points). For x, y ∈ C,

µ(x, y) = inf{β > 0 such that βx− y ∈ C}.
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with the convention: µ(x, y) = ∞ if the corresponding set is empty. Let δC(x, y) = log µ(x, y)µ(y, x).
We remark that δC satisfies the triangle inequality: if βx− y ∈ C and β̃y − z ∈ C then ββ̃x− z ∈ C
since C is a convex cone, so µ(x, z) ≤ µ(x, y) · µ(y, z) and the triangle inequality follows. Finally,
observe that δC is projective: δ(x, y) = 0 ⇐⇒ x and y are colinear.

The usefulness of this projective metric is that it allows a ‘geometric’ proof of the contraction through
the following result.

Theorem 2.1 [Bi] Let C and C ′ be two cones, P a linear operator P : C → C ′. Let Γ denote the
diameter of PC in C ′:

Γ = sup
f,g∈C

δC′(Pf, Pg) ≤ ∞.

For any f, g in C, we have:

δC′(Pf, Pg) ≤ tanh

(

Γ

4

)

δC(f, g).

This theorem implies that a linear map between cones never increases distances and is in fact a
contraction as soon as Γ <∞.
The following result allows the translation of contraction w.r.t. cone metric to a contraction w.r.t.
norm. A norm ‖ ‖ on B is adapted to C, if for f and g in B such that both f + g and f − g belong to
C, then ‖g‖ ≤ ‖f‖. ρ : C → R+ is a homogeneous form adapted to C if, i) for any λ > 0 ; ii) f ∈ C,
ρ(λf) = λρ(f) and if f − g ∈ C implies ρ(g) ≤ ρ(f).

Theorem 2.2 [Bi], [Li1]. Let C be a Birkhoff cone, let ‖ ‖ and ρ be adapted to C. For any f and g
in C such that ρ(f) = ρ(g) 6= 0 we have:

‖f − g‖ ≤ (eδ(f,g) − 1)min(‖f‖, ‖g‖).

3 Construction of a ν̂-a.c.i.m.

As usual, the transfer operator acting on bounded functions is defined by:

L0f(x) =
∑

Fy=x

1

JF (y)
f(y).

The measure ν̂ is conformal for L0 in the following sense: for any bounded function f ,
∫

L0fdν̂ =

∫

fdν̂.

For s ∈ N, the s-cylinders are the non empty sets of the form:
⋂s−1

i=0 F
−iAi with Ai ∈ R. For k ∈ N

and x ∈ ∆, Ck(x) denotes the k-cylinder which contains x.
The following lemmas are technical tools to study Ln

0 .

Lemma 3.1 There exists C <∞ such that for any ℓ ∈ N and any x ∈ ∆ℓ and k ∈ N with F kx ∈ ∆0,

C−1ν̂(Ck(x)) ≤
1

JF k(x)
≤ Cν̂(Ck(x)).

Proof :Let x ∈ ∆ℓ such that F k(x) ∈ ∆0. The Markov property and the large image property (A.IV)
imply that ν̂(F kCk(x)) ≥ η > 0. The bounded distortion property (1.1) gives:

C−1 ν̂(Ck(x))

ν̂(F kCk(x))
≤

1

JF k(x)
≤ C

ν̂(Ck(x))

ν̂(F kCk(x))

C−1 ν̂(Ck(x))

1
≤

1

JF k(x)
≤ C

ν̂(Ck(x))

η
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The Lemma is proved. �

Lemma 3.2 There exists K <∞ such that:

• for all x ∈ ∆, all n ∈ N, Ln
01(x) ≤ K.

• for all x, y in a given Bj,ℓ and all n ∈ N,:

|Ln
01(x)− Ln

01(y)| ≤ Kd0(x, y). (3.1)

Proof : The upper bound Ln
01 ≤ K follows from Lemma 3.1, by writing:

Ln
01(x) =

∑

x′∈F−nx

1

JFn(x′)
≤ C

∑

x′∈F−nx

ν̂(Cn(x
′)) ≤ C (3.2)

Let x and y belong to one Bj,ℓ. Their preimages by Fn are paired, i.e., if Fnx′ = x, there is exactly
one y′ ∈ Cn(x

′) such that Fny′ = y. So, using (A.IV), we get:

|Ln
01(x)− Ln

01(y)| =

∣

∣

∣

∣

∣

∣

∑

Fnx′=x

JFn(x′)−1 −
∑

Fny′=y

JFn(y′)−1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

Fnx′=x

JFn(x′)−1

(

JFn(x′)

JFn(y′)
− 1

)

∣

∣

∣

∣

∣

≤ CLn
01(x)d0(x, y)

≤ KCd0(x, y)

(3.1) is proved. �

Corollary 3.3 F admits a ν̂ a.c.i.m.

Proof : By Lemma 3.2, the sequence 1
n

∑n−1
i=0 Li

01 is relatively compact for the topology of uniform
convergence on compact subsets (this is Arzela-Ascoli theorem on separable spaces). Each limit point
h of this sequence is a non zero fixed point for L0 (by Lebesgue’s dominated theorem, ν̂(h) = 1), so
that µ̂ = hν̂ is a ν̂-a.c.i.m. �

The system (∆, F, ν̂,R) has a Markov structure in the sense that for each P ∈ R, F (P ) is a union of
atom of R. According to [ADU], we will say that F is aperiodic if:

∀ P , P ′ ∈ R ∃N ∈ N such that ν̂(F−nP ∩ P ′) > 0 ∀ n ≥ N. (3.3)

The existence of a ν̂-a.c.i.m. implies that the recurrent part is non empty (it contains the support
of µ̂). Up to the spectral reduction, we may and shall assume that F is aperiodic. We remark that
aperiodicity implies that any s-cylinder has positive ν̂-measure. The following lemma implies that
any s-cylinder also has µ̂ positive measure.

Lemma 3.4 If F is aperiodic then h(x) > 0 for all x ∈ ∆. Moreover, inf µ̂[F k(Ck(x))] > 0 where the
inf is taken on all k ∈ N and x such that F kx ∈ ∆0.

Proof : Theorems 2.5 and 3.2 in [ADU] imply that if F is aperiodic then Ln
01 → h uniformly on

compact sets. Let K be given by Lemma 3.2. We have for j = 1, . . . , any ℓ, n ∈ N, x, y ∈ Bℓ,j , their
paired preimages will be denoted by x′ and y′,

Ln
01(x) =

∑

Fnx′=x

JFn(x′)−1 =
∑

Fny′=y

JFn(y′)−1 JF
n(y′)

JFn(x′)

≤ (Cd0(x, y) + 1)
∑

Fny′=y

JFn(y′)−1 ≤ KLn
01(y) using (1.1). (3.4)
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Taking the limit when n goes to infinity implies: for x, y ∈ Bℓ,j ,

h(x) ≤ Kh(y). (3.5)

So, for all (j, ℓ), either h ≡ 0 on Bℓ,j or h > 0 on Bℓ,j . But h|Bj,ℓ
≡ 0 implies that ν̂(Bj,ℓ) = 0, a

contradiction to the aperiodicity. This concludes the proof of the first part of the lemma.
To prove the second part, let us remark that ν̂[F kCk(x)] ≥ η > 0 for all k and x such that F kx ∈ ∆0

and the Markov property imply that there exists finitely many integers i1, . . . , ip such that each
F kCk(x) contains at least one ∆0,ij , j = 1, . . . , p. This implies the announced result using that h > 0.
�

Let us note that Lemma 3.4 implies that µ̂(P ) > 0 for any cylinder P . The following lemma is a
direct consequence of mixing.

Lemma 3.5 There exists positive numbers A and B such that for any f , g ∈ L2(ν̂), with µ̂(f) > 0,
µ̂(g) > 0, there exists n0 such that for n ≥ n0,

A ≤
µ̂(f ◦ Fn · g)

µ̂(f)µ̂(g)
≤ B.

We shall now construct a sequence of cones Cj and a sequence of integers kj such that Lkj maps
Cj−1 into Cj with uniformly bounded diameter, where L is the normalized transfer operator defined
as follows: Lf = 1

h
L0(fh). Because of Lemma 3.4, L is well defined. Moreover it satisfies: L1 = 1.

The Jacobian of Fn with respect to µ̂ is:

JFn · h ◦ Fn

h

Let x and y belong to the same Bℓ,j , x
′ and y′ be their paired preimages by Fn. Following eqs. (3.4

- 3.5), we get, for some C ′ > C:

(1− C ′d0(x
′, y′)) ≤ h(x′)

h(y′) ≤ (1 + C ′d0(x
′, y′)),

(1− C ′d0(x, y)) ≤ h◦Fn(x′)
h◦Fn(y′) ≤ (1 + C ′d0(x, y)).

We deduce that the Jacobian of Fn with respect to µ̂ satisfies a bounded distortion inequality like
(1.1) with an appropriate constant that we will continue to denote by C. From now on, we abuse
notations and JF will be the Jacobian of F with respect to the invariant measure µ̂. We remark that
the proof of Lemma 3.1 and Lemma 3.4 give for some C > 0:

C−1µ̂(Ck(x)) ≤
1

JF k(x)
≤ Cµ̂(Ck(x)). (3.6)

4 The cones

4.1 Auxiliary definitions

In what follows µ̂ is a mixing a.c.i.m. on ∆.

We need first some auxiliary definitions. We set for convenience D = 5.
Let (vn)n∈N be such that:

∑

n≥1

vn · ν̂(∆n) <∞ and vn → ∞.
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We also assume that vn, and for each k ∈ N, vn/vn+k are non-decreasing functions of n. We define
µ̂v := v · µ̂ where we have introduced the function v =

∑

ℓ≥0 vℓ · 1∆ℓ
. Let R0(p) =

∑

k>p ωk(g). We
pick an integer s so large that

R0(s) ≤ 10−5.

Let P∞ =
⋃

i≥t
ℓ≥0

∆ℓ,i ∪
⋃

ℓ≥t
i≥0

∆ℓ,i with the parameter t chosen so large that:

µ̂v(P∞)

η
≤ 10−5,

where η = infj ν̂(F
R(∆0,j)) > 0.

Let Q1 be the finite collection of s-cylinders covering ∆ \ P∞. Let Q be the finite partition of ∆
defined as Q1 ∪ {P∞}. Let k0 be such that for all k ≥ k0, for all P,Q ∈ Q:

7

8
≤
µ̂(F−kP ∩Q)

µ̂(P )µ̂(Q)
≤

9

8

7

8
≤
µ̂v(F

−kP ∩Q)

µ̂(P )µ̂v(Q)
≤

9

8

Such a k0 exists as (F, µ̂) is mixing, Q is finite and the function v is in L1(µ̂).

4.2 Definition of the distances dj

We set dj(x, y) = Rj(s(x, y)) where the functions Rj(·) are defined inductively in the following way.
Recall that R0(·) and k0 have been defined above. Assuming that Rj−1(·) is defined we set:

kj = min{k ≥ k0 : Rj−1(s+ k) ≤ D−1R0(s)}

and
Rj(p) = D[R0(p) +Rj−1(p+ kj)].

We observe that, Q1 being a collection of s-cylinders, its dj-diameter is bounded by Rj(s) = D[R0(p)+
Rj−1(p+ kℓ)] ≤ (D + 1)R0(s), a number independent of j.
We introduce the auxiliary values q(j) = k1 + · · ·+ kj .

4.3 Definition of the cones

As stated in the introduction, we are going to prove Theorem 1.1 by cone techniques. Let us explain
a bit how to construct the cones and how sub exponential decay of correlations may be obtained.

We start by recalling the classical way of using cones (see [FS] and [Li1] for details). To get ex-
ponential decay of correlations, it is sufficient to find a cone C and an integer k such that Lk maps
C into itself and the diameter Γ of LkC into C is finite. If the fixed point h of L belongs to C then
Theorem 2.1 gives, for any integer j:

δC(L
kjf, h) ≤ γj−1Γ where γ = tanh

Γ

4
< 1.

Hence Theorem 2.2 gives that for f ∈ C, ‖Lpf − hm(f)‖ goes to zero exponentially fast for ‖ ‖ an
adapted norm, provided f 7→ m(f) is adapted. Then one has to extend this result from the cone to a
Banach space.

The starting point of the construction of cones is usually a Lasota-Yorke inequality (it will be done
in section 5.2). If the metric d0 is not of exponential type (i.e., d0(x, y) ≤ βs(x,y) with 0 < β < 1),
then we cannot obtain a Lasota-Yorke inequality. This is why we have to introduce the sequence
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of metric dj and a sequence of cones. Roughly speaking, for any integer j, we will consider a cone
Cj of functions f that are locally Lipschitz for the metric dj and the Lipschitz constant of which is
controlled (see condition 2. below). Thanks to the definition of the metric dj and to the Lasota-Yorke
inequality, if f belongs to Cj then Lkjf will be locally Lipschitz with respect to the metric dj+1 and
we will control its Lipschitz constant. This will imply that Lkj maps Cj into Cj+1 with finite diameter
Γ. Then, using Theorems 2.1 and 2.2, we get that for f in C0! , ! ! Lk1+···+kjf goes to m(f)h at
rate γj (with γ = tanh Γ

4 ) in any adapted norm, provided that h belongs to all the cones Cj and that
f 7→ m(f) is adapted. This is the philosophy of the construction.
A source of difficulty is the following. To ensure that a cone C satisfies properties of section 2 and
more specifically the condition C ∩−C = {0}, some positivity for the functions in the cone is needed.
On the other hand, if C ⊂ {f ≥ 0} =: C+ then for any f , g in C, θC(f, g) ≥ θC+

(f, g) (use Theorem
2.1 with P = Id) and

θC+
(f, g) =

sup f

inf f
·
sup g

inf g
.

Since the functions of the cones are only locally Lipschitz, we will have a good control on sup f
inf f on each

floor ∆ℓ but not on the whole space ∆. Observe that because of the definition of L, we cannot hope to
control globally Lipschitz constant (just try to compute |Lf(x)−Lf(y)| for x ∈ ∆0 and y ∈ ∆ℓ, ℓ > 0)
and we have to restrict ourselves to locally Lipschitz functions. This problem is solved by considering
the finite partition Q of ∆ which is decomposed into finitely many s-cylinders (the “compact” part)
and the complementary of the union of these s-cylinders (the “non compact” part). Then we require
the positivity of some kind of conditional expectation of f with respect to this finite partition (see
condition 1. below). This together with the control of the local Lipschitz constant leads to a good
control of f on the atoms of the compact part. Then, we requir! e ! ! another kind of control on the
non compact part (see conditions 3 and 4 below).

The cone Cj(a, b, c) is the set of all real functions f on ∆ satisfying the following conditions:

1. a · Eµ̂(f) ≤ Eµ̂(f |Q) ≤ 6b · Eµ̂(f).

2. for all x, y ∈ ∆ with B(x) = B(y),

|f(x)− f(y)| ≤ 12b · Eµ̂(f) · dj(x, y).

3. for all ℓ ≤ q(j),
sup

P∞∩∆ℓ

|f | ≤ 90c · vℓ · Eµ̂(f).

4. for all ℓ > q(j),
sup

P∞∩∆ℓ

|f ≤ 90c · vq(j) · Eµ̂(f).

5 Contraction of the cones

The purpose of this section is to prove the following proposition.

Proposition 5.1 We have

LkjCj(0, 1, 1) ⊂ Cj+1

(

4

5
,
1

5
,max

(

1

5
,
vq(j)

vq(j+1)

))

and Lkj : Cj(0, 1, 1) → Cj+1(0, 1, 1) admits, w.r.t. cone metrics, a contraction coefficient less than:

max

(

1

5
,
vq(j)

vq(j+1)

)

=: γj .
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Let us prove that if LkjCj(0, 1, 1) ⊂ Cj+1

(

4
5 ,

1
5 ,max

(

1
5 ,

vq(j)

vq(j+1)

))

then we have the announced esti-

mation on the contraction rate.
This will follow if we prove that for all f, g ∈ Cj+1(4/5, 1/5,max(1/5, vq(j)/vq(j+1))) with the normal-
ization Eµ̂(f) = Eµ̂(g) = 1 we have:

αf − g ∈ Cj+1(0, 1, 1)

for

α = max

(

1 +D−1

1−D−1
,
1 + vq(j)/vq(j+1)

1− vq(j)/vq(j+1)

)

. (5.1)

Indeed, in that case, we have that the diameter Γj of LkjCj(0, 1, 1) into Cj+1(0, 1, 1) is less than

2 logmax

(

1 +D−1

1−D−1
,
1 + vq(j)/vq(j+1)

1− vq(j)/vq(j+1)

)

.

and then

tanh
Γj

4
≤ max

(

1

D
,
vq(j)

vq(j+1)

)

= max

(

1

5
,
vq(j)

vq(j+1)

)

.

The upper bound in the cone condition (1) for αf − g is, for all P ∈ Q,

α ≥
6Eµ̂(g)− Eµ̂(g|P )

6Eµ̂(f)− Eµ̂(f |P )
.

The right hand side is bounded by:
6− 0

6− 6
5

=
5

4
≤ 6/4.

The lower bound in this condition is, for all P ∈ Q,

α ≥
Eµ̂(g|P )

Eµ̂(f |P )
.

The right hand side is upper bounded by:

6/5 · Eµ̂(g)

4/5 · Eµ̂(f)
=

6

4
.

Thus, both bounds in condition (1) are implied by eq. (5.1).

The cone condition (2) is, for all x, y ∈ ∆ with B(x) = B(y)

α ≥
12Eµ̂(g) + |g(x)− g(y)|

12Eµ̂(f)− |f(x)− f(y)|

The right hand side is bounded by:
1 +D−1

1−D−1
= 6/4.

Thus, condition (2) is implied by eq. (5.1).

The cone condition (3) is implied by eq. (5.1) as can be seen by practically identical computations.

The cone condition (4) is satisfied iff, for all x ∈ P∞ ∩∆ℓ, ℓ > q(j + 1),

α ≥
90vq(j+1)Eµ̂(g) + |g(x)|

90vq(j+1)Eµ̂(f)− |f(x)|
.

But the right hand side is bounded by:

1 + (vq(j)/vq(j+1))

1− (vq(j)/vq(j+1))
.

Thus, condition (4) is implied by eq. (5.1) and this concludes the proof that the claim implies the
stated contraction coefficient.
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5.1 Contraction of the first condition

f is an arbitrary function in Cj(0, 1, 1) for the remainder of section 5.

Let P ∈ Q. We first prove the lower bound:

Eµ̂(L
kjf |P ) =

1

µ̂(P )

∫

P

Lkjf dµ̂ =
1

µ̂(P )

∫

∆

1P · Lkjf dµ̂

=
1

µ̂(P )

∫

∆

1P ◦ F kj · f dµ̂ =
1

µ̂(P )

∫

F
−kjP

f dµ̂

≥
∑

P ′∈Q1

1

µ̂(P )

∫

F
−kjP∩P ′

f dµ̂+
1

µ̂(P )

∫

F
−kjP∩P∞

f dµ̂

≥
∑

P ′∈Q1

µ̂(F−kjP ∩ P ′)µ̂(P ′)

µ̂(P )µ̂(P ′)

{

Eµ̂(f |P
′)− 12(D + 1)R0(s)Eµ̂(f)

}

−
∑

ℓ≥0

µ̂(F−kjP ∩ P∞ ∩∆ℓ)

µ̂(P )
· 90vmin(ℓ,q(j))Eµ̂(f),

using diamdj
(Q1) ≤ (D + 1)R0(s), conditions (2)-(4). We continue (obviously: vℓ ≥ vmin(ℓ,q(j))):

Eµ̂(L
kjf |P ) ≥

∑

P ′∈Q1

µ̂(F−kjP ∩ P ′)

µ̂(P )µ̂(P ′)
µ̂(P ′)

{

Eµ̂(f |P
′)− 12(D + 1)R0(s)Eµ̂(f)

}

−
µ̂v(F

−kjP ∩ P∞)

µ̂(P )µ̂v(P∞)
µ̂v(P∞) · 90Eµ̂(f)

≥
∑

P ′∈Q1

7

8
µ̂(P ′)Eµ̂(f |P

′)−
∑

P ′∈Q1

7

8
µ̂(P ′) · 12(D + 1)R0(s)Eµ̂(f)−

9

8
µ̂v(P∞) · 90Eµ̂(f)

≥
7

8

{

Eµ̂(f)−

∫

P∞

f dµ̂

}

− 12
9

8
(D + 1)R0(s)Eµ̂(f)

− 90
9

8
µ̂v(P∞)Eµ̂(f).

Observe that:
∫

P∞

f dµ̂ =

∫

P∞

f

v
dµ̂v ≤

∑

ℓ≥0

µ̂v(P∞ ∩∆ℓ) · 90
vmin(ℓ,q(j))

vℓ
Eµ̂(f)

≤ 90µ̂v(P∞)Eµ̂(f).

Hence,

Eµ̂(L
kjf |P ) ≥

{

7

8
− 90

(

9

8
+

7

8

)

µ̂v(P∞)− 12
9

8
(D + 1)R0(s)

}

Eµ̂(f)

≥
4

5
Eµ̂(f).

Similarly, we get the upper bound,

Eµ̂(L
kjf |P ) ≤

{

9

8
+ 90

(

9

8
+

7

8

)

µ̂v(P∞) + 12
9

8
(D + 1)R0(s)

}

Eµ̂(f)

≤ 6D−1Eµ̂(f).



Decay of correlations on towers 12

5.2 Contraction of the second condition

Let x, y ∈ ∆ℓ with B(x) = B(y). First assume that ℓ ≥ kj . Setting x
− = (x, ℓ−kj), y

− = (y, ℓ−kj) ∈ ∆
(with a slight abuse of notation), we have

|Lkjf(x)− Lkjf(y)| = |f(x−)− f(y−)| ≤ 12dj(x
−, y−)Eµ̂(f)

= 12Rj(s(x, y) + kj) ≤ 12D−1dj+1(x, y).

Now assume that ℓ < kj . We have |Lkjf(x) − Lkjf(y)| = |Lrf(x0) − Lrf(y0)| with r = kj − ℓ and
x0 = (x, 0), y0 = (y, 0) (with the same abuse). Hence it is enough to bound |Lrf(x) − Lrf(y)| for
r ≤ kj and x, y ∈ ∆0 with B(x) = B(y). As B(x) = B(y), the pre-images by F r of x and y can be
paired (i.e., to each pre-image x′ of x corresponds a pre-image y′ of y defined by the same inverse
branch). Thus,

|Lrf(x)− Lrf(y)| ≤
∑

x′∈F−rx

∣

∣

∣

f(x′)
JF r(x′) −

f(y′)
JF r(y′)

∣

∣

∣

≤
∑

x′∈F−rx
1

JF r(x′) |f(x
′)− f(y′)|+

+
∑

x′∈F−rx |f(y
′)| 1

JF r(x′)

∣

∣

∣

JF r(x′)
JF r(y′) − 1

∣

∣

∣

≤ 12Rj(r + s(x, y))Eµ̂(f)

+Cd0(x, y)

(

∑

x′∈P∞
x′∈F−rx

|f(y′)|
JF r(x′)| +

∑

x′ /∈P∞
x′∈F−rx

|f(y′)|
JF r(x′)|

)

recall L1 = 1 and C is defined in (A.III). We have

∑

x′∈P∞
x′∈F−rx

≤
∑

ℓ≥0

∑

x′∈P∞∩∆ℓ
x′∈F−rx

90vmin(ℓ,q(j))
1

JF r(x′)
Eµ̂(f)

≤ 180
K

η
µ̂v(P∞)Eµ̂(f)

where K is given by the bounded distortion and η by the large image property (we have used that
∫

F rCr(x′)
(JF r)−1 dµ̂ = µ̂(Cr(x

′)) ≥ η/K(JF r(x′))−1).

We also have
∑

x′ /∈P∞
x′∈F−rx

≤

{

Eµ̂(f |Q)(x′) + 12Rj(s)Eµ̂(f)

}

≤ (12Rj(s) + 1)Eµ̂(f).

Hence,

|Lkjf(x)− Lkjf(y)| ≤

{

12Rj(kj − ℓ+ s(x0, y0)) + d0(x
0, y0)MC(12Rj(s) + 1 + 180

K

η
µ̂v(P∞))

}

Eµ̂(f)

≤ 12

{

Rj(kj + s(x, y)) +R0(s(x, y))(MCRj(s) + 1/12 + 15
K

η
µ̂v(P∞))

}

Eµ̂(f)

Now, CRj(s) + 15(K/η)µ̂v(P∞) < 1/2 so that

|Lkjf(x)− Lkjf(y)| ≤ 12D−1Rj+1(s(x, y))Eµ̂(f) = 12D−1dj+1(x, y)Eµ̂(f).
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5.3 Contraction of the third condition

Let x ∈ ∆ℓ ∩ P∞. First assume 0 ≤ ℓ ≤ kj . As for the second condition it is enough to consider
Lrf(x) with 0 ≤ r ≤ kj and x ∈ ∆0. We have

|Lrf(x)| ≤
∑

x′∈F−rx

1

JF r(x′)
|f(x′)|

≤
∑

x′∈F−rx
x′ /∈P∞

1

JF r(x′)
(12Rj(s)Eµ̂(f) + 6Eµ̂(f))

+
∑

ℓ≥0

∑

x′∈F−rx
x′∈P∞∩∆ℓ

1

JF r(x′)
90vmin(ℓ,q(j))Eµ̂(f)

≤ (2Rj(s) + 6)Eµ̂(f) +
∑

ℓ≥0

∑

x′∈F−rx
x′∈P∞∩∆ℓ

K

η
µ̂(Cr(x

′)) · 90vmin(ℓ,q(j))Eµ̂(f)

≤ (12Rj(s) + 6)Eµ̂(f) +
∑

ℓ≥0

∑

x′∈F−rx
x′∈P∞∩∆ℓ

K

η
µ̂v(Cr(x

′)) · 90vmin(ℓ,q(j))Eµ̂(f)

≤

(

(12Rj(s) + 6) + 90
K

η
µ̂v(P∞)

)

Eµ̂(f)

≤ 90D−1Eµ̂(f)

Now assume kj ≤ ℓ ≤ q(j + 1) = q(j) + kj and let x− = (x, ℓ− kj). We have:

|Lkjf(x)| = |f(x−)| ≤ 90vℓ−kj
Eµ̂(f)

≤ 90
vℓ−kj

vℓ
vℓEµ̂(f)

≤ 90
vq(j)

vq(j+1)
vℓEµ̂(f).

using that ℓ 7→ vℓ/vℓ+k is increasing for any k.
We do get the claimed contraction by max(1/5,

vq(j)

vq(j+1)
).

5.4 Contraction of the fourth condition

Finally we take x ∈ P∞ ∩∆ℓ with ℓ > q(j + 1). We have

|Lkjf(x)| = |f(x−)| ≤ 90vq(j)Eµ̂(f)

≤ 90
vq(j)

vq(j+1)
vq(j+1)Eµ̂(f).

and this gives the contraction by
vq(j)

vq(j+1)
.

6 Conclusion

To conclude the proof of Theorem 1.1, we need to derive from the projective metric bound obtained
above, bounds on the correlations. The following lemma is standard when using Birkoff’s cones (see
[KMS] page 687, [M] Lemmas 3.9-3.10). Let ||| |||j be the norm on bounded functions defined by:

|||f |||j = max



max(90vq(j), 12DR0(s) + 6)

∣

∣

∣

∣

∣

∣

∫

∆

fdµ̂

∣

∣

∣

∣

∣

∣

, sup
P∈Q

µ̂(P )−1

∣

∣

∣

∣

∣

∣

∫

P

fdµ̂

∣

∣

∣

∣

∣

∣

, ‖f‖∞



 .
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Lemma 6.1 The norms ||| |||j and the homogeneous form f 7→ µ̂(f) are adapted to the cones Cj(0, 1, 1)
For any f ∈ L(d0), there exists R(f) > 0 such that f +R(f)1 ∈ C0(0, 1, 1) and R(f) ≤ C‖f‖L(d0).

Sketch of proof : It is clear that the homogeneous form f 7→ µ̂(f) is adapted. To prove that ||| |||j is
also adapted, let us consider f and g such that f + g and f − g are in Cj(0, 1, 1). The first condition
in the definition of the cone gives:

∀ P ∈ Q,

∣

∣

∣

∣

∣

∣

1

µ̂(P )

∫

P

gdµ̂

∣

∣

∣

∣

∣

∣

≤
1

µ̂(P )

∫

P

fdµ̂,

and
∣

∣

∣

∣

∫

∆

gdµ̂

∣

∣

∣

∣

≤

∫

∆

fdµ̂.

The last three conditions give

‖g‖∞ ≤ max[90vq(j), 12DR0(s) + 6]

∫

∆

fdµ̂.

Hence, we have |||g|||j ≤ |||f |||j .
To prove the second point of the lemma, we may assume that f ≥ 0. To have that f + R(f)1 ∈
C0(0, 1, 1), it suffices that:

• ∀P ∈ Q, R(f) ≥
1

µ̂(P )

∫
∆

Pfdµ̂−6
∫
∆

fdµ̂

5 , so that condition 1. is satisfied,

• R(f) ≥ L(f)
12 , so that condition 2. is satisfied,

• R(f) ≥ sup f
90vq(0)−1 , so that conditions 3 and 4 are satisfied,

so we may choose R(f) ≤ const||f ||L(d0). �

Let us conclude the proof of Theorem 1.1.
Let f ∈ C0(0, 1, 1), By Proposition 5.1, for any ℓ, Lk1+···+kℓf and Lk1+···+kℓ1 = 1 belong to Cℓ

(remark that 1 ∈ C0(0, 1, 1)). Applying ℓ− 1 times Theorem 2.1, we get:

δCℓ
(Lk1+···+kℓf,1) ≤

ℓ
∏

j=2

γj · δ1(L
k1f,1) ≤

ℓ
∏

j=2

γj · Γ1,

where γj = is given by Proposition 5.1. Since the norm ||| |||j is adapted to the cones Cj(0, 1, 1) and
is greater than the uniform norm, Theorem 2.2 gives for f in C0(a, b, c) with µ̂(f) = 1,

‖Lk1+···kℓf − 1‖∞ ≤ const

ℓ
∏

j=2

γj .

For n ∈ N, let ℓ(n) be defined by:

n = k1 + · · · kℓ(n) + r with r < kℓ(n)+1,

we have

‖Lnf − 1‖∞ ≤ ‖Lr1‖∞ ‖Lk1+···+kℓf − 1‖∞ ≤ const





ℓ(n)
∏

j=2

γj



 .

For any function f ∈ L(d0), applying the above inequality to f+R(f)1
µ̂(f)+R(f) gives

‖Lnf − µ̂(f)‖∞ ≤ const ·





ℓ(n)
∏

j=2

γj



 ‖f‖L(d0).
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The decay of correlations follows: for f ∈ L and g ∈ L1(µ̂),

∣

∣

∣

∣

∣

∣

∫

∆

g ◦ Fn · fdµ̂−

∫

∆

fdµ̂

∫

∆

gdµ̂

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

∆

g[Ln(f)− µ̂(f)]dµ̂

∣

∣

∣

∣

∣

∣

≤ const ·





ℓ(n)
∏

j=2

γj



 ‖f‖L(d0)‖g‖1.

Set
∏ℓ(n)

j=2 γj = un.

We now prove that un has the announced behavior for exponential, stretched exponential or polyno-
mial sequences ωn and ν̂(∆n).

Estimating un

To estimate the rate of mixing un, we have to analyze the asymptotic behavior of the sequences kj
and γj . Recall that:

kℓ+1 = inf{k ≥ k0 : Rℓ(s+ k) ≤
R0(s)

D
}

and observe that an easy induction gives:

Rℓ(n) = DℓR0(k1 + · · ·+ kℓ + n) +
ℓ

∑

i=1

Dℓ+1−iR0(ki+1 + · · ·+ kℓ + n). (6.1)

Recall R0(m) =
∑

k>m ωk.

¿From these remarks we get the following results.

• If there exists 0 < ρ < 1 such that ωn = O(ρn) then R0(n) = O(ρn) and one can take kj = p

provided p is such that ρp < 1
D(D+1) , i.e. p >

− log[D(D + 1)]

ρ
. Assume also that ν̂(∆n) =

O(αn) for some 0 < α < 1. Then one may choose vn = α′−n
provided 0 < α < α′ < 1. We

have: γj = max
(

1
D
, α′p

)

=: κ < 1 and un = κ
n
p .

• If there exists α > 1 such that ωn = O(n−α) then R0(n) = O(n−α+1) and Rℓ(s + kℓ+1) =

O
(

R0(s+ kℓ+1) ·D
ℓ
)

= O

(

Dℓ

kα−1
ℓ+1

)

so, if kℓ+1 ∼ constD
ℓ+1
α−1 , it satisfies Rℓ(s+ kℓ+1) ≤

1
DR0(s)

.

So ℓ(n) ∼ (α − 1) logn
logD

+ const. Assume also that ν̂(∆n) = O(n−β) for some β > 1. Then one

may choose vn = nγ provided 0 < γ < β − 1. We have: γj = max
(

1
D
, D− γ

α−1

)

.

If β ≤ α then we can choose γ < β − 1 ≤ α− 1 and then γj = D− γ
α−1 and un = O(n−γ).

If α < β then we can choose β − 1 > γ > α− 1 and then γj =
1
D

and un = O(n−α+1).

Finally, we get that un = O(n−min[α−1,β−1−ε]), for all ε > 0.

• If ωn = O(e−nα

) and ν̂(∆n) = O(e−nβ

) for some 0 < α, β < 1, set kℓ := ℓ
1
α−1. We obtain

q(ℓ) = k1 + · · ·+ kℓ ∼ ℓ
1
α so ℓ(n) ∼ nα. An easy estimate gives that R0(m) ≤ e−mα−ε

for ε > 0
and all large m. Now, by eq. (6.1),

Rℓ(s+ kℓ+1) ≤ (ℓ+ 1)DℓR0(kℓ+1) ≤ (ℓ+ 1)Dℓe−ℓ
(α−ε)( 1

α
−1)

→ 0 as ℓ→ ∞.
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Hence, Rℓ(s+ kℓ+1) ≤ R0(s)/D is satisfied and the choice of kℓ is correct for all large ℓ. Let us
compute:

γℓ = max

{

1

D
,
q(ℓ+ 1)2

q(ℓ)2
exp

(

ℓ
β
α − (ℓ+ 1)

β
α

)

}

= max

{

1

D
,

(

1 +
1

ℓ

)
2
α

exp

(

−ℓ
β
α ·

β

α

1

ℓ
+ . . .

)

}

.

If β > α, then the second term of the above maximum goes to zero and therefore γℓ = 1
D

for
large ℓ. We compute the contraction coefficient at time n:

un = D−ℓ(n) = D−Cnα

= e−C′nα

≤ e−nα−ε

.

If β < α, then the second term of the above maximum goes to one and therefore sets the value
of γℓ for large ℓ. We compute:

un =

ℓ(n)
∏

j=1

e−j
β
α ≤ e−ℓ(n)

β
α = e−Cnβ

≤ e−nβ−ε

.

If α = β, then we change, for instance, α to α′ > β, arbitrarily close, and apply the previous
case.
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