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Vue d’ensemble

Ce texte est une introduction détaillée aux aspects les plus basiques de la théorie de
Lebesgue de la mesure et de I'intégration.

On peut comprendre les briques de cette théorie a partir du calcul de I'inté-
b

grale de Riemann I := J f(x) dz. Rappelons que, du moins si f est continue par

a
morceaux sur [a, b] et positive, I s'interpréte comme 'aire du domaine D compris
entre le graphe de f et I'axe Oz. De maniere théorique, pour calculer / nous com-
mencons par le cas ou f est une fonction en escalier, ¢’est-a-dire une fonction de la
forme

a;, sixrel

as, sixel

fla) =4 )
Gn, Sixel,,

avec les I; intervalles disjoints dont l'union est [a, b].

Dans ce cas, D est une union de rectangles disjoints, de base /; et de hauteur
a;j, et nous posons, « naturellement »,

b n
| r@rdei= 3 amity), @)

avec m(I;) la longueur, ou encore la mesure de I;.

Dans le cas général, nous « approchons » f par des fonctions en escalier, et
son intégrale par les intégrales de ces fonctions en escalier (ceci sera brievement
rappelé dans la section 6.5).

La généralisation de cette approche nécessite :

a) De pouvoir mesurer des ensembles. (Dans le cas d"une fonction en escalier, il
s’agit de mesurer les intervalles /;.)

b) De définir I'intégrale des fonctions « simples » (du type fonctions en escalier).
Dans la théorie de l'intégration, leur nom est fonctions étagées.
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Vue d’ensemble

c) De définir un procédé d’approximation des fonctions « générales » par des
fonctions étagées. Les fonctions approchables sont les fonctions mesurables.

d) De définir 'intégrale des fonctions mesurables.

Si tout ce programme est achevé, ce n’est que le début... Il reste encore a établir
e) Les propriétés de l'intégrale ainsi définie. Ainsi, on s’attend a ce que l'inté-
grale soit linéaire, qu’elle vérifie I'inégalité triangulaire, et autres propriétés
fondamentales de 'intégrale de Riemann.
f) Des méthodes concretes de calcul des intégrales : intégration par parties, chan-
gement de variable, calcul d’'intégrales multiples a partir d’'intégrales itérées
(théoreme de Fubini), etc.

g) Et (surtout!) d'illustrer, par des applications, l'utilité de la théorie.

Ce programme (minimal, dans la mesure ot la théorie de la mesure et de
I'intégration est bien plus riche que ce que nous verrons) sera mis en place dans
ce qui suit. Et encore : I'intégration par parties (formule de Stokes) ne sera pas vue.

En bref

1. Le chapitre 1 n’est pas directement lié a la théorie de la mesure. Il traite
quelque notions auxiliaires comme sup, inf, les limites des suites et le dé-
nombrement des ensembles.

2. Dans le chapitre 2, nous rencontrons un objet fondamental, la tribu, et étu-
dions quelques-unes de ces propriétés. A posteriori, la tribu est la collection
7 des tous les ensembles que nous saurons mesurer. En accord avec cette
philosophie, un élément de .7 (c’est-a-dire, un ensemble A € .7) est un
ensemble mesurable.

Pour que la théorie soit vraiment utile, .7 doit avoir des propriétés algé-
briques encodées dans sa définition (par exemple, si nous savons mesurer
A et B, nous savons également mesurer A n B). La propriété fondamentale
qui fait la force de la théorie de la mesure est que si nous savons mesurer
Ag, A1, Ag, ... (suite infinie), alors nous savons mesurer Ay U A; U Ay U ...

3. Le chapitre 3 est dédié aux fonctions qui, a posteriori, seront intégrées. Le
début se devine facilement : une fonction étagée est une fonction de la forme,
analogue a (1),

a1, sireA;
as, six € A2
flz) = (3)

a,, sizeA,,

avec chaque A; mesurable et les A; deux a deux disjoints.
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Pour passer des fonctions étagées aux fonctions mesurables, le choix de
I'approximation est crucial : une fonction mesurable est une limite simple de
fonctions étagées.

Il reste a établir les principales propriétés des fonctions mesurables. Comme
pour les fonctions continues, avec lesquelles elles partagent des caractéris-
tiques communes, la somme ou le produit de fonctions mesurables est me-
surable, etc.

4. Le chapitre 4 est dédié aux mesures. Une mesure p est un « procédé » pour
associer a chaque ensemble mesurable A € .7 sa mesure, ((A), qui est un
nombre positif (ou +00; penser a la longueur d"un intervalle infini). La pro-
priété fondamentale de la mesure (qui fait la force de la théorie de la mesure)
est que, si Ao, A, Ay, ... (suite infinie) sont des ensembles mesurables disjoints,
alors

(Ao u Ay U A U ) = u(Ag) + u(Ar) + u(As) + -+

C’est cette propriété qui permet de passer a la limite dans les intégrales; or, le
passage a la limite est 1’essence de ’analyse.

5. Le chapitre 5 a la fois sort du programme décrit plus haut et lui donne de
la valeur. La théorie de Lebesgue de l'intégration est née pour améliorer
celle de Riemann; elle doit donc la contenir. Ceci est vrai, et la preuve passe
par l'existence d'une mesure qui généralise la longueur des intervalles. Le
résultat fondamental du chapitre est I’existence de la mesure de Lebesgue (sur
R), plus précisément d"une tribu .7 contenant tous les intervalles, et d'une
mesure 4 sur .7 telle que (1) = m([) si I est un intervalle.

6. Le chapitre 6 est consacré a la construction de 1'intégrale « abstraite ». Comme
attendu, si f est une fonction étagée positive comme dans (3), nous posons,
«naturellement », par analogie avec (2),

ff = 2%’ p(A;)-

Le cas ou f est mesurable positive est traité par approximation, mais la défini-
tion de l'intégrale J f dans ce cas n’est pas trés intuitive. Le cas ot f est tout

simplement mesurable (mais pas nécessairement positive) est plus délicat :
en général, l'intégrale n’existe pas.

Toujours dans ce chapitre, nous rencontrons le premier théoreme permet-
tant de « permuter » lim et |, le théoreme de convergence monotone (théoréme

de Beppo Levi), qui affirme que si (f,), est une suite croissante de fonctions
mesurables positives, alors

1?thﬁyh. (4)
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10.

La suite du chapitre fait le lien entre intégrale par rapport a la mesure de
Lebesgue et intégrale de Riemann, respectivement la sommation des séries
et l'intégration. Ceci permet de s’apercevoir que la théorie de l'intégration
est un cadre général qui permet de traiter des problémes d’apparence diffé-
rente; d’autres illustrations de ce fait apparaissent dans les chapitres 10-13.
L'égalité (4) est cruciale dans les applications, et a elle seule justifierait 1'im-
portance de la théorie de l'intégration. Dans le chapitre 7, nous étudions
le célebre théoreme de convergence dominée de Lebesgue qui permet d’obtenir
(4) sans hypothése de positivité ou convergence monotone, et surtout ses
conséquences concernant I'étude des intégrales a parametre. Ces intégrales
sont omniprésentes en théorie des probabilités, physique mathématique,
étude des équations différentielles, etc.

. Le chapitre 8 met les bases du calcul des intégrales multiples. Vous avez déja

utilisé sans preuve une égalité du type

Lb <Ldf(x,y) dy) dr = Ld <Lb f(x,y) dx) dy. (5)

La théorie développée dans ce chapitre donne des outils pour vérifier la
validité de formules du style (5) (théoreme de Tonelli, théoreme de Fubini) et
d’interpréter les intégrales doubles ou itérées de (5) comme une seule inté-
grale dans la variable (z,y) par rapport a la mesure produit. Cette notion,
trés intuitive, est un avatar des regles habituelles pour le calcul des aires et
volumes (l'aire d’un rectangle I x J est le produit des longueurs m(/) et
m(J), etc.).

. Le chapitre 9 donne une autre méthode de calcul d’intégrales : le changement

de variable(s). Dans les applications les plus courantes (coordonnées polaires,
cylindriques, sphériques), le changement de variables n’en est pas tout a
fait un, et il faudra établir un théoréme du presque changement de variables
adapté a ces cas.

Le chapitre 10 est dédié a I'étude de certains espaces de fonctions. En topo-
logie et calcul différentiel, les fonctions les plus étudiées sont les fonctions
continues, dérivables (ou différentiables), de classe C!, etc. En théorie de
I'intégration, nous avons déja mentionné les fonctions mesurables. Dans les
applications, les espaces les plus populaires sont les espaces de Lebesgue -£7,
avec 1 < p < oo. IIs donnent un cadre naturel a la formulation mathéma-
tique de nombreux problemes concrets, par exemple issus de la physique.

Pour 1 < p < o, leur définition est
LP = {f; f est mesurable et J|f|p < oo} )

Nous donnerons dans le chapitre 10 quelques propriétés fondamentales de
ces espaces.
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11.

12.

13.

Dans le chapitre 11, nous introduisons la convolution. En langage moderne,
c’est 'opération qui associe a deux fonctions sur R (ou R"), f et g, la nou-
velle fonctions

Teo@) = [ 56— gw)dy ©)

Des expressions du type (6) apparaissent naturellement dans la résolution
des équations; ceci était déja connu au 18¢ siecle (Euler, d’Alembert). Elles
sont également utilisées en théorie de I'image et du signal.

Dans le chapitre 11, nous nous contentons de donner quelques applications
de (6) a la théorie des espaces .Z”.

Le chapitre 12 est consacré aux séries de Fourier. A nouveau, elles appa-
raissent naturellement dans la résolution des équations différentielles, et de
grands mathématiciens du 18¢ siecle (d’Alembert, Euler, Lagrange) se sont
demandsés si « toute fonction » était une superposition de (co)sinusoides. En
langage moderne, si on pouvait écrire une fonction 27-périodique f comme

f(z) =co+ Z (ay, cos (nxz) + by, sin (nx)) ; (7)

n=1
Co, Gn, by, sont les coefficients de Fourier de f.

Fourier y a cru, et a utilisé (7) pour résoudre des probléemes physiques. La
justification rigoureuse de (7) a été une locomotive de 1’analyse au 19¢ siécle
(et au-dela). Nous donnons, dans le chapitre 12, quelques théoremes en lien
avec la validité de (7) : théoréme de Dirichlet, théoreme de Fejér, théoreme de
Fatou, égalité de Parseval et théoréme de Riesz-Fischer.

Dans le chapitre 13, nous introduisons 1’analogue continu des coefficients
de Fourier : la transformée de Fourier

7i) = f e f () da. ®)

—00

Son importance, notamment dans la théorie des probabilités et dans la théo-
rie des équations différentielles, est immense.

Pour la transformée de Fourier, ’analogue de (7) est la formule d'inversion de
Fourier

f(z) = — f e 7o) de. ©)

T o .

Dans le chapitre 13, nous étudions la validité de (9), ainsi que la possibilité
de définir f méme quand (8) n’a pas de sens (théoreme de Plancherel).
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14. Le chapitre 14 est une piece rapportée a ce texte, qui rend compte du chan-

gement de programme de la licence. Nous y présentons les résultats les
plus basiques de la théorie des espaces de Hilbert, notamment 1’existence d'une
base hilbertienne dans un espace de Hilbert séparable. Ceci permet notam-
ment de voir la théorie L? des séries de Fourier comme un cas particulier de
construction d"une base hilbertienne, et d'interpréter 1" inégalité de Bessel et
'égalité de Parseval (obtenues pour les séries de Fourier) dans le cadre plus
général d'un espace de Hilbert. L’autre résultat significatif de ce chapitre est
V'existence d’une projection sur un convexe fermé et son corollaire, le théoreme de
Riesz caractérisant les formes linéaires continues sur un espace de Hilbert.

Afin de rendre la lecture plus fluide, ce chapitre apparait a la fin (méme s’il
est enseigné avant le chapitre 12).

Et apres?

1.

La théorie des probabilités utilise naturellement le cadre de la théorie de la
mesure et de l'intégration. En plus de la théorie abstraite (chapitres 2 a 6), le
produit de convolution et la transformée de Fourier seront particulierement
utiles.

L'étude des espaces .£” sera reprise et amplifiée en analyse fonctionnelle.

Les séries de Fourier et la transformée de Fourier seront étudiées de maniere
plus approfondie en analyse fonctionnelle.

Le produit de convolution et la transformée de Fourier seront des outils
essentiels dans 'étude des équations aux dérivées partielles.

A Lyon, le 30 janvier 2023



Guide de lecture

A. Ce document sert de support aux cours « Mesure et intégration » et « Elé-
ments d’analyse fonctionnelle », destinés aux étudiants en troisiéme année de
la licence de mathématiques de 1'Université Claude Bernard Lyon 1, parcours
Mathématiques générales et applications. Malgré le caractére introductif de
ces cours, les outils présentés permettent de s’attaquer a de nombreux pro-
blemes concrets.

Le texte donne un apercu de la partie élémentaire de la théorie abstraite et
concrete de la mesure et de l'intégrale, avec quelques premiéres applications
aux espaces de fonctions, aux séries de Fourier et a la transformée de Fourier.
Historiquement, les objets et résultats présentés refletent les efforts des ma-
thématiciens du début du vingtieme siécle pour étendre et conceptualiser la
théorie de l'intégration « de Riemann », afin de corriger quelques-unes de ses
faiblesses et d’étendre le théoreme de Leibniz-Newton au-dela du cadre des
fonctions continues.

B. Le texte a été congu comme un compagnon des cours magistraux. Il n’a pas
été rédigé dans 'optique d'un usage en compléte autonomie. Afin de garder
une longueur raisonnable du manuscrit, certains éléments de preuve, géné-
ralement parmi les plus faciles, ont été omis. Ces omissions sont repérables
grace aux injonctions « vérifier! » ou «justifier! », auxquelles le lecteur qui
veut dépasser une utilisation superficielle du manuscrit est encouragé a obéir.

Afin d’alléger le texte, dans certaines sections nous faisons des hypotheses
qui sont implicitement supposées satisfaites dans tous les énoncés. Situation
typique : dans le chapitre 3, nous nous donnons une tribu 7 sur X, mais
dans les énoncés de ce chapitre la tribu n’y figure pas toujours. Le lecteur est
vivement encouragé a lire les hypotheéses des résultats dans cette perspective,
et si nécessaire a compléter les énoncés en rajoutant les hypotheses implicites.

C. La partie élémentaire du volet « théorique » de la théorie de la mesure repose
sur deux piliers.

1. La théorie axiomatique de la mesure : ce que veut dire mesure, comment
définir l'intégrale et quelles sont ses principales propriétés. Cette partie
inclut les grands théoremes les plus utilisés en calcul intégral (théoremes
de convergence monotone et de convergence dominée, lemme de Fatou,
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théoremes de Fubini et Tonelli), faciles & comprendre et montrer, mais dont
l"utilisation pose souvent probleme a 1’analyste débutant.

2. La construction concrete de mesures. La théorie de la mesure et de I'inté-
gration ne vaut pas grand-chose sans ses applications, qui exigent d’avoir
sous la main des mesures et des fonctions a intégrer par rapport a ces me-
sures. La difficulté principale de la théorie consiste précisément a constru-
ire de bonnes mesures et a établir leurs propriétés. La mesure la plus uti-
lisée, celle de Lebesgue dans R", n’est pas facile a construire. Elle a des
propriétés spécifiques, qui vont au-dela des propriétés générales des me-
sures, qui la rendent tres utile et qui sont de nature géométrique. Le théo-
réeme du changement de variables est une conséquence fondamentale de
ces propriétés.

D. Conformément au programme en vigueur, sont admis les résultats fondamen-
taux suivants : existence de la mesure de Lebesgue, existence de la mesure
produit et les théoremes de Fubini et Tonelli, théoreme du changement de
variables. Néanmoins, les preuves de ces résultats apparaissent dans le texte.
Les parcourir sera utile au lecteur qui veut poursuivre dans la voie de I’ana-
lyse : elles reposent sur un bon nombre de raisonnements fondamentaux et
récurrents en analyse, raisonnements qu’il convient de maftriser.

1. Il y a deux fagons classiques de construire la mesure de Lebesgue.

a) « A la main », en montrant pour commencer qu’elle est nécessairement
donnée par une formule assez explicite. La difficulté consiste alors a
montrer que cette formule définit effectivement une mesure. La mé-
thode pour y arriver, due a Lebesgue, est celle que nous suivons.

b) Obtenir son existence a travers l’existence de l'intégrale de Riemann
combinée avec le théoreme de représentation de Riesz, théoréme qui
dépasse largement le cadre d’un premier cours (voir Rudin [19, Cha-
pitre 2]) — voie plus élégante, mais difficile a comprendre en premiere
lecture.

2. La construction de la mesure produit et les théoremes de Tonelli et Fubini
sont de belles illustrations de la puissance de la construction axiomatique
de la théorie de la mesure, en particulier de 'utilisation des classes mono-
tones. Les démonstrations s’écrivent toutes seules!

3. Pour le changement de variables, la preuve présentée est naturelle, mais
quelque peu laborieuse. On peut procéder de maniére plus élégante, en
utilisant un théoreme moins élémentaire, celui de Radon-Nikodym (voir
Rudin [19, Chapitre 7]), mais cette approche convient plus en deuxiéme
lecture, lorsqu’on s’intéresse aux aspects plus avancés de la théorie de la
mesure. Il y a également une voie rapide et relativement élémentaire pour
y arriver, en passant par une réduction au cas de la dimension un (voir
Gramain [10, Section X.3]). Elle releve néanmoins trop d"une astuce pour
étre vraiment instructive et utile dans d’autres circonstances.
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E. Dans la perspective des évaluations liées a ce cours et de l'utilisation de la
théorie de la mesure dans des cours ultérieurs et « dans la vraie vie », les
objectifs minimaux sont les suivants.

1. Montrer qu'un ensemble est a. p. d.

2. Montrer qu'une fonction ou un ensemble sont mesurables.

3. Faire le lien entre intégrale habituelle (de Riemann) et intégrale de Le-
besgue.

4. Utiliser les propriétés de la mesure de Lebesgue et de la mesure de comp-
tage.

5. Utiliser correctement, notamment pour la mesure de Lebesgue, les théo-
remes fondamentaux (convergence monotone, convergence dominée, lem-
me de Fatou, intégrales a parametres, Fubini, Tonelli, changement de va-
riables). Ce sont notamment l'existence d’'une majorante intégrable et le
théoreme de Fubini qui posent le plus de problemes dans la pratique.

6. Manipuler les espaces .7 (inégalités de Holder, Minkowski et Young).

7. Manipuler les théoremes fondamentaux concernant les séries de Fourier
(Dirichlet, Fejér, Parseval) et la transformée de Fourier (formule d’inver-
sion, théoreme de Plancherel).

8. Manipuler les séries orthogonales dans un espace de Hilbert, et en particu-
lier le développement d'un vecteur dans une base hilbertienne.

Y arriver, c’est déja bien!

Dans cette optique, les notes de cours offrent les bases théoriques nécessaires
a la résolution des questions proposées en TD; la maitrise des objectifs ci-
dessus passe par la résolution des problémes. Les quelques exercices présents
dans le texte ont pour but uniquement d’illustrer les propos théoriques, voire
de déléguer au lecteur la vérification de quelques propriétés faciles.

F. La théorie de probabilités utilise de maniére intensive la théorie de la mesure
et de 'intégrale. Un trés beau premier texte sur ce sujet est Barbe et Ledoux
[3]. Plusieurs notions et résultats basiques en théorie des probabilités (mesure
image, formule de transfert, v. a. i., etc.) seront traités en TD.

G. En tant qu’étudiant, quels objectifs se donner pour ces UE? J'utiliserais une
métaphore bureautique. Pour un traitement de texte ou un tableur, il y a les
utilisateurs, les utilisateurs experts et les développeurs ou concepteurs. Les
premiers maitrisent les bases et savent éventuellement utiliser les tutoriels.
Les deuxiemes congoivent les tutoriels. Et les troisiemes développent le logi-
ciel.

Pour valider les UE, maitriser les compétences minimales énoncées en début
de chaque chapitre devrait suffire. Pour continuer en master de mathéma-
tiques, le bon objectif est de viser le niveau utilisateur expert : en plus des
compétences minimales, comprendre les énoncés, la structure des preuves les
plus courantes, savoir adapter ces preuves. Pour attendre le troisiéme niveau,

11



Guide de lecture

il faudrait s’attaquer aux exercices avancés, lire les sections « pour aller plus
loin » et, pourquoi pas, lire en parallele (le début de) I'un des textes cités dans
cette introduction, ou d’autres textes plus récents et accessibles comme Taylor
[21] ou (le début de) Lieb et Loss [16].

Pour aller plus loin

H. Un théoreme d’analyse s’utilise rarement dans la forme qui apparait dans les
textes (monographies ou cours). On a souvent besoin d’une variante qui se
montre en suivant les grandes lignes de la preuve du théoreme standard. Un
exemple typique est celui de la continuité d'une intégrale par rapport aux
parametres. C’est pourquoi il est important, pour ceux qui vont continuer
a utiliser I'analyse, d’avoir au moins une idée des preuves des principaux
résultats de ce cours.

I. La théorie de Lebesgue est née du besoin d’étudier la validité de 1’égalité
b

f() — fla) = f f'(x) dx lorsque f n’est plus de classe C'. La réponse est

connue, mais dé}%asse le cadre de ce cours. Quelques résultats en ce sens sont
mentionnés sans preuve. D’autres résultats avancés, significatifs pour la théo-
rie de la mesure et de 'intégration, sont mentionnés ici et 1a, dans les sections
«Pour aller plus loin ».

J. Pour aller au-dela de ce cours, plusieurs directions accessibles sont envisa-
geables.

1. La théorie « abstraite » : construction axiomatique des mesures par Cara-
théodory, théoréme de Radon-Nikodym-Lebesgue, mesures signées et vec-
torielles (théoremes de Hahn et Jordan, intégrale de Bochner), etc. Quelques
références a ce sujet : Halmos [11, Chapitre 6], Rudin [19, Chapitre 7] et,
pour une preuve trés élégante du théoréme de Radon-Nikodym-Lebesgue,
Taylor [21, Chapter 4]. Et un trés beau livre qui donne un panorama de
la théorie de la mesure : Bogachev [4]. Cette référence contient aussi un
nombre important de reperes historiques, liés aux travaux des grands noms
de la théorie (Lebesgue, Borel, Carathéodory, etc.). Une référence s’il n’en
fallait quune : le mémoire de 1904 de Lebesgue [15], qui contient sa théorie
de l'intégration, développée entre 1901 et 1904. Lebesgue avait 26 ans en
1901!

2. Les espaces L? traités du point de vue de I’analyse fonctionnelle; voir Bre-
zis [5, Chapitre 4].

3. Les mesures « concretes » et leurs applications. Nous traitons ici la mesure
de Lebesgue (dans R? : le volume), mais d’autres mesures ont une significa-
tion géométrique dans R? : la longueur des courbes, l'aire des surfaces. Une
facon unifiée de traiter ces notions est donnée par les mesures de Haus-
dorff, que nous nous contentons ici de définir. Nous expliquons aussi la
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démarche, due a Carathéodory et inspirée par la construction de la mesure
de Lebesgue, qui permet de montrer leurs propriétés. L'étude approfondie
de ces mesures meéne vers des formules géométriques, 1'étude des proprié-
tés fines des fonctions et une branche de 1’analyse, en plein développe-
ment, la « théorie géométrique de la mesure ». A son tour, la théorie géo-
métrique de la mesure est indispensable au traitement mathématique de
certains problemes concrets (traitement d’images, micro-structures, etc.).
Quelques références, de la plus élémentaire a la plus avancée : Evans et
Gariepy [7, Chapitres 2 et 3], Federer [8, Section 2.10], a nouveau Evans et
Gariepy [7, Chapitres 4, 5 et 6], Ziemer [23, Chapitre 3].

Guide pratique

1.

Pour faciliter la lecture, les définitions et résultats essentiels sont encadrés. Au
début de chaque chapitre sont fixés des objectifs minimaux de compréhension
et savoir-faire.

. Une autre aide a la lecture est le découpage des parties « au programme » en

texte principal (explications, définitions, énoncés), exercices, démonstrations.

. Les démonstrations prendront une place trés importante dans ce cours. Apres

deux premieres années universitaires passées principalement a apprendre les
énoncés des théorémes et a apprendre a s’en servir, nouvel objectif cette année :
comprendre les théoremes, et avoir un apercu de quelques théories (comme
celle de la mesure) accessibles a ce niveau.

Les principes de preuves jouent un role fondamental en analyse. C’est pour-
quoi j'ai privilégié des preuves moldues, qui évitent la magie, tout en reposant
sur des arguments qui servent souvent.

Les preuves sont souvent plus longues que dans d’autres textes. La raison
principale est qu’elles contiennent en général tous les détails.

Les parties « hors programme » (comme les sections « Pour aller plus loin », ou
le chapitre 5) sont rédigées comme des textes a lire en autonomie, et 1’ordre est
celui habituel d’un texte mathématique.

. Le manuscrit doit encore contenir des erreurs. Si vous en trouvez, merci de

m’en faire part a l’adresse mironescu@math.univ-1lyonl. fr
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Chapitre 1

Notations, rappels, premieres
définitions

1.0 Apercu

La théorie de l'intégration repose de maniére cruciale sur les inégalités, en
particulier sur des inégalités faisant intervenir sup et inf.

Un autre élément fondamental est le passage a la limite le long d’une suite.
Une suite n’a pas nécessairement une limite ; elle a néanmoins toujours une lim sup
et une liminf, qui sont de bons substituts de la lim. Ces notions sont rappelées
dans la section 1.1.

Un autre concept crucial en intégration est celui de famille dénombrable ou,
plus généralement, au plus dénombrable. Ces notions seront introduites dans la
section 1.2.

Enfin, nous verrons dans la section 1.3 les premiers objets fondamentaux en
théorie de la mesure : les clans, les tribus et les classes monotones (qui sont des
ensembles d’ensembles!) et les mesures.

Dans cette méme section, nous verrons quelques opérations internes a un clan
¢, ou tribu 7. Une propriété typique :si A, B € ¢, alors A\B € €.
Compétences minimales attendues.

a) Calculer le sup et I'inf d’un ensemble.
b) Calculer la lim sup et la lim inf d"une suite.

c) Montrer qu'un ensemble est (ou n’est pas) a. p. d. 3
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Notations, rappels, premiéres définitions 1.1 Limite supérieure, limite inférieure

1.1 Limite supérieure, limite inférieure

La théorie de la mesure exige de travailler avec les « nombres » —co et o0, donc
sur la droite réelle étendue R := R u {—0, w0}.

1.1 Définition (sup, inf). Si A < R est non vide (mais pas nécessairement
borné),

sup A := le plus petit majorant M € R de A,

inf A := le plus grand minorant m € R de A.

Ces quantités ont essentiellement les mémes propriétés que dans le cas des
ensembles bornés, comme le montre 'exercice 1.7.

Une autre notion fondamentale est celle de limsup (limite supérieure) d"une
suite. Nous savons qu'une suite réelle n’a pas nécessairement une limite. Elle a,
en revanche, foujours une limite supérieure lim sup et une limite inférieure lim inf.

Pour définir ces notions, précisons quelques notations.

1.2 Notations.
a) Sitous les termes de la suite (z,), appartiennent al’ensemble A, nous écrirons (zy,), <
Al

b) En regle générale, la notation sup z; désigne sup{z;; i € I}.
i€l
De méme, sup f(x) désigne sup{f(z); x € A}.
zeA

Notations similaires pour inf. o

1.3 Définition (lim sup, liminf). Si (z,), < R, alors

limsup x,, := lim sup zy, (1.1)
n n=0 p>n

liminf z, := lim inf x;. (1.2)
n n—oo k>n

1.4 Remarque. Considérons foutes les suites (z,, ), extraites de (x,,), qui ont
une limite.

Notons A = R I’ensemble de toutes les limites obtenues de cette facon.

Le nombre lim sup,, z,, est le plus grand élément de A, et liminf, z,, est le
plus petit élément de A.

t. Donc (7,,),=0 = A se substitue a la notation « officielle » (z,,),,=0 € AN.
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La remarque 1.4 est une conséquence des items c) et d) de la proposition 1.6
(qui suit). Elle donne une caractérisation de lim sup,, z,, et liminf,, z,, — caractérisa-
tion qui constitue une définition alternative de ces limites.

Quelques rappels utiles pour comprendre 1'énoncé de la proposition 1.6.

1.5 Rappels.
a) Lasomme x + y avec z,y € R, est définie a I'exception du cas oti z = o0 ety = —x.
b) En analyse, le produit tx, t € R, x € R, est défini saufsit = 0 et v = +o0. o

1.6 Proposition.

a) Les limites définies dans (1.1)—(1.2) existent.
b) Onalimsup,(tz,) = tlimsup, z, et limsup, (—tx,) = —tliminf, z,, Vt €]0, oo|.
Formules analogues pour lim inf.

c) Si(xn, )k est une suite extraite de la suite (z,,), telle que z,,, — ¢, alors liminf z,, <
n

¢ < lim sup z,,.

d) II existe une suite extraite (z,, ); telle que z,, — limsup z,. De méme pour
n
lim inf z,,.
n
e) Si z, — {, alors { = liminfz, = limsupx,. Réciproquement, si liminfz, =
n n n

lim sup z,, = ¢, alors x,, — /.
n

f) Sila quantité lim sup,, z,, + tlimsup,, y,, a un sens, alors

limsup (z,, + ty,) < limsup x,, + tlimsupy,, Vt €]0, .

n n n

Formules analogues pour lim inf (z,, + ty,,), limsup (z,, — ty,), iminf (z,, —ty,).

n

g) Six, — (etsilaquantité ¢ + limsup, y,, a un sens, alors

limsup (z,, + y,,) = £ + lim sup y,,.

n

De méme pour liminf,,. o

Exercices

1.7 Exercice. Soient A, B des parties non vides de R. Montrer que :

a) M = sup A si et seulement si M est un majorant de A et il existe une suite (z,), < A
telle que x,, — M. Caractérisation analogue de inf A.

1. L'impossibilité de définir utilement le produit ¢tz vient du calcul des limites. Dans le cadre de
la théorie de I'intégration, nous verrons que 0 - 00 = 0.
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Notations, rappels, premiéres définitions 1.1 Limite supérieure, limite inférieure

b) A admetsup A €] — 0, o] etinf A € [—o0, 0].

c) sup A et inf A sont uniques.

d) Nous avons sup (—tA) = —tinf A, V¢ €]0,00[. Formules analogues pour sup (tA),
inf (tA), inf (—tA).

e) Nous avons sup(A + B) = sup A + sup B et inf(A + B) = inf A + inf B.

f) Si A c B,alorsinf B < inf A < sup A < sup B.

g) Si (zn)n>n, < R est une suite croissante, alors

lim x,, = sup{x,; n > ng} = sup z,.
n n>ng

Enoncé analogue pour une suite décroissante.
h) Sisup A > x € R, alorsil existe un y € A tel que y > z. o

1.8 Exercice. Que devient ce qui précede si nous considérons des parties non vides A, B <
R? o

1.9 Exercice.

a) Siliminfz, > limsup z,, alors z,, — limsup,, z,, = lim inf,, x,,.
n n

b) Sia <z, <b,¥n = ny, alors a < liminf, z,, <limsup,, x, <.

¢) Sixy = a,Vn = ngetlimsup, z, < a, alors z,, — a. o
1.10 Exercice. Calculer lim sup xz,, et lim inf z,, pour les suites données par :
n

a) Tp = (_1)n’.

b) z, = (—=1)"+/n. o

1.11 Exercice. Montrer que [z, < yp, Vn > ng] = limsup z,, < limsup yy. o

Démonstrations

Démonstration de la proposition 1.6. Nous utilisons les items de I'exercice 1.7. Nous faisons les
raisonnements uniquement pour lim sup. Posons

X, := supxy et £ := limsup x,.
k>n n

a) La suite (X,,), décroit avec n (item f)). Elle a donc une limite. Ceci prouve l'existence
de ¢ = lim,, X,,, et aussi que ¢ < X,,, Vn.

b) Calculons par exemple lim sup,, (—tz,). Nous avons sup (—txy) = —t ]inf x, (item d)),
k>n =n
d’ou
lim sup (—tx,,) = limsup (—tzy) = lim (—t inf xk) = —tlim inf z;, = —tliminf z,,.
n N psn n k=n n k>n n

c) Nous avons x,,, < X,,, ¥ k. En passant a la limite sur k, nous obtenons ¢ < /.
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d)

f)

g

1

d/

Soit (My)g une suite telle que My, < £ et My, — ¢. Comme ¢ = lim,, X,, > My, Vk,
pour tour k il existe un rang my, tel que X,, > My, ¥n > my. Il s’ensuit que pour tout
ket n > my, il existe un m = m(n,k) > n (m dépend de n et k) tel que z,,, > Mj,
(item h)). Posons n; := m(m1, 1) et, par récurrence, N, := max (ng, my) + 1 et ng4q :=
m(Ng, k + 1). Nous avons ny, < ngy; et x,, > My, Yk (vérifier). La suite extraite
(xn, )k satisfait donc M;, < z,, < X,,. En faisant k& — oo et en utilisant le théoreme
des gendarmes, nous obtenons z,, — ‘.

Soit (2, ) telle que z,,, — ¢. Nous avons z,,, — £, d’ou ¢ = .

Réciproquement, supposons que hm inf x,, = lim SUp Ty = L. Soit Y, := gnf xy. Nous
>n

avons Y,, < z, < X, etY, — ¢, X — (. Le theoreme des gendarmes permet de
conclure.
Montrons I'inégalité pour lim sup,, (x,, — ty,). Nous avons (en utilisant les items d) et
e) de l'exercice)

sup (x,, — tyn) < sup x, + sup (—ty,) = supx, —t 1nf Un.-

k>n k>n k>n k>n

En passant a la limite dans I'inégalité ci-dessus, nous obtenons

lim sup (x,, — ty,) < limsup x,, — ¢ lim inf y,,.

n n n
Soit (yn, )i telle que vy, — limsup,, y,. Nous avons z, + yn, — ¢+ limsup,, y,. L'item
c) de cette proposition implique (*) £ + lim sup y,, < limsup,, (z,, + yn).

En particulier, nous avons avons « = » si £ + lim sup,, ¥, = o0 ou si limsup,, (x, +yp) =
—o0. Nous pouvons donc supposer que £+ lim sup y, < oo (et donc, en particulier, que
¢ < ) et que limsup,, (xy, + yn) > —0.

Par ailleurs, soit (z,, + yn, )r telle que x,, + yn, — limsup,, (z, + y»). Nous avons
Yn,, — limsup,, (z, +yp)—¥ (vérifier que lim sup,, (z, +yn) — ¥ existe bien!). A nouveau
l'item c) donne (**) lim sup,, (z, + yn) — £ < lim sup yy,.

Nous concluons grace a (*) et (**) (vérifier!). CQFD

.2 Dénombrement

En théorie de la mesure, nous travaillons souvent avec des familles (A;);cs
ensembles, avec / fini ou pouvant s’écrire comme une suite : dans ce qui suit,

un tel I est désigné comme au plus dénombrable. La question que nous abordons
ici est comment montrer qu'un ensemble est au plus dénombrable.

1.12 Définition (a. p. d.).

a) Un ensemble est dénombrable s’il est en correspondance bijective avec N
(autrement dit : si on peut écrire tous les éléments de A, sans répétition,
comme une suite).
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b) Un ensemble est au plus dénombrable (a. p. d.) s’il est soit fini, soit dénom-
brable.

L’outil le plus commode pour vérifier quun ensemble est dénombrable est le
suivant.

1.13 Proposition.

a) Une partie d'un ensemble a. p. d. est a. p. d.
b) Une union a. p. d. d’ensembles a. p. d. est a. p. d.
¢) Un produit cartésien fini d’ensembles a. p. d. est a. p. d.

d) Un ensemble a. p. d. qui contient une infinité d’éléments distincts est dé-
nombrable.

e) Un ensemble qui contient une partie qui n’est pas a. p. d. n’est pas a. p. d.
f) Si A et B sont en correspondance bijective et B est a. p. d., alors A est a. p.

d.

Exercices

1.14 Exercice. a) N*,7Z, Q, Z™, Q" sont dénombrables.
b) L'ensemble des parties finies de N est dénombrable.
¢) [0, 1], R ne sont pas dénombrables. o

Démonstrations

Pour la preuve de la proposition 1.13, voir la section 1.4.

1.3 Clans, tribus, classes monotones, mesures

Les premiers objets importants de la théorie de la mesure sont les ensembles.
Nous définissons ici les ensembles d’ensembles ™ qui jouent un role central dans la
théorie : les clans et les tribus.

1.15 Notations.
a) Z(X) est'ensemble de toutes les parties de X, c’est-a-dire : Z(X) := {A; A < X}.

b) Si A est une partie de X, le complémentaire de A dans X est noté X\ A. S’il est clair
qui est X, on notera ce complémentaire par A°. o

t. Donc un clan (ou une tribu) est un ensemble dont les éléments sont eux-mémes des en-
sembles...
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1.16 Définition (Clan). Un clan dans X (ou clan tout court, s’il est clair qui est
X) est un ensemble ¢ dont les éléments sont des parties de X" tel que :

i) Jge?;
ii) si A€ ¢, alors A€ ¢;
iii) Si A, Be €,alors Au Be%.

1.17 Remarque. La définition d’un clan demande qu'une union de deux ensembles de ¢’
soit encore dans €. Nous verrons plus loin (exercice 1.38) qu’une union consistant en un
nombre fini d’ensembles de € appartient a €.

En général, une union consistant en un nombre infini d’ensembles de € n’appartient pas
a’.

Le raisonnement « chaque A; (avec i € I) est dans ¢, d'olt U;c1A; € € » nest pas
valide, a moins de savoir que ! est fini. o

Voici un exemple fondamental de clan.

1.18 Proposition. L'ensemble %] des unions finies d’intervalles de R est un clan.
o

1.19 Définition (Tribu). Une tribu dans X (ou tribu tout court, s’il est clair qui
est X)) est un ensemble .7 dont les éléments sont des parties de X, tel que :
i) JeT;
ii) si Ae .7,alors A°e .7 ;
iii) Si Ay,...,A,,...€ J,alors u,_A, € 7.
Si une partie A de X appartient a .7, on dit que A est un ensemble .7-

mesurable (ou ensemble mesurable ou mesurable tout court, quand il est clair qui
est 7).

1.20 Remarque. La question « A < X est-il mesurable? » n’a pas de sens. La réponse
dépend de 7. o

1.21 Remarque. La définition d"une tribu demande qu'une union dénombrable d’ensembles
de .7 soit encore dans .7. L'exercice 1.38 montre que ceci encore vrai pour une union 4.
p. d.

En général, une union quelconque d’ensembles de .7 n’est pas dans .7
Le raisonnement « chaque A; (avec i € I) est dans .7, d’out u;c14; € 7 » n'est pas

valide, a moins de savoir que I est a. p. d. o

1.22 Dictionnaire.

t. Donc % < Z(X).
1. Situation analogue en topologie : la question « U est-il ouvert? » n’a pas de sens sans
connaitre la topologie 7.
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Notations, rappels, premiéres définitions 1.3 Clans, tribus, classes monotones, mesures

a) Clan=algebre=(en anglais) algebra.
b) Tribu=c-algébre=(en anglais) o-algebra. o

Quelques propriétés fondamentales (et simples) des clans et tribus :

1.23 Proposition. Soit € un clan. Nous avons :

a) X e&.

b) SiA,Be%,alors An Be%.

c) SiA, Be %, alors A\Be%.

d) SiAy,...,A, €%, alors Ul_AjeCetn]_AjeC.

1.24 Proposition. Soit .7 une tribu. Nous avons :

a) Xe 7.

b) SiA,Be Z,alors AnBe 7.

c) SiA, Be Z,alors A\Be 7.

d) SiAy,...,A,e T,alors UY_ A, € Tetni_ A, € 7.

e) SiA,....,A,, ...€ ,alors n,A, € .7. o

Voici un troisiéme type d’ensembles d’ensembles qui jouent un role impor-
tant, notamment au niveau des preuves : les classes monotones.

Pour commencer, deux définitions naturelles.

1.25 Définition. Une suite (4,,), de parties de X est:

a) croissante si A,, = A, ;1 pour tout n;

b) décroissante si A,, > A, pour tout n.

1.26 Remarque. La définition qui va suivre est celle de la littérature anglophone. La dé-
finition admise dans la communauté francophone est différente. Ceci explique pourquoi
le résultat fondamental qui fait intervenir les classes monotones, le théoreme 2.9 («de la
classe monotone »), a un énoncé différent de celui que 1’on trouve dans d’autres textes en
frangais. o

1.27 Définition (Classe monotone). Une classe monotone (dans X) est un en-
semble .Z de parties de X tel que :

i) Si (A,), © 4 est une suite croissante, alors U, A, € 4 ;

ii) Si (A,), < # est une suite décroissante, alors N, A, € ..

Dernier objet fondamental de cette section : la mesure. Dans les applications :
(i) la tribu (parfois le clan) est la collection des ensembles « que 1’on peut (ou que
'on sait) mesurer »; (ii) la mesure est la fonction qui associe a un ensemble de la
tribu sa «longueur », son « aire », son « volume », bref... sa mesure.
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1.28 Définition. Une famille d’ensembles (A;)c; est d. d. d. (acronyme pour deux
a deux disjoints) si A; n A; = (&,Vi,j € I aveci # j. o

1.29 Notation. Il sera commode d’utiliser la notation « L1 » pour des unions d. d. d. :
UierA; dénote 1'union d’une famille (A;);e; d’ensembles d. d. d. o

1.30 Définition (Mesure). Si ¢ est un clan, une mesure positive sur ¢ (ou me-
sure tout court) est une application p : € — [0, 0] telle que :

i) u() =0;
ii) Si (A,), < € est une suite d. d. d. et si U, A, € ¥, alors pu(u,A4,) =

2 1(An).

1.31 Remarque.

a) La propriété ii) est la o-additivité.
b) Dans le cas particulier ot1 ¢ est une tribu, I'hypotheése U, A,, € € est automatiquement
satisfaite. o

1.32 Définition (Espace mesurable, mesuré).

a) Un espace mesurable est un couple (X, .7), avec .7 tribu dans X.

b) Un espace mesuré est un triplet (X, .7, ), avec 7 tribu dans X et ; mesure
sur 7.

Nous concluons cette section avec quelques définitions et notations utiles.
1.33 Notation. AAB := (A\B) u (B\A) désigne la différence symétrique de A,B < X. o

1.34 Notations.
a) A, /" Asignifie que la suite (A;,),, est croissante et A = U, A,,.
b) A, \, A signifie que la suite (A,,),, est décroissante et A = N, A,,. o

1.35 Définition (Fonction caractéristique). Si A < X, la fonction caractéristique de
Aest xa: X — {0,1}, définie par

(z) 1, size A .
xXr) .= .
x4 0, size X\A

Exercices

1.36 Exercice (Exemples fondamentaux de clans).

a) Soit I < R un intervalle. L'ensemble %" des unions finies d’intervalles contenus dans
I est un clan (sur 1).

b) Un pavé de R" est un ensemble de la forme P = Iy x Iy x --- x I, avec chaque I}
intervalle de R. L'ensemble %, des unions finies de pavés de R™ est un clan.
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c) Tout élément de %), est une union finie de pavés de R™ deux a deux disjoints. o

1.37 Exercice.

a) Soit ¢ un clan sur X. Soit Y ¢ X. Montrer que 6y := {AnY ; A€ €} estun clan sur
Y.

De méme pour une tribu 7.

¢y (respectivement .%y) est le clan induit par ¢ sur Y (respectivement la tribu induite
par 7 surY).

b) SiY e %, alors 6y = {A; Ae €, AcY}. o
1.38 Exercice. Montrer que si ¢ est unclanet A;,..., A4, € €,alors A; u... U A, € €.
De méme si on remplace clan par tribu. o

1.39 Exercice.
a) Z(X) estune tribu.
b) Si X = {1,2,3},alors ¢ = {J, X, {1}, {2, 3}} est une tribu. o

1.40 Exercice. Si X est fini, alors tout clan est une tribu. o

1.41 Exercice.

a) Montrer que A,, / A si et seulement si : la suite de fonctions (x4, )» est croissante et
converge simplement vers x .

b) De méme, A, \, A si et seulement si : la suite de fonctions (x4, )» est décroissante et
converge simplement vers x 4. o

1.42 Exercice.

a) Toute tribu est un clan.
b) Toute tribu est une classe monotone. o

1.43 Exercice. Soit 1 : € — [0,0] (avec ¢ clan) une application qui vérifie I'axiome
ii) d'une mesure. Montrer que : (i) ou bien x est une mesure; (ii) ou bien pu(A) = oo,
VAe®@. o

Les deux exercices suivants donnent des exemples basiques de mesures.

1.44 Exercice. Soit a € X. Soit §, : Z(X) — [0, 0],

5a(A) i 1, siae A
o, siag A

Montrer que J, est une mesure. C’est la mesure de Dirac en a (ou masse de Dirac en
a). o

1.45 Exercice. Soit X un ensemble. Montrer que 'application p : (X)) — [0, 0],

card A, si A est fini
n(A) = {

0, sinon

est une mesure sur (X ). C'est la mesure de comptage. o
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Démonstrations

Démonstration de la proposition 1.18. Les axiomes (i) et (iii) sont clairement satisfaits. Il reste a
vérifier (ii). Si J < R est un intervalle, alors J¢ est un intervalle ou 1'union de deux in-
tervalles, d’ou J¢ = L y U Ly 5, avec Ly j et Lo j intervalles (éventuellement I'un d’entre
eux vide). Si A € €1, on peut écrire A = U1 <y<pJy, avec chaque Jy intervalle, d’ott

Cc
A° = (U1<e<nJo)® = N1<e<n(J0) = N1<e<n(L1,, U La,j,)
= Uiy, ine{1,2} N<t<nli, j, € €1,

ol la conclusion finale utilise le fait qu’un intersection (méme arbitraire...) d'intervalles
est un intervalle. CQFD

Démonstration de la proposition 1.23.

a) Ona X = g°.

b) découle de l'identité A n B = (A U B°)“.

c) suitdeb)etde A\B = A n B°.

d) se montre par récurrence sur n. CQFD

Démonstration de la proposition 1.24.
a)-d) sont une conséquence de la proposition 1.23, car une tribu est un clan (exercice
1.42).

e) découle de l'identité N, A,, = (U, AS)C. CQFD

1.4 Pour aller plus loin

Dans cette section, nous démontrons la proposition 1.13 (et un peu plus). Pour
faciliter la compréhension, les outils utilisés dans la preuve ont été énoncés et
prouvés séparément, comme des lemmes. ' Un ingrédient important de la preuve
est le théoreme de Cantor-Bernstein 1.51, que nous prouvons uniquement dans le
cas simple qui sert a la preuve de la proposition 1.13.

1.46 Lemme. Toute partie infinie A de N est dénombrable. o

Démonstration du lemme1.46. Soient xp := min A et Ay := A\{zo}. Notons que Ay # &
(sinon A serait fini).

Par récurrence, soient ,,1 := min A, et A,+1 := A,\{zn+1}. Alors A, est non vide,
V n, sinon A serait fini, et x,,+1 > x,,, ¥ n (vérifier par récurrence sur n).

La suite (zy,),, d’entiers est donc strictement croissante, d’ott z,, — c0.

11 suffit de montrer que A = {xo,z1,...}. (En effet, si tel est le cas, alors f : N — A4,
f(n) := xy, Vn, est une bijection.) Preuve par 'absurde. Supposons qu’il existe = € A tel

t. Pour lemme, voir https://fr.wikipedia.org/wiki/Lemme_ (mathAl’matiques).
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que = # x, pour tout n. On a x > xy, par choix de zp, d'ott x € Ag. Comme x # x1, on
trouve x > x. Par récurrence, z € A,, et x > x4 pour tout n. En passant a la limite,
x > limx,,1 = 00, absurde. CQFD

1.47 Lemme. Si A c B avec B a. p. d., alors Aesta. p. d.

Par contraposée, si A © Bet An’est pasa. p.d., alors Bn'estpasa.p.d. ¢

Démonstration du lemme1.47. Si A ou B est fini, c’est clair. Supposons A et B infinis.

Soit f : B — N une bijection. La restriction g de f & A est une bijection entre A et
C = f(A).

C est infini, sinon A serait fini.

Le lemme précédent montre qu’il existe une bijection h : C' — N.

Il s’ensuit que h o g : A — N est une bijection. CQFD

1.48 Lemme. S'il existe une injection f de A vers N, alors A est a. p. d. La réci-
proque est vraie. o

Démonstration du lemme 1.48. A est en bijection avec B := f(A) < N.
Si B est fini, alors A ’est aussi.
Si B est infini, alors B est en bijection avec N (lemme 1.46), donc A 'est aussi.
Réciproquement, supposons A a. p. d. Si A est infini, alors A est en bijection avec N.
Si A est fini, alors on peut écrire A = {zy,..., 2z}, et la fonction A 5 z,, — n € Nest

injective. CQFD

1.49 Corollaire. ' Si A est infini et s’il existe une injection f de A vers N, alors A
est dénombrable. o

Démonstration du corollaire 1.49. Exercice! CQFD

1.50 Lemme. Si B est a. p. d. et s'il existe une injection f : A — B, alors A est a.
p-d. o

Démonstration du lemme1.50. L'ensemble C' := f(A) est une partie de B, donc (grace au

lemme 1.47) C est a. p. d.

A est en bijection avec C, donc A est a. p. d. CQFD

1.51 Théoréme (Théoréme de Cantor-Bernstein; cas particulier). S'il existe une
injection f : A — N et une injection g : N — A, alors A est dénombrable. o

Démonstration du théoréme 1.51. A est en bijection avec f(A) < N, donc A esta. p. d.
Par ailleurs, A n’est pas fini, car il contient la suite d’éléments distincts g(0), g(1), .. ..

Il s’ensuit (grace au corollaire 1.49) que A est dénombrable. CQFD

t. Corollaire : cas particulier ou conséquence immédiate d'un résultat déja montré.
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1.52 Remarque. L'énoncé intuitif du théoreme (général) de Cantor-Bernstein est le suivant :
Soient A, B deux ensembles tels que : (i) B a plus d’éléments que A; (ii) A a plus d’élé-
ments que B. Alors A et B ont autant d’éléments.

L’énoncé rigoureux est : Soient A, B deux ensembles tels qu’il existe f : A — B injec-
tiveet g : B — Ainjective. Alors il existe h : A — B bijective.

De maniére équivalente, sil existe f : A — B injective et k : A — B surjective, alors
il existe h : A — B bijective.

Voirhttps://fr.wikipedia.org/wiki/ThAl’ orAlme_de_Cantor-Bernstein.
(Notamment la preuve Konig du théoreme). o

1.53 Lemme. N2 est dénombrable. o

Démonstration du lemme1.53. N? est infini, car il contient la suite ((n,0)),cy, dont les élé-
ments sont distincts.

1l suffit donc de construire une application injective f : N> — N. (Le corollaire 1.49
permet alors de conclure.) Soit f : N2> — N, f(m,n) := 2™ 3". L'unicité de la décomposi-
tion d’un entier en facteurs premiers montre que f est injective. CQFD

Le résultat précédent implique qu’il existe une bijection entre N? et N. En voici
une explicite.

1
1.54 Exercice. Soit f : N> — N, f(m,n) := m ¢ n)(T;L rnrd

bijective. o

+ n. Montrer que f est

Les résultats suivants completent la preuve de la proposition 1.13.

1.55 Lemme. Un produit cartésien fini d’ensembles a. p. d. est a. p. d. o

Démonstration du lemme1.55. 11 suffit de montrer le résultat quand il y a deux facteurs; le cas
général s’obtient par récurrence sur le nombre de facteurs dans le produit.

Soient A1, A2 deux ensembles a. p. d. Du lemme 1.48, il existe f; : A; — N injective,
j =1,2.Soit g : N2 — N bijective (c¢f lemme 1.53). Alors
h: Ay x Ay — N, h(ay,az) := g(f(a1), f(az)), Va1 € A1, az € Aa,

est injective (vérifier!), d’ot1 la conclusion (grace au lemme 1.48). CQFD

1.56 Lemme. Une union a. p. d. d’ensembles a. p. d. est a. p. d. o

Démonstration du lemme1.56. Soient A,, n < [, avecl = N* U {0}, des ensembles a. p. d.

Posons By := Agpet,pour1 <n <, B, := An\(uz;(l)Ak). Alors les B,, sontd. d. d. et
UnBn = UnAn.

Comme A, est a. p. d. et B, < A,, 'ensemble B,, est a. p. d. (lemme 1.50). Nous
pouvons donc écrire B,, = {z]' ; i < l,}, avec l,, € N U {00}, d’ou tout élément de A :=

7 )
UnA, s’écrit de maniére unique z} pour unn € Net pour uni € N.
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L'application 4 3 27 > (n, i) € N? est donc injective.

Comme dans la preuve du lemme 1.55, il s’ensuit que A = U, A,, esta. p. d. CQFD
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Chapitre 2

Tribus, clans, classes monotones

2.0 Apercu

Rappelons que les clans, tribus, classes monotones sont des ensembles dont
les éléments sont eux-mémes des ensembles. Toute collection </ d’ensemble en-
gendre un clan, tribu ou classe monotone, au sens ot il existe une plus petite collec-
tion d’ensembles, contenant <7, et qui soit un clan, ou tribu, ou classe monotone
(section 2.1). Cette propriété est un parent d’autres propriétés du méme type : par
exemple, toute partie ' d'un espace vectoriel engendre un espace Vect (F).

Dans la section 2.2, nous montrons le premier résultat important de ce cours,
le théoreme de la classe monotone. Son importance est plutot théorique : le théoreme de
la classe monotone permet de montrer facilement qu'une propriété vraie (et, souvent,
évidente) pour une famille o/ d’ensembles, reste vraie pour la tribu engendrée par
</ . Deux applications fondamentales de ce théoréeme seront vues dans ce cours :
I"unicité de la mesure de Lebesgue (section 4.5) et les propriétés des coupes des
ensembles (section 8.1). Bien d’autres applications seront vues dans le cours de
probabilités.

Enfin, dans la section 2.3, nous introduisons la plus importante des tribus, la
tribu borélienne (du nom du mathématicien francais Emile Borel). Elle est engen-
drée par les ouverts d"un espace métrique.

Compétences minimales attendues.
a) Montrer qu'un ensemble appartient a un clan ot a une tribu.
b) Plus particulierement, montrer qu'un ensemble est borélien. o

2.1 Structures engendrées

« Engendré » est ici analogue a ce que nous avons rencontré avec d’autres
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structures : espace vectoriel engendré par une famille de vecteurs (contenus dans
un espace vectoriel), sous-groupe engendré par une partie d'un groupe, etc.

2.1 Proposition. Si o/ < Z(X), alors il existe un plus petit clan (ou tribu, ou
classe monotone) % contenant .7

En d’autres termes, il existe # tel que :

i) 4 soit un clan (ou tribu, ou classe monotone).
ii) & < A.
iii) Si Z est un clan (ou tribu, ou classe monotone) contenant <7, alors # < Z.

% est le clan (ou tribu, ou classe monotone) engendré par o/ et est noté respec-
tivement ¢ (&), 7 () ou M (). o

Comparons les trois structures engendrées par une famille ..

2.2 Proposition. Ona ¢ («) ¢ T (). o
2.3 Proposition. Ona .# () ¢ T (). 3
2.4 Proposition. Un clan ¢ qui est aussi une classe monotone est une tribu. ¢
Exercices

2.5 Exercice. Si (% );es est une famille telle que & < Z(X), Vi € I, et si chaque %
est un clan (ou tribu, ou classe monotone), alors ;797 est un clan (ou tribu, ou classe
monotone). o

2.6 Exercice. Si X := {1,2,3} et & := {{1}}, alors:

a) le clan (et la tribu) engendré par <7 est {F, X, {1},{2,3}};
b) la classe monotone engendrée par <7 est .<7. o

2.7 Exercice (Une source de contre-exemples). Soient X := Net o/ := {{n}; n € N}.
Montrer que :

a) 7(o)=2N);
b) ¢(«/) = {A < N; Afini ou A€ fini}.
c) M(A)=d.
d) En déduire que:
(i) Engénéral, 7 () # € (), T () # M () et C () # M ().
(ii) Si€ estunclanet(A,)y,>0 < €, alors en général U,>0A, ¢ € et Np>0An ¢ 6. ©
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Démonstrations

Démonstration de la proposition 2.1. Nous faisons la preuve pour les clans; preuve identique
dans les autres cas.

Soit # :={Z ;.9 < P et Z estun clan}.

La famille .# est non vide; elle contient & (X).

Sion pose % := Ngez Y, alors % est un clan contenant .« (voir l'exercice 2.5).

Par définition de .%, tout clan Z contenant &/ appartient a .7, donc (par définition de

A) contient A. CQFD

2.8 Remarque. C’est la méme preuve que celle qui donne 'existence du sous-espace
engendré par une partie d'un espace vectoriel, ou I’existence d'un sous-groupe engendré
par une partie d"un groupe, etc. o

Démonstration de la proposition 2.2. Avec .# comme ci-dessus et
G :={9; o < Jet P tribu},

nous avons .% D ¥, etdonc ¢ () = Ngeg? < Ngey? = T (). CQFD

Démonstration de la proposition 2.3. Preuve analogue a celle de la proposition 2.2, en rempla-
¢ant « clan » par « classe monotone ». CQFD

Démonstration de la proposition 2.4. Nous devons montrer que, si (A, )n>0 < €, alors Up=0A,
€%.

Soit B, := u}_,Ak, Vn. Nous avons B, / UpAy et B, € ¢,V n (car ¢ est un clan).

& étant une classe monotone, nous trouvons U, Ay = U, B, € €. CQFD

2.2 Théoréme de la classe monotone

Cette section est consacrée a la preuve du premier résultat important que nous
rencontrons :

2.9 Théoreme (Théoreme de la classe monotone). € clan =— #Z (%) =

T(€).

Ou encore : la classe monotone engendrée par un clan est la tribu engen-
drée par le clan.

En particulier, toute classe monotone qui contient 4" contient également
T(€).

2.10 Remarque. Voir la remarque 1.26! o
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2.11 Remarque. Concretement, le théoreme de la classe monotone est utilisé pour établir
«pour pas cher » que, pour une propriété (P) et une tribu .7, nous avons

Ae T = A satisfait (P). (2.1)

Le schéma « abstrait » est le suivant. Si :
i) € estun clan qui engendre .7, c’est-a-dire tel que .7 (%) = 7.
ii) (P) est vraie pour tout A € €.
iii) {A c X ; A satisfait (P)} est un classe monotone,
alors nous avons (2.1).

Ce schéma est intéressant notamment lorsque la propriété ii) est évidente; ceci est par
exemple le cas dans la preuve des propositions 4.24 et 8.8. o

Exercices

2.12 Exercice.
a) Si/ < B,alors € (o) < €(B), # () M(B)et T ()< T(B).
b) Nous avons ¢ (¢ («)) = € ().
Propriété analogue pour la classe monotone et la tribu engendrées. o

Démonstrations

Démonstration du théoréme 2.9. Au vu de la proposition 2.3, il suffit de montrer que (*) .# :=
M (€) contient .7 (¥).

Par définition de la tribu engendrée, (*) est vraie si .# est une tribu. Pour mon-
trer que .# est une tribu, il suffit de montrer que (**) .# est un clan, car « clan+classe
monotone==tribu » (proposition 2.4). Ainsi, le théoréme 2.9 est ramené a la propriété
suivante, que nous allons prouver dans ce qui suit : la classe monotone engendrée par un
clan est un clan.

Posons, pour A ¢ X fixé, #4 := {B e .# ; Au B e #}. Alors .44 est une classe
monotone. En effet, soit (B,,), < .#4 une suite croissante. Alors A U U, B, = U,(A U
By,) € #, car la suite (A U B,), < . est croissante. De méme, si (B,,), < .#4 est une
suite décroissante, alors A U N, B, = N, (AU B,) € 4.

Si A e €, alors #4 o ¢ et donc, de ce qui précede, .#Z4 est une classe monotone
qui contient . Il s’ensuit que .#4 > .# (justifier). Comme, par ailleurs, .#4 < .#, nous
avons 4 = # . Autrement dit, 'union d’un élément de ¥ et d’un élément de .# est un
élément de ./ .

Par conséquent, si A € .#, alors .#4 > ¢ .1l s’ensuit que .#4 = .#. Donc, (***) si
A, Be . #,alors Au Be . Z.

Enfin, soit A" := {A € .4 ; A € .#}. Alors ./ est une classe monotone. En effet, si
(Bn)n < A est une suite croissante, alors (U, By)¢ = N, BS € A, car (B,), < A estune
suite décroissante. Il s’ensuit que v, B, € .A4".
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De méme, si (By,),, < -4 est une suite décroissante, alors N, B,, € 4.

Donc 4 est en effet une classe monotone. Comme .4 contient ¢, nous trouvons
N = . Autrement dit, (****)si A e .#,alors A° e .#.

(**) découle de (***), de (****) et de I'observation que J € .# (car J € F). CQFD

2.3 La tribu borélienne

Dans cette section, nous définissons la tribu la plus importante pour les appli-
cations : la tribu borélienne.

Soit (X, d) un espace métrique.”

2.13 Définition (Tribu borélienne). La tribu borélienne #x sur X est la tribu
engendrée par les ouverts de X.

Ou encore : Bx := 7 ({U ; U ouvert de X}).

Si on désigne par 7 la topologie de X (=l'ensemble des ouverts de X),
alors Bx = 7 (7).

Les ensembles de cette tribu sont les boréliens de X .

2.14 Remarque. Donné X, la question « A est-il un borélien? » n’a pas de sens, car la
tribu borélienne dépend de la distance sur X. C’est la situation rencontrée en topologie a
propos de la question « A est-il un ouvert? ».

Néanmoins, il y a un abus fréquent de langage : « A — R" est borélien » sous-entend
que R™ est muni d'une norme. o
2.15 Remarque. Il est souvent utile d’avoir un systeme de générateurs d’une tribu .7, c’est-
a-dire une famille </ (simple a décrire) telle que 7 (&) = 7.

Une telle famille permet de mettre en ceuvre un mécanisme similaire a celui de la
remarque 2.11. Si:

i) (o) =27.
ii) (P) est vraie pour tout A € &/.
iii) {A < X ; A satisfait (P)} est une tribu,

alors

Ae T = A satisfait (P). o

La proposition suivante donne quelques systemes importants de générateurs.

t. Plus généralement, nous pouvons considérer, au lieu d'un espace métrique, un espace to-
pologique (X, 7). Néanmoins, pour les applications usuelles en théorie de 'intégration, le cadre
des espaces métriques est suffisant.
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2.16 Proposition.

a) Hx estla tribu engendrée par les fermés de X.
b) g est la tribu engendrée par :

(i) les intervalles de R

ou
(ii) les intervalles de la forme |a, o0].

c) PBrn est engendrée par les pavés ouverts de R", c’est-a-dire les ensembles P
de la forme P = I; x I, x --- x I, avec I; intervalle ouvert, V j.

2.17 Remarque (Les ensembles « usuels » sont boréliens). Si on munit R” d’une norme,
il existe des parties de R™ qui ne sont pas boréliennes (un exemple, assez difficile, sera
examiné dans le chapitre 4).

Ce qu'il faut retenir est que tous les ensembles ne sont pas nécessairement boréliens.
En revanche, tous les ensembles « usuels » sont boréliens. o

Exercices

2.18 Exercice. On munit R de la métrique usuelle. Les intervalles, les fermés et les ouverts
(de R) sont boréliens. o

2.19 Exercice. Soit (X, d) un espace métrique. Soit Y < X, muni de la métrique induite
par X. Montrer que #y = {BnY ; Be %Bx}.

De maniere équivalente, %y coincide avec la tribu induite par Zx sur Y. o

2.20 Exercice. Soient (X, d), (Y, ) deux espaces métriques. Soit ® : X — Y un homéomor-
phisme.t Si A = X, alors A € B si et seulement si ®(A) € By

Symétriquement, si B c Y, alors B € Py si et seulement si ~1(B) e Bx.

Si nous supposons uniquement ® continue, alors nous avons B € By = & }(B) e
P . o

2.21 Exercice.

a) Soient A € HBrn et B € Brm. Montrer que A x B € Brn+m.

b) Plus généralement, si (X, d) et (Y, J) sont des espaces métriques et si nous munissons
X x Y d’une métrique produit, alors Bx x By < Bxxy. o

2.22 Remarque. Nous reprenons le cadre et la conclusion de l'exercice 2.21. Si (X, d) et
(Y, d) sont des espaces métriques et si nous munissons X x Y d’une métrique produit,
alors Bx x By < Bxy.Dans des situations usuelles, nous avons 'égalité Bx x By =
Bx xy (voir I'exercice de synthese # ??, partie II f)). Néanmoins, en général, cette inclusion
est stricte (pathologie de Nedoma [18]). Voici (sans preuve) un exemple : si X = Y =

1. Un homéomorphisme est une application ® : X — Y, avec X, Y espaces métriques (ou
topologiques), continue, bijective, et avec ! continue.
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L s

Z(R), muni de la métrique discrete d(z,y) := O’ S% v y’ alors la diagonale A, :=
, siz =y

{(z,z); x € X} appartient & Bxgx, mais pas a Bx @ HBx. o

Démonstrations

Dans la preuve de la proposition 2.16, nous utiliserons les deux faits suivants.

2.23 Rappels.

a) Tout ouvert de R est une union a. p. d. d’intervalles ouverts d. d. d.

b) Si on munit R" d"une norme, tout point de R" est la limite d"une suite de points ayant
toutes les coordonnées rationnelles. o

Démonstration de la proposition 2.16. Notons, dans chaque cas, 7 I'ensemble des ouverts, et ./
I'ensemble des parties de X données par 1'énoncé (fermés, intervalles, etc).

Dans chaque cas, nous avons &/ < %Ay, etdonc I () < T (#x) = PBx.ll reste donc
a montrer l'inclusion inverse .7 (&) > %x.

Pour cela, il suffit de montrer que 7 < .7 (), car si tel est le cas alors nous avons
Bx = T (1) c T(T()) = T(&). En conclusion, il suffit de montrer que U € .7 (&)
pour tout ouvert U.

Soit U un ouvert.
a) Nousavons U¢ e &7, d'ouU = (U € T ().
b) (i) U estune union a. p. d. d’intervalles ouverts I; (voir le rappel 2.23 a)).

Comme chaque I; est dans <7, nous avons U € .7 («/).

(ii) De ce qui précede, il suffit de montrer que tout intervalle ouvert I =]a, b[ est
dans .7 ().

SiaeRetb= oo, cestclair.

Si I =R, nousavons I = Upen| — n,0[e T ().

Il reste le cas b € R.

Pour tout ¢ € R, nous avons |a, c|] =]a, o0[n]c, 0[€ T ().
Il s’ensuit que |a, b[= Upen+]a,b—1/n] € T ().

c) Les ouverts de R", donc la tribu borélienne, ne dépendent pas de la norme choisie.
Nous prenons comme norme ||| o.

Soit € := {B(x,r) ; x € Q",r € Q}. Alors € < 4/ et € est a. p. d. (En effet, la
fonction B(z,r) — (x,r) € Q" x Q est injective et Q" x Q est dénombrable.) Il suffit
donc de montrer que U est I'union d"une famille de boules de ¢’; cette union sera
automatiquement a. p. d.

Posons & := {B(x,r) € ¢ ; B(x,r) < U}. Nous allons montrer I'égalité

UB(:c,r)EQB(xvr) =U. (22)

39



Tribus, clans, classes monotones 2.3 La tribu borélienne

Dans (2.2), I'inclusion « c » est claire.

Montrons, dans (2.2), « © ». Soit y € U. Nous allons trouver une boule B(z, r) telle que
B(z,r)e P ety e B(x,r).

Il existe un R > 0 tel que B(y, R) < U. Quitte a diminuer R, nous pouvons supposer
ReqQ.

Soit x € Q" tel que ||z — Y| < 7 := R/2. (L'existence de y découle du rappel 2.23
b).) On vérifie aisément que y € B(z,r) et B(z,r) < B(y,R); d'ou B(z,r) < U.
Finalement, nous avons bien B(z,r) € Y ety € B(z,r). CQFD
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Chapitre 3

Fonctions mesurables

3.0 Apercu

La topologie travaille avec des ensembles, dont les plus importants sont les
ouverts, et des fonctions, dont les plus importantes sont les fonctions continues.
Nous avons rencontré, dans le chapitre précédent, des analogues des ouverts en
théorie de la mesure : il s’agit, dans un cas particulier, de boréliens, et dans le cas
général d’ensembles mesurables, c’est-a-dire les éléments d"une tribu.

Dans ce chapitre, nous définissons les analogues des fonctions continues, qui
sont les fonctions mesurables. Au vu de la définition d’une fonction continue,
une définition naturelle serait

f : X — R est mesurable
- a0 (3.1)
< f7(B) est mesurable, V B — R borélienne.

La propriété (3.1) apparait en effet dans de nombreux textes, notamment
en théorie des probabilités, comme définition d’une fonction mesurable. Pour
des raisons de déroulement naturel des preuves, nous ne partirons pas de
cette définition, mais d’une définition équivalente (la définition 3.3 ci-dessous),’
et (3.1) n’est plus la définition, mais une caractérisation des fonctions mesu-
rables.

Comme pour les fonctions continues, les opérations usuelles (somme, pro-
duit, etc.) transforment les fonctions mesurables en fonctions mesurables; ceci
sera prouvé dans les sections 3.2 et 3.3. Nous apprendrons au passage un slogan

t. Une raison plus profonde que le déroulement des preuves, raison qui dépasse largement le
cadre de ce cours, de préférer la définition 3.3 a la définition (3.1) est que, pour des fonctions a4
valeurs vectorielles, (3.1) et la définition 3.3 ne sont plus équivalentes. Dans ce cadre, la « bonne »
définition est 3.3.
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tres important : borélien o mesurable = mesurable, qui est le pendant de continu o
continu = continu.

Une propriété qui distingue les fonctions mesurables des fonctions continues
est qu'une limite simple de fonctions mesurables est mesurable; rappelons qu’en
général ceci est faux pour les fonctions continues.

Compétences minimales attendues.

a) Vérifier qu’une fonction concrete est mesurable, en particulier via 1’exercice
3.18.

b) Utiliser les fonctions mesurables pour montrer que des ensembles sont mesu-
rables. o

3.1 Définition. Caractérisation

Dans cette section, nous définissons les fonctions mesurables et donnons des
caractérisations (qui peuvent étre vues comme des définitions alternatives) de
celles-ci. Le point de départ est celui des fonctions étagées.

3.1 Notations.
a) Sif: X »>YetBcY,alors f1(B):={re X; f(z) e B}.

b) Pour alléger I'écriture, si B := {y}, nous écrivons f~1(y) au lieu de f~!({y}). Ainsi,

fHy) ={ze X; f(z) =y} o

3.2 Définition (Fonction étagée). Une fonction étagée est une fonction f : X —
R dela forme f = > a;xa,, ol :

i) La somme a un nombre fini de termes.

ii) a; e R, Vi.
iii) A; e 7, Vi.

3.3 Définition (Fonction mesurable). Une fonction f : X — R est mesurable s'il
existe une suite (f,,), de fonctions étagées telle que f, — f simplement.

Dans le cas particulier ot (XX, d) est un espace métrique et .7 est la tribu
borélienne, f est une fonction borélienne.

Dans le cas particulier de 1’'espace (R",.7,), f est une fonction Lebesgue
mesurable. T

3.4 Remarque.

t. &, estla tribu de Lebesgue, qui sera introduite dans la définition 4.36.
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a) La question « f est-elle mesurable? » n’a pas de sens si .7 n’est pas précisée; la ré-
ponse dépend de .7. Voir la remarque 1.20.

b) Dans le cas particulier ot X < R", sauf spécification contraire, la tribu considérée est
la tribu borélienne induite par %y~ sur X, c’est-a-dire Zx = {Bn X ; B € HBgn} (voir
’exercice 2.19). Donc lorsque X < R", « mesurable = borélien ». o

Comme expliqué dans I’aperqu, les fonctions mesurables peuvent étre décrites
en termes d’images réciproques.

3.5 Théoreme (Caractérisation des fonctions mesurables). f : X — R est
mesurable si et seulement si les trois conditions suivantes sont satisfaites :

i) f (o) e 7.
i) f~}(—w)e 7.
iii) f~'(B) € J pour tout B € By.

3.6 Remarque. Supposons f : X — R (c’est-a-dire, f ne prend pas les valeurs +o0). Dans
ce cas, la condition de mesurabilité devient f *1(B) € I,V B € $p. Cette condition est
précisément a (3.1). Donc, comme annoncé dans 1'introduction, pour des fonctions finies
(3.1) est une caractérisation de la mesurabilité. o

La preuve du théoreme 3.5 (mais pas son énoncé) mene a la conclusion sui-
vante.

3.7 Corollaire. Toute fonction mesurable positive est la limite d'une suite
croissante de fonctions étagées positives.

Voici une autre caractérisation des fonctions mesurables, plus utilisée dans la
pratique que le théoréme 3.5. Son énoncé est a mettre en rapport avec les systemes
de générateurs (remarque 2.15 et propriété 2.16).

3.8 Proposition. f : X — R est mesurable si et seulement si nous avons

{reX; f(z)>a} = f'(Ja,»]) € 7 pourtouta e R.

En particulier, f : X — R est mesurable si et seulement si nous avons

f*(Ja,c[) € 7 pour tout a € R. o

Le résultat suivant est un théoreme-définition : si f : X — R”, nous pouvons
prendre chacune des propriétés équivalentes 1 et 2 comme définition de la me-
surabilité. A mettre en parallele avec I'équivalence (avec cette fois-ci X espace
métrique)

f=(f,...,fn): X > R" continue < f; continue, Vi € [1, n].
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3.9 Théoreme. Soit f = (fi, fo,..., fn) : X — R™. Les propriétés suivantes sont
équivalentes.

1. Chaque f; est mesurable, i € [1,n].
2. Pour tout B € %gn, f1(B) e 7.

Sil'une de ces deux conditions est satisfaite, f est appelée mesurable.

Cas particulier: f : X — C estmesurable<— Re f et Im f sont mesurables. <

Les fonctions ne sont pas toujours définies sur 1’espace entier X, mais unique-
ment sur une partie A de celui-ci. Nous définissons ici la notion de mesurabilité
dans ce cas. Ce n’est pas la seule définition possible ; une autre définition, qui n’est
pas équivalente a celle-ci, est suggérée dans la remarque 3.12.

3.10 Définition. Si A c X etsi f : A — R, alors f est mesurable si et seulement si :

i) A est mesurable.
ii) f étendue par la valeur 0 sur A° est mesurable.

Méme définitionsi f : A — R 7
(Reformulation de l'item ii) : la fonction y 4 f, définie sur X a valeurs dans R
ou R", est mesurable.) o

L’énoncé qui suit est I’analogue des théoremes 3.5 et 3.9 et de la proposition
3.8 pour des fonctions définies uniquement sur A < X.
3.11 Proposition. Soit A — X mesurable.

a) f: A — R est mesurable si et seulement si les trois conditions suivantes sont
satisfaites :

i) f7(0)e 7.
ii) f~i(~w)e 7.
iii) f~'(B) € J pour tout B € By.

b) Une autre caractérisation : f : A — R est mesurable si et seulement si
f*(Ja, o)) e T, VaeR.

c) f: A— R"est mesurable si et seulementsi f~'(B) € 7,V B € HBgn. o

3.12 Remarque. En utilisant la proposition 3.11, nous pouvons déduire facilement que la
mesurabilité de f (au sens de la définition 3.10) est équivalente a: f : A — R (ou R") est
mesurable par rapport a la tribu induite 74 = {Bn A; Be J}.

Cette équivalence n’est vraie que si A est mesurable. o

t. Si f est a valeurs dans R, alors 0 est le nombre réel 0. Si f est a valeurs dans R", alors 0 est

le vecteur Ogn.
_ dans A
1. Rappelons que,si f : A — R, alors fx4 := {g: dZEZ s
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Exercices
3.13 Exercice. Soit f : X — R une fonction étagée. Montrer que f~1(B) e 7,YBcR. o

3.14 Exercice. Soient f, g : X — R fonction étagées et A € R. Montrer que f + g et A\f sont
étagées. o

L’exercice qui suit explique pourquoi dans la propriété (3.1) on pourrait étre
moins exigeants et considérer uniquement des ouverts.

3.15 Exercice. Soit f : X — R. Montrer que

fYB)e 7,YBe By «— fYU)e 7,VYU < Rouvert. o

L'exercice qui suit sera utilisé dans la preuve du théoréme 3.5.
3.16 Exercice. Soit (z,,), < R une suite ayant une limite. Nous avons

limz, >aeR <= 3keN*" ImeNtelsquez, >a+1/k, Vn=m. o
n

3.17 Exercice. Soit A — X. Alors x 4 est mesurable si et seulement si A ’est. o

L’exercice qui suit est fondamental (notamment l'item f)). Il offre une boite a
outils efficace pour montrer qu’un fonction est mesurable. '

3.18 Exercice. Soit (X, d) un espace métrique.
a) Soient A € #Bx et f : A — R continue. Alors f est borélienne.

En particulier, toute fonction continue f : X — R est borélienne.

b) Plus généralement, si f est continue en dehors d’une partie finie de X, alors f est
borélienne.

¢) Encore plus généralement. Soient Ay, As, ..., boréliens d. d. d. tels que X = L, Ay.
Pour chaque Ay, soit f;, : A, — R une fonction continue. Soit f : X — R définie par
f(x) := fr(z) siz € Ag. Alors f est borélienne.

d) De méme si, dans le point précédent, on remplace « fj continue » par « fj, borélienne »
(voir également le point f)).

e) De méme pour des fonctions a valeurs dans R".

f) Soit (X,.7) un espace mesurable. Soient A;, As, ..., mesurables d. d. d. tels que X =
L Ag. Pour chaque Ay, soit f : Ay — R une fonction mesurable. Soit f : X — R
définie par f(z) := fix(z) si x € A. Alors f est mesurable.

g) Montrer que les items a)—e) sont des cas particuliers de l'item f). o

t. Dans le cas particulier ot X est un espace métrique, cet exercice permet donc de montrer
qu’une fonction est borélienne.

45



Fonctions mesurables 3.1 Définition. Caractérisation

Démonstrations

Le résultat qui suit sera utilisé dans la preuve du théoreme 3.5; il sera utile
dans d’autres circonstances.

3.19 Proposition. Soit f : X — Y etsoit <7 une famille de partiesde Y. Si f~!(A) €
T pour tout A € o7, alors f~!(A) € F pour tout A € T (). o

Démonstration de la proposition 3.19. Soit 2 := {Ac Y ; f~1(A) e T}.

Nous avons 2 S /. Par ailleurs, Z est une tribu. En effet, si (4,,), < 2, alors
FHUnAy) = unf~Y(Ay) € T ; vérification analogue des autres propriétés de la tribu.

Il s’ensuit que ¥ > 7 (). CQFD
Démonstration du théoréme 3.5 .
«==» Soit ( f,) une suite de fonctions étagées telle que f,, — f.

Soient a € R, n € N. Posons A, 4 := (f) " !(Ja, 00[), qui appartient a .7 (exercice 3.13).

Nous avons (en utilisant I’exercice 3.16)

f(z) > a<= 3 keN* ImeNtels que f,(z) > a+ 1/k pour n > m.

En d’autres termes,
f(x)>a<==3keN" ImeNtelsquez € Np>mAy, i1k
<= T € UkeN* UmeN NnzmAnari/k € T
(justifier 'appartenance a .7).

Donc
f_l(]a> OO]) = {SL’ eX ; f(JL') > a} = UkeN* UmeN ngmAn,a-‘rl/k € ya VaeR.

Il s’ensuit que f~1(00) = N, f~1(]n, ]) € 7.
Par conséquent, f~(Ja,0[) = f~1(Ja,0])\f 1 (x0) e 7.

La proposition 3.19 combinée avec la partie b) ii) de la proposition 2.16 montre que
fYB)e 7,V B e %.

Enfin, f~!(—w0) = X\(f"}Y(R) u f~}(w0)) € 7.
_on s f(z) < —2n

«<=»Soit,pourn € N, f,(z) := < 2", si f(x) =27 ;ici, k est un entier

kj2n, sik/2™ < f(x) < (k+1)/2"
relatif compris entre —4" et 4" — 1.

Formule équivalente pour f : si nous posons
An = fTH([=00,=2"]), B = (2", 0]) et G := F7H([K/2", (k +1)/2"]),
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alors
a1y
k=—4n
Chaque f, est une fonction étagée (vérifier) et nous avons f,, — f (vérifier). CQFD

Démonstration du corollaire 3.7. Dans le cas particulier ol f est positive, la suite ( f,,), construite,
dans la preuve du théoréme 3.5, pour montrer I'implication « <= », est croissante. cqQrp

Démonstration de la proposition 3.8.
« == » Implication vue dans la preuve du théoreme 3.5.

« <==» Nous avons f~1(®) = nuenf1(]n, ®]) € 7.
1l s’ensuit que f~1(Ja,[) = f~!(Ja,0])\f"!(w0) € F, Va € R. La proposition 3.19
combinée avec la partie b) ii) de la proposition 2.16 implique f~1(B) € 7,V B € %g.
Enfin, f~1(—o0) = X\(f1(R) U f~1(w0)) e 7. CQFD

Démonstration du théoréme 3.9.
«1.=2.»Si I, Is,...,I, sont des intervalles ouverts, alors (f;)~(I;) € 7.

lls’ensuitque f~1(Iy x Iy x ... x I,,) = n(fi) "' (L;) € 7.
La proposition 3.19 combinée avec la partie c) de la proposition 2.16 montre que
f~Y(B)e 7,V B e PByn.

«2=1.»Si I =]a, o[, alors (f;)"*(I) = fY (R x I x R*" V) e T. CQFD

Démonstration de la proposition 3.11.
a) «=>»
i) Posons g := fxa. Nous avons (*) f~1(w) = g~ }(0) e 7.
ii) Méme raisonnement que pour i).
iii) 1 suffit de noter que f~1(B) = ¢g7'(B) n A,V B € %g.
« <= » De (*), nous avons g~ (w) € .7 ; de méme, g~} (—o) € J.
Si B € %, alors : soit 0 ¢ B, etalors g~1(B) = f~1(B) € 7, s0it 0 € B, et dans ce cas
g YB)=fYB)uAce 7.
Les conditions i)-iii) du théoreme 3.5 sont donc satisfaites par g; il s’ensuit que g est
mesurable, donc (définition 3.10) f 1’est également.
b) Il suffit de répéter la preuve de la proposition 3.8.

¢) Nous pouvons reprendre les arguments de I'item a) :
«==»Si B € %Bgn,alors f1(B) =g ' (B)nAe J.
«<==»Si B € %gn, alors : soit 0 ¢ B, etalors g~ (B) = f~1(B) € 7,s0it0 € B, et
danscecas g }(B) = f}{(B)u A°e 7. CQFD

47



Fonctions mesurables 3.2 Opérations avec les fonctions mesurables

3.2 Opérations avec les fonctions mesurables

Dans cette section et la suivante, nous décrivons plusieurs mécanismes qui
permettent de construire des fonctions mesurables a partir de fonctions mesu-
rables. Par exemple, comme pour les fonctions continues, un produit de fonctions
mesurables est une fonction mesurable.

Nous travaillons dans un espace mesurable (X, .7).

3.20 Proposition. Une limite simple de fonctions mesurables est une fonction
mesurable.

3.21 Proposition. Si g : R" — R* est borélienne et si f : X — R" est mesurable,
alors go f : X — R¥ est mesurable.

f Rn g9 Rk — X fog ]Rk ;

mesurable borélienne mesurable

3.22 Remarque. A retenir sous la forme : borélienne o mesurable = mesurable. o

Le plus souvent, la proposition 3.21 est utilisée avec g continue, cas particulier
couvert par le corollaire suivant.

3.23 Corollaire. Si g : R” — R* est continue et si f : X — R" est mesurable,
alors go f : X — R¥ est mesurable.

Avant de démontrer qu'une somme ou produit de fonctions mesurables est
une fonction mesurable (proposition 3.25), revenons sur les opérations faisant
intervenir +o0.

3.24 Convention. En théorie de la mesure et de l'intégration, nous adoptons la convention
suivante : 0 - (+0) = (£00) -0 = 0.

En particulier, si f,g: X — R, alors le produit fg est défini en tout point.

Néanmoins, les sommes o0+ (—20) et —o0+ 00 ne sont toujours pas définies. La somme
f + g est définie uniquement dans le complémentaire de l'ensemble

{xeX; f(z)=twetg(x) =—f(x)}. o

3.25 Proposition.

a) Si f,g : X — R sont mesurables, alors fg et (si cela a un sens) f + ¢ sont
mesurables.

(On peut définir f + g s’il n’y a pas de point z € X tel que f(z) = +oo et
g(x) = —f(2).)

De méme pour f — g.

48



Petru Mironescu Mesure et intégration

b) Si A € R, alors \f est mesurable.

Exercices

1/x, sixz#0

3.26 Exercice. Soitg: R — R, g(z) := . .
0, siz=0

a) Montrer que g est borélienne.

b) En déduire que, si f : X — R est mesurable et f # 0, alors 1/f est mesurable.

c) Montrer que, si f : X — R est mesurable et f # 0, alors 1/f est mesurable. o

Démonstrations

Démonstration de la proposition 3.20. 1l suffit de copier la preuve du théoreme 3.5 « = ».
Cette fois-ci, la mesurabilité des A,, , est donnée non pas par le fait que les f,, sont étagées,
mais par le théoreme 3.5. CQFD

Démonstration de la proposition 3.21. Si B € Py, alors (go f)"1(B) = f1(¢7Y(B)) € 7, car
91 (B) € Bgn. CQFD

Démonstration de la proposition 3.25.

a) f + g est mesurable. Supposons que f + g ait un sens.

Si fi, gn sont des fonctions étagées telles que f, — f, g, — g, alors f, + g, est étagée
(exercice 3.14) et f, + gn — [ + g.

Preuve similaire pour f — g.
fa(x), sif(x)#0

0, si f(z)=0
tion équivalente : si A := f~1(0), alors F,, = f,xAc-

fg est mesurable. Soit F,,(z) := { ; on définit de méme G,,. Défini-

La fonction F,, est étagée et nous avons F,, — f (vérifier). La fonction F;,G,, est étagée
(exercice 3.14) et F,,G,, — fg (vérifier).

b) Nous avons Af, — Af.

Dans tous les cas, nous concluons gréce a la proposition 3.20. CQFD

3.27 Remarque. Si f,g : X — R, nous pouvons raisonner différemment. Nous avons
f+g=2®(fg),avec ®(z,y) := z +v. (f,g) : X — R? est mesurable, car chacune des
ses coordonnées l'est (théoreme 3.9). ® étant continue (donc borélienne), la proposition
3.21 permet de conclure. De méme pour fg. Voir la remarque 3.35 pour un raisonnement
similaire. o
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3.3 Autres opérations

Dans cette partie, nous travaillons dans un espace mesurable (X, .7). Toutes
les fonctions considérées sont définies sur X a valeurs dans R et sont supposées
mesurables.

3.28 Proposition. max (f, g) et min (f, g) sont mesurables. o
3.29 Corollaire. max (fo, ..., f,) et min (fy, ..., f,) sont mesurables. o
3.30 Notations.

a) Site R, ty := {f): zii i 3 est la partie positive de t, et t_ := {(it, zii i 8 est la

partie négative de t.

f(z), sif(x)=0

est la partie positive de f, et f_ =
0, sif(z) <o APAHEP fretf

b) Si f est une fonction, f,(x) := {

0 s% J(x)=0 est la partie négative de f. o
—f(x), sif(z)<0
3.31 Corollaire. f,, f_ et|f| sont mesurables. o
3.32 Proposition. sup,, f, et inf,, f,, sont mesurables. o

3.33 Proposition. liminf, f, etlimsup,, f, sont mesurables.

3.34 Proposition. Soit
A= {z € X ; lasuite (f,(z)), a une limite dans R}.

Nous avons les propriétés suivantes :
a) A est mesurable.
b) Sinous posons, pour x € A, f(z) := lim, f,(z), alors f : A — R est mesurable.

lim, f,(z), silim f,(z) existe

c) Soit I : X — R, définie par F(z) := { . Alors F

0, sinon
est mesurable. o

Démonstrations

Démonstration de la proposition 3.28. Nous considérons deux suites, (f,)n et (gn)n, de fonc-
tions étagées, avec f, — f, g» — ¢. Nous avons h,, — max (f,g) et k, — min (f,g), out
hy := max (fy, gn) et ky := min (f,,, g,); vérifier, en utilisant les formules

a+b+la—0b .

> , min(a, b) = LM.

b) —
max(a, b) 5

(3.2)

Au vu de la proposition 3.20, il suffit donc de montrer que h,, et k,, sont mesurables,
ce qui découle de (3.2). CQFD
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3.35 Remarque. Si f,g : X — R, nous pouvons raisonner différemment. Nous avons
max (f,g) = ®(f,g), avec ®(z,y) := max (z,y). (f,g) : X — R? est mesurable, car cha-
cune des ses coordonnées 1’est (théoreme 3.9). ® est continue (donc borélienne); ceci dé-
coule de (3.2). La proposition 3.21 permet de conclure. De méme pour min (f, g). Voir
aussi la remarque 3.27. o

Démonstration du corollaire 3.29. Par récurrence, via la proposition 3.28 (vérifier!). CQFD

Démonstration du corollaire 3.31. Nous avons f. = max(f,0), f- = fy — fet|f| = f+ + f-

(vérifier). Nous concluons grace aux propositions 3.28 et 3.25. CQFD
Démonstration de la proposition 3.32. Nous avons sup,, f, = lim, o max(fo,..., f,), donc la
fonction sup,, f,, est limite d’une suite de fonctions mesurables. Preuve similaire pour
inf. CQFD

Démonstration de la proposition 3.33. Considérons la lim inf ; preuve similaire pour la lim sup.

Soit g, := inf,,>, fm, qui est mesurable. Il suffit alors de se rappeler que lim inf,, f,, =
lim,,— gn, et d’appliquer la proposition 3.32. CQFD

Démonstration de la proposition 3.34. Soient g := liminf,, f,,, h := limsup,, f,, toutes les deux
mesurables.

Posons B := g~ !(0), C := h™'(—=®), k := (h — g)X(Buc)e, qui sont mesurables (véri-
fier).
a) Nousavons A = k71(0) U B U C (justifier) et donc A € 7.

b) et c) Sur A, nous avons f = g, et donc F' = fxa = gxa, la derniere fonction étant
mesurable. Il s’ensuit que f et F' le sont (voir la définition 3.10). CQFD
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Chapitre 4

Mesures

4.0 Apercu

L’objet d’étude de ce chapitre est la mesure. Dans la section 4.1, nous en établis-
sons quelques propriétés simples, mais fondamentales (monotonie, sous-additivité,
etc.).

Les sections 4.2 et 4.3 sont dédiées aux ensembles qui sont suffisamment « pe-
tits » pour qu’ils soient « oubliés » dans les calculs : il s’agit d’ensembles négli-
geables, qui en théorie de la mesure et de l'intégration sont comme leur nom l'in-
dique. A 'opposé du négligeable, nous avons la notion de presque partout.

A partir de la section 4.4, nous nous intéressons a des mesures particuliéres :
finies, o-finies, de Radon. Comme dans d’autres circonstances, plus les définitions
sont contraignantes, plus les objets ont des propriétés intéressantes. ¥ En particu-
lier, nous verrons que pour une mesure de Radon, la mesure des ouverts déter-
mine la mesure de tous les autres boréliens (corollaire 4.27).

Dans la section 4.5, nous définissons la (célebre) mesure de Lebesgue dans R™,
en donnant quelques-unes de ses propriétés. Sa construction dans R, * qui est hors
programme mais tres instructive, fera 1'objet du chapitre 5. Curieusement, sa
construction dans R", n > 2, est bien plus facile (corollaire 8.11 dans la section
8.2)... a condition d’admettre 1'existence de la mesure de Lebesgue dans R.

A défaut de pouvoir montrer son existence, nous montrerons l'unicité de la
mesure de Lebesgue (proposition 4.38).

La section 4.6 releve de la culture générale. Dans la section 4.6.1, nous donnons
un apercu de la nécessité des axiomes qui définissent la mesure de Lebesgue, ce

1. Un espace euclidien a plus de propriétés remarquables qu'un espace normé, et un espace
normé en a plus qu'un espace vectoriel.
1. Autrement dit, la preuve de son existence.
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qui est quelque peu marginal en théorie de la mesure, mais a intéressé de grands
mathématiciens dans la premiére moitié du 20%siecle... et fait réver (paradoxe de
Banach-Tarski, théoreme 4.43).

Bien plus important (en particulier pour la théorie des probabilités) est le su-
jet abordé dans la section 4.6.2 : la convergence des suites de fonctions. En par-
ticulier, le théoréme d’Egoroff (Egorov) 4.46 fait un lien inattendu entre convergence
simple et convergence uniforme.*

Compétences minimales attendues.

a) Utiliser les propriétés générales des mesures (propositions 4.1 et 4.2).
b) Reconnaitre et utiliser les ensembles négligeables.

c) Connaitre et utiliser les propriétés de la mesure de Lebesgue, notamment dans
R. o

4.1 Propriétés générales

Dans cette partie, (X, .7, 1) est un espace mesuré, et toutes les parties de X
considérées (A, B, A;,...) appartiennent a .7 .

Toutes les propriétés démontrées restent valables si on a une mesure sur un
clan, a condition que les unions et intersections considérées soient encore dans le
clan.

4.1 Proposition. Nous avons

a) Si A < B, alors u(A) < u(B). (Cest la propriété de monotonie de y.)
Si, de plus, u(B) < o, alors u(A) = p(B) — u(B\A) et p(B\A) = u(B) —
p(A).

b) u(Ag U ... U Ay) < F_ u(A,). Siles A, sont d. d. d., alors I'inégalité
devient égalité. Cette derniere propriété est 1'additivité de s.

o) p(UP A,) < 37 w(Ay). Clest la propriété de sous-additivité de p.

d) u(Au B)+ pu(An B) = u(A) + p(B). En particulier, si (A n B) < oo, alors
u(A v B) = u(A) + p(B) — w(A n B).

4.2 Proposition. Nous avons

a) (Théoreme de la suite croissante). Si A,, " A, alors u(A,) — u(A).
b) (Théoreme de la suite décroissante). Si A,, \, A et si, de plus, u(Ay) < o,

1. Rappelons l'implication « convergence uniforme — convergence simple ». Le théoréeme
d’Egoroff donne « presque » I'implication opposée.
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alors p(A,) — p(A).

Exercices
4.3 Exercice. Soit x la mesure de comptage sur #(N). Si A, := {m ; m > n}, alors
Ay N, @, mais u(Ay) 4> (D).

Conclusion? o

4.4 Exercice.

a) Montrer que, si u(A; v Ay U ... U A,) < oo, alors

M(AluAgu...uAn)zZ(—l)j+l Z p(Ay Ao Ayg).
j=1

1<iy<ig<-<ij<n
b) Que devient cette formule dans le cas particulier de la mesure de comptage? o

4.5 Exercice. Soient p une mesure sur le clan (ou la tribu) ¥ et A € %.

a) La fonction py : € — [0,0], ua(B) := u(A n B),V B € €, est une mesure sur % .

b) Soit €4 le clan induit par € sur A (voir I'exercice 1.37). Montrer que la restriction de
14 a €4 est une mesure. o

4.6 Exercice (La limite d"une suite croissante de mesures est une mesure). Soit (y;); une
suite de mesures sur le méme clan €. Supposons que p;(A) < p+1(A4),Vj,VAe €.
Posons pi(A) :=limp;(A),VAe €.

Montrer que p est une mesure sur 4. o

Démonstrations

Démonstration de la proposition 4.1.

a) Nousavons B=Au (B\A)uZu...udu...,dot u(B) = u(A) + u(B\A) > u(A).
Dans le cas particulier out (B) < o0, nous avons également ;(B\A) < oo (justifier),
d’ot u(A) = u(B) — u(B\A). De méme, p(B\A) = u(B) — p(A).

b) Posons By := Aget,pourl <n <k, B, :== A,\(Apu ... U A,_1). Les B, sontd. d. d.
et, de plus, B,, ¢ A, et U, A,, = L, B,,. Il s’ensuit que

k k
wAgu...UAL) =pu(Bou...uByuZu...uFu...) = Z,U,(Bn)é ZM(A")'
n=0 n=0

Dans le cas particulier ot les A,, sont d. d. d., nous avons B, = A,, et l'inégalité
devient égalité.

¢) Méme preuve que pour l'item b), sauf qu’il n’y a plus besoin d’ajouter des .
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d) Sipu(A) = o, alors (A U B) = w, et I'égalité est claire.
Supposons p1(A) < oo, ce qui entraine p(A N B) < oo (justifier).

Nous avons
n(A) = u((A\B) U (A~ B)) = p(A\B) + (A~ B),

d’ott 1(A\B) = p(A) — p(A n B).

En utilisant cette derniere égalité, nous obtenons
(A B) = u((A\B) u B) = u(A\B) + u(B) = u(A) — (A n B) + u(B),
ce qui donne I'égalité désirée. CQFD

Démonstration de la proposition 4.2.
a) Posons By := Ag et, pourn > 1, B, := A,\A,_1. Alors les B, sontd. d.d. et u,B,, =
A.

Par ailleurs, nous avons 4, = By u ... u B,,.

Par conséquent,

p(A) = > u(By) = = lim Z (Br) = limpu(Bo u ... 1 By) = lim p(Ay).
k>0 k=0

b) Nous avons (Ap\4,) /" (Ap\A), d’ott lim,, u(Ao\A,,) = p(Ap\A).

Ceci donne (via la proposition 4.1 a)) u(Ag) — p(Arn) — 1(Ao) — p(A), d’ott la conclu-
sion. CQFD

4.2 Mesure complétée

Dans cette partie, nous nous donnons un espace mesuré (X, .7, 11). Les par-
ties A de X considérées ci-dessous ne sont pas nécessairement dans 7. Nous in-
troduisons la notion d’ensemble négligeable et montrons comment « rajouter » ces
ensembles a une tribu donnée. Contrairement a la notion d’ensemble mesurable,
qui repose sur une tribu, celle d’ensemble négligeable est relative a une tribu et une
mesure.

4.7 Définition (Ensemble négligeable). Un ensemble A — X est négligeable sil
existe B € .7 tel que A < Bet u(B) = 0.

S’il n’est pas clair qui est 4, on précise : A est u-négligeable.

4.8 Remarque. La question « A est-il négligeable? » n’a pas de sens si on ne connait pas
- la réponse dépend de pi. Voir les remarques 1.20 et 3.4 a). o
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4.9 Définition (Tribu complétée). La tribu complétée engendrée par 7 et u est
la tribu .7 engendrée par .7 et les parties négligeables de X.

Donc

T = 7({A; Ae T ou Anégligeable}).

4.10 Remarque. 7 dépend a la fois de .7 et de p. o

Le résultat suivant décrit tous les éléments de 7.

4.11 Proposition. Nous avons

?z{AcX;HBA,CAeﬂtelsque

4.1
Byc Ac Cyetu(Cy\Ba) = 0}. <>( )

Dans ce qui suit, nous montrons que la mesure y, définie sur .7, a une exten-
sion unique a .7

4.12 Définition (Tribu complete). Une tribu . est compléte par rapport a une
mesure v si A v-négligeable =— A € ..

Symétriquement, si la propriété ci-dessus est satisfaite alors v est compleéte par
rapport a .. o

4.13 Définition (Extension d"une mesure). Soient 111, ;12 des mesures sur les tribus
(ou clans) 71, %. usy est une extension de juq si :

i) 7 < .
i) p2(A) = i (A),VAe 7. ©

4.14 Proposition. ; admet une unique extension i a 7.

1t est la complétée de 11 et est donnée par 'une des formules 7i(A) = p(Ba) ou
i(A) = p(Ca). o

Exercices
4.15 Exercice. Soit A € .7. Montrer que
A est négligeable < pu(A) = 0. o

Cet exercice est fondamental; il donne une boite a outils pour montrer qu'un
ensemble est négligeable.

4.16 Exercice (Opérations avec les ensembles négligeables).

a) Une partie d'un ensemble négligeable est négligeable.
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b) Une union a. p. d. d’ensembles négligeables est négligeable. o

4.17 Exercice.

a) Nous avons 1 = [ et 7 =7.

b) 7 est complete par rapport a 7.

¢) Une partie de X est y-négligeable si et seulement si elle est i-négligeable. o

Démonstrations

Démonstration de la proposition 4.11. Donnée une partie A de X, nous allons noter (s"ils existent)
B, et C4 deux ensembles de .7 tels que By < A < Cy et u(Ca\Ba) = 0.

Soit % le membre de droite de I'égalité a montrer, (4.1).

«D>»Si Ae %,alors A = Ba v (A\Ba), avec B4 € 7 et A\By (qui est contenu dans
C4\Bj) négligeable; d'ou A e 7.

« < » Il suffit (pourquoi?) de vérifier que % est une tribu qui contient .7 et les ensembles
négligeables.

Si A € 7, il suffit de prendre By = C4 := A. Si A est négligeable, nous pouvons
prendre By := et Cy € T tel que A < Cy et u(Cy) = 0. Ceci montre que % contient
T et les ensembles négligeables. Il reste & montrer que % est une tribu.

i) Nous avons (J € 7, etdonc ¢ € % .

ii) Soit A € % . Nous avons (C4)¢ < A < (Ba)¢, avec u((Ba)\(Ca)¢) = u(C4\Ba) =0
(vérifier). Il s’ensuit que A° e % .
iii) Soit (A,)n=0 < % . Nous avons

Un>0B4, © Un=04n € Un=0Ca,,,

et

n>0

(vérifier). Il s’ensuit que Uy,>0A, € % .

De i)-iii), % est une tribu. CQFD

Démonstration de la proposition 4.14. Notons d’abord que p(Csa) = pu(Ba)+1(Ca\Ba), et donc
w(Ba) = p(Ca).

Montrons ensuite que la formule de I'énoncé ne dépend pas du choix de B4 et C4.
En effet, si Bi‘ c Ac C’i‘, avec B’ ,C’il e Tetp (Cg\Bﬁ) =0,j=1,2, alors B,14 c C’Z,
d’ou

u(Ch) = u(BY) < u(C3) = u(BR).
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En permutant les indices, nous trouvons u(CY) = u(BY) = u(B%) = n(C?).

Si 7z existe, nous devons avoir p(Ba) < 1i(A) < u(Cya), doui(A) = u(By) = p(Ca).
Ceci montre a la fois 1'unicité de 1z et le fait que 7z est donnée par les formules de 1’énoncé.

Il reste & montrer que ces formules définissent une extension de f.

Notons d’abord que, si A, Ay € T et Ay c Ay, alors By, € Ay < Ay = Cy,, dol
(A1) = u(Ba,) < p(Ca,) = fi(Az). Il s’ensuit que @ est monotone.

i) Si A € 7, alors nous pouvons prendre By = C4 = A, et donc i(A) = pu(A).
Il s’ensuit que f est une extension de 1, et qu’en particulier nous avons () = 0.
ii) Enfin, si (A4,,), est une suited. d. d. de 7, alors nous avons (en utilisant la monotonie
de 12)
Zﬁ(An) = Z w(Ba,) = p(unBa,) = fi(unBa,) < i(undy),

A(undn) < (UpCa,) = p(unCa,) < ZN(CAn) = Zﬁ(An)'

Des items i)—ii), iz est une extension de p et est une mesure. CQFD

4.3 Presque partout

Dans cette section, nous introduisons la notion de presque partout et étudions
ses liens avec la tribu et mesure complétées.

4.18 Définition (Presque partout; p. p.). Une propriété P(x) est vraie presque
partout (par rapport a 4, ou encore u-presque partout, ou encore p. p. ou ji-p.
p.) sil’ensemble des x € X tel que P(z) soit fausse est p-négligeable.

4.19 Proposition.

a) f: X — R est .7-mesurable si et seulement s’il existe une fonction g : X — R
7 -mesurable telle que f = g u-p. p.

De méme, f : X — R" est .7-mesurable si et seulement s'il existe une fonction
g: X — R" J-mesurable telle que f = g u-p. p.

b) Soient f,g : X — R telles que f = g u-p. p. Alors f est 7-mesurable si et
seulement si g I’est.

De mémesi f,g: X — R™. o

Le résultat suivant donne un apergu de 1'utilité des tribus complétées.

4.20 Proposition. Si f,, f : X — R, chaque f, est 7 -mesurable, et f, — f U-p- p-,
alors f est .7-mesurable. o
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Exercices

4.21 Exercice. Pour la mesure de comptage, presque partout équivaut a partout. ©

4.22 Exercice. Pour des fonctions f, g définies sur X a valeurs dans R ou R", la relation
f~g< f =g pp.p.est une équivalence. o

Démonstrations

Démonstration de la proposition 4.19. Nous considérons uniquement le cas des fonctions a va-
leurs dans R. L'autre cas est similaire.

Commencons par établir une propriété des fonctions 7 -étagées. Soit f une fonction
T -étagée. Donc f = > anxa,, avec A, € 7, a, € R, la somme comportant un nombre
fini de termes.

Soit B,, © A, B, € 7, tel que A,,\ B, soit u-négligeable (justifier I’existence de B,, en
utilisant la proposition 4.11). Avec g := > anXpB,, nous avons f — g = >, anXa,\B,- 1l
s’ensuit que f = g en dehors de I’ensemble u,,(A,,\B,,), qui est u-négligeable (vérifier).

Conclusion : donnée une fonction f .7 -étagée, il existe une fonction .7-étagée g telle
que f = g en dehors d'un ensemble p-négligeable C'.

a) «==» Soit f,, une suite de fonctions .7 -étagées telle que f, — f.Soient g,, T -étagées
et C), p-négligeables tels que f,, = g, en dehors de C,.

En dehors de I'ensemble p-négligeable u,,C;,, nous avons g, = f, — f.

En définissant
A:={x€ X ; (gn(7)), a une limite dans R}

et g := xalim, g,, nous avons que g est .7-mesurable (voir la proposition 3.34) et
g = f en dehors de I'ensemble p-négligeable u,,C),.

« <= » Soit C' un ensemble pi-négligeable tel que f = g en dehors de C'. Alors
g H(0)\C < f7H (o) = g7 H(o) v C,

ce qui montre que f~(x0) € 7 = 7.
De méme, f~!(—w0) e T et f~1(B) € 7 si B € %y (vérifier). Donc f est .7-mesurable
(théoreme 3.5).

b) Nous avons (via l’exercice 4.22) f .7-mesurable<— 3 h J -mesurable telle que f = h
p-p. p-<== 3 h 7 -mesurable telle que g = h p-p. p.<= g .7 -mesurable. CQFD

Démonstration de la proposition 4.20. Soit A € 7 négligeable tel que f,,(z) — f(z), Vo ¢ A.
Alors fpxac — fxae. Il s’ensuit que fx4c est 7 -mesurable, et donc f l'est (proposition
4.19 b)). CQFD
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4.4 Classes particuliéres de mesures

Dans cette section, nous introduisons les principales classes de mesures : fi-
nies, o-finies, boréliennes, de Radon, et donnons quelques-unes de leurs propriétés
fondamentales.

4.23 Définition. Une mesure p définie sur un clan (ou tribu) % est :

a) finie si pu(X) < oo (et alors p(A) < oo pour tout A € ¥).
b) o-finie s’il existe une suite (A4,),>0 < € telle que:

i) X = Ups0dn.

i) p(A,) <o, ¥n.
c) de probabilité (ou probabilité tout court) si p(X) = 1.

Les mesures o-finies joueront un role important entre autres dans le chapitre
8 (mesures produit et leur utilisation). Une premiere illustration de leur utilité est
le résultat suivant d"unicité.
4.24 Proposition. Soient % un clan dans X et y;, s deux mesures sur 7 (%). Si :
i) p1(A) = pe(A) pour tout A € %.
ii) Il existe une suite (A4, ),>0 < % telle que 111(A,) < 0,V n, et Uy=04, = X,
alors 1 = pio. o

4.25 Définition. Soit (X, d) est un espace métrique.

a) Une mesure borélienne est une mesure i : Bx — |0, 0] sur les boréliens de
X.

b) Une mesure de Radon dans R" est une mesure borélienne p dans R” telle
que u(K) < w0, ¥ K compact.

Méme définition pour une mesure sur X, avec X < R" ouvert ou fermé.

Si une mesure est a la fois borélienne et a des propriétés de finitude (voir les
hypotheses du théoreme 4.26), alors nous disposons de formules « explicites »
pour calculer la mesure d"un borélien. Ceci est expliqué dans le résultat suivant,
dont a la fois I'énoncé et la preuve sont relativement complexes.

4.26 Théoreme. Soient (X, d) un espace métrique et ;1 une mesure borélienne sur
X.

a) Si p est finie, alors
pu(A) = sup{u(F); F fermé et F' — A}
= inf{u(U); U ouvertet U o> A}, VY A € Ay,
1(A) = sup{u(F); F fermé et [' — A}
= inf{u(U); UouvertetU > A}, VAe Bx.

(4.2)

(4.3)
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b) Si i est o-finie, alors
u(A) = sup{u(F); F ferméet F' — A}, VA € Hx, (4.4)
T(A) = sup{u(F); F ferméet F c A}, YA e By. (4.5)

c) S’il existe une suite (U,,),~o d’ouverts de X telle que X = u,>oU, et u(U,) <
o0, ¥ n, alors nous avons (4.2)—(4.3).

d) S'il existe une suite (K,,),>o de compacts telle que X = u, >0/, et une suite
(Un)n=0 d’ouverts de X telle que X = u,>oU, et u(U,) < «©, Vn, alors
p(A) = sup{u(K); K compactet K < A}
= inf{u(U); U ouvertet U > A}, VA e Ay,
1(A) = sup{u(K); K compactet K < A}
= inf{u(U); U ouvertet U o A}, YA e By.

(4.6)
o (4.7)

Un cas particulier important du théoreme 4.26 est celui des mesures de Radon
dans R"; il s’applique en particulier a la mesure de Lebesgue v,.

4.27 Corollaire. Si i est une mesure de Radon dans R™, alors

p(A) = sup{u(K); K compactet K < A}

= inf{u(U); U ouvertet U > A}, VA € HBgn,
1(A) = sup{u(K); K compactet K < A}

= inf{u(U); U ouvertet U > A}, YV A € Bgn.

(4.8)

(4.9)

Enoncé analogue si nous remplagons R™ par un ouvert de R".

Une conséquence immédiate du théoreme 4.26 est le résultat suivant d"unicité.

4.28 Corollaire. Si ji;, j12 sont deux mesures de Radon dans R™ telles que i1 (K) =
p2(K) pour tout compact K < R™, alors 3 = pio.

Enoncé analogue si nous remplacons R" par un ouvert de R". o

Exercices

4.29 Exercice. Si i est o-finie, alors X est une union a. p. d. d’ensembles d. d. d. de mesure
finie. o

4.30 Exercice. La mesure de comptage sur N n’est pas finie, mais est o-finie. o

L’exercice suivant permet de mettre en place un raisonnement du type : «si

une propriété P est vraie pour les mesures finies, alors elle I’est pour les mesures
o-finies ».
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4.31 Exercice (Une mesure o-finie est limite de mesures finies). Soit ;; une mesure o-finie
sur la tribu .7 de X. Soit (X,)n>0 < 7 avec u(X,) < o, Vnet X = u,X,. Posons
pn(A) = pu(An(Xi1u...uX,)),YVAe 7. Alors:

a) i, est une mesure finie, V n.

b) puyn  p (c’est-a-dire p, (A) /' u(A),VAe 7). o

L’exercice qui suit sera utilisé dans la preuve du théoreme 4.26.
4.32 Exercice. Soit (X, d) un espace métrique. Soit F' un fermé de X. Soit

Up:={xeX;dx F)<1/n}, VneN*

Alors U, est un ouvert et U, \, F. o

Démonstrations

Démonstration de la proposition 4.24. Soit (A, )n=0 < € telle que p1(A,) < 0,Vn, et Up=0A4, =
X. En remplagant si nécessaire les A,, par B, := Ap U ... U A,, nous pouvons supposer
que 4, / X.

Dans un premier temps, réduisons le probleme au cas des mesures finies.

Comme dans l'exercice 4.31, posons i (A) 1= puj(An Ay), Ae 7(¢),j=1,2neN.
Pour tout n € N, u7 et uf vérifient les hypothéses i) et ii) de la proposition 4.24 (justifier)
et, de plus, ] et 5 sont finies (vérifier). Supposons montrée 1'égalité ;' = p5. Grace au
théoreme de la suite croissante, nous obtenons p; = lim, pff, j = 1,2 (justifier), et donc
1 = p2.

Ainsi, pour conclure il suffit de montrer que ;11 = o sous '’hypothese i), si, de plus,
11, (o sont finies.

Soient (11, o deux mesures finies sur ¢, vérifiant i). Soit

U ={Ae T(%); m(A) = p2(A)}.

Nous avons ¥ < % . Pour conclure, il suffit de montrer que % est une classe mo-
notone (et d’invoquer le théoréme de la classe monotone). Ceci résulte en appliquant a
wj, 3 = 1,2, le théoreme de la suite croissante, respectivement le théoreme de la suite
décroissante. (Vérifier 'application de ces deux théoremes, notamment dans le cas de la
suite décroissante). CQFD

Démonstration du théoréme 4.26.

a) Posons, pour A c X,
p! (A) := sup{u(F); F fermé et F — A} = sup{fi(F); F fermé et F — A},
u(A) ;== inf{u(U); U ouvertet U o A} = inf{fz(U) ; U ouvertet U > A}.
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Nous avons (vérifier)
p! (A) < T(A) < pu°(A), Y A € By, eten particulier

i (A) < u(A) < j°(A4),¥ A e By (410

Nous devons montrer que (*) fi(A) = u/(A) = u°(A), ¥V A € Bx et en particulier (**)
w(A) = pf (A) = u°(A), ¥ A € Bx. 1l suffit en fait de montrer (**). En effet, admettons
(**). Donné A € Bx, soient By,Cq € Bx tels que By = A = Cy et u(Ca\B4) = 0
(dott u(Ba) = n(Ca) = i(A)). Grace a (**) (supposée vraie), nous avons

i(A) = p! (A) = p! (Ba) = u(Ba) = A(A),

A(A) < p°(A) < p®(Ca) = p(Ca) = p(A),
ce qui implique (¥).
Il reste donc a montrer (**). Soit  := {A € PBx; (**) est vraie}. Pour établir (**), il
suffit de montrer que % est une tribu contenant les fermés (vérifier).

L’axiome i) de la tribu est clair (justifier). Vérifions I’axiome ii). Pour commencer, no-
tons que, si A € P, alors (justifier chaque égalité)

p! (A€) = sup{u(F); F fermé et F — A%}
=sup{u(U°); U ouvert et U° ¢ A}
=sup{u(U°); U ouvertet U > A}
=sup{u(X) — uw(U); U ouvertet U o A}
=u(X) — inf{u(U); U ouvertet U o A} = u(X) — u°(A),

et, de méme, u°(A°) = u(X) — u/(A).
Il s’ensuit que, si A € %, alors

! (A9) = p(X) — p°(A) = p(X) — u(A) = p(A°),
et de méme ;°(A°) = p(A°), d’or A° € % . L'axiome ii) d"une tribu est vérifié pour % .

Soit maintenant une suite (A,,),>1 € % . Soite > 0. Comme A,, € %, il existe un fermé
F, e etun ouvert U, . avec

Fn,s < An < Un,aa :U'(Fn,ﬁ) > M(An) - 8/2n+1 et :U’(Un,f) < :UJ(A'II> + 5/2n+17
d’ou
wW(ANE, ) < e/2" et u(Un\Ap) < g/27h

Posons U® := Up>1Up - (qui est un ouvert) et FNe = u _1Fn.c (qui est un fermé pour

tout N). Nous avons
1 (undn) < p(U°) = p(US\ Un An) + p(Undn)

(( UnUne)\(Undn)) + p(Undn)

( nE\A )+ﬂ(UnAn)

|/\

IA

>1

e+ pu(undn);

A
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b)

au passage, nous avons utilisé 1'inclusion (a justifier)
(VierBi) \ (VierCi) < Vier(Bi\Ci).

En faisant ¢ — 0 dans (4.11) et en utilisant (4.10), nous obtenons (***) u°(u,A4,) =
,U(UnAn)-

De maniére analogue au calcul précédent, nous avons ju((UN_; A,)\FV¥) < g, ce qui
implique

! (Undn) 2 p(FY) = p(UnlyAn) = p((UnZy An)\FY)

N (4.12)
> p(uy,_14,) — &, VN eN* Ve > 0.
En faisant, dans (4.12), d’abord € — 0, puis N — o0, nous obtenons, grace au théoréeme

de la suite croissante, p/ (U, A,) > p(U,Ay). En utilisant (4.10), nous concluons a
légalité (***) uf (UnA,) = u(UnAy).

De (***) et (****), nous déduisons que % vérifie I'axiome iii) d'une tribu, De ce qui
précede, % est une tribu.

Pour compléter a), il reste a montrer que les fermés sont dans % . Soit F' un fermé.
Nous avons p/ (F) = u(F), d’ot p/ (F) = u(F).

Par ailleurs, soit (U, ), la suite de I'exercice 4.32. Nous avons p°(F') < u(Uy,), ¥n,d ot
pl(F) < lim p, (Uy,) = p(F) (car w est finie, ce qui nous permet d’utiliser le théoreme
de la suite décroissante).

Comme expliqué au point précédent, il suffit de montrer que p/ (A) > u(A),V A € Bx.
Soit (An)n=0 € #x avec Up=o A, = X et pu(Ay) < 0, ¥n. Quitte & remplacer A,, par
B, := A1 u...uU A,, nous pouvons supposer que A, " X.

Posons i, (A) := u(AnA,),V Ae $Bx,Vn.Lamesure p, est finie (vérifier) et p,, (A) /
wu(A),VAe Bx (théoreme de la suite croissante). Grace au point a), nous avons

p (A) = pf (A) = pn(A), YA e Bx, Vn e N*, (4.13)
En faisant n — oo dans (4.13), nous obtenons i/ (A) > p(A), comme désiré.

w étant o-finie, nous avons la conclusion du b). I suffit donc de montrer que ;°(A) <
1(A), ¥ A e Bx.Quitte a remplacer U, par V;, := Uy u...uU,, nous pouvons supposer
que U, / X.

Posons i, (A) := p(A n Uy), ¥n, qui est une mesure finie. Posons W; := U; et, pour
n > 2, Wy, := U,\U,,—1, de sorte que les W, sontd. d. d., X = w,>oW, et W,, c U,,
vV n.

Soit A e $Bx.Soit A, := AnW,,Vn.Les A, sontd. d.d.et A= 1,>0A4,. Par ailleurs,
nous avons A,, < Uy, d’ott pn(Ayn) = 11(Ap). Il s’ensuit que pu(A) = >, pn(An).

Soit ¢ > 0. De a), il existe un ouvert V,, . tel que V,,. 2 A, et pun, (Vo) < pn(An) +
g/2"+1. L'ensemble Whe := Vie n U, est un ouvert contenant A,,. Par ailleurs nous
avons fin(Vie) = p(Wh ).
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Finalement, nous avons

HO(A) < p(UnWae) < D p(Wae) < O (in(An) + /2741 w1
n n>0 .

= u(A) +¢e,Ve>D0.

Nous concluons en faisant ¢ — 0 dans (4.14).

d) Soit u¢(A) := sup{u(K); K compactet K < A}. Tenant compte du point c) et en
raisonnant comme pour les points précédents, il s’agit de montrer que p“(A4) > p(A),
VAe A X

Nous pouvons supposer K,, /" X (justifier).

Dans un premier temps, montrons que p“(F) > p(F) pour tout fermé F. Pour ce
faire, posons L,, := F' n K, Vn. Alors L,, est un compact et L,, / F'; en particulier,
w(Ly) /" p(F). Par ailleurs, nous avons p°(F') > u(Ly), Vn. En passant cette inégalité
a la limite sur n, nous obtenons (justifier) u°(F) > pu(F).

Soit maintenant A € #x. Si F est un fermé et F' < A, alors u¢(A) > p(F) > u(F).
En prenant le sup sur F et en utilisant le point c), nous obtenons u¢(A) > u/(A) =

w(A). CQFD

4.33 Remarque. Le schéma de la preuve du théoreme 4.26 a)—c) est typique pour les rai-
sonnements en théorie de la mesure. Le ceeur de la preuve consiste a montrer les propriétés
des mesures finies. Pour ce faire, il est commode d’utiliser le théoréme de la classe monotone. Des
hypotheses du type o-finitude permettent par la suite de s’affranchir, a peu de frais, de

I'hypothése de finitude de la mesure. o
Démonstration du corollaire4.27. Posons K; := B(0,j) et U; := B(0,j), Vj € N*. Alors
Uj=1K; = uj>1U; = R". Comme U; < Kj, nous avons u(U;) < pu(K;) < oo. Nous
concluons grace au théoreme 4.26 d). CQFD

Démonstration du corollaire 4.28. Vérifier! CQFD

4.5 La mesure de Lebesgue

Dans cette section, nous définissons la mesure la plus importante, celle de Le-
besgue, sans avoir, pour l'instant, les moyens de vérifier son existence.

4.34 Définition (Pavé de R"). Un pavé de R™ est un ensemble de la forme
P =1 x I x --- x I, avec chaque [ intervalle.

De maniere intuitive, si P est un pavé on définit la mesure (« volume ») m(P)
de P comme le produit des longueurs des I, (avec la convention 0 - oo = 0).
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4.35 Théoréme (Existence et propriétés de la mesure de Lebesgue). Dans R",
il existe une unique mesure borélienne v, telle que, pour chaque pavé P, on
ait v,(P) = m(P).

Cette mesure est la mesure de Lebesgue sur les boréliens de R".

De plus, v, a les propriétés suivantes :

a) v, est donnée, pour tout borélien A, par la formule

vn(A) = inf {2 m(P;); PjestunpavédeR", Vj, Ac ujzon} .

7=0

b) (Invariance par isométries) Si Z est une isométrie de R"," alors, pour A €
PBrn,on a v, (Z(A)) = vp(A).
c) Si A€ Pgn et Be Bgm,alors v, m(A x B) = v,(A) - v (B).

4.36 Définition (Tribu de Lebesgue).

a) La mesure de Lebesgue dans R™ est la complétée de v,,. Elle est notée \,,.

b) La tribu de Lebesgue dans R™ est la tribu complétée de Hr~» par rapport a v,.
Elle est notée .Z,.

Notons la forme particuliere que prend la proposition 4.19 dans le cas de la
mesure de Lebesgue.

4.37 Corollaire. Une fonction f : R* — R. Alors f est Lebesgue mesurable
si et seulement si il existe une fonction borélienne g : R — R telle que f = ¢

Un-P- P-

De mémesi f: A — R, avec A € Byn.

Le chapitre 5 est consacré a la construction de la mesure de Lebesgue ;. Nous
y établirons aussi quelques-unes de ces propriétés; des propriétés de v, n > 2,
seront obtenues dans le chapitre 8. Nous nous contentons ici de montrer quelques
propriétés simples de v,.
4.38 Proposition.
a) v, est o-finie.
b) v, est une mesure de Radon.
c) vy est unique.
d) v, est invariante par translations, c’est-a-dire v, ({z} + A) = v,(A), VA € HBgn,
VxeR"

t. Isométrie de R" : application Z : R" — R" telle que |Z(x) — Z(y)|l2 = |z —y|2, V x,y € R™.
De maniere équivalente, il existe U matrice orthogonale et a € R™ tels que Z(x) = Uz+a, Vz € R™.
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e) v, est donnée par la formule

Vl(A) = inf {Z(b] — Clj) ; Ac uj]aj,bj[} N VAe %R~ < (415)

J
Exercices

4.39 Exercice. Soit U un ouvert non vide de R".
a) Montrer que v,(U) > 0.

b) Soient f,g : U — R deux fonctions continues telles que f = g v,-p. p. Montrer que
=g o

4.40 Exercice.

a) A\, est o-finie.

b) A, est1’'unique mesure sur .Z, telle que A, (P) = m(P) pour tout pavé de R".
¢) A1 est donnée par la formule

)\1(14) = inf {Z(bj—aj); Ac uj]aj,bj[}, VAEQR. o
J

4.41 Exercice (Exemple d’ensemble non borélien — et non Lebesgue mesurable). Définis-

sons, pour z,y € [0,1], la relation z ~ y si et seulement siz —y € Q.

a) Montrer que ~ est une relation d’équivalence.

Nous pouvons donc écrire [0, 1] comme ["union de classes d’équivalence C;, qui sont
d.d.d.: [0, 1] = ‘—‘z’e]Ci-

Prenons, pour chaque 7, un élément et un seul z; € C; et définissons A := {z;; i € I}.
Posons A, := {q} + A,Vqe Q n [-1,1].

b) Montrer que A; N A, = Fsiq #r.

c) Montrer que [0, 1] € Ugegn[—1,114¢ < [-1,2].

d) En supposant A Lebesgue mesurable, calculer \;(A,) en fonction de A\ (A).

e) En déduire que 1 < 0 - \(A) < 3.

f) Conclusion : A n’est pas Lebesgue mesurable. En particulier, A n’est pas borélien.

g) (On ne peut pas bien mesurer toutes les parties de R) Si o : Z(R) — [0, 0] est une
mesure invariante par translations, alors soit ¢ = 0, soit ;(I) = oo pour tout intervalle

non dégénéré I — R. o
Démonstrations
Démonstration du corollaire 4.37. Exercice! CQFD

Démonstration de la proposition 4.38.
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a)
b)

<)

d)

Nous avons R" = U2, [—j, j]|", et vy ([, j]") = (2))" < 0.

Si K est un compact de R", alors il existe M > 0 tel que |z||x < M,Vz € K; d’ou
K < [-M,M]". 1l s’ensuit que vy, (K) < v, ([—M, M]") = 2M)" < ©

Soit €, I'ensemble des unions finies de pavés de R". Alors %, est un clan et, de plus,
tout élément de €, s’écrit comme une union d. d. d. de pavés de R™ (exercice 1.36). Si
w est une mesure borélienne telle que p(P) = m(P) pour tout pavé, alors, de ce qui
précede, 1 = v, sur G,

Nous avons clairement 4,, < %gn. Par ailleurs, ¢, contient les pavés ouverts, qui
engendrent Zrn (proposition 2.16 c)). Il s’ensuit que 7 (%,,) > %Brn, d'ott T (6,) =
«@Rn.

La mesure v,, étant o-finie, nous obtenons de ce qui précede et de la proposition 4.24
que i = vy, et donc que v, est unique.

Notons d’abord que A c R" est borélien si et seulement si {x} + A I'est; ceci s’obtient
de l'exercice 2.20 appliqué a ’homéomorphisme ¢ : R” — R", ®(y) := = + .

Posons p(A) := v,({z} + A), VY A € Brn. Alors p est une mesure borélienne (vérifier)
et ;1(P) = v, (P) pour tout pavé. Nous concluons comme au point c).

«<»SiAe BretAc ujlaj, b, alors

vi(A) < vi(Ujlag, b)) < > (g, b)) = Y m(lag, bil) = D (b5 — ay),
J J J
d’ot1 « < » dans (4.15).

«>» Soit ¢ le membre de droite de (4.15). Soit U un ouvert de R. Rappelons que U
est une union a. p. d. d’intervalles ouverts d. d. d. |a;, b;[ (exercice 2.23). Nous avons
donc lll(U) = Zj(bj — aj).

Si, de plus, U o A, nous déduisons de ce qui précede que v;(U) > (. En utilisant ce
fait et le corollaire 4.27, nous obtenons

vi(A) = inf {v1(U); U ouvertet U o A} > (. CQFD

4.6 Pour aller plus loin

4.6.1 Mesures invariantes par isométries

Il s’ensuit de I'exercice 4.41 qu’il n’est pas possible de construire sur #(R) une

mesure y invariante par translations telle que la mesure de chaque intervalle non
dégénéré et borné soit un nombre dans |0, o0[. De méme, il n’est pas possible de
construire sur & (R") une mesure invariante par isométries telle que la mesure de
chaque ouvert non vide et borné soit un nombre dans |0, o[. Pour pouvoir espérer
obtenir cette propriété, il faut donc exiger moins de p. Les exigences minimales
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sont :

p:{AcR"; Aborné} — [0, 0l (
wWAu B) =pu(A)+u(B)siAn B =, YA, Bbornés. (4.17)
wW#(A)) = u(A), Y Aborné, V% isométrie. (
Il existe un A borné tel que p(A) > 0. (

Nous avons les résultats suivants.

4.42 Théoreme.
a) (Banach [2]) Pourn = 1, n = 2, il existe une fonction p satisfaisant (4.16)—(4.19).
b) (Hausdorff [12]) Pour n > 3, il n’existe pas une telle p. o

La partie b) du théoréme 4.42 est devenue célébre grace au résultat suivant,
hautement contre-intuitif, qui 'implique.

4.43 Théoreme (Paradoxe de Banach-Tarski [1]). Soit B une boule dans R", avec
n > 3. Soit C' une translatée de B telle que B n C' = (.

Il existe k¥ € N*, une partition B = B; u ... u B, de B et des isometries
R, ..., % deR" telles que : Z1(By) L ... u%(By) = Bu C. o

Démonstration de « théoréme 4.43 —> théoréme 4.42b) ». Soit n > 3. Supposons, par 1’absurde,
I'existence de o satisfaisant (4.16)—(4.19). Notons que si p satisfait (4.16) — (4.17), alors
p(Arv. . .UAR) < X5 u(Aj), avec égalité siles ensembles bornés A; sont d. d. d. (vérifier).
Soit A < R” tel que 0 < u(A) < w et soit B une boule contenant A Soit C une translatée
de B telle que B n C = (J. Avec les notations du paradoxe, nous avons

0 < 2u(A) <2u(B) = u(B) + u(C) = p(B v C) = p(j_1 %;(B;))
k
= XL W B) = BB = (aBy) = u(B) < o0
j=1 j=1
ce qui est impossible. CQFD

4.6.2 Convergences d’une suite de fonctions

Nous discutons ici, sans donner les démonstrations, les relations entre conver-
gence simple, convergence uniforme et convergence « en mesure » d'une suite de
fonctions. Sur ce sujet, une bonne référence est Halmos [11, Section 22].

Le cadre est celui des fonctions mesurables f,, f : X — R, avec (X, .7, u) un
espace mesuré.’

t. Pour simplifier les énoncés, nous supposons que les fonctions sont finies en tout point.
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4.44 Définition.

a) f, — f en mesure si pour tout ¢ > 0 nous avons
lim pu({ € X; |fule) = f@)] = }) = 0.
b) La suite (f,,), est de Cauchy en mesure si pour tout € > 0 nous avons

lim_p({e < X |fule) = fulo)] = €)= 0. :

m

4.45 Définition.

a) f, — f presque uniformément si pour tout ¢ > 0 il existe un ensemble A = A, €
T tel que u(A) < e et f, — f uniformément sur X\A.

b) La suite (f,), est de Cauchy presque uniforme si pour tout ¢ > 0 il existe un
ensemble A = A, € 7 tel que u(A) < cet

Jim sup ({1£,(2) = (o) 2 € X\4} = 0, °

Le théoreme d’Egoroff est a premieére vue étonnant; a comparer a l'implication
classique « convergence uniforme — convergence simple ».
4.46 Théoreme (Théoreme d’Egoroff). Soit 1 finie.
a) Si f, — fp.p. alors f, — f presque uniformément.

En particulier, « convergence simple = convergence presque uniforme » (si
u est finie).
b) Si f, — f p. p., alors (f,), est de Cauchy presque uniforme. 3

Les implications opposées a celles données par le théoreme d’Egoroff sont
également vraies.
4.47 Proposition. Soit p finie.

a) Si f, — f presque uniformément, alors f,, — f p. p.
b) Si (f,). est une suite de Cauchy presque uniforme, alors il existe f telle que
fn — f p- p- et presque uniformément. o

En combinant les deux résultats précédents, nous obtenons dong, si p est finie,
I"équivalence :

convergence p. p. <= convergence presque uniforme.

De méme, si 1 est finie, alors nous avons, cette fois -ci « a une sous-suite pres », t
I’équivalence entre convergence en mesure et convergence presque uniforme.

1. Nous rencontrerons une situation similaire pour le théoréme de convergence dominée 7.2 et sa
«réciproque », théoreme 7.5, qui nécessite de passer a une sous-suite.
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4.48 Proposition. Soit y finie.

a) Si f, — f presque uniformément, alors f,, — f en mesure.

b) Réciproquement, si f, — f en mesure, alors il existe une sous-suite (f,, ) telle
que f,, — f p. p. et presque uniformément. o

Dans l'esprit du théoréme d’Egoroff, qui affirme que la convergence simple est
« presqu’équivalente » a la convergence uniforme pour les mesures finies, notons
la « presqu’équivalence » entre mesurabilité et continuité dans le cas des mesures
boréliennes finies.

4.49 Théoreme (Théoreme de Vitali). Soit 1 une mesure borélienne finie sur un
espace métrique X.

a) (Théoreéme de Vitali) ¥ Soit f : X — R une fonction borélienne.

Pour tout € > 0 il existe un borélien A = A. tel que p(A) < ¢, avec f continue
sur X\ A.

b) «Réciproquement », soit f : X — R telle que pour tout ¢ > 0 il existe un
borélien A = A, tel que ;(A) < ¢, avec f continue sur X\A. Alors il existe une
fonction borélienne g : X — R telle que f = g p. p. o

Démonstration.

a) Nous allons montrer I'existence de A d’abord pour f fonction caractéristique, puis pour f éta-
gée, ensuite pour f borélienne bornée et enfin pour f borélienne quelconque. '

Soient B € 7, f := xpete > 0. Comme u(X) < oo, il existe F' fermé, U ouvert tels que
F c B c Uetu(U\F) < ¢ (théoréme 4.26). Posons A := U\F'. Nous avons p(A4) < e.
Par ailleurs, y g est continue sur les fermés F' et X \U (vérifier), donc sur X\A = F 1 (X\U)
(justifier).

Soit f étagée, f = >, bjxp,. Soit Aj € T satisfaisant u(A;) < g/27*! et xp; continue sur
X\A;.SiA:= UjAj,alors u(A) < e et f est continue sur X\ A (vérifier).

Soit f borélienne bornée. Soit ( f;); une suite de fonctions étagées telle que f; — f unifor-
mément. ¥ Soit A; € T avec ju(A;) < /277! et f; continue sur X\A4;. Si A := U;A;, alors
p(A) < e etchaque f; est continue sur X'\ A. Par convergence uniforme, f est continue sur
X\A.

Enfin, soit f : X — R borélienne. Soit g := arctan f : X —] — 7/2,7/2[. La fonction
g est borélienne bornée. Soit A € .7 tel que u(A) < ¢, avec g continue sur X\ A. Comme
f =tang, f estcontinue sur X\ A.

1. Plutdt connu comme théoréeme de Lusin (Louzine). Prouvé par Vitali, il fut redécouvert par
Lusin sous la forme suivante (sur [0,1]) : si f : [0,1] — R est borélienne et ¢ > 0, alors il existe
g :[0,1] — R continue et A < [0, 1] borélien tels que 11 (A) < e et f = g sur [0, 1]\A.

t. Sans le nommer, nous faisons un raisonnement par classes monotones, version fonctions au
lieu d’ensembles. Pour I'analogue du théoreme de la classe monotone dans ce contexte, voir par
exemple Barbe et Ledoux [3, Théoréme 1.3.5].

1. Pour justifier 1'existence de la suite (f;);, il faut examiner la preuve du théoréme 3.5.
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b) Soit A; tel que u(A;) < 1/(j+1), avec f continue sur X\ A;. Posons f; := fix\a, : 4; = R,

f(z), size X\A4
A:=njAj, g(x) = {0 Gized

Lensemble A est borélien et ;1(A) = 0 (vérifier), d'ott f = g p. p. Comme
X\A = X\ nj Aj = v (X\4),
nous avons, pour tout B € By tel que 0 ¢ B,

g '(B) ={reX;g(x)e B} = {z e X\A; g(z) € B}
{r e uj(X\4)); g(z) € B} = uj{z e X\A;; g(z) € B}
ui(f)TH(B).

I

De méme, si 0 € B, alors
9 '(B) = Auu;(f)) (B).

Dans les deux cas, nous avons g~ (B) € %y (vérifier), et donc g est borélienne. CQFD
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Chapitre 5

Constructions de mesures

5.0 Apercu

La section 5.1 est consacrée a la construction de la mesure de Lebesgue dans R.
Comme nous allons le voir, le coeur de la preuve consiste a construire la mesure
de Lebesgue sur |0, 1[; le reste est « automatique ». La construction est celle « his-
torique »; les constructions plus conceptuelles présentes souvent dans les textes
reposent sur la notion de mesure extérieure et les théoremes de Carathéodory (section
5.2.2), qui sont une relecture de la preuve de Lebesgue.

Pour le « méme prix » que la construction de la mesure de Lebesgue, nous
obtenons les mesures de Stieltjes (section 5.2.1), que nous n’utiliserons pas dans ce
texte, mais qui sont tres utilisées en théorie des probabilités, théorie du signal ou
théorie analytique des nombres.

Enfin, nous évoquons (sans détails) dans la section 5.2.3 la belle idée de Haus-
dorff, consistant a décrire, par une méme formule, la longueur, 1'aire, le volume,
et bien plus (les mesures fractionnaires).

5.1 Construction de la mesure de Lebesgue

Nous cherchons a montrer l'existence de la mesure v,, comme dans le théoréme
4.35. Rappelons que son unicité est acquise, voir la proposition 4.38 c). Comme
nous l’avons remarqué, il est commode de travailler dans un premier temps avec
des mesures finies, puis de s’affranchir de la finitude. Nous allons donc construire
la mesure de Lebesgue d’abord sur un pavé borné P. Plus spécifiquement :

1. Nous allons construire la mesure de Lebesgue sur |0, 1{". La construction sera
analogue sur toute autre pavé.
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Constructions de mesures 5.1 Construction de la mesure de Lebesgue

2. La mesure de Lebesgue sur les pavés permet de construire la mesure de Le-
besgue sur R".

Il est commode — mais pas indispensable — d’utiliser des propriétés élémen-
taires de I'intégrale de Riemann lors de 1’étape 1. Afin de ne pas perdre en chemin
le lecteur qui connait I'intégrale de Riemann dans R, mais pas dans R" avecn > 2,
nous allons prendre uniquement n = 1 dans ce qui suit. Une fois construite la me-
sure de Lebesgue dans R, son existence dans R" est démontrée dans le chapitre
8. Il est néanmoins possible de se passer de la technologie développée dans le
chapitre 8 et de montrer l'existence de p,, en adaptant aux dimensions > 2 les
preuves présentées dans la section 5.1.4 (voir par exemple Stein et Shakarchi [20,
Chapitre 1]).

5.1.1 Construction de la mesure de Lebesgue sur |0, 1|

Posons, pout tout intervalle I d’extrémités a < b, m(I) := b — a. Nous avons
vu (proposition 4.38, exercice 4.40) que, si la mesure de Lebesgue \; existe, alors
elle est donnée par la formule

A (A) = inf {Z m(1;); I; intervalle ouvert, V j, A ujlj} , VA e Br.
J

Posons, pour A |0, 1],

m*(A) := inf {Z m(1;); I; intervalle ouvert, V j, A ujlj} : (5.1)
J

Nous devons montrer que m* = \; sur la tribu de Lebesgue (de ]0, 1[). Mais
il se trouve que l'existence de cette tribu repose sur l’existence de la mesure de
Lebesgue, dont l'existence n’est pas encore acquise!

L’idée suivante, due a Lebesgue, permet d’identifier les candidats aux mem-
bres de la tribu. Si m* = v, = m sur les intervalles et si A est Lebesgue mesurable,
alors A¢ =)0, 1[\A I'est aussi, d’otu m*(A) + m*(A¢) = m*(]0,1]) = m(]0,1]) = 1.
Posons alors

T = {A <]0,1[; m*(A) + m*(A°) = 1}. (5.2)

Nous avons alors le résultat suivant.

5.1 Théoreme (Lebesgue).

a) 7 estune tribu.
b) 7 contient % 1.
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¢) La restriction de m* a .7 est une mesure.
d) m*(I) = m(I) pour tout intervalle I |0, 1].
e) .7 estla complétée de #), ;| par rapport a m*.

En particulier, la restriction de m* a %y 1 est une mesure borélienne telle que
m*(I) = m(I) pour tout intervalle / <0, 1]. o

Nous admettons pour l'instant ce théoreme.

5.1.2 Construction de la mesure de Lebesgue sur R

Soit 11; la mesure borélienne qui vérifie ’analogue du théoréme 5.1 sur | —j, j|,
j € N*. Posons &;(A) := pu;j(An]—4,7]), Vj, VA e Br. La mesure ¢; est borélienne,
et elle coincide avec m pour les intervalles de | — j, j[ (vérifier).

Par unicité de la mesure de Lebesgue sur | — j, j[, nous avons 1,1 (A) = 11;(A),
VAe #)_;; Il s’ensuit que

Eii1(A) =pj1(An] =5 — 1,5+ 1) = pj1(An] — 4, 4])
Ainsi, nous pouvons définir

1(A) = li;néj(A) = 1i§n/wj(z40] —3,40), VA € S,

qui est une mesure (exercice 4.6).

5.2 Proposition. ;. est la mesure de Lebesgue v, sur %g. o

Démonstration. 1l suffit de montrer que p(I) = m([I) pour tout intervalle I (justifier). Si I est
borné, alors I | — j, j[ pour j suffisamment grand, et donc &;(I) = p;(I) = m(I) pour un
tel j;dott (1) = m([). SiI est nonborné, alors pu(I) > p(J) = m(J) pour tout J borné avec
J < I. En prenant le sup sur tous ces .J, nous obtenons p(I) = o0 = m([). CQFD

A partir de v;, nous obtenons la tribu complétée .Z] et la mesure complétée
A1. Le lien avec les y; est le suivant.

5.3 Exercice. Soit 7 la complétée de %)_; ;| par rapport a p;.
Soit A R. Nous avons A€ .4, < An]|—j,jle 75, Vj=>1 o

5.1.3 Construction de la mesure de Lebesgue sur R"
La mesure de Lebesgue v, est o-finie et satisfait 14 (/) = m(I) pour tout in-
tervalle I. Il existe alors une et une seule mesure borélienne v,, sur R” telle que

v(ly x -+ x I,) =m(ly)...m(1,),VI,..., I, intervalles dans R (voir chapitre 8).
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Constructions de mesures 5.1 Construction de la mesure de Lebesgue

5.1.4 Démonstration du théoréme 5.1

Pour faciliter la lecture, la preuve est découpée en petites étapes préliminaires
(lemmes), faciles a montrer et comprendre. Elles seront « assemblées » lors de la
preuve proprement dite du théoreme.

Les ingrédients les plus importants de la preuve sont les lemmes 5.6 (qui re-
pose sur un argument topologique : les intervalles fermés bornés sont compacts)
et5.11.

Nous allons travailler ici uniquement avec des parties A, B . .. de |0, 1[. Les notions
de fermé et complémentaire s’entendent par rapport a 0, 1].

Notons que, si A < u;lj, alors A < u;(I;n]0, 1]). Par ailleurs, nous avons
> m(I;n]0,1[) < > m(I;). Il s’ensuit que, dans (5.1), il suffit de considérer des
intervalles I; |0, 1] (justifier).

5.4 Lemme.

a) m*(g) = 0.

b) m* est monotone, c’est-a-dire m*(A) < m*(B), VA < B.

c) m*(u;A4;) < >, m*(4;), pour toute suite (4;) <]0, 1[.

d) m*(A) <1,VA. o

Démonstration. Les propriétés a), b), d) sont claires (vérifier).

¢) Soite > 0. Pour chaque j > 1, il existe une suite d’intervalles ouverts (I ,]C) pavec Aj C U kI/,jc
et

D im(I]) < m*(4;) + /27
k

La famille (/: ,i) ;. estdénombrable (proposition 1.13). Sinous la listons sous la forme (L, )n>0,
alors pour toute somme finie nous avons

N
m(Ln) < ) (m*(4)) + /2,

n=0 i
dott

Dim(Ln) <) m*(4) +e.

n>0 J
Comme U;jA;j © UnxoLy, nous obtenons m*(u;A4;) < >3, m*(A;) + e. Nous concluons en
faisante — 0. CQFD

5.5 Lemme. m*(A) = inf{m*(U); U ouvertet A c U}. o
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Démonstration.
« < » est clair, car m*(A) < m*(U) pour tout U comme ci-dessus.

«>» Soit e > 0 et soient I; ouverts avec A < u;l; et >}, m(l;) < m*(A4) +¢e.Soit U :=
u;l;. Alors U est ouvert, A — U et (du point c) du lemme 5.4)

m*(U) = m*(u;I;) < Zm(Ij) <m*(A) +e. CQED

Le premier résultat clé dans la preuve du théoreme 5.1 est le suivant.

5.6 Lemme. Si (Lj);, est une famille a. p. d. d’intervalles d. d. d., alors m* (L, L) =
2 m( L)

En particulier, si I <]0, 1] est un intervalle, alors m*(I) = m([).

Cas particuliers : m*(J) = 0 et m*(]0, 1]) = 1. o

Démonstration. Quitte a rajouter de intervalles vides, nous pouvons supposer quil y a une infi-
nité (dénombrable) d’intervalles, indexés (L )x>1-

« < » Pour chaque intervalle borné L et chaque e > 0, il existe un intervalle ouvert J avec L. < J et
m(J) < m(L) + e (vérifier). Considérons, pour chaque k, un intervalle ouvert Iy tel que L, < I,
et m(Ik) < m(Lk) + €/2k+1. Alors Ugps>1Lp © Ups11j et Zkzl m(Ik) < Zkzl m(Lk) +¢,dou
(en faisant e — 0) m*(Ug>1Ly) < D poq m(Li).

«>» Il suffit de montrer cette inégalité pour un nombre fini d’intervalles compacts dans |0, 1[. En
effet, supposons cette inégalité établie pour les unions finies d’intervalles compacts. Pour chaque
intervalle L et chaque ¢ > 0, il existe un intervalle compact C avec L > C et m(C) > m(L) —
€ (vérifier). ' Considérons, pour tout k, un intervalle compact Cy avec Ly > Cj et m(Cy) >
m(Ly) — /281,

Pour tout n fini, nous avons alors (grice a I'inégalité « > », supposée vraie pour les Cy)

n

n
m* (Lg=1Lk) = m* (LP_1Ck) = Z ) > Z m(Lg) — €.
k=1

En faisantn — oo ete — 0, nous obtenons « > ».

Nous avons donc réduit le lemme a I'inégalité suivante : si C1, ..., C), sont des intervalles
compacts d. d. d., alors (*) m*(L}_,C%) = > p_; m(C).

Soit C' := C1 u ... u Cy. Soient I}, j > 1, des intervalles ouverts tels que C < u;I;. Pour
obtenir (), il suffit de montrer (**) 33 _; m(Cy) < >3, m(I;) (justifier).

C' étant compact, il existe N tel que C' < u " 1. Il Sensuit (vérifier) que

N

Yixe = xe < DX, (5.3)
k=1

=1

t. Rappelons que nous travaillons dans |0, 1], et que L est borné.
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Notons que, pour tout intervalle I <]0, 1] la fonction caractéristique y s est continue par mor-
ceaux sur R, donc intégrable Riemann sur [0, 1]. Par ailleurs, nous avons

1
J x1(x)dx =m(I). (5.4)
0
En utilisant (5.3), (5.4) et les propriétés de I'intégrale de Riemann, nous obtenons
n 1 1 N 1
Z m(Cg) = Z f xc, (z) dx = f xo(z)dx < Z X1, (z) dz
k=1 k=170 0 j=170
N
=Y m(ly) < Y m(),
j=1 j>1
d’ott (**) et la conclusion du lemme. CQFD

Notons une conséquence immédiate du lemme. Comme tout ouvert U s’écrit
comme une union a. p. d. d'intervalles ouverts d. d. d. L;, nous avons m*(U) =

2 (L)
5.7 Lemme. Soient U,,, U des ouverts avec U,, ,/ U. Alors m*(U,,) / m*(U). <
Démonstration. Nous avons clairement m*(Uy,,) /" et m*(U,) < m*(U), Vn (vérifier), dott
lim,, m*(U,) < m*(U).

Pour I'inégalité opposée, soite > 0.

Ecrivons U = w;l;, avec I; intervalle ouvert, V j, et Zj m(l;) = m*(U) < oo (justifier).
Il existe N tel que >,y m(I;) < /2. Il existe également des intervalles compacts C; < I;,

j=1,...,N,avec Z;V:I m(C;) > Z;V:I m(1;) — /2 (vérifier).

Soit C' = uévlej, qui est compact. Comme U,, / U > C, il existe ng avec C' < Uy,
(justifier). Il S’ensuit que

N
limm*(Uy) = m*(Uyy) = m*(C) = Y. m(C))
j=1

n

N CQFD
> Z m(l;) —e/2 > Z m(I;) —e =m*(U) —e.
j=1 j=1
5.8 Lemme. Soient U, V' des ouverts. Nous avons
m* (U v V)+m*(UnV)=m"(U)+m*(V). o

Démonstration. Quitte a rajouter des intervalles vides, nous pouvons écrire U = 11> /et V =
uj>1L;, avec I;, L; intervalles ouverts.

Posons Uy, := u_ I;, V,, := i L. Alors U,, /" U ; propriétés analoguesde V,,, U,, u V,
et U,, n V,, (vérifier).
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Un, Vo, Uy UV, et U, NV, étant des unions finies et d. d. d. d’intervalles, il s’ensuit que I'éga-
1

lit¢ m*(A) = | xa(zx)dx est vraie pour chacun de ces ensembles (justifier, a l'aide du lemme

0
5.6). En combinant ce fait avec I'identité (a justifier)

XU’VLUV!L + XUann = XUn + XVyN

nous obtenons que

m* (U, v Vo) + m*(Up 0 V) = m*(U,) + m*(Vy,). (5.5)

Nous concluons grice aulemme 5.7, en faisant n — oo dans (5.5). CQFD

Une conséquence immédiate des lemmes 5.5 et 5.8 est la suivante.
5.9 Lemme. Si A, B |0, 1|, alors

m*(Au B) + m*(An B) <m*(A) + m*(B). o (5.6)

Démonstration. Soient U, V ouvertstelsque A ¢ Uet B ¢ V.Alors Au B < U u Vet
An B cUnYV,dou(en utilisant les lemme 5.5 et 5.8)

m*(AuB)+m*(AnB) <m*(UuV)+m*(UnV)=m*U)+m*(V). (5.7)

En prenant, dans (5.7), l'inf sur U et V, et en utilisant a nouveau le lemme 5.5, nous obtenons
(5.6). CQFD

Posons, conformément a la discussion heuristique du début du chapitre,
T = {AcC]0,1[; m*(A) + m*(A°) = 1}. (5.8)
Notons que
1 =m*(]0,1]) = m*(Au A°) < m*(A) + m*(A°)
(lemme 5.4 ¢)), et donc une définition équivalente de .7 est
T ={Ac]0,1[; m*(A) + m*(A°) < 1}
Le lemme suivant donne les premiers exemples concrets d’ensembles dans .7

5.10 Lemme. Si U est un ouvert, alors U € 7. o
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Démonstration. Supposons d’abord que U = wi7/_, I}, avec I; intervalles ouverts. Alors U* est
une union finie d’intervalles, et donc (en utilisant le lemme 5.6 et les propriétés de I'intégrale de

1
Riemann) m*(U¢) = J Xve(x) dx; de méme pour U. Il s’ensuit que
0

1 1 1
m*(U) + m*(U®) = L xv(z) dz —i—fo xue(x)dx = fo ldx = 1.

Soit maintenant U un ouvert quelconque. Nous pouvons donc écrire U = Li;>11;, avec chaque
I; intervalle ouvert. Posons Uy, := w}_, ;. De ce qui précede et dulemme 5.7,

m*(U) = liTILn m*(U,) = lirrln(l —m*((U,)9)) <1 —m*(U°).

Il s’ensuit que m*(U) + m*(U¢) < 1,douU € 7. CQFD

Le deuxiéme résultat clé est le suivant.

5.11 Lemme. Les propriétés suivantes sont équivalentes.

1. Ae 7.
2. Pour tout € > 0, il existe un ouvert U tel que m*(AAU) < e. o

Démonstration.
«1 = 2» Soient V, W des ouverts tels que A < V, A° ¢ W, m*(V) < m*(A) + ¢/2,
m*(W) <m*(A°) + /2. Alors V. .u W =]0, 1] (vérifier), et donc (lemme 5.8)

m* (VW) =
<

V)+m* (W) —=m*(VoW)=m*(V)+m*(W) -1
(A) +m*(A°) +e—1=c¢.

m*
m*
Prenons U := V. Nous avons
AAU =V\A=V nA°cV W,

d'ott m*(AAU) <m*(Vn W) <e.

«2 == 1»Nousavons A c Uu(AAU) (vérifier), d’ ot (lemme 5.4 c)) m*(A) < m*(U)+e.
De méme, A° < U¢u (A°AU®) = U° U (AAU) (vérifier), d’'ou m*(A) < m*(U°) + e. Grace
au lemme 5.10, il s’ensuit que

m*(A) + m*(A°) <m*(U) + m*(U°) +2e =1+ 2.
En faisant ¢ — 0, nous obtenons A € 7. CQFD

Démonstration du théoreme 5.1.
Etape 1. T est une tribu qui contient la tribu borélienne. Par définition de .7, si A € 7 alors
Ae 7.

Par ailleurs, m* () = 0 et m*(]0, 1[) = 1 (lemme 5.6), d’ott J € 7.
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Considérons maintenant une suite (A,),>1 < 7. Pour chaque n > 1, soit U, un
ouvert tel que m*(A,AU,) < ¢/2""! (lemme 5.11). Posons U := U,>1U,, qui est un
ouvert. Nous avons (Up>14,)A(Up>1Un,) © Uns1(4,AU,) (Vérifier), d’ot (lemme 5.4 ¢))

m* ((Un=14n)AU) < Y m*(A,AU,) < €

n>1

Le lemme 5.11 donne u,>14, € 7.

7 est donc une tribu. Cette tribu contient les ouverts (lemme 5.10), donc la tribu
borélienne.

Etape 2. m* restreinte @ 7 est une mesure, et restreinte i B[ est la mesure de Lebesgue. Le
fait que m* restreinte a %o 1| soit la mesure de Lebesgue suit du lemme 5.6 et de l'unicité
de la mesure de Lebesgue (proposition 4.38 c)).

Pour montrer que m* est une mesure sur .7, notons d’abord que m*(f) = 0 (lemme
5.6). Il reste a montrer que, si (4;); © 7 est une suite d. d. d., alors

Aj) = Y m*(4)). (5.9)
J

L'inégalité « < » suit du lemme 5.4 c). Pour I'inégalité opposée, il suffit de montrer

m*(Au B) +m*(An B) >m*(A)+m*(B), VA,Be 7. (5.10)

En effet, admettons (5.10) pour 'instant. En utilisant cette propriété et le lemme 5.9,
nous obtenons que

m*(Au B) =m*(A)+ m*(B), VA,Be 7 telsque An B = (, (5.11)

puis, par récurrence sur n,

m* (L], Aj) = Z ¥, V(A < Z7d.d.d (5.12)

En utilisant (5.12) et la monotonie de m™* (lemme 5.4 b)), nous obtenons
m*(Lj=14;) > A = Z , ¥, V(Aj)=1 € 7 d.d.d, (5.13)

d’ou, en faisant n — oo dans (5.13),

*(uj=145) = > m* Aj)j=1 c 7 d.d.d (5.14)

j=>1

Comme, par ailleurs, I'inégalité opposée a (5.14) est toujours vraie (lemme (5.4) c)),
nous obtenons que 'axiome ii) de la mesure est vérifié.
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Il reste donc a montrer (5.10). Du lemme 5.9, la définition (5.8) de .7 et le fait que .7
est une tribu (étape 1), nous obtenons (justifier)

m* (AuB)+m*(AnB)=1—m*"((Au B))+1—m*((An B)°)
=2—[m*(A° n B°) + m*(A° U BY)]
> 2 — [m*(A°) + m*(B)] = m*(A) + m*(B).

Etape 3. 7 est la complétée de PBlo,1[ par rapport a la mesure de Lebesgue sur %), 1. Montrons
dans un premier temps que m* restreinte a .7 est compleéte. Soit A un ensemble négli-
geable par rapport a cette mesure. Il existe donc un B € .7 tel que A < B et m*(B) = 0.
Pour tout € > 0, il existe U ouvert tel que B < U et m*(U) < € (lemme 5.5). Il s’ensuit que
m*(AAU) = m*(U\A) < m*(U) < e. Grace au lemme 5.11, nous déduisons que A € 7.
m* restreinte a .7 est donc une mesure complete.

Enfin, montrons que 7 est la complétée de %), ;| par rapport a la mesure de Lebesgue
sur %), (donc de m* sur Hjg ). Notons @]071[ cette complétée. De ce qui précede,
%071[ < 7 (justifier, en utilisant %5 ;1 < 7 et la complétude de m™). Inversement,
soit A € .7. Du lemme 5.5, il existe une suite (Uy,)n>0 d’ouverts telle que A < U,,, Vn, et
m*(U,) — m*(A). De méme, il existe une suite (V},),>0 d’ouverts tells que A° < V,,, Vn,
et m*(V,,) — m*(A°). Nous avons alors (V,,)¢ < A, Vn, et m*((V,,)¢) — m*(A) (justifier).
Posons B := uy (V)¢ C := n,U,. Nous avons (justifier)

B,Ce B etBc AcC. (5.15)

Par ailleurs, nous avons (V;,)¢ < B, Vn, d’ou (justifier)

m*(B) = lim m*((Vy,)°) = m*(A). (5.16)

De maniére similaire, C < U,,, Vn, d’oll

m*(C) < lirrln m*(U,) = m*(A). (5.17)

De (5.15)—(5.17) et la monotonie de m* (lemme 5.4 b)), nous avons m*(B) = m*(A) =

m*(C). 1l s’ensuit (justifier) que m*(C\B) = 0, d’ot1 (propositions 4.11 et 4.14) A € % 1
et m*(A) est la mesure (de Lebesgue complétée) de A. CQFD

5.2 Pour aller plus loin

5.2.1 Mesures de Stieltjes

Soit F' : R — R, F(z) := z, V2 € R. La mesure de Lebesgue sur les boréliens
de R est I'unique mesure borélienne 1 telle que p(]a, b[) = F(b) — F(a) pour tout
intervalle ouvert borné |a, b|.

Considérons plus généralement une fonction croissante /' : R — R. Rappe-
lons que F' a des limites latérales F'(z+) et F'(x—) en tout point. Nous avons la
généralisation suivante de la mesure de Lebesgue.
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5.12 Théoréme. Soit F' : R — R une fonction croissante. Alors il existe une
unique mesure borélienne ; sur By telle que p(]a, b[) = F(b—) — F(a+) pour
tout intervalle ouvert borné |a, b|.

5.13 Définition (Mesure de Stieltjes). La mesure ;1 du théoreme 5.12 est la
mesure de Stieltjes associée a F'.

Si F est dérivable avec F’ Riemann intégrable sur tout intervalle borné (par
exemple si F' € C?), alors nous pouvons obtenir ce résultat en copiant la preuve
du théoréme 5.1. En général, I’ n’est pas dérivable; elle peut par exemple étre
discontinue. Dans ce cas, il est encore possible de suivre la preuve du théoreme
5.1, mais il faut éviter 'utilisation de l'intégrale de Riemann dans les preuves
des lemmes 5.4, 5.8 et 5.10; voir Bogachev [4, section 1.8]. Comme nous l'avons
noté, 1'utilisation de l'intégrale de Riemann dans la preuve est commode, mais
pas indispensable.

5.2.2 La construction de Carathéodory

Commengons par une définition liée au lemme 5.4.
5.14 Définition (Mesure extérieure). Une mesure extérieure sur X est une fonction
m*: 2(X) — [O o] telle que :

() =
11) *(A)s ( )siAc B.
m*(u;A;) < X, m*(A;), pour toute suite (4;); = X. o

*

iii)

Dans 1’esprit de la construction de la mesure de Lebesgue, une fagon simple
de construire des mesures extérieures est la suivante.

5.15 Proposition. Soit &7 une famille de parties de X telle que:

i) Il existe une suite (X,,),, < & avec U, X,, = X.
i) Jed.
Soit m : & — [0, 0] telle que m(J) = 0. Posons

m*( mf{Zm A€, VjetAquA],}.

Alors m* est une mesure extérieure. o
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En poursuivant I’analogie avec la mesure de Lebesgue, il est tentant de consi-
dérer la classe

T = {Ac X;m"(A) +m*(A) = m*(X)}

et de montrer que m* restreinte a .7 est une mesure. Cette approche marche uni-
quement si m*(X) < co. La clé pour s’attaquer au cas général est indiquée par
le résultat suivant (avec m* et 7 comme dans la construction de la mesure de
Lebesgue).

5.16 Lemme. Soit A |0, 1[. Alors

Ae T —= m"(AnE)+m*(A°n E)=m*(E), VE c|0,1]. o

En nous inspirant du lemme 5.16, posons, pour X et m* généraux,

T ={Ac X m*(AnE)+m*(A°nE)=m*(E), VE c X}. (5.18)

Nous avons alors le résultat suivant.

5.17 Théoréme (Théoréeme de Carathéodory). Soit m* une mesure extérieure sur
X et soit .7 comme dans (5.18). Alors
a) 7 estune tribu.

b) m* restreinte a .7 est une mesure complete. o

L'inconvénient de ce résultat abstrait est qu’il ne donne aucun renseignement
sur .7 ; par conséquent, il ne permet pas de décider si un ensemble concret est me-
surable. Considérons le cas particulier ot X est un espace métrique. Rappelons
que dans ce cas les ensembles « usuels » sont boréliens. Il est donc intéressant de
décider si .7 contient les boréliens. Dans ce contexte, nous avons le complément
suivant du théoreme précédent.

5.18 Théoréme (Théoreme de Carathéodory). Soient m* et .7 comme dans le
théoreme précédent. Si X est un espace métrique et si m* a la propriété

m*(Au B) =m*(A) + m*(B), VA, B c X tels que dist (4, B) >0, (5.19)

alors 7 contient les boréliens de X. o

Pour les résultats dans cette section, voir par exemple Halmos [11, chapitre
IIT], Evans et Gariepy [7, chapitre 1], Bogachev [4, section 1.11].
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5.2.3 Les mesures de Hausdorff

Une conséquence importante de la méthode de la Carathéodory concerne les
mesures de Hausdorff. Dans ce qui suit, nous nous donnons un s € [0, %[. A un
tel s, nous associons une constante 3(s) €]0, »|. La formule de 3(s) est explicite,
mais elle ne sera pas utile pour la compréhension de ce qui suit; voir Evans et
Gariepy [7, chapitre 2] et Bogachev [4, section 3. 10 (iii)] pour la valeur de f3(s) et
les résultats présentés dans cette section.

Pour § > 0, s € [0, 0] et A = R", posons

57 (A) := B(s) inf {Z(diamAj)s; diamA; <6, Vj, et Ac ujAj} ,
J

H(A) = éng 7°(A) (mesure de Hausdorff s-dimensionnelle).

Ici, diam A est le diametre de A, diam A := sup{|z — y|2; =,y € A}.

Les résultats de la section précédente impliquent facilement le résultat sui-
vant.

5.19 Proposition.

a) J¢° et ° sont des mesures extérieures.
b) Elles satisfont le critere de Carathéodory (5.19).
c) Restreintes aux boréliens, J7;° et 77° sont des mesures. o

Par abus de notation, désignons encore par 77;° et .77° les mesures associées
aux mesures extérieures J7;° et 7°° par la construction de Carathéodory. L'utilité
des mesures de Hausdorff vient de leur interprétation géométrique, du moins
pour s entier.

5.20 Théoréme.

a) Dans R", nous avons J¢" = ), (la mesure de Lebesgue).

b) Sin > 2 etsi C est une courbe lisse paramétrée dans R", alors .#’'(C) est la
longueur de C.

c) Sin > 3etsiS estune surface lisse paramétrée dans R?, alors 7#%(S) est laire
de S.

d) Etc. o

C’est dans ce théoreme qu’interviennent les valeurs précises de /(s).

Poursuivons I'exemple de la courbe paramétrée C' < R™. Il est possible de
montrer que J7°(C') = wsis < 1 et que 7#°(C) = 0sis > 1. Le changement
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s’opere pour s = 1, qui correspond a la dimension (géométrique) de C'. De ma-
niére générale, nous pouvons considérer le nombre

dim A :=inf{s > 0; #°(A) = 0}.

Pour une partie A de R" de mesure de Lebesgue > 0, nous avons dim A = n.
Pour une surface lisse paramétrée S dans R”, n > 3, nous avons dimS = 2.
En général, dim A n’est pas un entier, mais il est néanmoins interprété comme la
« dimension de A ». Par exemple, 1'ensemble de Cantor maigre (voir 1’exercice 6.58)

In2
a la dimension 1n_3 (voir Taylor [21, Proposition 12.17]).
n
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Chapitre 6

Intégrale

6.0 Apercu

Dans ce chapitre, nous définissons l'intégrale * d’une fonction mesurable f, dans
un espace mesuré (X, .7, pu), et donnons ses premieres propriétés. Les plus simples
fonctions mesurables sont les fonctions caractéristiques f = x4, avec A € .7, et dans

ce cas nous posons naturellement f x4 1= p(A). Dans le cas des fonctions étagées,
la définition se fait « par linéarité », en posant JZ axa, ‘= 2 a; j(A;), maisilya
) i

déja une premiere difficulté : pour que la derniere somme soit bien définie, il faut
supposer par exemple a; > 0, Vi. Cette définition permet de définir l'intégrale
d’une fonction étagée positive. L'étape suivante consiste a définir 1'intégrale d"une
fonction mesurable positive f. La définition 6.5 :

Jf = sup {Ju, 0<u<f, u étagée} (6.1)

n’est pas trés intuitive; une définition plus naturelle serait

ff = limffn, ou f, étagée positive, Vn, et f,, /" f; (6.2)

une telle définition ressemblerait au calcul de 'intégrale de Riemann en utilisant
des sommes de Darboux inférieures. Il se trouve que (6.2) est en effet équivalente
a la définition 6.5, mais que la preuve de cette équivalence n’est pas immédiate
(voir le corollaire 6.19).

t. Intégrale de Lebesgue, au sens d’intégrale calculée dans le cadre de la théorie de I'intégration
que nous présentons ici, due a Lebesgue. Je ne vais pas employer la terminologie intégrale de
Lebesgue dans le cadre général, la réservant au cas de 'intégrale d’une fonction par rapport a la
mesure de Lebesgue v,, ou A, dans R".
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La définition de l'intégrale d'une fonction mesurable quelconque est I'une des fai-
blesses de la théorie de l'intégration : en général, une fonction mesurable n’a pas d'inté-
grale. La définition rigoureuse en est donnée dans la section 6.2.

La section 6.3 nous permet de rencontrer un résultat important d’intégration :
le théoréme de convergence monotone 6.18 (ou théoreme de Beppo Levi). C’est le pre-

mier résultat permettant de permuter lim et f Il affirme que si

0< fn / f = hmfn:

avec f, mesurable, V n, alors

flignfn - 1i£nffn.

Ce résultat a un nombre incalculable de conséquences, dont certaines seront
vues dans la section 6.4. L'une d’elles est la linéarité de 1'intégrale (proposition
6.21), dont a la fois 1’énoncé et la preuve ne sont pas évidentes. ' Une autre consé-
quence est encore un résultat de permutation, cette fois-ci entre somme d'une série et
intégrale, dont la conclusion est (sous des hypotheses appropriées)

f;m=;fn

(théoreme 6.26).

La section 6.5 fait le lien entre 1'intégrale et les intégrales déja connues, de Rie-
mann et généralisée. Pour simplifier, nous considérons uniquement des fonctions
continues (ce qui n’est pas essentiel). Un résultat simple a énoncer (proposition
6.34) est que, si f : [a,b] — R est continue, alors son intégrale de Riemann et son inté-
grale par rapport a la mesure de Lebesgue vy coincident. Les propositions 6.34 et 6.35
sont fondamentales, dans la mesure ot elles permettent de traiter une méme inté-
grale tant6t comme intégrale de Lebesgue, tant6t comme intégrale de Riemann
(ou généralisée) et d’utiliser dans les calculs des résultats spécifiques a chacune
de ces intégrales.

La section 6.6 est inattendue par rapport au schéma «intégrale = généralisa-
tion de l'intégrale de Riemann », car elle traite de séries, et explique comment
celles-ci peuvent étre vues comme des intégrales par rapport a la mesure de
comptage.

t. Faut-il vraiment connaitre cette preuve? Lieb et Loss justifient ainsi ’absence de la théorie
de l'intégration dans leur livre Analysis [16] : “We all know the tremendously important fact that

J( f+9) = J f+ Jg, and we can use it happily without remembering the proof (which actually

requires some thought).”
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Ainsi, la théorie de l'intégration permet, entre autres, de traiter de maniére
unitaire 'intégrale de Riemann (et, dans une moindre mesure, l'intégrale généra-
lisée) et les séries.

Dans la section 6.7, nous examinons le lien entre intégrales par rapport a . et
par rapport a la mesure complétée i, la conclusion informelle étant que le passage
de p & 1w n’affecte pas l'existence des intégrales et leur valeur.

La section 6.8 présente brievement quelques triomphes de la théorie de I'inté-
gration. Il s’agit de trois résultats, tous dus a Lebesgue :

a) La caractérisation des fonctions Riemann intégrables (critére de Lebesgue, théo-
réeme 6.53).

b) Une forme faible du théoréme de Leibniz-Newton lorsque l'intégrande  n’est
plus continue, mais seulement intégrable (théoréeme de différentiabilité de Le-
besgue 6.56).

c) Une généralisation du théoreme de Leibniz-Newton (théoreme 6.57).

Compétences minimales attendues.

a) Comprendre quelles fonctions possédent une intégrale.

b) Savoir calculer I'intégrale d’une fonction étagée positive.

c) Manipuler les propriétés basiques de l'intégrale (monotonie, inégalité trian-
gulaire, linéarité).

d) Savoir utiliser le théoreme de convergence monotone (théoreme 6.18) et le
théoreme sur l'intégrale d"une série (théoreme 6.26).

e) Comprendre et utiliser les liens entre intégrale de Lebesgue, de Riemann et
généralisée.

f) Comprendre et utiliser le lien entre séries et intégrales par rapport a la mesure
de comptage.

g) Maitriser les arguments liés aux ensembles négligeables. o

Dans tout ce chapitre, nous travaillons dans un espace mesuré (X, .7, it). Sauf
mention contraire, les fonctions considérées sont mesurables. Je ne vérifierai
pas toujours la mesurabilité des fonctions construites a partir de fonctions
données (par exemple, lim, f,, avec chaque f,, mesurable). Le lecteur est en-
couragé a le faire; ceci fait partie de I'apprentissage de la théorie de la mesure.

1

t. Intégrande : fonction que I’on intégre. Exemple : dans l'intégrale f cos x dx, I'intégrande est
0
2 +— cos . Mot non reconnu par I’Académie, mais d'usage courant en mathématiques.
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6.1 Fonctions étagées positives

Rappelons le cadre général : nous travaillons dans un espace mesuré (X, .7, p).
Dans cette section, toutes les fonctions sont supposées étagées.

Rappelons qu'une fonction étagée est de la forme (*) f = > | a;x4,, avec un
nombre arbitraire mais fini, n, de termes, a; € R et A; € .7, Vi. Introduisons des
définitions qui ne serviront que dans cette section :

6.1 Définition. La représentation (*) est :
a) Canonique si les A; sont d. d. d. et non vides et si les a; sont distincts et non
nuls.

b) Dans le cas particulier ou f > 0, la représentation (*) est admissible si les a; sont
positifs. o

6.2 Proposition. Une fonction étagée admet une représentation canonique. Celle-
ci est unique modulo une permutation des termes de la somme.

Dans le cas particulier ou f est positive, la représentation canonique est ad-
missible. 3

L’unicité, a une permutation de termes pres, de la représentation canonique
montre que la définition qui suit est correcte (pourquoi?).

6.3 Définition (Intégrale d’une fonction étagée positive). Si f est étagée et >
0, de représentation canonique f = ) a;xa,, alors l'intégrale de f (par rapport
a ) est

| r@d@ = [ rau=[ra-|1=% (40

6.4 Proposition. Soient f, g : X — [0, o[ étagées positives.

a) Si f = Z;”Zl bjx B, est une représentation admissible de f, alors

| 7= b)), (6.3)
b) Six\zo,alorsj(f+/\g):ff+)\fg. o

Démonstrations

Démonstration de la proposition 6.2.
Unicité. Si (**) f = D", aixa, = Z;”Zl bjx B, sont des représentations canoniques de f,
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alors f a, comme valeurs non nulles, précisémentles ay, . . ., a,, ; de méme, ses valeurs non
nulles sont by, ..., by,. Il s’ensuit que m = n et que les b; s’obtiennent en permutant les
a;. Quitte a faire une permutation dans la deuxiéme somme, nous avons f = >\ | a;xc;,
ou les C; sont les B; écrits dans un ordre différent. Comme f “(a;) = A; = C;, nous
trouvons que la deuxieme somme de (**) est une permutation de la premiere.

Existence. Soient a1, ...,a, les valeurs distinctes et non nulles prises par f. Si A4; :=
f7Y(a;), alors f = Y | a;xa, est une représentation canonique de f.

Sif=>0etsif=23",a;xa, estlareprésentation canonique de f, alors les valeurs de
fsontay,...,an, et éventuellement 0. Il s’ensuit que les a; sont > 0. CQFD

Démonstration de la proposition 6.4.

a) Commencons par le cas ot les B; sont d. d. d. Nous pouvons supposer B; # J et
b; # 0,V j; sinon, nous effagons les termes correspondants de la représentation, sans
affecter la valeur de ] b;u(B;).

Par construction, tous les b; sont > 0. Soit A := {b1,...,by}. Alors A = f(X)\{0}
et, si f = X', aixa, est la représentation canonique de f, alors nous avons A =

{a,...,an}.

Avec
M;:={j; bj =a;} = {j; Bj A},

nous avons A; = f~(a;) = wjen, Bj, d’ott pu(A;) = 2 jem; M(Bj). 1l s’ensuit que

Jf =Zam(Ai) =>ai >, u(By) =D > bju(By) ZijM(Bj)-

Conclusion : (6.3) est vraie si les B; sont d. d. d.

Soit maintenant f = >77"; b;ju(B;) une représentation admissible. Nous allons prouver
(6.3) par récurrence sur m.

Pour m = 0 c’est clair. Passage de m — 1 a m : nous pouvons représenter canonique-
ment Z;”:_ll bjXB; = X.; @iXA,, et nous avons (par hypothese de récurrence)

m—1

m—1
J D bixs, = Y. biu(B)) = > ain(A).
=1 =1 5
Par ailleurs,
f=210iXa0B, + D@ + bm)XAinBr + DX B0,

est une représentation de f utilisant des ensembles d. d. d. (justifier).
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Nous avons dong, en utilisant la premiére partie de la preuve (vérifier)
ff = Z aipt(Ai\Bm) + Z(ai + b )1(Ai 0 Biy) + b pu( B\ Ui Ai)
—Ea, (Ai\Bpn) +/1,(B N Ai)) + b Z + (B Li Ay))

=p(Bm)
d’ou Jf Zazﬂ ) + bmp(B Zb]ﬂ

b) Si f = >, aixa, etg = Zj bjxp; sont des représentations canoniques, alors la repré-
sentation f + \g = >}, a;xa, + 2, ; AbjXB; est admissible. Il s’ensuit que

Jf‘f‘/\g Zazﬂ +Z)\bju ff—i-)\f CQFD

6.2 Fonctions mesurables

Rappelons le cadre général : nous travaillons dans un espace mesuré (X, .7, u1).
Dans cette section, toutes les fonctions sont supposées mesurables.

6.5 Définition (Intégrale d'une fonction mesurable positive). Si f : X —
[0, ], alors I'intégrale de f est

Lf(x)du(x) - Lfdu - [ rau= [

: = sup {fu ; u étagée et positive et u < f} :

[ est intégrable si son intégrale est finie.

6.6 Remarque. Une généralisation doit étre « rétro-compatible ».

Dans notre cas : nous avons d’abord défini 1'intégrale des fonctions éta-
gées positives (définition 6.3), puis celle des fonctions mesurables positives
(définition 6.5).

Les fonctions étagées positives étant des cas particuliers de fonctions me-
surables positives, il faut vérifier que, pour une fonction étagée positive, 1'in-
tégrale donnée par la définition 6.5 est la méme que celle donnée par la défi-
nition 6.3.

Nous allons effectuer une démarche similaire pour chaque généralisation.

6.7 Proposition. Si f est étagée positive, les définitions 6.3 et 6.5 donnent la méme
intégrale. o
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La définition de l'intégrale d"une fonction mesurable (pas nécessairement po-
sitive) repose sur l'identité

f=fe—f1 (6.4)

6.8 Définition (Intégrale d'une fonction mesurable). f : X — Ra une intégrale

si J f+ — | f- aunsens, et dans ce cas son intégrale (de Lebesgue) est

| r@ @ = [ rau=[ran=|s=[r.-]r

Si f, et f_ sont intégrables, alors f est intégrable. Donc

f intégrable < f a une intégrale finie

(:)lff+<ooetjf_<oo]<:>f|f|<oo.¢

6.9 Remarque. L'hypothése « J f+— f f- aunsens » équivaut a « J fret J f-
ne valent pas en méme temps oo ».

En particulier, cette hypothese est satisfaite lorsque f > 0, car dans ce cas

nous avons f_ = 0, et donc f fo=0.

6.10 Remarque (Rétro-compatibilité). Dans le cas ott f > 0, nousavons f. = fet f_ =0;
la «nouvelle » intégrale vaut donc

Jro=fr=[r=]o=]x

et nous retrouvons |« ancienne » intégrale. o

6.11 Définition (Intégrale d'une fonction vectorielle). Soit f = (fi,..., f,) :
X — R" mesurable. L'intégrale de f est définie uniquement si chaque f; est
intégrable, et si tel est le cas

Jr=(5),. = (5] 5)

t. Rappelons (voir la notation 3.30) que f; := max(f,0) et f_ := —min(f,0).
1. La derniere équivalence sera justifiée dans la section 6.4.
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‘ Si f: X — C, nous identifions J f avec JRe f+ zJIm f.

Par analogie avec l'intégrale de Riemann, la premiere propriété attendue de
I'intégrale de Lebesgue est sa linéarité. Ceci est vrai (proposition 6.21), mais pas
immédiat. Pour l'instant, montrons la partie facile de la linéarité.

6.12 Proposition. Si f a une intégrale et si A € R, alors A\ f a une intégrale et nous

avonsf)\f:/\Jf. o

Une autre propriété attendue est la monotonie.

6.13 Proposition. Si f < g etsi f, g ont une intégrale, alors f f=< J g. o

Si f est définie sur une partie A mesurable de X, la définition de J f estla

. A
sulvante.

6.14 Définition. Si A€ 7 et f : A — R est mesurable, alors f a une intégrale
si et seulement si fx 4 en a une," et dans ce cas nous posons

Lfdu _ Lf - L Fxa = L Fxady.

Le résultat (tres utile) qui suit explique en quoi les ensembles négligeables le
sont.

6.15 Proposition.
a) Si A € 7 estnégligeable, alors pour toute fonction mesurable f : A — R nous

avons | f=0.
A

b) Si f : X — R est mesurable et f = 0 p. p., alors f est intégrable et Jf =0. o

Exercices

Méme cadre que ci-dessus : nous travaillons dans (X, .7, i) et toutes les fonc-
tions sont mesurables.

6.16 Exercice. Si 0 < f < g, alors Jf < fg. o

f, dans A

. R 1 osif:A— R, al = .
appelons que, si f alors fxa {07 dans A°
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6.17 Exercice. Soient A € 7 et f : A — R. Montrer que la définition 6.14 de j [ est
A

équivalente a :

f est (si elle existe) I'intégrale de f par rapport a 'espace mesuré (A, T4, j14), ot
A
Ty ={BeT;Bc Aletua(B):=u(B),VBe T4. o

Démonstrations

Démonstration de la proposition 6.7. Notons f f l'ancienne intégrale et I la nouvelle. Nous
avons f < f, d’ou (justifier) f f<l1

Par ailleurs, si 0 < u < f est étagée, alors f = u + (f —u), avec f — u étagée positive.
Nous avons donc (proposition 6.4 b))

ff:Ju—l—J(f—u)ZJu. (6.5)

En prenant, dans (6.5), le sup sur u, nous trouvons f f=1 CQFD

Démonstration de la proposition 6.12. Si A = 0, c’est clair. Si A = —1, il suffit de remarquer que
(—f)+ = f-et(—=f)— = f+ (vérifier ces identités).

Pour compléter la preuve, il suffit de montrer 1’égalité pour A > 0 (justifier). Or, pour
A > 0 nous avons :

a) (A\f)+=Af+.

b) uestétagéeet) < u < fi <= luestétagée et 0 < \u < Af4 (justifier).

En utilisant la proposition 6.4 et I'item b) ci-dessus, nous obtenons
A J fr =Asup {Ju ; u étagée et positive, u < fi}
= sup {f Au; A étagée et positive, du < A fi}

= sup {JU; v étagée et positive, v < )\f+} = f)\er,
ce qui implique (détailler) I'égalité A J f= JA f CQFD

Démonstration de la proposition 6.13. Si f, g sont > 0, I'inégalité s’obtient & partir de la défini-
tion 6.5 (exercice 6.16).

Pour f, g quelconques, notons 1'implication
f<g = [f+ <g+etf =g],
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qui implique a son tour

f<g = Hf;sfmetffzfg]; (6.6)

pour conclure, il suffit de soustraire ces deux derniéres inégalités. CQFD

Démonstration de la proposition 6.15.

~

a) Posons f := fxa. Nous devons montrer que f f
X

0.

Nous avons (justifier la derniere égalité)
F=fxa=Ffixa—Ffxa=Fi—F.

Il suffit donc de montrer le résultat pour f+, qui sont des fonctions mesurables posi-
tives.

Soit f : A — [0, o] une fonction mesurable positive. Par définition de 1'intégrale de 7,
il suffit de montrer que, si g : X — [0, co[ est une fonction étagée telle que g < f, alors

ngO.
X

Sig = Y, aixa, est une représentation admissible de g, alors
g = (justifier) = gxa = > aixa, x4 = ), aixa,n4
i i

est une autre représentation admissible de g. Comme p(A4; N A) < p(A) = 0, nous
obtenons (proposition 6.4 a))

fXg = Zi]ai,u(Ai N A) =0.

b) se montre en notant qu’il existe A € .7 tel que f = 0 en dehors de Aetdonc f = f x4
(justifier) et en utilisant la premiére partie. CQFD

6.3 Théoréme de convergence monotone

Le cadre général est celui d'un espace mesuré (X, .7, 11). Toutes les fonctions
de cette partie sont mesurables.

6.18 Théoreme (Théoréme de convergence monotone). t Soit (fn)n une suite

croissante de fonctions mesurables positives. Si f, — f,} alors f fn— J f.

Ou encore : lim J i = flim fn-
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6.19 Corollaire. Soit f > 0. Pour toute suite croissante (f,),, de fonctions étagées

positives telle que f,, — f, nous avons J f =lim f f- o

Démonstrations

La preuve du théoreme de convergence monotone repose sur un lemme facile.

6.20 Lemme. Soit u une fonction étagée positive. L'application

v: 7 —[0,0], v(A) :=J uzf uxa, VAe I,
A X
est une mesure. o

Démonstration. Notons que v est bien définie, car ux 4 est étagée et positive.

Siu = )}, a;Xxa, est une représentation admissible de u, alors ux4 = >, aix4,~a est une
représentation admissible de ux 4 (voir la preuve de la proposition 6.15 a)), d’oit

v(A) = JUXA = JZaiXAmA = Zam(Ai nA).

A partir de cette formule, 'exercice 4.5 a) montre que v est une mesure (vérifier). CQFD

Démonstration du théoréme 6.18. [ est mesurable (proposition 3.20) et positive; de plus, nous
avons 0 < f,, < f pour tout n.

L'exercice 6.16 donne f fn < f f,¥n, etimplique que la suite (J fn) est croissante.

En particulier, cette suite a une limite et nous avons lim | f, < | f.
n

Il reste & montrer 1'inégalité opposée

ninf fo = f f. 6.7)

Notons qu’il suffit de montrer I'inégalité

limffn > (1 —s)fu, V0 <e <1, Vuétagée telleque 0 < u < f. (6.8)

1. Ou encore théoreme de Beppo Levi.
1. La convergence f, — f est simple. Dans les théoremes les plus importants en théorie de
I'intégration, il s’agit de convergence simple, soit partout, soit presque partout.
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En effet, si (6.8) est vraie, alors, en faisant ¢ — 0+, nous obtenons (en utilisant le fait
que l'intégrale de u est positive)

limffn > fu, Vu étagée telleque 0 < u < f. (6.9)

De (6.9) et la définition 6.5, nous obtenons (6.7).

Montrons (6.8). Soit By, := {z ; fu(x) = (1 — ¢)u(x)}. Comme lim,, f,, = f > u, nous
avons u, B, = X (vérifiez que x € U, B,, Vz € X, en considérant respectivement les cas
u(z) = 0etu(z) > 0).

Par ailleurs, nous avons B, = (f,, — (1—¢)u) ([0, 0]), d’ott B,, € 7, etla suite (B,,),
est croissante (justifier, en utilisant la monotonie de la suite (f;,)).

Avec v ]la mesure du lemme précédent, nous trouvons, grace au théoréme de la suite

croissante, que v(B,,) — v(X) = f u.

Par ailleurs, nous avons (en utilisant a nouveau l'exercice 6.16)

[ = [ foxm, = [0 - opunn, = (1= o),

d’ot limffn >(1—¢) fu CQFD

6.4 Conséquences du théoréme de convergence mo-
notone

Le cadre général est celui d"un espace mesuré (X, .7, i1). Toutes les fonctions
de cette partie sont mesurables.

Grace au théoréme de convergence monotone, nous pouvons (enfin!) montrer
la linéarité de I'intégrale.

6.21 Proposition. Si f, g ont une intégrale, A € R, et si les sommes f + \g et
J f+ /\J g sont bien définies, alors f + Ag a une intégrale et J( f+Ag) =

[14a]a

En particulier, si 1'une des fonctions f, g prend uniquement des valeurs

finies, si f est intégrable et g a une intégrale (ou l'inverse), alors J( f+XAg) =

[14a]a

6.22 Remarque. Expliquons les hypotheses de la proposition.
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[ + Ag est bien définie si et seulement si il n’existe pas de point z € X tel que f(z) =
+o0 et Ag(z) = —f(z). En particulier, cette hypothése est satisfaite si f (ou g) est finie en
tout point.

Si f et g ont une intégrale, alors J f+ /\f g est bien définie si et seulement si nous

n’avons pas en méme temps J f=fwetA f g=— f f. En particulier, cette hypothese

est satisfaite si f (ou g) est intégrable. o

Le résultat suivant donne plusieurs formes de l'inégalité triangulaire, qui dans

ff‘SJIf!-
Jf £f|f|-

b) Si|f| < g et g est intégrable, alors f est intégrable.
< 191+ [1gl

Avant d’énoncer la tres utile inégalité de Markov, introduisons une notation
pratique.

le cas des intégrales prend la forme

6.23 Proposition.

a) Si f a une intégrale, alors

¢) Si f + g a une intégrale, alors J( f+9)

6.24 Notation. L'ensemble des points z satisfaisant une propriété P(x) sera noté [P].
Exemples :

[f=0]:={re X; f(z) =0}, [[f[>t]:={zeX;[f(x)] > 1},

[feAl:={ereX: fx)e A}, [f <t]:={zreX; f(z) <t}, etc. ¢
6.25 Proposition (Inégalité de Markov). ™ Sit > 0, alors
(i1 > ) < ¢ [ 191 (6.10)
Plus généralement, si1 < p < wett > 0, alors
I o (6.11)

Le résultat suivant permet de permuter série et intégrale.

t. Dans la littérature anglophone, connue plutét comme l'inégalité de Ichebychev.
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6.26 Théoreme (Intégrale d'une série). Si f,,, n > 0, sont positives, alors

Les résultats suivants sont des variantes de la relation de Chasles
b c c
J f(z)dx +f f(z)de = J f(z)dx.
a b a

Le lien de la proposition 6.27 b) avec la relation de Chasles pourra étre compris
une fois établis les résultats de la section 6.5.

6.27 Proposition. On suppose que f : X — R a une intégrale.

a) Si Ae 7, alors f4 a une intégrale.

b) SiX:AuB,oﬁA,Beﬂ,alorsffzf f+f f1
A B

¢) Plus généralement, si X = w1, A4, avec A,, € .7, Vn, alors J f= Z L f.

d) SiAneﬂ,Vn,etAn/'X,alorst:limJ f.
n A,

Exercices

Le théoreme de la suite croissante pour les ensembles s’accompagne du théo-
réme de la suite décroissante (voir la proposition 4.2). Voici le compagnon dé-
croissant du théoreme de convergence monotone 6.18 (qui, rappelons-le, porte
sur une suite croissante).

6.28 Exercice (Théoreme de convergence décroissante). Soit (X, .7, u) un espace mesuré.
Soit ( f,,), une suite de fonctions mesurables et positives sur X telle que f,, ™\, f.

a) Si ff() < o0, montrer que an — Jf.

b) Montrer que, si J fo = o0, alors nous n’avons pas nécessairement J fn— f f. o

1. Rappelons que les fonctions f,, sont implicitement supposées mesurables. Pas la fonction
f =2, fn-Le théoreme affirme donc : que f est mesurable, que f a une intégrale, que chaque f,
a une intégrale, et que 1'égalité (6.12) est vraie.
t. Chacune des intégrales | f, J f existe, d’apres I'item a). Entre autres, I'item b) affirme que
A JB

la somme J

f+ J f existe. Remarque analogue concernant l'item c).
A B
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Voici un exercice facile une fois montrée la proposition 6.21. Il est instructif
d’essayer de le prouver (méme pour n = 2) sans faire appel a cette proposition.

6.29 Exercice. Soit f une fonction étagée, de représentation f = >\ | a;xa,. Si u(4;) < ©
n

pour tout ¢, alors f a une intégrale et dans ce cas nous avons J f= Z a;p(A;). o
i=1

L’exercice suivant est fondamental en théorie des probabilités. C’est une consé-
quence facile de la proposition 6.27.

6.30 Exercice (Mesure a densité). Soit (X, .7, u) un espace mesuré. Soit f : X — [0, 0]
une fonction mesurable positive.

Soit
v(A) = f fdu, VAe 7. (6.13)
A
Montrer que v est une mesure sur .7. o

6.31 Définition (Mesure a densité). La mesure v définie par (6.13) est une mesure
a densité f par rapport a p. o

Démonstrations

La ot cela n’est pas fait, vérifier, grace aux outils des sections 3.2 et 3.3, la me-
surabilité de toutes les fonctions qui interviennent dans les preuves qui suivent.

Démonstration de la proposition 6.21. Prenons A = 1. Le cas ot A est quelconque s’obtient en
combinant le cas A = 1 avec la proposition 6.12 (vérifier).

Commencons par le cas f, g > 0. Soient (fy,)n, (9n)n deux suites de fonctions étagées
positives telles que f, ,/ fetg, / g. Alors f, + g, / f + g et donc (en utilisant la
proposition 6.4 b) et le corollaire 6.19)

Jr+0=tim [0 =t ([ £+ [ ) =t [ £t [ g
1 fa
Dans le cas général, nous avons
(f+9)+—(f+9)-=f+g9=fr —f-+9+—9-,
d’ou
(fH9)++f-F9-=([+9)-+ [+ +9+.
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I s’ensuit que

oo+ [s o= |wra-+ [+ ]an (6.14)

Si ff, Jg et Jf + Jg ont un sens, alors f(f +9)+ — j(f + g)— a un sens (vérifier,

en examinant par exemple le cas ot | f = o0) et (6.14) donne

oo [tra=[r-[r+[o-]o (6.15)

Jora=[uroi-[¢ro-=[r-[r+]a-]s
oo

I est important de retenir le principe de la preuve de la proposition 6.21, que
nous résumons dans la remarque suivante.

d’ot

CQFD

6.32 Remarque. Pour montrer une propriété des fonctions intégrables (ou qui
ont une intégrale) f, g, etc. :

1. Nous commencons par les fonctions positives f4, g+, etc.

2. Les hypotheéses sur f, g, etc., permettent de retrancher les formules obte-
nues.

3. Sinécessaire, pour montrer, dans le cas des fonctions positives, les proprié-
tés demandées, il faut commencer par considérer des fonctions étagées et
de passer a la limite en utilisant le théoreme de convergence monotone ou
sa conséquence, le corollaire 6.19.

4. Dans le cas des fonctions étagées, les propriétés demandées sont évidentes
ou relativement simples a montrer.

Ce schéma permet de ramener la preuve au cas plus facile des fonctions
étagées positives et de la compléter de maniere automatique en utilisant les étapes
ci-dessus.

Démonstration de la proposition 6.23.

a) découle, via la proposition 6.21, de

[ =\[ 5= 5| [res [ 2= [ = in

b) Nousavons 0 < f < |f| = f+ + f- < g,dou in < o0. (Conclure!)
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¢) En utilisant I'inégalité |f + g| < |f| + |g| et'item a) (pour f + g), nous obtenons

U(f+g)‘ < [1r+al < [ar1+10 = [ 151+ [ 1ol caro

Démonstration de la proposition 6.25. Soit A := [|f| > t] = {x € X ; |f(z)| > t}. Alors |f|P >
tPxa, d’ou J |fIP = jthA = tPu(A). CQFD

Démonstration du théoréme 6.26. Posons g, := fo + f1 + ...+ fn = 0. Nous avons 0 < g, /
Don fn,d’olt Y, fr est mesurable. Par convergence monotone, nous trouvons

Janzfliygnzligngn=li7£n<ff0+ff1+...ffn>=2an. CQFD

Démonstration de la proposition 6.27. f ayant une intégrale, nous avons soit J f+ < oo, soit

f f- < o0. Supposons, par exemple, que f f- < .
SiAe 7,posons fa:= fxa.

a) Nous avons f4 mesurable et 0 < (f4)+ < f+. Nous trouvons que J( fa)— < oo (justi-
fier), et donc J fa= L f aun sens (justifier).

b) Nous avons (fa)+ + (f)+ = f+, d’ol (justifier)

Jf+ = J(fA)+ + J(fB)-i- = L fe+ jB fes

nous obtenons la conclusion en retranchant les deux égalités ainsi obtenues.

¢) Il suffit de prouver I'égalité pour f+ a la place de f (justifier); ainsi, nous pouvons
supposer f > 0.

Posons B, := Ag u Ay u...u A, Alors B, / X, B, € Jet0 < fg, / f.Nous
trouvons (justifier, en particulier en utilisant le théoréme de convergence monotone
6.18)

[ 7= [ o, =tim [, =t [(Fay + f+oo £

:117g1<fon+JfA1+...+ijn> =) Anf.

d) C’est compris dans le calcul précédent. CQFD

105



Intégrale 6.5 Lien avec les intégrales habituelles

6.5 Lien avec les intégrales habituelles

Comme expliqué dans l'introduction générale de ce texte, l'intégrale par rap-
port a la mesure de Lebesque dans R a été construite pour généraliser 1'intégrale de
Riemann. Dans cette section, nous allons nous convaincre qu’il s’agit bien d’une
généralisation, du moins lorsque la fonction a intégrer est continue.

6.33 Définition (Fonction Lebesgue intégrable). Une fonction f : A — R est
Lebesgue intégrable si :

i) A < R" est Lebesgue mesurable, c’est-a-dire A € .Z,.
ii) f estintégrable par rapport a la mesure de Lebesgue \,,.

Définition analogue pour « f a une intégrale de Lebesgue ».

Dans cette section, nous travaillons dans (R, &g, 11), avec des fonctions conti-
nues sur un intervalle I. Une fonction continue étant borélienne, nous avons

LfdAI - Lfdul,

au sens ol l'une des intégrales existent si et seulement si ’autre existe, et dans ce
cas elles sont égales (ceci découle de I'exercice 3.18 a) et de la proposition 6.43).

6.34 Proposition (Intégrale de Riemann et intégrale de Lebesgue). Si [a, b] est

un intervalle compact et f : [a,b] — R est une fonction continue, alors f est
Lebesgue intégrable sur [a, b] et

b
fd\ = fdv, = f f(z)dz, (6.16)
| a

[a,b] [a,b

la derniere intégrale étant I'intégrale usuelle (de Riemann).

Une autre intégrale couramment utilisée est l'intégrale généralisée. Le cas le
plus simple, que nous considérons ici, est celui d’une fonction continue sur un
intervalle non compact /. Dans ce cas, l'intégrale généralisée se définit en ap-

prochant / par des intervalles compacts. Exemple typique : si f :]0,1] — R est
continue, alors

1 1
J f(z)dx = lir(])nJr f f(z) dx (sous réserve d’existence de la limite).
0 e €

Le résultat suivant fait le lien entre intégrales généralisées et de Lebesgue.
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6.35 Proposition (Intégrale généralisée et intégrale de Lebesgue). Soit I un
intervalle non compact d’extrémités a et b. Soit f : I — R une fonction continue.
Nous avons :

b
a) Si f est positive, alors J fdv, = J f(x)dz.t

1 a
b) f est Lebesgue intégrable sur I si et seulement si l'intégrale généralisée

b b
f f(x) dx converge absolument, et dans ce cas f fdv = f f(z) dx.
a I a

b
f duv, existe, alors I'intégrale généralisée f f(z)

a

c) Sil'intégrale de Lebesgue J

I

dx existe et est égale a f fduv.
I

b
d) Si l'intégrale généralisée f f(z) dz existe, alors l'intégrale de Lebesgue

J f dvy n’existe pas nécessairement.
I

6.36 Convention (Abus de notation pour l'intégrale de Lebesgue). Si I < R est un
intervalle, si f : I — R a une intégrale de Lebesgue et s’il n’y a pas de risque de

confusion, nous écrivons J f(z) dz a la place de f fdviou | fd).
I I I

Exercices

6.37 Exercice. Soit f, : R — R, f,,(z) := —(z + n)_. Montrer que :

a) J fn dvy existe, V n.
b) fn /0.
Q) an dvy 4 deul.

d) Comparer cet exemple aux hypotheses et a la conclusion du théoreme de convergence
monotone. ©
Démonstrations

Démonstration de la proposition 6.34. Quitte a remplacer f par fi, nous pouvons supposer
f = 0 (justifier).

1. Cette égalité comprend l'existence des deux intégrales.
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Soit o une division de [a, b], déterminée par les points a = z9 < 21 < ... < z, = b.
Nous associons a cette division la somme de Darboux inférieure

Sg 1= Z(atj —xj_1) inf f.

i [zj—1,2]

Si nous définissons

n—1

foila,b] >R, foi= > inf IXtayoast + Xz

j=1 [Ij—lvxj] Tn—1,Tn

alors clairement f,; est étagée et

So = Jodvy = f fo X[a,b] dvy.
[a,b] R

Rappelons les résultats suivants, rencontrés dans la construction de I'intégrale de Rie-
mann :
a) SiT est «plus fine » que o,Falors s, < s, et fo < fr.
b) Si nous prenons une suite (0,), de divisions de plus en plus fines et telles que les
normes des divisions,t ||o,, |, tendent vers 0, alors f,, — f uniformément sur [a, b].

¢) Nous avons
b
lims,, = J f(x)dx.

Si nous posons g, = fo, X[a,b]/ alors les g,, sont des fonctions étagée positives telles
que 0 < gn /" fX[a,]- Nous en déduisons (justifier) que

b
fduv = jlimgn dvy = limfgn dvy =lims,, = f f(x) dx. CQFD
[a,b] n n n a

Démonstration de la proposition 6.35. Nous prenons I := [0, o[ ; les arguments ci-dessous s’a-
daptent facilement a tous les autres types d’intervalles non compacts.
a) Posons f, = fX[on), de sorte que f,  f (sur I). Avec la notation g := gxr, nous

avons aussi f, / f (sur R). Nous trouvons, en combinant le théoréme de convergence
monotone, la proposition 6.34 et la définition de I'intégrale généralisée,

ffdylzf fdylzf limfndmzlimf ﬁldulzlim fdu
I R R " mJRr n

[0.n]
zliinfo f(ar)d:czfo f(z)dx.

t. 7 est plus fine que o si les points qui déterminent 7 contiennent ceux qui déterminent o.
1. La norme d’une division ¢ déterminée par les points a = 29 < 21 < ... < 2, = bestla
longueur du plus grand intervalle [z,;_1,z,] : |o| = max;_1, . n(z; — xj—1).
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b) Nous avons (justifier, en utilisant I'item a) et les propriétés des intégrales généralisées)

f Lebesgue intégrable sur I < f frdry < ooet J fodv < 0 =
I I

joo fr(x)dr < o et foo f-(z)dr < 0 <= Joo(f+(:c) + fo(z))dr <
0 0 0

Q0 Q0
f |f(x)|dx < 00 < J f(z) dz converge absolument.
0 0

Si ces conditions équivalentes sont satisfaites, alors (justifier)

Lfdul=Lf+du1—f[f_du1=wa+(x>da:—f:of_<m>dx
~ [ - = [ s

0
¢) Si f auneintégrale, alors J f+dv — J f- dvy aun sens. Il s’ensuit que J f(z)dx —
I I 0

0
f-(z) dx a également un sens. Nous obtenons 1’égalité des deux intégrales comme

d?cms I'item b).

d) Il suffit de trouver un contre-exemple. Nous définissons f : [0, 0[— R de la maniere
suivante. Pour k € N, f(4k) :=0, f(4dk + 1) :=1/(k+ 1), f(4k + 2) := 0, f(4k + 3) :=
—1/(k + 1). Ceci définit f sur N. Nous définissons f sur [0, 0[c N en exigeant qu’elle
soit affine sur chaque intervalle [n,n + 1] avecn € N.

Soit E() la partie entiere de z. Nous vérifions aisément que ¥

O<Jf x/4) , Vo >0,

et donc f a une intégrale généralisée, qui vaut J f(x)dx = 0.
0

Par ailleurs, nous avons
f fr(@)de =141/2+ ...+ 1/k, Vk € N¥,
[0,4k]

d’otu (justifier)

LerdVl

t. Tracer le graphe de f sur [0, 8], pour avoir l'intuition de son allure.

J fi(x)de = lim fi(z)dx

k=0 Ji0,4k]
lim (1+1/2+...+1/k) =
k—0o0

4k

1. Indication. Ecrire # = 4k + r, avec k € N et 0 < r < 4, et montrer que f(t)dt = 0etque
0

4k+r
1
Je(r) == Lk f)dt < a1 Cette deuxieme propriété se vérifie graphiquement en notant que

1
la plus grande valeur de Jj(r) s’obtient pour r = 1, et vaut TR
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De méme, J f-dvy = 0. Il s’ensuit que f n’a pas d’'intégrale (de Lebesgue). CQFD
I

6.6 Lien avec les séries

Le théme général de cette section est que la somme d’une série peut étre in-
terprétée comme une intégrale par rapport a la mesure de comptage.

Soit X un ensemble quelconque. Nous considérons sur X la tribu Z(X) et,
sur Z(X), la mesure de comptage .. Dans ce cadre, toute fonction f : X — R
est mesurable, et toute partie de X est mesurable. Nous n’allons donc pas nous
intéresser a la mesurabilité dans ce qui suit.

6.6.1 X estfini

Dans ce cas, toute fonction est une fonction étagée. Nous avons donc :
a) Si f>0,alors f = _ f(x)x{s) est une représentation admissible. Il s’ensuit
que Jf = Z f(z).

reX
b) Si f est de signe quelconque, alors f a une intégrale si et seulement si f ne

prend pas en méme temps les valeurs +c0, et dans ce cas J f= Z f(x) (justi-

zeX
fier, en partant de f = f, — f_).

c) f estintégrable si et seulement si f n’a que des valeurs finies (justifier).

6.62 X =N

Dans ce cas, nous pouvons identifier une fonction f : N — R a une suite
(an)nZO-

Le résultat qui suit fait echo a la proposition 6.35.

6.38 Proposition.
a) Si f > O,alorsff = Zan.

b) f est intégrable si et seulement si ), a, est absolument convergente, et

dans ce cas ff = Zan.

c) Si f a une intégrale, alors ), a, existe et J f= Z Q-

n
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‘ d) Si), a, existe, alors f n’a pas nécessairement une intégrale.

Démonstrations

Démonstration de la proposition 6.38.

a) Soit A, := {0,...,n} / N. Nous avons (justifier, en utilisant la proposition 6.27 d) et
la section 6.6.1)

Jf—limj f:limZaj:Zan.
"JA, " 7=0 n
b) Nous avons

f estintégrable<=les intégrales de f. sont finies<=1les séries Z(an)i

n

sont convergentes<— la série Z lan| = Z((an)+ + (an)—) est convergente.

n n

Si tel est le cas, alors

Jr=[#-]s- D)+ = Xlan)- = Fllan)+ = (an)-] = an

n n

c) Si f a une intégrale, alors 1'une des intégrales f [+ est finie. Supposons par exemple

J f— <. Alors ), (a,)- < o0, ce qui justifie 1’égalité

Don = Sfan) = Naw- = [ 1o~ [ 1= [

n

d) Posons a, := (=1)"/(n + 1). Alors }  a, converge (série alternée), alors que

Z(an)Jr = Z(an), =

n n

(vérifier). Par conséquent, f n’a pas d’intégrale (justifier). CQFD

6.6.3 X est dénombrable

Dans ce cas, il existe une bijection ® : N — X. Posons g := fo®: N — R.

6.39 Proposition. L'intégrale J [ existe si et seulement si l'intégrale J g existe.
X N

En cas d’existence, nousavons | f= | g= Z f(@(n)). o
N n
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Démonstrations
Démonstration de la proposition 6.39. 1l suffit de montrer 'égalité des intégrales dans le cas ot
f = 0 (justifier).

Soient A,, := {0,...,n}, B, := ®(A,). Alors A,, /' Net, de plus, B,, ,/* X (vérifier),
d’ou1 (justifier, comme dans la proposition 6.38)

(el o g et 5 o o-

T€B), keAn

La deuxiéme égalité de 1'énoncé découle de la proposition 6.38 c). CQFD

6.6.4 Sommation par paquets et convergence commutative

Dans cette partie, X est dénombrable et ® : N — X est une bijection. Nous
supposons toujours que f : X — R a une intégrale.

Nous considérons une partition de X, X = 1,4, avecles A4, d. d. d. (chaque
A, est un « paquet »).

6.40 Proposition (Sommation par paquets).

a) Nous avons JX f= 2 JA f.

b) Sichaque A, est fini, nous avons J f= Z Z fx).t
X n xeA,

¢) Dans le cas particulier X = N?, nous avons

. £ duton, ) - i(men>:i<if<m,n>>. 5

m=0

6.41 Définition (Série commutativement convergente). Une série », a,, est com-
mutativement convergente si, pour toute bijection ¢ : N — N, la somme de la série
> Gp(n) €Xiste et est égalea Y, a,.F o

6.42 Proposition (Série commutativement convergente).

a) Une série a termes positifs est commutativement convergente.

b) Une série absolument convergente est commutativement convergente. o

t. Cette égalité implique que « la somme de sommes» >, >, _, f(z) existe.
1. Iln’est pas demandé que la série soit convergente.
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Démonstrations

Démonstration de la proposition 6.40. 11 suffit de considérer le cas ot f > 0 (justifier).

a) est un cas particulier de la proposition 6.27 c).
b) découle de la section 6.6.1.

¢) Justifions, par exemple, la premiere égalité.

Soit A, := {(m,n); m € N}. Alors N? = 1, 4,,. Nous trouvons (proposition 6.40 a))

m,n m,n) = . 17
LS duon =3 [ g 617)

A n fixé, soit By, := {(j,n); 0 < j < m}. Alors B, / A, et f|a,, a une intégrale, d’ou
(proposition 6.27 d))

J f= limf f=1m > f(G,n) = > f(m,n). (6.18)
An ™ JBm =0 m
Nous concluons en combinant (6.17) et (6.18). CQFD

Démonstration de la proposition 6.42.

a) La proposition 6.39 donne J f= f fop. Nous concluons grace a la proposition 6.38.
N N

b) découle de a) (justifier). CQED

6.7 P.p.etpassage a la mesure complétée

Le cadre général est celui d'un espace mesuré (X, 7, 1) et de son espace com-
plété (X, .7, ).

Dans un premier temps, nous examinons le lien entre intégrale par rapport a
la mesure y et celle par rapport a zz. La philosophie générale des résultats est que
les intégrales par rapport a i et fi sont égales, et qu’en modifiant une fonction sur
un ensemble négligeable, la nature de son intégrale (n’existe pas, existe, existe et
est finie) ne change pas.

Dans une direction voisine, nous montrons qu’un théoréme « partout pour j »
a des compagnon naturels « presque partout » et/ou « pour fi ». Il est important
de retenir le principe de preuve associé; nous n’allons pas y revenir dans les autres
chapitres, ou un énoncé presque partout et/ou pour ji sera suivi d’une preuve partout et

pour fu.

6.43 Proposition. Soit f : X — R .7-mesurable.
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‘ J f du existe si et seulement si J f dp existe, et dans ce cas J fdp = f fdu. ‘

6.44 Proposition. Soit f : X — R .7-mesurable.

Rappelons qu'il existe g : X — R .7 -mesurable telle que f = g u-p. p. (propo-
sition 4.19).

J f dpi existe si et seulement si Jg du existe, et dans ce cas J fdn= Jg dpu.
Cas particulier : f est p-intégrable si et seulement si g est p-intégrable. o
6.45 Corollaire. Si f,g : X — R sont .7-mesurables et f = g u-p. p., alors J f

existe si et seulement si Jg existe, et dans ce cas J f= J g. o

En combinant les propositions 6.15, 6.43, 6.44 et le corollaire 6.45, nous obte-
nons les regles suivantes de calcul, trés utiles dans la pratique.

6.46 Corollaire. Soient f,g: X — Ret A, B ¢ X. Supposons :

(i) f est 7-mesurable et g est 7-mesurable. (En particulier, g peut étre 7 -
mesurable.)

(il)) Ae T etu(A) =0.
(iii) Be 7 etn(B) = 0.
(iv) f =gdans X\(Au B).

Considérons les quatre intégrales suivantes : f fdu, fdu, f gdf,
X X\A X

J g dp. Sil'une d’entre elle existe, alors les trois autres existent également,
X\B

et nous avons

ffdu= fdu=f gdﬁ=J o (6.19)
X X\A X X\B

L |f —gldm = 0. (6.20)

6.47 Remarque. La proposition 6.48, qui suit, montre que, donnée une fonction intégrable
f, nous pouvons changer sa définition sur un ensemble négligeable de sorte que son
intégrale ne change pas et que la nouvelle fonction ne prenne que des valeurs finies.

Pour cette raison, pour montrer certaines propriétés des fonctions intégrables nous
pouvons parfois remplacer f par g et supposer ainsi que f est finie en tout point. o

6.48 Proposition. Soit f : X — R p-intégrable. Soient A := f~1(0), B := f~1(—).
a) Nous avons p(A) = u(B) = 0.
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flx), sif(x)eR -
0, si f(x) = +o0" alorsf]f gl =0

et[£- s 5

6.49 Remarque. Revenons a la définition 6.11. Nous aurions pu considérer la situation
plus générale ou f; : X — R (au lieu de f; : X — R). La proposition 6.48 montre qu’on
peut remplacer les f; par des fonctions g; : X — R, sans changer 'intégrale. o

b) Sinous posonsg: X — R, g(x) := {

La proposition 6.50, qui suit, est une variante du résultat suivant, bien connu :

1
{f continue et positive sur [0, 1], J f(z)dx = 0] = f=0.
0

6.50 Proposition.
a) SiszetJf=O,alorsf =0p.p.
b) Sif|f| =0, alors f = 0 p. p.

c) Plus généralement, si g, h sont intégrables, g < h et f g = Jh, alors g = h
P-P-

Nous concluons cette section par une illustration concréte du principe chaque
théoreme « partout pour p » a des analogues « p. p. pour (i ou i ».

6.51 Théoreme (Théoreme de convergence monotone, variante p. p.). Soit (f,,),
une suite croissante p. p. de fonctions positives p. p. convergeant p. p. vers f.

Alors hmf fodp = J fdn. o

Démonstrations

Démonstration de la proposition 6.43. Notons que f est 7 -mesurable. Il suffit de montrer 1'éga-
lité des deux intégrales si f > 0 (justifier). Cette égalité est claire si f est .7-étagée. Le cas
général s’obtient en considérant une suite (f,), de fonctions .7-étagées positives telle
que f, /" f (suite dont I'existence découle du corollaire 3.7) et le corollaire 6.19 (véri-
fier). CQFD

Démonstration de la proposition 6.44. Nous avons fi = g+ p-p. p. (vérifier). Il suffit donc de
montrer que | f+ di = | g+ dp. Comme f+, g+ sont mesurables et positives, il suffit donc

de montrer la proposition pour des fonctions positives.

t. De maniere équivalente, g := fx(auB)e-

115



Intégrale 6.7 P. p. et passage a la mesure complétée

Soient f,g > 0 comme dans 1’énoncé. Alors j fdiet f g du existent. Soit A € 7 tel
que u(A) = 0 et f = g en dehors de A. Soit B := X\A € .7, de sorte que X = A u B.
Comme p(A) = (A) = 0, nous avons (proposition 6.15) f fdm =0et J gdu = 0. Par
ailleurs, fxp = gxp et donc (proposition 6.43) 4 4

fe o=

Nous obtenons (en utilisant la linéarité de 1'intégrale, voir la proposition 6.21)

| an={as rxmydn = | fxadn +ffdeu=Lfdu+fodu

=f fdu=f gdu=f gdu+J gdu=fgdu,
B B A B

d’ot1 la conclusion de la proposition. CQFD

Démonstration de la proposition 6.48. Rappelons que A, B € 7 (théoréme 3.5).
a) Montrons, par exemple, la premiere égalité. Nous avons f, > nx4, Vn e N, d’ou

nu(A):JnXA£Jf+<oo. (6.21)

En faisant n — oo dans (6.21), nous trouvons p(A) = 0.
b) Nous avons |f — g| = wwxaup. A U B € 7 étant négligeable, nous obtenons que

J’f — g| = 0 (proposition 6.15).
L'égalité J f= fg suit du corollaire 6.45. CQED

Démonstration de la proposition 6.50. Montrons d’abord que c) implique a) et b).
«¢) = a) ». Il suffit de prendre g := O et h := f.

«c) = b) ». En prenant g := 0 et h := | f|, nous obtenons | f| = 0 p. p. Soit A € .7 tel que
u(A) =0et|f| = 0sur X\A. Alors f = 0 sur X\ A4, etdonc f = 0 p. p.

c) Soient A := [|f| = ], B :=[|g| = ], C := A u B. Grace a la proposition 6.48, nous
avons A, B,C € J et u(A) = u(B) = p(C) = 0 (justifier).

Posons g := gxx\c. b= hxx\c, de sorte que g et h sont finies en tout pointet g < h.

Le corollaire 6.46 donne

Jﬁ—fngh—fﬁ (6.22)

En combinant (6.22) avec la proposition 6.21, nous obtenons
f(% -9 =0 (6.23)
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Posons k := h — g > 0. L'inégalité de Markov (6.10) combinée avec (6.23) donne
u([k > t]) =0,Vt > 0.Soit D := [k # 0] € . Comme D = u, [k > 27"] (justifier),
nous obtenons p(D) = 0 (justifier).

Enfin, notons que, sur X\(C'u D), nous avons g = § = h=h (vérifier). Comme C' U D
est négligeable (justifier), nous obtenons que g = h p. p. CQFD

Démonstration du théoréme 6.51. La fonction f est 7 -mesurable (proposition 4.20). Soient A,,,
A € 7 négligeables tels que f,(z) > 0,Vz ¢ Ay, et f(x) / f(x), Vo ¢ A. Soit B :=
A v upA, € 7, qui est négligeable. Le corollaire 6.46 et le théoreme de convergence
monotone donnent

f fdp = fdi =lim fndu = limf fndpu. CQFD
X X\B " JX\B LND ¢

6.52 Remarque. Retenir le principe de preuve du théoreme 6.51, qui permet
de remplacer des hypotheses satisfaites partout par des hypotheses satisfaites
presque partout : (i) on se place d’abord dans le complémentaire d"un en-
semble négligeable, ot nous sommes dans le cadre du théoréme « partout »;
(i) nous concluons grace au corollaire 6.46.

6.8 Pour aller plus loin

6.8.1 Caractérisation des fonctions Riemann intégrables

Nous avons investigué dans la section 6.5 le lien entre l'intégrale de Riemann
ou généralisée d"une fonction continue et son intégrale par rapport a la mesure
de Lebesgue v.

L’intégrale de Riemann est définie pour des fonctions qui ne sont pas néces-
sairement continues. Dans ce cadre, nous avons le résultat suivant.
6.53 Théoreme (Critere de Lebesgue). Soit f : [a,b] — R. Nous avons :
a) f est Riemann intégrable sur [a, ] si et seulement si :

1. f est bornée.
2. L'ensemble de points de discontinuité de f est v;-négligeable.

b) Si f est Riemann intégrable, alors f est A\;-intégrable sur [a,b] et fd\ =
[a,0]
b
f(z) dz. (Dong, en particulier, une fonction Riemann-intégrable est Lebesgue-

a
mesurable.) o
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Rappelons que A est la complétée de la mesure de Lebesgue 1.
Pour la preuve complete de ce théoreme, voir Natanson [17, section V.4]; voir
également Taylor [21, Proposition 3.10]. Nous montrons ici une partie de celui-ci :

6.54 Proposition. Si f : [a,b] — R est une fonction Riemann intégrable, alors f est

b
Lebesgue intégrable et fdx = J f(z)dx. o
[a,b] a

Démonstration. Nous pouvons supposer f > 0. En effet, si f est Riemann intégrable, alors f est
bornée et il suffit de montrer I'égalité des deux intégrales pour la fonction f — m > 0, avec m
minorant de f (justifier).

Nous utilisons les notations de la preuve de la proposition 6.34. Soit o une division de [a, b]
et soit s7 la somme de Darboux supérieure

n
s7 = Z(atj —xj_1) sup f.
j=1

[25—1,%;]

Nous associons a s la fonction

n—1
fa : [a’ b] - Rv fU = 2 sup fX[m]-_l,a:j[ + sup fX[a:nfl,mnb
j=1 [zj—1,25] [Tn—1,2n]
de sorte que
s7 = fodv = f I X[ap) A1 = f f7 X[ap) A1
[a,b] R R

Par ailleurs, nous avons alors 0 < f, < f < f°.

Rappelons que, si (0, ), est une suite de divisions de plus en plus fines et telles que | o, | — 0,
alors :

b b
a) So, J f(x)dxet s N\ f f(z)dx.
b) fa'n /'etfa'n \'
Posons g := lim, f,, et h := lim, f7". De ce qui précéde, g et h sont boréliennes, 0 <

g < f < het(enutilisant le théoréeme de convergence monotone et I'exercice 6.28) f fo, dN1

Jg d\1, Jf"" dX 1\, jh d)\. 1l sensuit que

b
f gdii = f hd = f F(z) dz < 0. (6.24)
[avb] a b] a

)

Commeg < h etJ (h —g) d\1 = 0, nous obtenons que g = h A\;-p. p. sur [a, b] (proposi-
[a.b]
tion 6.50). Soit A € £, A  [a,b], telque \;(A) = 0etg = hsur[a,b]\A. Comme g < f < h,
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nous obtenons que f = g = h sur [a, b]\A et en particulier f = g A\;-p. p. Il s’ensuit que f est
A1-mesurable (proposition 4.19 a)).

Par ailleurs, comme f = g A;-p. p. et 'intégrale J g d\ existe, il s’ensuit que I'intégrale

[a,b]
f d); existe et que fd\ = J g dA1 (proposition 6.44 c)).
[a,b] [a,b] [a,b]
Finalement, en utilisant ce qui précéde et (6.24), nous obtenons que f d)\ est finie et
a,b
) [a,b]
est égale a J f(z)dx. CQFD

La réciproque de cette proposition est fausse : méme pour une fonction bor-
née, I'intégrabilité au sens de Lebesgue n’entraine pas celle au sens de Riemann;
voir l'exercice, classique, qui suit.

6.55 Exercice. Soit f : [0,1] = R, f := xgn[0,1]-

a) Montrer que f est bornée et intégrable par rapport a v; (et donc \p).

b) Soit o une division de [0, 1]. Montrer que s, = 0 et s7 = 1.

c) En déduire que f n’est pas intégrable au sens de Riemann. o

6.8.2 De l'intégrale vers la dérivée

T

Si f : [a,b] — R est continue et si nous posons F(x) := J ft)dt, Vo €

[a, b] (intégrale de Riemann ou Lebesgue), alors, d’apres le théoreme de Leibniz-
Newton, F est dérivable et F” = f.Si f n’est plus continue, nous avons le résultat
suivant.

6.56 Théoreme (Théoreme de différentiation de Lebesgue). Soit f : [a,b] — R
Lebesgue intégrable. Posons F'(z) := f f(t)dt, ¥V x € [a,b] (intégrale de Lebesgue).
Nous avons : ‘

a) I est dérivable v;-p. p.
b) En v;-presque tout point de dérivabilité nous avons F'(z) = f(x). o

Voir par exemple Stein et Shakarchi [20, section 3.1].

6.8.3 De la dérivée vers l'intégrale

Un corollaire du théoréme de Leibniz-Newton est que si F' est dérivable avec

f = F’ continue, alors (*) F'(z) = F(a) + Jz f(t)dt, vz e |a,b].
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Pour généraliser (*), nous pouvons affaiblir la condition sur f en demandant
que F soit dérivable p. p. (par rapport a la mesure de Lebesgue) et que sa dérivée
f soit Lebesgue intégrable.

Sous ces hypotheses, (*) n’est pas nécessairement vraie. Prenons, par exemple,

0, si0<x<1/2
F(z):=<" S? z<1/ . Alors F' est dérivable sauf en 1/2 et sa dérivée vaut
1, sil2<z<1

0 p. p., mais (*) n’est pas satisfaite (vérifier). Plus généralement, (*) est fausse si F'
n’est pas continue (car le membre de droite de (*) l'est).

)

Méme en ajoutant la condition de continuité de F', les hypothéses sur F” sont
trop faibles. En effet, il existe une fonction continue F' : [0,1] — R telle que
F(0) =0, F(1) = 1l et F'(x) = 0 pour presque tout z. Pour l'existence d'une telle
fonction F' («1’escalier du diable » ou « escalier de Cantor »), voir ’exercice 6.58.

En revanche, si nous imposons la condition plus forte de dérivabilité partout,
alors nous avons le résultat suivant, dt a Lebesgue.

6.57 Théoreme (Théoreme de Leibniz-Newton généralisée). Soit F' : [a,b] — R
continue sur [a, b] et dérivable en tout point de |a, b|. Si F’ est Lebesgue intégrable,

alors F(z) = F(a) + Jx F'(t)dt,V x € [a,b]. o

a

Rappelons que, si F' est dérivable, alors F” est borélienne et donc Lebesgue
mesurable. Pour la preuve du théoréme 6.57, voir Natanson [17, section IX.7] et
Rudin [19, Theorem 7.21].

6.58 Exercice (Ensemble de Cantor maigre et escalier du diable). Si I = [a,b] est un

intervalle compact de R, alors nous notons T ’'union des deux intervalles obtenus en
enlevant de I l'intervalle ouvert qui a le méme centre que I et dont la longueur est un

tiers de celle de I. Exemple : si I = [—3, 3] (de centre 0), alors I = [—3,—1] u [1, 3].
De maniere équivalente, si I = [a, b] alors I:=[a,a+ (b—a)/3] ufa+2(b—a)/3,b].
Nous construisons par récurrence une suite (C}),>o décroissante d’ensembles comme
suit :
1. Cp:=10,1].
2. Si Cj s’écrit comme une union finie d’intervalles fermés d. d. d. : C; = u}" 1y, alors
Cj4+1 est défini comme Cj 1 := uj 1.
Notons que, par construction, C; [0, 1] est un compact non vide et que C;1 < Cj.

a) Posons U; := [0, 1]\C;. Montrer que C; est une union de 2/ intervalles compacts d. d.
d. et que Uj est union de 27 — 1 intervalles ouverts d. d. d.

b) Calculer v1(C}), j € N.
¢) Posons C := n;>¢C;. Montrer que C est non vide et calculer v, (C).

Pour j > 1 fixé, notons, dans 'ordre de gauche a droite, les intervalles compacts
de la question a) qui donnent C; : C; = [a1,b1] L ... U [ags, bys]. Nous avons donc
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Uj =]b1,a2[u. .. u]byi_q,a9[. Nous définissons F} : [0,1] — R par récurrence sur j,
comme suit :
(i) Fo(z):==z,Yxel0,1].
(11) Ej(l‘) = (ijl(bg) + Fj,l(ag+1))/2 size [bg, ag+1], Ve=1,... ,2j — 1.
(iii) F;(0) = 0 et Fj(1) = 1.
(iv) Fj est affine sur [ag, be], V0 =1,... 20 — 1.
d) Montrer que |Fji1(z) — Fj(z)] < 1/(3 -2/, Va € [0,1], Vj = 0. En déduire qu’il
existe F': [0,1] — [0, 1] telle que F; — F' uniformément.
e) Montrer que F'(0) = 0et F(1) = 1.
f) Posons U := [0,1]\C. Si I < U est un intervalle ouvert, montrer que F' est constante
sur [.
g) En déduire :

i) Que F est continue sur [0, 1] et dérivable sur U.
ii) Que F n’est pas constante, mais que F’(z) = 0 pour v;-presque tout z € [0,1]. ©
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Chapitre 7

Les grands théorémes

7.0 Apercu

Nous travaillons dans un espace mesuré, avec des fonctions mesurables.

Le théeme général de ce chapitre est la permutation de lim et J sous des hy-

potheses plus faibles que celles du théoréme de convergence monotone, qui sont
0 < f, /" f.Lebut ultime étant de ne supposer ni la positivité, ni la monotonie.

En ne supposant plus la convergence monotone, donc uniquement sous les
hypotheses f,, > 0 et f,, — f, nous n’avons plus 'égalité hmJ fn = J lim f,,, mais
n n

uniquement 1'inégalité

Jliin fo < limninff fof (7.1)

C’est inégalité est un cas particulier du lemme de Fatou, théoreme 7.1. L'impor-
tance de ce résultat est en premier lieu théorique : il permet d’obtenir sans effort

les principaux résultats de permutation entre lim et f , dont le plus célébre est le

théoreme de convergence dominée (de Lebesgue) 7.2.

A son tour, le théoreme de convergence dominée permet d’étudier les pro-
priétés des intégrales a parametre(s). Pour prendre un exemple concret, soit

Flt) = JOO sin (t2) .

o 1+a2

t. La limite lim f fn N'existe pas, en général; c’est la raison de l'apparition de la lim inf dans
(7.1).
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C’est une intégrale dont ¢ est le parametre. Les questions basiques sont si F' est

continue ou dérivable; elles seront étudiées dans les sections 7.2, respectivement
7.3.

Dans la section 7.4, nous reprenons 1’étude de 'égalité J Z fn = Z J fn, cette

fois-ci sans hypothese de positivité (théoreme 7.18).

Comme cela a été vu avec le théoreme 6.51 et sa preuve, et avec la remarque
6.52, si les résultats qui suivent ont des hypotheses satisfaites p. p., nous pouvons traiter
dans la preuve directement le cas oil les hypothéses sont satisfaites partout.

Compétences minimales attendues.

a) Savoir utiliser le théoréme de convergence dominée 7.2.

b) Savoir étudier les intégrales a parametre, via les théorémes 7.10, 7.14, le corol-
laire 7.15.

c) La compétence principale a acquérir est de savoir majorer convenablement
une fonction a parametre. Typiquement, pour pouvoir appliquer le théoréme
de convergence dominée il faut trouver une bonne majoration de la forme

[fu(2)] < g(z), VneN, Vre X,

avec g indépendante de n et aussi petite que possible. Y arriver sera 1'une des dif-
ficultés pratiques majeures de 1'apprentissage. En partie, I'analyse est I'art d’ob-
tenir de bonnes inégalités. o

Dans tout ce chapitre, nous travaillons dans un espace mesuré (X, .7, u). Sauf
mention contraire, les fonctions considérées sont mesurables. Je ne vérifierai pas
toujours la mesurabilité des fonctions construites a partir de fonctions données
(par exemple, lim,, f,, avec chaque f,, mesurable). Le lecteur est encouragé a le faire;
ceci fait partie de I'apprentissage de la théorie de la mesure.

7.1 Lemme de Fatou, théoreme de convergence domi-
née

7.1 Théoreme (Lemme de Fatou). Soit (f,,), une suite de fonctions positives

p. p., et soit f := liminf, f,. Alors ff < liminfffn.

Ou encore :

Jlim inf f,, < liminf j fn- (7.2)
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Méme en ajoutant au lemme de Fatou I'hypothese f,, — f, 1'inégalité (7.2) ne
se transforme pas, en général, en égalité (voir 1'exercice 7.8). Le résultat suivant
donne une condition raisonnable et relativement facile a vérifier pour permuter

lim et J

7.2 Théoréme (Théoreme de convergence dominée (de Lebesgue)). Soient f,,,
J:X — R telles que :
(i) II existe une fonction intégrable g telle que, pour tout n, |f,(z)| < g(z)
12519
(i) fo(x) = f(z) p. p-

Nous avons :

a) f estintégrable.
b) [1a =510

C) an — ff, ou encore hinff” = JliTan fn-

7.3 Remarque. Comme énoncé, le théoreme a comme hypothese la mesurabilité de f, en plus
de celle des f,.

1. Sil’hypothese (ii) est satisfaite partout et si chaque f,, est mesurable, alors f 'est; dans
ce cas particulier, la mesurabilité de f n’a donc pas a figurer parmi les hypotheses.

2. Un autre cas ou la mesurabilité de f découle de celle des f, est celui des mesures
completes; ceci est une conséquence de la proposition 4.20.

3. Néanmoins, dans le cas général, la mesurabilité de f ne suit pas des autres hypo-
theses. En revanche, f est .7-mesurable (proposition 4.20) et nous avons les conclu-
sions suivantes, qui font echo aux conclusions a)—c) ci-dessus : a’) f est fi-intégrable;

b’)J]fn—f]duao;c’)ffnduajfdu. o

7.4 Remarque. La plus petite fonction g vérifiant (i) est g := sup,, | f»|. Donc nous pou-
vons remplacer (i) par la condition, plus faible, que sup,, | f,| est intégrable.

Ceci donne le schéma suivant pour appliquer le théoréme :
1. Vérifier que ( f,,), converge p. p.
2. Calculer g := sup,, | fn|-
3. Vérifier que g est fi-intégrable. '
Dans la pratique, sup,, | f,,| peut étre difficile a calculer, et la formulation ci-dessus du
théoreme est plus convenable. o

Le résultat suivant a une grande importance théorique. Conceptuellement, il
affirme que les hypotheses du théoreme de convergence dominée sont nécessaires, du
moins le long d"une sous-suite.

1. C’est-a-dire que son intégrale, qui existe car g est mesurable et positive, est finie.
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Les grands théorémes 7.1 Lemme de Fatou, théoréme de convergence dominée

7.5 Théoreme (Réciproque du théoreme de convergence dominée). Soient f,,, f
intégrables telles que f| fn — f| — 0. Alors il existe une sous-suite (f,, ), et une

fonction intégrable g telles que :
@) [furl <9, VE

(i) fo, — fp-p- o
Exercices

Les exercices qui suivent ont pour but d’illustrer la nécessité des hypotheses
ou l'optimalité des conclusions des théorémes de cette section.

7.6 Exercice. En considérant les fonctions f,, : R — R, f,(z) := —(z +n)_, Vn € N,
Vz € R, montrer que I'hypotheése f,, > 0 est essentielle pour avoir la conclusion du
lemme de Fatou. o

7.7 Exercice. A l'aidede f, : R — R, f, = X[n,n+1[, montrer que ’hypothese (i) du
théoréme de convergence dominée 7.2 est nécessaire. o

7.8 Exercice. Sim,n € N* et m? < n < (m + 1)?, posons
Ay = [(n—m?)/2m+1),(n+1—m?)/(2m +1)]
et fn 1= X4, +1/(n + 1)X[nt1,n42)- Montrer que :

) f|fn|du1 -0,

b) Il n’existe pas g intégrable telle que | f,| < g, Vn.
¢) Pour tout z € [0, 1], nous avons f,(x) 4 0.

En déduire qu’en général, dans la réciproque du théoreme de convergence dominée
7.5, il faut passer a une sous-suite afin d’avoir (i) et (ii’). o

Démonstrations

Démonstration du théoréme 7.1. Nous pouvons supposer que f, > 0 et f,, / partout (voir la
preuve du théoreme 6.51 et la remarque 6.52).

Soit gy, := inf,,>y fm, qui est mesurable, positive et < f,,. Nous avons 0 < g, / f,
dou | f = lim | g, < liminf | f, (justifier, en utilisant le théoreme de convergence
n n

monotone 6.18 et la monotonie de I'intégrale). CQFD

Démonstration du théoreme 7.2. Soit A,, € .7 négligeable tel que |f,(z)| < g(z) siz ¢ A,.
Soit B € 7 négligeable tel que f,(z) — f(z)siz ¢ B.Soit A := Bu uyA4, € 7, qui
est négligeable. En remplacant les intégrales sur X par des intégrales sur X\ A (grace au
corollaire 6.46), nous pouvons travailler dans X\ A au lieu de X et supposer, ainsi, que
les hypotheses (i) et (ii) sont satisfaites partout au lieu de presque partout (détailler).
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Nous avons f mesurable et | f| < g, ce qui montre que f est intégrable (justifier).

Soit B := g~(—0) U g~ 1(c0), qui est négligeable (justifier). Si h := hype, il suffit de
prouver la conclusion avec f,, f, galaplacede f,, f, g (justifier, en utilisant la proposition
6.48). Ainsi, nous pouvons supposer f,, f, g finies.

Posons ¢, := 29 — |f — fn], qui est mesurable et positive (vérifier). Nous avons
lim,, g, = 2g, ce qui entraine, via le lemme de Fatou,

2fg - J2g < limninffgn - limnian(Zg— If — ful) = 2fg—hmnsupff—fny,

d’ott lim supf |f — fn] < 0. Ceci implique (justifier) lim J |f — fu]l =0.

Pour la deuxiéme partie, nous utilisons 'inégalité triangulaire

fifs

(justifier, via les propositions 6.21 et 6.23). CQFD

< [1r=fl =0

Démonstration du théoreme 7.5. Posons, pour g, h intégrables, d(g, h) := f lg — h|, qui vérifie

l'inégalité triangulaire et est donc une « pseudométrique »." L'hypothese est d(f,,, f) — 0,
et elle implique que (f,,),, est une suite de Cauchy pour la pseudométrique d.

1l existe donc une sous-suite ( f,,, )x telle que d(fy,, fn,) < 1/2F 1 sik < £

Posons

k>0

Alors g est mesurable, | f,,,| < g et

k—1
< faol + D [ fneer = frel <9, V= 1.
£=0

k—1
fno + Z(fneﬂ - fne)

=0

|fnk| =

Par ailleurs, nous avons (justifier)

Jg = ffnol + 2, J|fnk+1 = ful < f|f%| + Y12k

k>0 k>0 (7‘4)
=ffn0|+1 < o0,

t. Une pseudométrique vérifie toutes les propriétés de la métrique (distance) sauf d(z,y) =
0 = z=uy.

1. Rappelons que, si (z,,), est une suite de Cauchy pour une distance (ou pseudométrique) d,
et si (ay)y est une suite de nombres strictement positifs, alors il existe une sous-suite (x,,, ) telle
que d(zp,, Tn,) < ag, Yk < L.
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Soit B := g~ !(w0) € 7, qui vérifie u(B) = 0 (justifier). Pout tout z € B¢, la série

Fao(@) + 35 (farss (@) = f (7))

k>0

est absolument convergente (ceci découle de (7.3) et de la définition de 'ensemble B),
donc convergente. Notons h(z) la somme de cette série, de sorte que h(z) = limy fp, ()
(pourquoi?).

Posons, pour toute fonction u, @ := uype. Nous avons fnk — het |fnk\ < g. Nous
trouvons, par convergence dominée, f \fnk - E\ — 0 (justifier, en utilisant (7.4)). Le corol-

laire 6.46 implique
[1r =31 = (17 =T < [17 = Bl + [ 1o =
:J\f—fnkﬁf\ﬁ%—%\—’o’

dou f =h p. p., ou encore f,, — f p.p. (justifier). CQFD

7.2 Intégrales dépendant d’un parametre : continuité

Soit A une partie d'un espace métrique (Y, d).

7.9 Notation. Soit f : X x A - R, f = f(z, \).
a) Lanotation f(-, ) désigne la fonction partielle

fGN): X >R, X 22— f(x,)\), de variable z, obtenue en fixant \.
b) De méme, f(x,-) désigne la fonction partielle

flxz,:): A >R, A>3 X~ f(x,\), de variable ), obtenue en fixant z. o

7.10 Théoreme (Continuité des intégrales a parametre). Soit

f: X xA-R, f=f(z,N).

Supposons :
(i) La fonction f(-, \) est mesurable pour tout A € A.
(ii) La fonction f(x,-) est continue pour presque tout x € X.

(iii) Pour tout Ay € A, il existe r > 0 et une fonction intégrable g = g(x) :
X — [0, 0] telle que, pour tout A € B(XAg,7) N A,

|f(z,\)| < g(z), pour presque tout z € X.
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Alors la fonction
F:A—R FQ)) = L £ ) dpt = L £, X) du(z),

est continue.

7.11 Remarque.

1. Comme pour le théoreme de convergence dominée, I'hypotheése clé dans le théo-
reme 7.10 est ’existence de la fonction g vérifiant (iii).

2. Dans des situations tres simples (voir, par exemple, I’exercice 7.12), on trouve une
fonction ¢ intégrable telle que |f(x, )| < g(x) pour tout x € X et pour tout \ € A,
et donc il n’est pas nécessaire de trouver un rayon r dépendant de \p € A; r = ©
convient pour tous les A\g. Néanmoins, dans la plupart des situations 1'existence
d’une majorante intégrable g repose sur un bon choix du rayon r (voir, par exemple,
I'exercice 7.13 et 'item suivant).

3. Dans de nombreuses applications, A est un ouvert, et tout » > 0 tel que B(X\o,7) ©
A convient.

4. Dans le théoréme 7.10, ainsi que dans le théoréme 7.14 et le corollaire 7.15, la
fonction g dépend, en principe, de la boule B()\¢,), mais pas de A dans la boule
E()\(), ’l"). &

Exercices

7.12 Exercice. Soit f : R — R Lebesgue intégrable. Montrer que la transformée de Fourier
de f, définie par

o0
1) = f e~ F () d () = f e~ f () da, Vi € R,
R —
est une fonction continue et bornée sur R. o

7.13 Exercice. Si s > 1, soit ((s) := >} -, 1/n° la fonction zéta de Riemann. Montrer que
¢ :]1, 0[— R est continue. o

Démonstrations
Démonstration du théoréme 7.10. Soient (A, )n>1 < A, Ao € A tels que A, — Ao. Soit ng tel que

An € B(Xo,7), Vn = ng. Posons hy,(z) := f(z,\n), h(z) := f(x,\). Alors |h,| < g p. p. si
n > ng (grace a I'hypothese (iii)) et b, — h p. p. (grace a 'hypothese (ii)). En utilisant le

théoreme 7.2, nous obtenons F'(\,) = Jh" — Jh = F()\). CQFD
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7.3 Intégrales dépendant d’un parametre : dérivabi-
lité

Dans cette partie, A est un ouvert de R™ muni d’une norme. Nous notons 0; :=

A

62\ . Plus généralement, 0“ désigne une dérivée partielle par rapport a \.
J

7.14 Théoreme (Dérivabilité d"une intégrale a parametre). Soit

f: X xA-R, f=f(z,N).

Soit j € {1,...,n}. Supposons :
(i) La fonction f(-, \) est intégrable pour tout A € A. (La fonction F'(\) :=
J f(-, A) du est alors bien définie.)

(ii) Il existe 0;f(x, -) pour presque tout x € X.

(iii) Pour toute boule B(\g,7) © A, il existe une fonction intégrable g = g()
sur X telle que pour tout A € B(\g, ) onait |0; f(z, )| < g(x) pour presque

tout v € X.
Alors :
a) La dérivée partielle 0, F existe et est donnée par
of
J

Ou encore : la dérivée de l'intégrale est l'intégrale de la dérivée.

b) Si, de plus, 0;f(x,-) est continue pour presque tout z, alors ¢;F est conti-
nue.

Une récurrence basée sur le théoreme 7.14 donne le résultat suivant pour les
dérivées partielles d’ordre supérieur.

7.15 Corollaire. Soit f : X x A - R, f = f(x, \). Soit k € N*. Supposons :
(i) Pourtout A € A, la fonction f(-, \) est intégrable (donc F'(\) = Jf(-, ) dp

est bien définie).
(ii) La fonction f(z,-) est de classe C* pour presque tout = € X.

(iii) Pour toute dérivée partielle 0> d’ordre < k et pour toute boule B(\g, ) <
A, il existe une fonction intégrable g = g(z) sur X telle que pour tout
A € B(Xo,7) on ait [0“f(z, \)| < g(z) pour presque tout x € X.
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Alors F € C* et, pour tout a d’ordre < k, nous avons

PF(\) = faa f(@, 2) ds(z).

Exercices

7.16 Exercice. Montrer que la fonction zéta de Riemann de I'exercice 7.13 est de classe
C*. o

7.17 Exercice (Difficile). Supposons A connexe. Montrer nous pouvons, dans le théoreme
7.14, remplacer ’hypothese (i) par '’hypothese plus faible

(i") pour tout A € A, la fonction f(-, \) est mesurable et il existe un \g € A tel que f(-, \o)
soit intégrable. ©

Démonstrations

Démonstration du théoréme 7.14. Nous pouvons supposer les hypotheses (ii) et (iii) satisfaites
pour tout x € X (voir la remarque 6.52).

a) Fixons A € A. Soit r > 0 tel que B(\,r) = A. Pour ¢ € R tel que |¢| < r, posons

h(z,t) = (flz, X +tey) — f(z, \)/t, sit#0
0 f(x,N), sit=0"

de sorte que :
() A x fixé, h(zx,-) est continue.

Gj) At fixé, h(-,t) est mesurable (justifier, en considérant d’abord le cas t # 0, puis
en faisant t — 0).

Gii) |h(-,t)] < g (justifier, en utilisant le théoréme des accroissements finis).

I s’ensuit que

tig FOID =L i [ty = [0y die = [ 03702 di

d’ot1 la conclusion.

b) Dans le cas particulier o1 J; f(z, ) est continue pour presque tout = € X, le théoreme
7.10 assure la continuité de 0; F'. CQFD

7.4 Intégrale d'une série

Cette section fait écho au théoréme 6.26. Rappelons la philosophie générale
de ce chapitre : donner des versions des théoremes du chapitre 6 (basés sur la
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convergence monotone des fonctions positives) sans supposer la monotonie ou
la positivité.

Commengons par rappeler que, si ( f,),, est une suite de fonctions mesurables,

. lim,, f,(z), silim, f,(x) existe
alors la fonction donnée par f(x) = Jal@) Jal@) , est mesu-

0, sinon
rable (proposition 3.34).

7.18 Théoreéme (Intégrale d'une série). Soit (f,,),, une suite de fonctions me-

surables telle que Z f | fn| < c0. Nous avons :

n

a) Pour presque tout z, la série ), f,(z) converge.

Do fulx), si), fo(x)existe

i , alors f est inté-
0, sinon

b) Si nous posons f(z) := {

grable et J f= ijn.

Ou encore (si ), f, existe en tout point) :

f;n=;fn

(I'intégrale de la somme est la somme des intégrales).

Démonstrations

Démonstration du théoréme 7.18.
a) Soit g := > |fn|, qui est positive et mesurable. Nous avons (justifier)

J9=J;UM=;JMA<®

d’ou g est intégrable.

Il s’ensuit que 'ensemble A := g~1(c0) € 7 est négligeable (justifier). Pour z € A°, la
série ) fn(x) est absolument convergente, donc convergente. Ceci donne a).

b) Soit B := {z € X ; ), fn(x)n’existe pas}, de sorte que B € .7, B < A. (Justifier
pourquoi B € .7, par exemple en montrant que B¢ € .7.) Soit g,, := > ;. _,, fuxBe. Alors
gn — [, gn est mesurable et |g,| < 3, |fr| < g. Le théoreme de convergence dominée

donne Jgn — jf. Par ailleurs, nous avons g, = >}, _, fx p. p., d’ot jgn = Z Jfk

k<n
(justifier). Nous obtenons

fleirrlnjgn:h}lrnZ

k<n

ffk :;ffk- CQFD

132



Chapitre 8

Mesures produit

8.0 Apercu

Le volume vol (C') d"un cylindre (plein) droit C' est le produit de sa hauteur
h et de 'aire aire (B) de sa base B. De maniere équivalente, si C' = [a, ] x B,

vol ([a,b] x B) = (b— a) x aire (B) = v1([a, b]) x aire (B). (8.1)

A travers cette formule, nous voyons qu’a partir de la mesure (A) d"un en-
semble A et de la mesure v(B) d'un ensemble B, nous pouvons « naturellement »
définir la mesure de 'ensemble A x B comme le produit p(A) x v(B).

Dans ce chapitre, nous allons généraliser cette approche, en construisant la me-
sure produit Qv de deux mesures i et v (section 8.2). Le principe de la construction
est celui de Cavalieri™ : pour calculer le volume vol(S) d’un solide S, nous calcu-
lons 'aire aire(S™) de sa section, a chaque hauteur h, et nous obtenons

vol (S) = Jaire (S™) dh,

ce qui peut également s’écrire comme

v3(S) = f ( Lh dz/2> dr (). (8.2)

Au préalable, il faudra construire la tribu que mesure 1 ® v : il s’agit de la
tribu produit 7 ® . de deux tribus 7 et ., dont nous donnons la définition et
quelques propriétés fondamentales dans la section 8.1.

t. Cavalieri était un mathématicien italien du 17¢ siecle. Mais ce principe est déja énoncé au 3¢
siecle par le mathématicien Liu Hui. Voir https://fr.wikipedia.org/wiki/Liu_Hui.
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Mesures produit 8.0 Apercu

L’exemple introductif (les aires et les volumes) est cohérent avec cette dé-
marche générale : le produit de la mesure de longueur v, et de la mesure d’aire
5 est bien la mesure de volume v5 (corollaire 8.16). Au passage, nous pourrons
(enfin) prouver l'existence de la mesure de Lebesgue v,,, n > 2, en admettant
I'existence de v, (corollaire 8.11).

La section 8.3 traite le cas des produits a plusieurs facteurs, qui repose sur des
récurrences immédiates a partir du cas de deux facteurs.

Dans la section 8.4, nous étudions le passage aux mesures complétées dans les
produits.

Les sections 8.5 et 8.6 sont dédiées aux intégrales itérées, c’est-a-dire aux éga-
lités du style (8.2)

[ semansvian - [ ([ 1) avw

- [ ([ vt dute)

Le prototype de cette égalité est la sommation des éléments d"un tableau. En
sommant

(8.3)

1. tous les éléments du tableau;
2. les éléments de chaque colonne, puis en sommant les résultats obtenus;
3. les éléments de chaque ligne, puis en sommant les résultats obtenus,

nous obtenons a chaque fois le méme résultat, si le tableau est fini.

Pour les tableaux infinis, et plus généralement, pours les intégrales, la validité
de (8.3) est plus délicate. (8.3) est vraie si f est positive (théoréme de Tonelli) ou si f
est intégrable (théoreme de Fubini).

Compétences minimales attendues.

a) Savoir déterminer les coupes des ensembles et utiliser leurs propriétés de me-
surabilité.

b) Savoir utiliser le théoreme de Tonelli.

c) Savoir utiliser le théoréme de Fubini, notamment vérifier I'intégrabilité de l'inté-
grande.® o

Dans ce chapitre, nous travaillons dans deux espaces mesurés, (X, .7, u) et
(Y, .7, v).

t. L’application correcte du théoreme de Fubini sera un défi majeur.
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8.1 Tribu produit

Dans cette section, nous définissons la tribu produit 7 ® . des tribus .7 et
. A posteriori, les éléments de .7 ® . seront mesurés par la mesure produit.
Cependant, la définition de la tribu produit n’exige pas l’existence des mesures.

8.1 Définition (Pavé, ensemble élémentaire).

a) Unpavéde X xY est un ensemble de la forme Ax B,avec Ae T et B e 7.

b) Un ensemble élémentaire est une partie de X x Y qui s’écrit comme une
union finie de pavés.

8.2 Définition (Tribu produit). La tribu produit (de 7 et .’) est la tribu (sur
X x Y)engendrée par les pavés de X x Y.

Elle est notée 7 ® .¥.

Le résultat suivant donne un exemple fondamental et explicite de tribu pro-
duit.

8.3 Proposition. Nous avons %gn @ Brm = Bgn+m.

Les deux résultats suivants « se voient » facilement sur un dessin et joueront
un role important dans la preuve de 1'existence et de I'unicité de la mesure pro-
duit.

8.4 Lemme. Soit ¥ la collection des ensembles élémentaires.

a) ¢ estunclansur X x Y.
b) Nous avons .7 (¢) = 7 ® 7. o

8.5 Lemme. Tout ensemble I € ¥ s’écrit comme une union finie de la forme
E = uj;A; x Bj,avec:

(1) Aje ﬁetBjEY,Vj.
(if) Sij # ¢, alors soit A; n Ay = &, soit B; n By = . o

Exercices

Voici un autre exemple explicite de tribu produit.

8.6 Exercice. Si X et Y sonta. p.d., alors Z(X)® Z(Y) = (X xY). o

Démonstrations

Démonstration de la proposition 8.3.
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Mesures produit 8.1 Tribu produit

«D» SiP = I xIyx---xI,,m, avec I; intervalle ouvert, V j, est un pavé ouvert de R"*",

alors P = P; x Pp,ou Py := I; x --- x I, respectivement Py := I;,11 X -+ X I,
sont des ouverts de R", respectivement R™." P appartient donc & Zgn x Brm (et
d’autant plus a ZBrn ® Brm). Il s’ensuit que la tribu engendrée par ces pavés (c’est-
a-dire HBgn+m, voir la proposition 2.16 c)) est contenue dans Brn @ Brm.

«c» Soit & := {A € Brn ; A X R™ € Brnim}. Alors o7 contient les pavés ouverts (car,

dans ce cas, A x R™ est un pavé ouvert). Par ailleurs, comme (A x R")¢ = A¢ x R™
et (UjA;) x R™ = u;A; x R™, nous obtenons que </ est une tribu.

Il s’ensuit que <7 contient la tribu engendrée par les pavés ouverts, c’est-a-dire
PBrn.

Conclusion : nous avons A x R € Bgn+m pour tout A € Brn. De méme, R" x B e
PBrn+m pour tout B € Brn.

SiAe PBrnetBe Brm,alors A x B=(AxR") N (R" x B) € Brn+m. 1l s’ensuit
que Zgn+m contient la tribu engendrée par les A x B, avec A € Brn et B € Brm,
c’est-a-dire Brn ® Brm. CQFD

Démonstration du lemme 8.4.

a)

b)

Clairement, ¢ est stable par union finie et contient .

En notant que (A x B) n (C x D) = (An C) x (B n D), nous obtenons facilement que
¢ est stable par intersection (vérifier).

Soit £ = U}_; A, x By ¢,avec A, € T, B e ., Y1 <k <n.Alors
E° = V(A x Br)® = [ ) ([(A0)° x Y] U [X x (Bi)°]).
k=1 k=1

Ainsi, E° est intersection finie d’éléments de €', donc appartient a &

Il s’ensuit que ¢ est un clan.
Nous avons clairement ¢ ¢ 7 ® ./, d’ou 7 (¢) € T ® <.

Par ailleurs, les pavés sont dans &, et donc la tribu engendrée par les pavés est conte-
nue dans celle engendrée par ¢, ou encore J ® . < 7 (¥).

Finalement, nous avons, par double inclusion, 7 ® . = .7 (%). CQFD

Démonstration du lemme 8.5. Soit E = U}l_,C}, x Dy, avec Cy, € 7, Dy, € ./, V k. Nous prou-
vons le lemme par récurrence sur n, le cas n = 1 étant clair.

Supposons le lemme vrai pour n — 1 et soit £ comme ci-dessus.

Nous avons X x Y = Fj u Fy u Es u Eq, ou Ey := Cy, X Dy, Ey := (C,)¢ x D,,

E3 :=Cy, x (Dy)¢, Eq := (Cy)¢ x (Dy,)¢ (vérifier).

Il s’ensuit que £ = u?zl(E N E;). En posant F; := En E;, i = 1,...,4, les F; sont

d.d.d. et F} = C, x D,. Par ailleurs, nous avons E; n (C,, x D) = &, 1 = 2,3,4,d’ou

t. Ne pas confondre pavé de R™ x R™ (définition 8.1) et pavé de R"*™ (définition 4.34).
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F;, = u?;ll[(C'j x Dj) n E;], i = 2,3,4. Chaque ensemble (C; x D;) n E; étant de la forme
AxB,avec Ae 7, B € .7, I'’hypothese de récurrence appliquée aux F;, i = 2,3, 4, permet
d’écrire chaque F;, 7 = 1,2, 3,4, comme une union finie de produits A;- x Bj satisfaisant
(i) et (ii) (a ¢ fixé). Si i # k, alors pour tout j et £ nous avons soit Aé- N A}? = (J, soit
B; N Bé“ = (J (vérifier, en utilisant le fait que Aé. c E; et la définition explicite des E;). Il
s’ensuit que la collection de tous les pavés A% x B: (indexés sur j et ) satisfait (i) et (ii).
Par ailleurs, son union est E. CQFD

8.2 Mesure produit

Cette section est consacrée a la construction de la mesure produit. Ce sera 1’oc-
casion d’apprécier 'utilité du théoreme de la classe monotone 2.9.

8.7 Définition (Coupe). Soit £ € . ® .. La coupe de E en z € X est

E,:={yeY; z=(x,y) € E}.

De méme, la coupe de Eeny € Y est

FY:={reX; z=(x,y) € E}.

Une propriété fondamentale des éléments £ de .7 ® . est que leurs coupes sont
mesurables. Cette propriété permet la mise en ceuvre du principe de Cavalieri et
la construction de la mesure produit.

8.8 Proposition. Soit £ € .7 ® .7.
Pour tout z € X, nous avons E, € .¥.

De méme, pour tout y € Y, nous avons EY € 7. o

Une autre propriété indispensable a la mise en pratique du principe de Cava-
lieri est la suivante.

8.9 Théoreme. Supposons v o-finie.
Pour tout £ € .7 ® .7, I'application X 3 z — v(FE,) est 7 -mesurable.

De méme, si y est o-finie, 'application Y 5 y — p(EY) est .#-mesurable. o
La proposition 8.8 et le théoréme 8.9 donnent un sens a l’application
TR >5E— J v(E,) du(x) € [0, o],
X

qui, selon le principe de Cavalieri, doit permettre de calculer le « volume » de E.
Ceci est formalisé dans le résultat central de cette section :
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8.10 Théoreme (Définition de la mesure produit).

a) Supposons p ou v o-finie. Il existe sur .7 ® . une mesure ¢ telle que
E(Ax B)=puA)v(B),VAe I, Be S (*)

b) Supposons p et v o-finies. La mesure £ ci-dessus est unique. Elle est notée
1 ® v et est la mesure produit de 1 et v.

Nous pouvons maintenant (enfin!) justifier I'existence de la mesure de Le-
besgue dans R", n > 2.

8.11 Corollaire (Existence et unicité de la mesure de Lebesgue v,,). Il existe
une unique mesure borélienne v, dans R" telle que, pour chaque pavé’

P=1I x---x1,

de R"” on a

Exercices

En plus de la mesure de Lebesgue, voici un autre exemple de mesure produit.

8.12 Exercice. Si X, Y sont a. p. d. et si p, v sont les mesures de comptage sur X, Y, alors
1 ® v est la mesure de comptage sur X x Y. o

Démonstrations

Démonstration de la proposition 8.8. Faisons la preuve pour E,. Soit z € X arbitraire, fixé.

Notons .7 := {E € T ®.7; E, € 7}. Alors </ contient les pavés A x B,avec A€ 7,
B e ., car dans ce cas F, est soit B (si x € A), soit J (si x ¢ A).

De plus, </ contient €, carsi E = U}_; Ay x By € €, alors E, = U}_, (A x B)y € .
(détailler).

Par ailleurs, </ est une classe monotone : si (E,), < <« et E, / FE, alors E, =
(UnEn)e = Un(En)s € 7. De méme, si E, \, E, alors E, = n,(E,), € .7 (justifier, en
combinant le lemme 8.4 a) et le théoréme de la classe monotone 2.9).

Il s’ensuit que <7 contient la classe monotone engendrée par ¢, quiest 7 ® .7.

t. Rappelons (définition 4.34) qu'un pavé de R™ est un produit de la forme P = I} x --- x I,,,
avec chaque I; intervalle.
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Conclusion : pour tout £ € .7 ® ., nous avons E € &/, et donc E, € . (pour tout
r e X). CQFD

Démonstration du théoréme 8.9. Nous faisons la preuve lorsque v est o-finie.

Soit, pour F € I ® .7,

f=fe:X—>[0,0], f(z) :=v(E;), Vo e X.

Soit

o ={FEe.7®.Y; fest 7 —mesurable}.

Nous voulons montrer que & = . ® ..

Etape 1. Preuve du théoréme si v est finie. Soit d’abord E € €. Nous écrivons F = Li;A; x Bj,
comme dans le lemme 8.5. Nous avons alors (justifier)

E, = UxEAij = ‘—‘xeAij7
d’ou

fle) = " v(B)) =), xa, (@) v(B)).
j

SCEAJ'

De maniére équivalente, nous avons f = >}, v(B;) x4, d’ou f est mesurable. Ainsi,
Ccd.

Pour conclure, il suffit de montrer que &/ est une classe monotone (et d’invoquer le
lemme 8.4 a) et le théoreme de la classe monotone 2.9).

Soit d’abord (E,), © < une suite croissant vers E. Le théoreme de la suite crois-
sante donne v(E;) = lim, v((E,);) (vérifier). Ainsi, f est une limite de fonctions .7-
mesurables, donc .7 -mesurable.

Dans le cas d’"une suite décroissante, nous pouvons appliquer le théoreme de la suite
décroissante (car v est supposée finie) pour obtenir a nouveau f mesurable (détailler).

Etape 2. Preuve du théoreme si v est o-finie. Soit (Y;,),, < . une suite telle que Y,, /' Y et
v(Y,) < oo, ¥ n. Si nous posons v,(B) := v(B nY,), VB € .7, alors v, est une mesure
finie (car v, (B) < v(Y,) < ) et v(B) = lim, v,(B) (théoréme de la suite croissante).
Nous avons

flx) =v(E,) =limy,(E,), VEe T ®.,VreX.
Chaque fonction z — v, (E,) étant .7 -mesurable (étape 1), f 1'est également. CQFD

Démonstration du théoréme 8.10.
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a)

b)

Supposons, par exemple, v o-finie. Pour £ € .7 ® ./, posons, avec f = fg comme
dans la preuve du théoreme 8.9,

E(E) = fX fdu= JX fedu = JX v(Ey)du(z), VEe T ®.7. (8.4)

Alors ¢ satisfait (*) (vérifier). En particulier, () = 0.

Il reste a vérifier I’axiome ii) d'une mesure. Soit (E,,), € 7 ® . une suite d. d. d. Soit
E := u,E,. Sinous posons f,(z) := pu((Epn)z), Vn,alors f =Y, fn,car B, = L(Ey)s
(vérifier). Nous obtenons (justifier)

) = [ fin= [ S gudn =2 | face = YeE)

¢ est donc une mesure satisfaisant (*).

Soit A une mesure avec les mémes propriétés que £. Soient (Cy,), < 7, (Dyp)n < 7
des suites telles que u,,C,, = X, u,D, =Y, pu(Cy,) < ©, v(Dy) < ®, Yn. Alors
§(Cp x Dyp) <wetX xY =u,C, x D,

Par ailleurs, nous avons A\(E) = £(F), V E € €. En effet, nous pouvons écrire, comme
dans le lemme 8.5, ' = Li;A; x Bj,avec A; € 7, Bj € ./, ¥V j. Nous obtenons

ME) = MujAj x Bj) = ZM(AJ‘)V(BJ') = {(ujA4; x Bj) = {(E). (8.5)

La proposition 4.24 combinée avec (8.5) donne A = &. CQFD

Si p et v sont o-finies, nous pouvons également définir la mesure

n(E) = L/ pw(EY)dv(y), VE e T ® %,

qui, par symétrie, a les mémes propriétés que £. L'unicité prouvée dans 'item b)
a alors la conséquence suivante.

8.13 Corollaire. Si v et i sont o-finies, alors nous avons

pU(E) = JV(Ex) du(zr) = fu(Ey) dv(y), VE e T ® . (8.6)

Démonstration du corollaire 8.11. L'unicité a été montrée dans la proposition 4.38 c).

Pour l'existence, faisons la preuve par récurrence sur n. Le cas n = 1 a été traité

dans le chapitre 5 (théoréme 5.1). Soit n > 2. Supposons l'existence de v, acquise. v et
vp—1 étant o-finies (justifier), nous pouvons définir 11 ® v,—1, qui a la propriété requise
(justifier, en utilisant la proposition 8.3 et le théoréme 8.10). CQFD
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8.3 Produits itérés

Plus généralement, nous pouvons considérer des espaces mesurés (X, .7, 11;),
j=1,...,k avec k = 3,4, ..., et construire (a priori) plusieurs tribus et mesures
sur X; x --- x Xj. Par exemple, si k = 3, nous pouvons considérer les tribus
(N ® %) ® T30u 7 Q(F® T3) et les mesures (1 @ fiz) ® i3 0U 1y @ (12 @ p3)-
Le résultat est le méme, quel que soit I'ordre des opérations. Nous en donnons la
preuve pour k = 3; le cas général s’obtient par récurrence.

8.14 Proposition. Nous avons (71®.%)® .75 = 71Q(%® ;) =la tribu engendrée
par les produits de la forme A; x Ay x A3, avec A; € F;,j =1,2,3. o

8.15 Proposition. Siles mesures y; sont o-finies, j = 1,2, 3, alors (11 ® pa) ® s
11 ® (pe ® ps)=l"unique mesure A telle que A\(A; x Ay x A3) = (A1) po(As) ps(As
pour A; € 7,5 =1,2,3.

Grace a l'associativité du produit, nous pouvons définir sans ambiguité les
produits 71 ® % ®...Q T, et 11 Qa2 ®. .. @ . Nous noterons ces produits QY .7,
respectivement &y 1.

Une conséquence immédiate des propositions 8.14 et 8.15 est la propriété sui-
vante de la mesure de Lebesgue.

8.16 Corollaire. Si v, est la mesure de Lebesgue sur %g», alors v, ® v, = Vp 1, €t,

L2 k .
plus généralement, ®v,, = v Eny 3

Les résultats des sections suivantes seront prouvés pour k = 2. Néanmoins, ils
ont des variantes pour k > 3, que nous allons énoncer sans preuve. Les preuves
de ces variantes sont dans 1’esprit de celles des propositions 8.14 et 8.15.

Démonstrations

Démonstration de la proposition 8.14. Notons .7, j = 1,2, 3, les trois tribus de I’énoncé. Mon-
trons par exemple que .| = .73.

«D>»SiAje T, 5 =1,23 alors A; x Ay x A3 = (A1 x Ap) x A3 € . (justifier), d’out
3 < S (justifier).

«c » Il suffit de montrer que £ x Az € .#3si E € 71® % et A3 € 73 (justifier). Nous fixons
As e Z3.50it & == {E € 1R F; E x Az € /3}. Clairement, &7 est une classe monotone.
De plus, elle contient le clan 4" engendré par les produits A; x Ay, avec A1 € 71, A € F.
Donc &7 contient .7 (¢) = 71 ® J; (justifier). CQFD
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Démonstration de la proposition 8.15. Pour A; € .7}, j = 1,2,3, nous avons

(111 @ p2) @ p3(Ar x Az x Az) = (11 ® p2) @ pa((Ar x Az) x As)
= 1 @ p2(Ar x Ag) u3(As)
= p1(A1) p2(As2) p3(As)
= p1(A1) (p2 @ p3) (A2 x Az) (87)
= p1(A1) @ (p2 @ p3) (A2 ® Az)
= p1 ® (H2 ® p3) (A1 x (A2 x A3))
= 11 ® (2 @ p3) (A1 x Az x Ag).

Comme dans la preuve du théoreme 8.10 b), nous concluons grace a (8.7) et a la pro-
position 4.24. CQFD

Démonstration du corollaire 8.16. Soit n := Z§=1 n;.

Notons d’abord que les produits sont bien définis, car la mesure de Lebesgue v;,; est
o-finie (proposition 4.38). Par ailleurs, en utilisant la proposition 8.3, nous obtenons, par
récurrence sur k, 'égalité @} Bypn; = PBgn. 1l s’ensuit que les mesures ®’fynj et v, sont
définies sur la méme tribu, Zgn.

Nous avons ®’funj (P) = vp(P) = m(P) si P est un pavé de R" (vérifier). Nous
concluons grace au théoreme 4.35. CQFD

8.4 Passage aux mesures complétées

Nous pouvons, a partir de (X, .7, i) et (Y,.,v), compléter les tribus et me-
sures comme suit.

Procédé 1. Compléter .7 ® . par rapport a 1 ® v. Nous obtenons de cette facon
la tribu complétée 7 ® . et la mesure complétée 1 Q v .

Procédé 2. Compléter d’abog T , <, w, v, puis considérer la tribu et la mesure
produit. Ceci donne la tribu .7 ® . et la mesure t ® 7.

Puis compléter la tribu et la mesure ainsi construites. Nous obtenons ainsi la
tribu .7 ® .7 et la mesure i @ .

Clairement, la tribu du procédé 2 contient celle obtenue par le procédé 1 et la
mesure obtenue par le procédé étend celle obtenue par le procédé 1. Il se trouve
que le procédé 2 n’apporte rien de plus que le procédé 1.

8.17 Théoreme. Si ji, v sont o-finies, alors les procédés 1 et 2 donnent les mémes
tribus, respectivement mesures. o

Par conséquent, il sufit de compléter les tribus apres avoir fait leur produit.
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Nous donnons plus bas la preuve du théoreme 8.17, mais pas celle, similaire,
du théoreme 8.18.

8.18 Théoreme. Si les mesures u; sont o-finies, i = 1,...,n, alors nous avons

®1T: = @) T et @i = ;. o

Pour la mesure de Lebesgue, ces théoremes se traduisent de la maniere sui-
vante.

8.19 Corollaire. Nous avons .%, ® %, = Lnim et A\, ® Ay = Mg

De méme, nous avons ®7.%] = .7, et QA = A,..

Exercices
8.20 Exercice. Nous savons que
TRSCITRS cTR.L.
a) Montrer qu’en général les deux inclusions sont strictes. Plus spécifiquement, montrer

que, pour le produit de (R, Zg, 1) avec lui-méme, nous avons une double inclusion
stricte, et que ceci revient a

PBr2 AR S L.

b) En déduire que A\; ® A1 # Aa. o

Démonstrations

Démonstration du théoréme 8.17. Clairement, nous avons .7 < 7, .Y < L et pQ@v =i Q®@v
sur 7 ®.7,dou 7 @7 ¢ 7 Q.7 et i ® v est une extension de i @ v (justifier).

Il reste a montrer que

TRScITRLetn@u(E)=u@v(E),VEe 7Q.7. (8.8)

Soit E € 7 ®.7. Pour un tel E, il existe E1,F2 € 7 ® . telsque E; « E < Fs et
R®UV(EX\E) = 0.

De plus, nous avons (pourquoi ?)

®T(E) = i@ U(EY) = E@T(Ey).

=

Nous allons montrer la propriété suivante : (¥) il existe F1,Fy € . ® .7 tels que
Fy c By c Ec Eyc Fyet pu®u(F\F1) = 0. Admettons pour l'instant la validité de (*).
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De (%), il s’ensuit a la fois que £ € . ® .¥ et que (justifier)

A®V(E) =a®v(E) > n
=[aQU(F) >q

< > ~ 1@ u(F)) = TOV(E) = n® v(F)

U
QU

Au passage, nous aurons montré que £ € .7 ® .7 (premiere partie de (8.8)) et que
LRV(E) = p®v(FE) (deuxieme partie de (8.8)).

Il reste a montrer (*). J'affirme qu'’il suffit de montrer : (**) pour tout G € 7 ® .7, il
existe G1,G2 € 7 ® . telsque G1 < G < Ga et u® v(G2\G1) = 0.

En effet, si (**) est vraie, alors il existe Hy, Hy, 1, [ €  ® . tels que H; < E; < Hy,
Il = E2 = _[2, ,U,® I/(HQ\Hl) = 0, ,U,® I/(IQ\Il) = (. Posons alors F1 = Hl, F2 = _[2, de
sorte que Fy ¢ Ey < Ey < Fy. De plus, nous avons (vérifier)

p@v(I\F1) =p @ v(F2\F1) = pn@v((I12\E2) 1 (E2\E1) u (E1\H)))
p@v(I\E2) + p@v(Ex\Er) + p @ v(E1\H))
p@v(I\I) + p@v(Ex\Ey) + @ v(Hz\H)

1] 12\11)+,LL®I/(E2\E1)+/L®Z/(H2\H1) =0,

IA

Qv(
Qv(
ce qui donne (¥).

Prouvons donc (**). Soit

={G e T ®.; (+*) est vraie pour G}.

Clairement, &/ est une classe monotone. En effet, si, par exemple, GF / G, avec
G* € o7,V k, soient Gf, G5 € 7 ® .7 tels que GY = GF = GE et u@V(GE\GY) =0,V k.

Nous avons (justifier)

UkG]f cGc UkGlg

et

n®@v(UrGE\ Uk G) < p@v(Ur(G5\GY)) Zu@v G3\GY) =

Une inégalité analogue est vraie si G* \| G et si nous remplagons les unions par des
intersections.

Par ailleurs, &/ contient le clan 4 engendré par les produits A x B, avec A € 7,
B € . En effet, si G € €, alors nous pouvons écrire G = ;A7 x BJ, avec A7 € 7,
BJ € Z,1'union étant d. d. d. et finie (pourquoi?). Si A{,Aj e, Bl,BJ e . sont tels
que A] ¢ Al ¢ A}, Bl « B/ c B}, u(A)\A%) = 0, v(BJ\B]) = 0, alors les A7 x B sontd.
d.d. et ujA{ X B{ cGc UjA‘; X Bg.

De plus, nous avons
(g x BY\(LjA] x BY) < u(45\A}) x By u 4} x (B)\BY)),
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d’ott
n®v((UjA x BHO\(UA] x BY)) <) p@v((45\A]) x BY)
J
+ 2,1 @v(Ag x (B3\BY)) = 0,
J
ce qui montre que G € 7.

Pour résumer, .« est une classe monotone qui contient %. Il s’ensuit que & = 7 ® .7
(justifier), d’ot1 la conclusion. CQFD

Démonstration du corollaire 8.19. Prouvons par exemple les deux premieres propriétés. Par
définition, nous avons \,, := 7, et ., := PBrn. Compte tenu du fait que v, ® vy, = Vpim
(corollaire 8.16), nous obtenons (via la proposition 8.3)

gn ®Zm == %Rn ® %Rm == %Rn ® %Rm == %Rn+m = gn_t,_m.

De plUS, M@ =V @V = Vn QUi = Unim = Anym- CQFD

8.5 Les grands théoremes pour y ® v

Dans cette section, nous supposons que p et v sont o-finies et nous munissons
X xY dela tribu produit 7 ® . et de la mesure produit ;1 ® v. Nous étudions la
validité de la double égalité

[ famauevien - [ ([ @) ww

- [ ([ vt dute;

lI'interprétation intuitive de cette formule a été présentée dans la section 8.0.

(8.9)

Sous des hypotheses de mesurabilité, cette égalité est vraie si f est positive
(théoreme de Tonelli 8.24) ou, reformulée correctement, si f est intégrable (théoreme
de Fubini 8.27).

8.21 Remarque. L'hypothéese que p et v sont o-finies peut-étre affaiblie, mais le prix a
payer est que nous n’aurons plus que des « demi-énoncés ». Comme observé dans la sec-
tion 8.2, nous pouvons définir une mesure « type mesure produit » si p ou v sont o-finies;
mais dans la définition de cette mesure 1 et v ne jouent pas le méme role. Nous obtenons,
sous cette hypothese plus générale, « la moitié » des énoncés qui suivent. Par exemple, si
nous supposons uniquement v o-finie (sans hypothese sur p), alors la conclusion de la
proposition 8.22 ci-dessous devient : f, est .”-mesurable, V2 € X. Lorsque les deux me-
sures sont o-finies, les énoncés deviennent plus symétriques et sont souvent plus utiles
dans les applications. Nous laissons au lecteur le soin de formuler les variantes « ou » des
résultats « et » de cette section. o
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8.22 Proposition. Soit £ € 7 ® .. Soit f : E — R une fonction 7 ® .-
mesurable.

Pour tout z € X, la fonction partielle

f:v : E:Jc - R7 fx<y) = f(xvy>7 vy € E:L"?

est .#-mesurable.

De méme, pour tout y € Y, la fonction partielle

est .7 -mesurable.

Cas particulier : si f : X x Y — Rest .7 ® .”-mesurable, alors les fonctions
partielles

fo: Y =R, fu(y) = f(x,y), Yy ey,
fY: X >R, fY(z) = f(x,y), Vo e X,

sont .”-mesurable, respectivement .7 -mesurable.

8.23 Remarque. De méme, si nous considérons un produit de plusieurs facteurs, les ap-
plications partielles obtenues en figeant une partie des variables d'une fonction mesu-
rable f sont mesurables. Par exemple : si f : I[le X; — R est ®!J;-mesurable, alors
I'application f;, 2, := f(z1,22,-,-) : X3 x X4 — Rest 73 ® Jj-mesurable. o

8.24 Théoreme (Théoreme de Tonelli). Soit £ € .7 ® .. Soit f : E — [0, 0]
une fonction 7 & ./-mesurable positive. Alors :

a) LafonctionY sy — f(z,y) du(x) est .#-mesurable.
Ev
b) Nous avons

[ raner=[ (] swwin) aw).

c) Soitmy (E) :={yeY; EY # &}.Simy(F) € .#, alors

L fdu®@v = Ly(E) < . f(z,y) du(x)) dv(y).

Enoncé analogue en échangeant les roles de z et y.

146



Petru Mironescu Mesure et intégration

Cas particulier : si f : X x T'— [0, »0] est .7 ® .-mesurable positive, alors

ny fap®v = L (L fz,y) dﬂ(ﬂﬂ)) dv(y).

8.25 Corollaire. Soit £ € .7 ®.7.Si f : E — R est 7 ® .#-mesurable, alors f
est ;1 @ v-intégrable si et seulement si

.

L (J |f<$ay)ldv<y)> uil) <= 2.

Cas particulier : si f : X x Y — Rest 7 ® .-mesurable, alors f est u ® v-
intégrable si et seulement si

L (L @) CW)) dv(y) < o

L ( L |f (@, )l dV(y)> ) = o,

8.26 Remarque. L'ensemble 7y (E) n’est pas toujours .”-mesurable. Lebesgue avait affirmé
en 1905 que 7y (E) était foujours mesurable, du moins lorsqu’il s’agit des boréliens de R?.
Cette erreur célebre a donné naissance a une branche de 1’analyse, la théorie descriptive des
ensembles, sous I'impulsion initiale de Souslin, qui a repéré en 1916 I’erreur de Lebesgue
https://fr.wikipedia.org/wiki/ThAl’ orie_descriptive_des_ensembles.

ou

ou

Néanmoins, dans les cas concrets que nous allons rencontrer, 7y (E) est mesurable.
C’est le pendant de la remarque 2.17. o

8.27 Théoréme (Théoreme de Fubini). Soit £ € .7 ® .. Soit f : E — R
intégrable. Alors :

a) Pour v-presque tout y, la fonction f¥ = f(-, y) est u-intégrable sur Ev.

x,y)du(x), sicette intégrale existe
b) Sinous posons g(y) := < Jgv f(@,y) du(z) & , alors

0, sinon
g est v-intégrable.
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¢) Nous avons
J fdp®v = f 9(y) dv(y).
E Y
d) Soit 7y (F):={yeY; EY # &}.Simy(FE) € ., alors

JE fdp®v = Ly(E) 9(y) dv(y).

Enoncé analogue en échangeant les roles de x et .

Cas particulier:si f: X x Y — R est intégrable, alors £Y = X, VyeY, et

nyfdl@v = f 9(y) dv(y).

Y

8.28 Remarque. L'hypothese fondamentale du théoreme de Fubini est 1'intégrabilité de f :
JE If(z,9)|du®@v(z,y) < 0.

Concretement, cette condition est souvent vérifiée a I’aide du corollaire 8.25. o

8.29 Remarque. Pour comprendre le rdle des hypotheses (et de la nécessité d’introduire
la fonction auxiliaire g dans le cas du théoréeme de Fubini), examinons ces deux théorémes
dans le cas particulier ou la mesure v est la mesure de comptage sur N (et, dans ce cas,
I'intégration devient sommation, voir la section 6.6.2).

1. Si X = N muni de la mesure de comptage, le théoréme de Tonelli 8.24 est un cousin
du théoreme 6.26. Notons tout de méme que le théoréme 6.26 garde tout son intérét,
car p n'est pas supposée o-finie dans ce théoréme. ¥

2. Si X = N muni de la mesure de comptage, le théoréeme de Fubini 8.27 est un cousin
du théoréme 7.18.

A nouveau, ce théoréme est vrai méme sans I’hypothése 1 o-finie.

(a) Notons que la fonction f dans I'énoncé du théoreme 7.18 joue le rdle de g dans
le théoreme de Fubini.

(b) Examinons 'hypothese 2 J |fn| < oo dans le théoreme 7.18. En utilisant le co-

rollaire 8.25 et I'interprétation de la somme comme intégrale par rapport a la me-
sure de comptage, nous obtenons que cette condition équivaut (si i est o-finie) a

J |fn(z)|dp @ v(z,n) < 0, qui est précisément I’hypothéese fondamentale du
X xN

théoréme de Fubini. o

1. Comme noté dans la remarque 8.21, le théoréme 6.26 est le demi-théoreme correspondant
au théoreme 8.24, dans le contexte ot la mesure de comptage sur N est o-finie, alors que y ne l’est
pas nécessairement.
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8.30 Remarque. Les théorémes de Tonelli et Fubini ont des variantes relatives a des pro-
duits de plusieurs facteurs. Exemple : si f : R™ — [0, 0] est borélienne et positive, alors
les fonctions

(z2,...,xp) — JR flxy, e, ... xy) dvi(x1),

(@5, 1) JR URf(xl,xg,xg,...,xn)dyl(xl)> dv (22),

etc., sont boréliennes, et nous avons

| rav,
_ JR ( (fR (fR f(ml,xg,...,xn)dul(:zrl)> du1($2)> > dvy ().

8.31 Convention (Abus de notation pour l'intégrale de Lebesgue). Si {2 = R™ est un
borélien, si f = f(x) : 2 — R a une intégrale par rapport a la mesure de Lebesgue
An et s’iln’y a pas de risque de confusion,

o (8.10)

la notation J f(z) dx désigne 'intégrale de Lebesque j fdAn.
Q Q

Avec cette notation, I'égalité (8.10) devient

 f@)do - fR < (fR (JR f(xl,xg,...,:vn)dw1> d@) ) dzn.

De méme,

la notation f f(z)dzidxs . . . dx,, désigne l'intégrale de Lebesgue J fd\,.
Q 0

Notation alternative, par exemple pour n = 2:

j £() d(z,y) ou f f(z,y) dedy.
Q Q

Exercices

Ces exercices sont cruciaux en vue des applications.

8.32 Exercice. « Traduire » les théoremes de Tonelli et Fubini lorsque les espaces mesurés
sont (R", Bgn, vy,) et (R™, Brm, vp,). o

8.33 Exercice.

a) Soit d une droite du plan. Montrer que v»(d) = 0.
b) Soit H un hyperplan de R". Montrer que v,,(H) = 0. o
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Démonstrations

Démonstration de la proposition 8.22. Commengons par le cas ot £ = X x Y. Il suffit de mon-
trer le résultat quand f est étagée. Le cas général s’obtient par passage a la limite, en
utilisant :

a) Le fait que toute fonction mesurable est limite simple de fonctions étagées.
b) Le fait qu'une limite simple de fonctions mesurables est mesurable.

Par linéarité des appplications f — f,, respectivement f — fY, il suffit de considérer
le cas ot f = x4, avec A € .7 ® .. Dans ce cas, nous avons f, = x4, et fY = yav etla
conclusion suit de la proposition 8.8.

Le cas général ¥ € .7 ® . s’obtient en appliquant le cas particulier ci-dessus a la
fonction fx g et en utilisant la proposition 8.8 et la définition 3.10 (détailler). CQFD

8.34 Remarque. Le principe de la preuve de la proposition 8.22 est important
a retenir.

Pour obtenir des propriétés de mesurabilité ou intégrabilité des fonctions
« générales », il est souvent suffisant de raisonner sur des fonctions caracté-
ristiques; le reste est « automatique ».

Démonstration du théoréme 8.24. A nouveau, c’est une preuve « automatique ». On peut sup-
poser £ = X x Y. (Raisonner comme dans la preuve de la proposition 8.22.)

Si f est une fonction caractéristique mesurable, f = x4, avec A € .7 ® ./, alors la .7-
mesurabilité de

Y — f f(z,y) dp(x) = v(AY) (justifier 1'égalité)
b's

suit du théoreme 8.9, et 1’égalité des intégrales est donnée par le corollaire 8.13.

Par linéarité de l'intégrale des fonctions positives, le théoréme est vrai si f est étagée et
positive (vérifier).

Pour f quelconque, nous considérons une suite ( f;,), de fonctions étagées telle que
fn =0, fr, /" f. Par convergence monotone, nous trouvons, pour chaque y € Y :

f fule, ) du(z) — f f(y) du(),
X X

d'ouy — J f(z,y) dp(x) est -mesurable (comme limite simple de fonctions .’-mesu-
rables).

A nouveau par convergence monotone, nous obtenons :

f fdp®v =lim fndu®u=limf <J fn(@,y) du(w)> dv(y)
XxY noJXxY n Jy \JUX

— L <JX f(z,y) du(m)> dv(y),
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ce qui acheve la démonstration. CQFD

Démonstration du covollaire 8.25. Nous pouvons supposer que £ = X x Y.

Le théoreme de Tonelli donne

[ tawey = ([ i) aw). caro

Démonstration du théoreme 8.27. Nous pouvons supposer que . = X x Y.

Notons que f; et f_ sont intégrables (justifier).

Nous appliquons le théoreme de Tonelli 8.24 aux fonctions mesurables positives et
intégrables f, et f_. Nous obtenons que les fonctions y — f fr(z,y)du(z) sont v-
X

intégrables, donc finies v-p. p. (justifier). Si
B - {y Y [ flwmdnte) = wet | 1 (o) dute) - oo} ,

alors B € ., v(B) = 0 (justifier) et J f(-,y) du existe si et seulement si y ¢ B.
b'e
Par ailleurs, nous avons
o) = xet) [ 1 aut) = [ 1@ auto)

(vérifier), d’ou1 g est mesurable (justifier).

Comme ;1 ® v(X x B) = 0 (pourquoi?), nous avons (justifier)

JY\B <JX fe(@,9) de)) dv(y) = JXX(Y\B) Jrdu®v

(8.11)
= J frdu®v < .
XxY

En additionnant les deux égalités (8.11), nous obtenons

JY\B l9(u)ldviy) < L\B (JX(er(w,y) + f-(z,9)) d“(x)> dv(y) < oo,

d’ol g est intégrable sur Y\ B, donc sur Y (justifier).

En particulier, ¢ est finie v-presque partout, c’est-a-dire f(-,y) est intégrable pour v-
presque tout y.

Enfin, en retranchant les deux égalités (8.11) nous obtenons

[ o- L\Bg - L\B ([ eten = r-aaut)) o)

—f fdu®V—J fdu®@uv.
Xx(Y\B) XxY
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8.6 Les grands théoremes pour ;1 ® v

Les résultats de la section précédente ne s’appliquent pas a la mesure de Le-
besgue A, .., qui n’est pas le produit de )\, et de )\, (exercice 8.20).

Dans cette section, nous allons néanmoins obtenir des résultats du type théo-
reme de Tonelli ou théoréeme de Fubini pour la mesure 1 ® v. Le « prix » a payer
est que certaines propriétés, vraies partout dans les sections précédentes, sont va-
lides uniquement presque partout; comparer par exemple les propositions 8.22
et 8.35.

8.35 Proposition. Soit £ € .7 ®.7. Soit f : E x Y — R une fonction .7 ® .7-
mesurable.

Pour p-presque tout = € X, nous avons E, € .7 et la fonction partielle f, :
E, — R est .-mesurable.

Enoncé analogue en échangeant les roles de z et y. o

La remarque suivante propose des conventions utiles et mene a la définition
8.37.

8.36 Remarque. Si \ est une mesure compléte sur (T, o/) et g une fonction définie A\-p. p. sur
T, alors nous pouvons donner un sens naturel a la mesurabilité de g (méme si elle n’est
pas définie en tout point).

En effet, soit h un prolongement arbitraire de g a T' tout entier (par exemple, le prolon-
gement par la valeur 0). Si h est «/-mesurable, alors tout autre prolongement de g est
o/ -mesurable, car égal a h A-p. p. (proposition 4.19 b)). Ainsi, il y a équivalence entre :

1. g a un prolongement mesurable.
2. Tout prolongement de g est mesurable.
De méme, si un prolongement i de g a une intégrale, alors tout autre prolongement k

de g a une intégrale (car dans ce cas nous avons k = g A-p. p., et nous pouvons appliquer
le corollaire 6.45). ©

Cette remarque montre que les définitions suivantes sont correctes (au sens
ou elles ne dépendent pas de h).

8.37 Définition (Mesurabilité et intégrale d’une fonction définie p. p.). Soit
A une mesure complete sur (1, .o/). Soit g une fonction réelle définie A\-presque
partout sur T'.

a) (Mesurabilité d"une fonction définie p. p.) g est &/ -mesurable si g admet un
prolongement h : X — R .&/-mesurable.

b) (Intégrale d'une fonction définie p. p.) g a une intégrale si g admet un pro-
longement / : X — R qui a une intégrale, et dans ce cas nous définissons
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I'intégrale de g par

fo- o= fo

Avec ces conventions, la conclusion du théoreme de Fubini 8.27 s’écrit plus
simplement

[ ravsv =] ([ sewan) anto 812)

a comparer a la conclusion

[ raner=[ ([ stwin) aw) (3.13)

du théoréme de Tonelli 8.24.

Les formules (8.12)—(8.13) permettent de mieux comprendre le role du passage
aux mesures complétées, illustré dans les théoremes 8.38 et 8.39.

8.38 Théoreme (Théoreme de Tonelli). Soit £ € .7 ® .. Soit f : E — [0, 0] une
fonction .7 ® .-mesurable.

Alors :
a) L'application Y sy — | f(z,y) dfi(z) est définie v-p. p. et est .”-mesurable.

FEY
b) Nous avons

[ rawv- ([ rewa@) v

Enoncé analogue en échangeant les roles de z et de y. o

8.39 Théoréeme (Théoréeme de Fubini). Soit £ € .7 ®.7. Soit f : E — R une
fonction ;1 ® v-intégrable.

Alors :
a) Pour v-presque tout y, f¥ = f(-,y) est p-intégrable sur EY.

b) Si nous posons ¢(y) := f(z,y)dpi(x), alors g (qui est définie v-p. p.) est
v-intégrable. v
¢) Nous avons

L fdu®v = L 9(y) dv(y).
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Enoncé analogue en échangeant les roles de z et y. o

Nous allons démontrer uniquement le théoreme 8.38; la preuve du théoreme
8.39 est similaire et laissée au lecteur.

8.40 Remarque. Ces théorémes ont des variantes pour des produits a trois facteurs ou
plus, que le lecteur énoncera facilement. o

Exercices

Les deux exercices suivants permettent de compléter la preuve des théoremes
8.38 et 8.39. Pour les montrer, on pourra s’inspirer de la preuve de la proposition
8.35.

Le cadre est celui de la définition 8.37. Les p. p. s’entendent par rapport a la
mesure )\, et la mesurabilité par rapport a <7

8.41 Exercice. Soient hi, ..., h, des fonctions réelles positives définies p. p.
a) Montrer que h := hy + - - - + h,, est définie p. p.
b) Si chaque h;, est mesurable, alors :

) h est mesurable.
fh = Z Jhk o
k=1

8.42 Exercice. Soient h,,, h des fonctions réelles définies p. p., telles que :
(i) hy,, est mesurable, V n.
(ii) hp, — hp.p.

a) Montrer que h est mesurable.

b) Sihn20p.p.,ethn/'hp.p.,alorsfhn—>Jh. o

Démonstrations

Démonstration de la proposition 8.35. Montrons par exemple le résultat pour f,.

Etape 1. Preuvesi E = X xY et f = xa, avec Ae T ®.7. Il existe A1,As € T ® . tels
que A; c Ac As et p®v(A2\A1) = 0. Soit B := As\A;. A x fixé, nous avons

(141):C C Az C (Ag)w = (Al LJ B)w = (Al):c L B:C7
d’ott
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Par ailleurs, le corollaire 8.13 donne
0= n@u(B) = | V(B du(o)
X

d’ot1 (proposition 6.50 a)) v(B;) = 0 u-p. p.
Soit C € .7 tel que u(C) = O0etv(B;) =0, Vo e C°.
Soit = € C°. Alors il existe D < . tel que v(D) = 0 et B, < D. Nous avons

XB,(y) =0, Vye D (8.15)

De (8.14) et (8.15), nous avons f; = x4, dans D¢ et donc f, = xa, v-p. p. Comme A,
est .“-mesurable (proposition 8.8), il s’ensuit que x4, 'est également, et donc (justifier)
fz est S-mesurable.

Conclusion : pour tout x € C¢, f, est .7-mesurable, et donc f, est .#-mesurable pour
p-presque tout .

Etape 2. Preuve pour une fonction étagée. Soit f = >%_, ar x4,,avecay e Ret Ay e 7 ®.7,
Ap < E, Y k. Soit, pour chaque k, By, € 7 un ensemble pi-négligeable tel que x4, (z) soit
-mesurable, V z € (By)®. (L'existence de By, découle de la premiere étape.)

Soit B := U}_, By, qui appartient a .7 est et y-négligeable (justifier). Alors f, est .-
mesurable, V¥ x € B¢ (justifier, en utilisant la définition 3.10), et donc, pour p-presque tout
x, f, est /-mesurable.

Etape 3. Preuve dans le cas général. Soit f : E — R une fonction .7 ® .#-mesurable. Soit
(fn)n une suite de fonctions étagées telles que f, — f. Soit, pour chaque n, 4,, € 7 un
ensemble p-négligeable tel que (f,), soit .#-mesurable, ¥z € (A,)¢. (L'existence de A,
découle de la deuxieme étape.)

Soit A := U, Aj, qui appartient & .7 est et u-négligeable (justifier). Pour tout z, nous
avons f, = lim,(fy)z. Si x € A€, alors chaque fonction (f,,) est .-mesurable, et donc f;
l'est (justifier). Par conséquent, pour p-presque tout z, f, est.”-mesurable. CQFD

8.43 Remarque. Lors de la premiere étape de la preuve de la proposition 8.35, nous avons
montré le fait suivant, qui nous servira dans la preuve du théoreme 8.38.Si A € 7 ® .7,
alors il existe A1 € 7 ® .7 tel que :

a) A1 c A.
b) H®U(A) = p®v(Ar).
c) 7(Az) = v((A1)z) pour p-presque tout z € X. o

Démonstration du théoréme 8.38.

Etape 1. PreuvesiE = X xY et f =xa,avec Ae T ® .. Nous avons :

i) Pour v-presque touty € Y,

j f(y) da(z) = f (&) dii(x) = P(AY) = v((Ar)?)
X X

(via la remarque 8.43 c)).
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ii) y — v((A1)Y) est S-mesurable (théoreme 8.9), d'ott y — J f(z,y) dii(z) est .7-
X
mesurable (item i) et définition 8.37 a)).
iii) Enfin,

J, UX Jey) d#@)) an(y) = | man)arty) = | (a0 doty)

- L p((AD)Y)) di(y) = p® v(Ar) = T@V(A)

—f fdu®v
XxY

(en utilisant successivement l'item i), la remarque 8.43 c), l'item ii) et la définition
8.37b), le théoreme de Tonelli 8.24 appliqué a la fonction x 4, et la remarque 8.43 b)).

Ceci prouve le théoréme si f = x 4.

Etape 2. Preuve pour une fonction étagée. Soit f = >7_, apxa,, avec aj € [0,00[ et Ay €
T ®7, A, < E,VEk. Soit, pour chaque k, By € .7 un ensemble p-négligeable tel que
X4, () soit .#-mesurable, V x € (By)¢. (L'existence de By, découle de la proposition 8.35.)

Soit B := u}_, B, qui appartient 2 .7 et est u-négligeable. Alors f, est.”-mesurable,
Vx € B¢ (justifier), et donc, pour p-presque tout z, f, est -mesurable.

La premiere étape et la linéarité de 'intégrale (proposition 6.21) impliquent (justifier
chaque égalité, en utilisant en particulier 1'exercice 8.41)

L < o fz,y) dﬁ(:ﬁ)) dv(y) = L <L i ak XAy (T, ) du(;,;)> o (y)

k=1

- Y wr@ia) - | faier.

k=1

Etape 3. Preuve dans le cas général. Soit f : E — [0, 0] une fonction .7 ® .#-mesurable. Soit
(fn)n une suite de fonctions étagées positives telles que f,, ,/ f. Posons

In(y) == | falz,y)dpy), 9(y) == |  f(x,y) da(y).
EY Ev

Alors g, est définie lorsque (f,,)Y est 7 -mesurable, donc pour v-presque tout y (pro-
position 8.35). De méme, g est définie v-p. p.

Soit, pour chaque n, B, € . un ensemble v-négligeable tel que (f,,)Y soit .Z-mesurable,
Vy € (By,)C. Soit C € . un ensemble v-négligeable tel que fY soit .”-mesurable, V y € C°.
SiB:=C u u,B,, alors (justifier ce qui suit, en utilisant en particulier I'exercice 8.42 b))
B est v-négligeable, et pour tout y € B¢,

0<gnly) /" 9(y). (8.16)
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En particulier, (8.16) et la définition 8.37 a) impliquent que y — f f(z,y) da(x) est
EY
./-mesurable.

En utilisant le théoreme de convergence monotone 6.18, la deuxieme étape, (8.16) et
a nouveau l'exercice 8.42 b), nous obtenons (justifier)

JE f i @v = lim fE fudir@v = lim fy (L ful@,y) du(fv)) a(y)
~tin [ s avto) = [ sant) = [ ([ s anto)) aviy),

ce qui donne la conclusion du théoréme dans le cas général. CQFD
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Chapitre 9

Changements de variables

9.0 Apercu

L'un des outils les plus utiles pour calculer des intégrales définies est le théo-
reme du changement de variable : si ® : [a,b] — [c, d] est une fonction bijective de
classe C', alors

d ®=1(d)
J f(z)de = L>—1( ) f(®(y) P (y)dy, V [ : [e,d] = R, f continue. 9.1)

Dans ce chapitre, nous nous intéressons a des variantes de (9.1) pour des fonc-
tions de plusieurs variables. Incidemment, méme pour une fonction d"une seule
variable, nous allons donner une formulation du théoreme dont la forme (mais
pas le fond) est différente de (9.1).

Le théoreme principal est le théoréme du changement de variable(s) 9.14, qui fait
intervenir un changement de variable(s)

®:U — V, avec U, V ouverts de R".

L’égalité centrale du théoreme 9.14 est

fv f(z) d = f (@) [aly) dy;* 9.2)

les hypotheses sur f et ®, ainsi que le sens de cette égalité, seront précisés dans le
théoreme 9.14.

La preuve du théoreme s’étale sur six sections (9.1 a 9.6). Il est possible de
faire bien plus court, en utilisant des résultats plus avancés. La preuve donnée

t. J, est la matrice jacobienne de ®. Par convention, |Jg| est la valeur absolue du déterminant de
Js.
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Changements de variables 9.0 Apercu

ici est longue, mais trés naturelle; par ailleurs, les sections 9.1 et 9.3 contiennent
des rappels d’algebre linéaire ou calcul différentiel, et la section 9.6 ne fait qu’as-
sembler les piéces du puzzle. Les sections 9.2, 9.4 et 9.5 constitue le cceur de la
preuve.

La structure de ces sections est la suivante :

1. Section 9.1 : rappels d’algébre linéaire (décomposition d"une matrice en ma-
trices élémentaires).

2. Section 9.2 : preuve du théoréme 9.14 lorsque ¢ est une application linéaire
(ou affine).

3. Section 9.3 : rappels de topologie (recouvrement d"un ensemble avec des cubes).

4. Section 9.4 : argument de «localisation » : lorsque U est un « petit cube », esti-
mation de I'erreur que l'on fait en remplagant ¢ par une application linéaire.

5. Section 9.5 : c’est la section clé de la preuve : preuve de la proposition 9.12, qui
donne une inégalité entre deux mesures.

6. Section 9.6 : conclusion.

Malgré son importance en général, le théoreme 9.14 ne s’applique pas aux
changements de variables les plus courants (passage en coordonnées polaires,
sphériques ou cylindriques). Pour inclure ces applications dans la théorie, nous
donnons dans la section 9.8 le théoreme du presque changement de variables 9.21. La
section 9.7 donne les résultats préliminaires utilisés dans la preuve du théoreme
9.21. Dans la section 9.9, nous montrons comment 1’appliquer aux changements
mentionnés ci-dessus.

Une fois n’est pas coutume, la section « Pour aller plus loin » 9.11 contient
une autre version du théoréme du changement de variables, le théoreme 9.23,
que nous utiliserons sans I'avoir prouvée.

Enfin, la section 9.10 contient une liste d’intégrales de référence, qui jouent,
pour la mesure de Lebesgue v, dans R”, le role des intégrale de Riemann ou de
Bertrand pour les intégrales généralisées sur |0, 1] et 1, oof.

Compétences minimales attendues.

a) Utiliser le théoreme du changement de variables.

b) Comprendre ce qu’est une égalité au sens du théoreme du changement de variables
et savoir s’en servir.

c) Utiliser de maniére justifiée les passages en coordonnées polaires, sphériques,
cylindriques, sphériques généralisées.

d) Savoir ramener, par changement de variables, le calcul d’intégrales a une ap-
plication des théorémes de Tonelli ou Fubini. o
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9.1 Un peu d’algebre linéaire

Soit A € M, (R) une matrice inversible. Nous pouvons ramener A a l'identité
par la méthode du pivot de Gauss (en ligne ou colonne). Chaque étape de la
méthode de Gauss en ligne est l'une des suivantes :

a) Permutation de deux colonnes de A (a la recherche d'un pivot).
b) L'une des colonnes de A est multipliée par une constante ¢ # 0, puis est re-
tranchée d"une autre colonne (afin de faire un zéro dans la ligne).

Sinous écrivons ces opérations en termes matriciels, alors :

a) revient a multiplier A a droite par une matrice F;;, qui s’obtient de 1'identité

en permutant les colonnes i et j.

b) revient a multiplier d’abord A a droite par la matrice ();. qui s’obtient de
'identité en multipliant la colonne ¢ par ¢, puis multiplier le résultat a droite
par la matrice R;; qui s’obtient de l'identité en retranchant la colonne i de la
colonne j, enfin multiplier ce dernier résultat a droite par Q; 1 /..

Ainsi, l'identité s’écrit comme un produit fini de la forme I = AS;S;...S,,
ou chaque Sy, est un P;; ou un ); . ou un R;;. Ceci donne A = S-Sy ! Notons
que:

1. Pi;l = P;.

2. Qz_cl = Qi,l/c-

3. Ri_j1 = T, ou T;; s’obtient de I'identité en ajoutant la colonne ¢ a la colonne j.
Pour résumer, nous venons de prouver le résultat suivant.

9.1 Proposition. Toute matrice inversible est produit de matrices du type F;;, Qi .
et E] <o

9.2 Changements de variables linéaire

Voici la forme la plus simple du théoreme du changement de variables : ® est
linéaire, et f est une fonction caractéristique.

9.2 Théoreme. Soit A € M, (R) une matrice inversible.
Nous avons :

a) E c R" est borélien (respectivement Lebesgue mesurable) si et seulement
si A(E) lest.
b) Si tel est le cas, alors \,,(A(E)) = |det A| A\, (E).

9.3 Remarque. Si A n’est pas inversible, alors pour toute partie £ de R", A(F) est Le-
besgue mesurable, de mesure nulle.
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En effet, A(R") est un sous espace de R" de dimension < n — 1, donc contenu dans
un hyperplan H. La conclusion suit du fait que v,,(H) = 0 (exercice 8.33). o

9.4 Remarque. La mesure de Lebesgue étant invariante par translations, nous pouvons
remplacer dans le théoreme 9.2 «linéaire » par « affine ». En effet, si Bx = Az + b, avec A
matrice inversible et b € R”, alors

M(B(E)) = Au(A(E) + b) = A(A(E)) = | det A A (E),

pour tout £ < R" Lebesgue mesurable; raisonnement similaire pour un borélien. o

Exercices

Cet exercice sert dans la preuve du théoreme 9.2.

9.5 Exercice. Nous nous proposons de montrer que si y est une mesure borélienne et

invariante par translations sur R" telle que x([0,1[") = 1, alors 1 = vy,

a) Montrer que x([0,1/k[") = (1/k)", Yk € N*. Indication : recouvrir [0, 1[" avec des
cubes d. d. d. de taille 1/k.

b) Soit K; comme dans le lemme 9.7. Montrer que u(K;) = v, (k).

¢) En déduire que u(K) = v, (K) pour tout compact K < R™.

d) Conclure. Indication : mesures de Radon. o

Démonstrations

Démonstration du théoréme 9.2.
Etape 1. Preuve dans le cas borélien. 1/équivalence E borélien «— ®&(F) borélien découle
de I'exercice 2.20.

Soit C := [0, 1[™. Soit k = kg := v,(A(C)). C étant d’'intérieur non vide et A étant
un homéomorphisme, A(C') est d’intérieur non vide. D’ot1 £ > 0 (justifier). Par ailleurs,
A(C) est borné (car C l'est), d’ot1 k < o0.

Posons

u(E) = 1

M(A(E)) = Eun(A(E)), VE € Pgn.
Nous allons montrer que y est la mesure de Lebesgue v, sur Zgn, ce qui implique
'égalité
vn(A(E)) = kvp(E), VE € Byn. (9.3)

Clairement, 1 est une mesure, car si (£}); est une suite d. d. d. de boréliens, alors
(A(Ej)); est une suite d. d. d. de boréliens et donc

P Ey) = Ton(0A(E)) = & Y v (A(E) = Y u(E))
J J
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Par construction, nous avons u(C) = 1 = v, (C).

Par ailleurs, p est invariante par translations, car

BB +2) = 1ua(A(E + 7)) = Tva(A(E) + Az) = Lon(A(E)) = u(B).

Pour résumer, ;1 est une mesure borélienne sur R”, invariante par translations et telle
que u(C) = vy(C). Ces propriétés impliquent 1'égalité 1 = v, (exercice 9.5), comme
annoncé.

Ensuite, montrons 1'égalité (*) k4 = | det A| (qui, au vu de (9.3), permet de compléter
la preuve du théoreme si E est borélien).

Dans un premier temps, notons 1'égalité k4p = kakp. En effet, nous avons

kap = vn(AB(C)) = kavn(B(C)) = kakpvn(C) = kakp. (9.4)

Par ailleurs, nous avons également

| det (AB)| = | det A| | det B. (9.5)

Compte tenu de de la proposition 9.1 et de (9.4)—(9.5), pour conclure il suffit de mon-
trer (*) quand A est 'une des matrices P;;, Q; . ou T;; (puis nous multiplions ces égalités
pour obtenir (*) pour A quelconque).

Si A= Pj,alors|det Al = 1et A(C) = C,d'ottky =1 =|det A|.
Si A = Q. alors | det A| = |c] et, selon le signe de ¢, nous avons

A(C) = [0,1[ [0, e[x [0, 1" ou A(C) = [0, 1~ x]e, 0] x [0, 1.

Dans les deux cas, nous avons k4 = |c| = | det A] (justifier).

Enfin, soit A = T};; d’ou
j = 2. Nous avons

det A| = 1. Pour simplifier 1’écriture, nous prenons i = 1,

AC) = {(x1 + 22,22, ...,xp); 0< < 1, k=1,...,n}

= {
={(y1,x2,...,xn); x2<y1 <l+a2,0< 2 <1, k=2,...,n}.

Nous décomposons A(C) = B; u By, out B; est ’ensemble des points de A(C) tels que
xg < y1 < 1 et By celui des points de A(C) tels que 1 < y2 < x2 + 1. Alors By est inter-
section finie de fermés et ouverts (il est donné par un nombre fini d’inégalités affines),
donc borélien. Il s’ensuit que By = A(C)\B; l'est aussi. Par ailleurs, nous avons B; < C
et By = (C\Bj) + e1. Donc

ka= I/n(A(C)) = Vn(Bl L BQ) = I/n(Bl) + Vn(BQ)
= I/n(Bl) + I/n((C\Bl) + 61) = I/n(Bl> + I/n(C\Bl)
=vp(B1 u (C\B1)) =v,(C) =1 =|det A
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Etape 2. Preuve dans le cas Lebesgue mesurable. Soit E — R" Lebesgue mesurable. 11 existe
E,, E; boréliens tels que £y ¢ E < Ej et v, (E2\E1) = 0. Nous trouvons que A(E,) <
A(E) c A(E?) et v, (A(E2)\A(E1)) = vn(A(E2\E1)) = 0. Donc A(E) est Lebesgue mesu-
rable. Le méme raisonnement appliqué a A~! montre I'implication inverse : si A(E) est
Lebesgue mesurable, alors E 'est. Pour conclure, nous notons que

M(A(E)) = vn(A(Es)) = | det Al vn () = | det A Ay (E). CQFD

9.3 Un peu de topologie

Dans cette section, nous décrivons un procédé de recouvrement d'un ensemble
par des cubes, qui permet d’approximer un compact par des unions finies et dé-
croissantes de cubes.

9.6 Définition (Cube). Un cube (de R") est un produit C = I x I, x ... x I,, ol
les I; sont des intervalles de méme longueur, strictement positive.

La longueur commune de ces intervalles est la taille de C'

Si z; est le milieu de I, V j, alors © := (x4, ..., x,) est le centre de C'. o

Notons que, si x est le centre et r la taille de C, alors
B(z,r/2) c C < B(z,r/2) (9.6)
(boules pour la norme | | ).

Nous pouvons recouvrir R" avec des cubes disjoints de taille 1/27, a 1’aide
du recouvrement R" = Liyezn(1/27 - £ + [0,1/2["). Notons 2; la collection de ces
cubes; C' va désigner un cube appartenant a 2;.

Si F' < R", posons

F; = U C;

CEQ]'
CnF#Qg

F; est le recouvrement dyadique (a 1’échelle j) de F.

Notons que F; < Fj_; si j > 1. En effet, pour tout cube C de 2, il existe
un (unique) cube () de 2;_; qui le contient. Donc, si C' apparait dans F}, alors
apparait dans F;_;, ce qui implique F; < F;_;.

Notons également que F' — F}. En effet, si x € F), alors il existe un C' de 2; tel
que x € C. C apparait donc dans Fj, d’ou x appartient a F.

9.7 Lemme. Soit K < R" un compact.

Nous avons :
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a)
b)

K; \\ K.
/\n(Kj) - /\n(K)

c) K, estborné, Vj. En particulier, K; est une union finie de cubes Cy, avec C;

2,,VL.

d) Si U est un | ouvert tel que U o K, alors, pour j suffisamment grand, nous

avons U o Kj. o

Démonstrations

Démonstration du lemme 9.7.

a)

b)

d)

Nous avons déja vu que la suite (K;); était décroissante et 'inclusion K < Kj, V5. 11
reste a montrer l'inclusion n; K; < K.

Six € Kj, alors il existe un C'de 2 telquex € CetC n K # J. Soity; € K n C.
Alors |z — yj]0 < 1/27, d’ou dist(z, K) < 1/27.

Siz € n;K;, alors dist(z, K) < 1/27,V j, d’ot dist(x, K) = 0 et par conséquent z € K
(justifier).

Notons que I'ensemble K est réunion a. p. d. de cubes (qui sont boréliens), donc un

borélien. L'item b) découle du théoréme de la suite décroissante si K est borné (donc
de mesure de Lebesgue finie).

Soit M tel que |z| < M, Vx € K. De la premiere partie de la preuve, nous avons
dist(y, K) < 1,Vy e Ko, d’ol |y|e < M + 1, Vy € K (justifier). K, est donc borné.

Il suffit de reprendre, pour j arbitraire, I’argument ci-dessus, qui donne Ky borné.

La deuxiéme partie suit du fait que la boule B(0, M + 1) n’intersecte qu'un nombre
fini de cubes de 2;.

1 1
Soit ¢ := dist(K,U¢) > 0. Si 20 <€ et j > jo, alors 5 <& Pour un tel j, montrons

queU > K;.

Soit d’abord y € K. Alors il existe C' € 2; tel que y € C etil existe x € K n C. 1l
s’ensuit que |z — y|o < 1/27, d’out

dist(y, U°) = dist(z, US) — |z — y]o > dist(K,U°) — 1/27 > 0. (9.7)

Soit maintenant y € K;. Alors il existe une suite (y;)r < Kj telle que y, — y. En
appliquant (9.7) a yx, nous obtenons

dist(y, U*) = lim dist(y, U*) = dist(K, U*) - 1/27 > 0.

Il s’ensuit que que y ¢ U¢, ou encore y € U. y € K; étant arbitraire, nous obtenons
lI'inclusion K; < U. CQFD
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9.4 Image d’un petit cube par un C'-difféomorphisme

Dans cette section, nous établissons 1'inégalité fondamentale (9.9), qui permet de
majorer la mesure de I'image d’un petit cube par un C'-difféomorphisme.

Nous munissons .Z(R") de la norme matricielle subordonnée a la norme | |, :

|A] == sup{| Az]eo 5 ] < 1}.F (9.8)

Dans la suite, U et V désignent des ouverts de R”, muni de la norme || .
Les boules B(z,r) considérées dans cette section sont définies par rapport a cette
norme.

9.8 Définition (C'—difféomorphisme). Une application ® = (®y,...,®P,) :
U — V est un C'-difféomorphisme si :

i) ® a des dérivées partielles du premier ordre, qui sont continues.

ii) Le déterminant jacobien de @,

0d, 00, 0D,
o om, | oa.
8@2 8@2 6@2
det Jp = det 5_$1 5_962 Oz,
0d, 09, 0o,
or; Oxa  Oxn

est non nul en tout point de U.

iii) @ est bijective.}

Rappelons que, sous ces hypotheses, le théoréme d’inversion locale affirme
que ! est encore de classe C' (et a donc exactement les mémes propriétés que
P).

9.9 Notation. Si ® : U — V est différentiable, alors

|J¢>’ = \deth)|. &

Le résultat de cette section est

t. Les normes matricielles subordonnées sont désignées comme normes triples dans la littéra-
ture francophone (mais pas en dehors de celle-ci), et notées plutot || A]|.

t. Ce n’est pas la définition usuelle d'un C*-difféomorphisme. Il s’agit plutot d’une caractéri-
sation. ]’ai adopté ce point de vue car approprié en vue des applications.
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9.10 Proposition. Soit @ : U — V un C'-difféomorphisme.
Soient K un compact de U et e > 0.

Alors il existe § > 0 tel que : pour cube C de taille < § qui intersecte K," on a
CcUet

v (@(C)) < (1 +¢) |Jo(x)| vn(C), Y e C. o (9.9)

Notons que (9.9) a bien un sens. En effet, C' est borélien, et &(C) l'est égale-
ment (exercice 2.20).

Exercices

L’exercice suivant sera utilisé dans la démonstration de la proposition 9.10.
L’item b) est une variante de la continuité uniforme des fonctions continues sur
un compact K. La différence avec la continuité uniforme usuelle est que nous
permettons aux points z, y de « sortir un peu » de K.

9.11 Exercice. Soient U un ouvert de R"” et X' < U un compact.

Soient (Y, d) un espace métrique et h € C(U,Y).

Montrer que, pour tout 7 > 0, il existe un 6 > 0 tel que : si z,y € R" sont tels que
dist(z, K) < d et |z — y|o < §, alors

a) [z,y] < U (ici, [z, y] est le segment d’extrémités x et y).
b) d(h(x), h(y)) <. o

Démonstrations

Démonstration de la proposition 9.10. Nous utilisons 1’exercice 9.11 avec : ¥ := Z(R") muni
de la norme (9.8), h := Jg et 7 a fixer ultérieurement.

Soit ¢ la constante donnée par 1'exercice 9.11 et soit C' un cube de taille [ < § tel que
CnK+# @.Soitze Cn K etsoitz e C. Alors

dist(z, K) < |z — 2|l < L.

De méme, siy € C, alors |y — x| < I.

Comme | < §, nous sommes en mesure d’utiliser les conclusions a) et b) de 1’exercice
9.11. En particulier, si y € C, alors [z,y] < U (et en particulier z,y € U), et le théoréme
des accroissements finis donne :

[®(y) — (2) = Ja(2)(y — )]|oo < sup [ Ja(2) = Jo(2)||y — 2] < 7L (9.10)

z€[z,y

1. Autrement dit, tel qu'on ait C n K # (.

167



Changements de variables 9.4 Image d’un petit cube par un C!-difféomorphisme

Sinous posons A := D®(z) et b := ®(z) — Az, alors I'inégalité (9.10) devient
|®(y) — Ay = oo < 71,
ou encore ®(y) = Ay + £ pour un £ € B(b, 71). Il s’ensuit que

d(C) = A(C) + B(b,7l) = A(C) + b+ B(0, 7). (9.11)

Par ailleurs, A étant inversible et linéaire, nous avons

A(C) +b+ B(0,71) = A(C+ Ao+ A7 (B(0,71))). (9.12)

En combinant (9.11), (9.12) avec la monotonie de la mesure et le théoréme 9.2, nous
obtenons

Un(®(C)) < v (A(C + A7 + A7Y(B(0,71))))
= | det A| v, (C + A™1b + A7Y(B(0,71))) (9.13)
= |det A| v, (C + A7Y(B(0,71))).
Soit
L:={yeR"; dist(y, K) < d}.

Alors L est compact (justifier, en montrant qu’il est fermé et borné), et, de 1’exercice 9.11
a), nous avons L c U.

Soit

M = max{|(Jo) " (y)] ; y € L} < 0.

Nous avons
[A™ ¢ = [(Ja) " (@) €l < (o) (@) €0 < M [€]c0, ¥V € € R,
d’ou (justifier)

A7YB(0,71)) < B(0,MT1). (9.14)

Si & est le centre de C, alors C' < B(&,1/2) (voir (9.6)), ce qui implique (au vu de
(9.14))

C + A1 (B(0,71))  B(&, (1 +2M71)1/2). (9.15)

De (9.13) et (9.15), nous obtenons

vn(D(C)) < | det A va(B(&o, (1 + 2M7)1/2))
= |det A| (1 + 2M7)™" = (1 + 2M7)" | det A| v, (C).

Pour conclure, il suffit de choisir 7 tel que (1 +2M7)" =1 +¢. CQFD
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9.5 L’inégalité clé

Soit @ : U — V un C'-difféomorphisme (avec U, V ouverts de R"). Dans cette
section, nous allons « faire le plus dur » dans la preuve du théoreme 9.14, qui
consiste a prouver la proposition 9.12.

9.12 Proposition. Nous avons

J |Jo(y)| dy = v, (P(K)), VK < U compact. (9.16)
K

De maniére équivalente, nous avons

vn(L) < f |Jo(y)|dy, YL < V compact. o (9.17)
»-1(L)

Notons que le membre de droite de (9.16) est bien défini, car ®(K) est com-
pact, donc borélien. De méme, le membre de droite de (9.17) est bien défini, car
®~!(L) est compact.

Exercices

Cet exercice sera utilisé dans la preuve de la proposition 9.12.

9.13 Exercice. Soient (X, d), (Y, J) deux espaces métriques et & : X — Y un homéomor-
s T
phisme.

a) Soit £ une mesure borélienne sur Y. Posons

u(B) = £(8(B)), ¥ B € #x.

Alors 1 est une mesure borélienne sur X.
b) Symétriquement, si ;1 est une mesure borélienne sur X, alors la formule

f(C) = M((I)_1<C)), VC e %Y7

définit une mesure borélienne sur Y.

Indication : on pourra utiliser 1'exercice 2.20. o

Démonstrations

Démonstration de la proposition 9.12.
Etape 1. Une inégalité approchée. Soit € > 0 et soit 6 > 0 comme dans la proposition 9.10. Si
C est un cube de taille [ <  qui intersecte K, alors nous avons C' < U et

1 v (®(0))
= 1+e 1,(0)

| Ja(y) , VyeC. (9.18)

1. Donc ¢ est continue, bijective, et &~ est continue.
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En intégrant (9.18) sur C, nous obtenons (justifier)

L ()] dy > —— v (3(C)). 9.19)

T 1+4+e

1
Soit maintenant j; tel que o < 4.Soit j > j; et soit K; le recouvrement dyadique de

K, comme dans la section 9.3. Nous écrivons K; = Li,C; (union finie), avec Cy € 2;, V j
(voir le lemme 9.7 c)).

1
Par construction, chaque Cy intersecte K. Par choix de j, chaque C; est de taille o <

9. Nous pouvons donc appliquer (9.19) a chaque Cy. En sommant sur ¢, nous obtenons
(justifier)

| 1] dy = jc Ja(y)| dy = % oy dy
1 1
> 1+€;un(cp(cg)) = 1 vn(0e@(Cr) (9.20)
= (®(C0) = v (B(E).

Etape 2. Preuve de (9.16). Nous allons passer a la limite (sur j) dans (9.20). Expliquons
d’abord la démarche.

Posons

v(B) = JB |Jo(y)| dy, VB € By. (9.21)

Alors v est une mesure borélienne (exercice 6.30). De méme, si nous posons
w(B) = v, (®(B)), VB € Ay, (9.22)
alors p est une mesure borélienne (exercice 9.13).
Par ailleurs, nous avons
K; \\ K (9.23)
(lemme 9.7 a)).

Ainsi, pour passer a la limite dans dans (9.20), 1'idée naturelle est d’utiliser le théo-
réme de la suite décroissante (proposition 4.2 a)) pour les mesures v et ;1. Pour ce faire, il
faut trouver un j tel que v(K;) < oo (ce qui implique, au vu de (9.20), 1(K;) < ).

Grace a I'exercice 9.11 a) et au choix de j;, nous avons, pour tout cube C de K;,,

_ 1
reC = HyeKtelqueHx—yHooﬁzjgé — [r,y]cU = zeU,

et donc C < U. Kj, étant une union finie de cubes Cy, ¢ € I, de 2; (lemme 9.7 c)), nous
obtenons

L:= Kij1 = UperCr = UperCp c UL
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L étant compact (lemme 9.7 c)), nous obtenons

W(E5) = [ alo)ldy < maxl o (o) va(E,) < o 9.24)

J1

En utilisant (9.24), (9.23), le fait que v est une mesure, et le théoréme de la suite dé-
croissante, nous obtenons

tim | o)l dy = lim v (15) = v(K) = | Jo(w)ldy (9.25)
J K; J K

De (9.20) et (9.24), nous avons (K, ) < co. Comme ci-dessus, (9.23), le fait que . est
une mesure, et le théoreme de la suite décroissante, impliquent

lim v (®(K)) = lim p(K;) = p(K) = vn(®(K)). (9.26)

En combinant (9.20), (9.25) et (9.26), nous obtenons, en faisant j — oo,

Un (®(K)). (9.27)

J dy >
| 1oy = -

En faisant ¢ — 0 dans (9.27), nous obtenons (9.16).

Etape 3. Equivalence entre (9.16) et (9.17). Soit L < V. Si L est un compact, alors K :=
®~1(L) est un compact (pourquoi?), et (9.17) revient a (9.16) appliquée a K. Symétri-
quement, si K < est compact, alors L := ®(K) l'est également, et (9.16) revient a (9.17)
appliquée a L. CQFD

9.6 Théoréme du changement de variables

Nous pouvons enfin compléter la preuve du théoréme du changement de va-
riables.

9.14 Théoréme (Théoreme du changement de variables). Soit ® : U — V un
C'-difféomorphisme, avec U, V ouverts de R".

Soit f : V —>R.Soitg: U —» R, g:= fo®|Js|
Nous avons :

a) f estborélienne si et seulement si g I’est.
b) f est Lebesgue mesurable si et seulement si g 1" est.
c) [ aune intégrale (par rapport a la mesure de Lebesgue) si et seulement si
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g en a une, et dans ce cas

fv fdh, = LgdAn = L fo®|Jg|d\,. (9.28)

9.15 Remarque. Il estimportant de comprendre le sens de 'égalité (9.28). Elle
affirme :

a) Que les fonctions f : V — Ret f o ®|Js| : U — R sont de méme nature’.

b) Que leurs intégrales de Lebesgue sont de méme naturet et, en cas d’exis-
tence, égales.

C’est une égalité au sens du théoreme du changement de variables.

Démonstrations

Démonstration du théoréme 9.14. Commengons par une observation générale concernant les
équivalences a montrer. En notant I'identité

f=go® | Jpl, (9.29)

(justifier) il s’ensuit qu’il suffit & chaque fois d’établir une implication (en cas d’équiva-
lence) ou une inégalité (en cas d’égalité); I'implication inverse (ou l'inégalité opposée)
s’obtient en échangeant U avec V et ® avec &1

Pour faciliter la compréhension, la preuve du théoreme est découpée en plusieurs
étapes simples.

Etape 1. B < V est borélien si et seulement si ®~*(B) < U est borélien. Ceci découle de
I'exercice 2.20.

Etape 2. Preuve de a). Supposons par exemple f : V — R; preuve similaire si f peut
prendre les valeurs +c0. Soit B € Bg. Alors (f o ®)~}(B) = @ }(f~1(B)) € By, grace a
I'étape 1 (justifier). Il s’ensuit que f o ® est borélienne, et donc g I'est également (justifier).

Etape 3. Nous avons

vn(B) < f

|Jo(y)|dy, ¥V B € By. (9.30)
®-1(B)

Notons que le membre de droite de (9.30) est bien défini (étape 1).

Soit B € Ay . Soit (K),; une suite de compacts tels que

Kj c B, V], et Vn(Kj) - Vn<B) (931)

t. De méme nature : borélienne ou pas, Lebesgue mesurable ou pas, ayant une intégrale de
Lebesgue ou pas, Lebesgue intégrable ou pas.
1. De méme nature : existe ou n’existe pas.
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L’existence d'une telle suite suit du corollaire 4.27 appliqué a la mesure v, qui est de
Radon (détailler).

L’'inégalité clé (9.17) et la monotonie de l'intégrale donnent

W) < [l | el 9.32)

En faisant j; — oo dans (9.32) et en utilisant (9.31), nous obtenons (9.30).

Etape 4. Nous avons

ff w<Jf U¢M@=mew

V f:V — [0, 0] borélienne positive.

(9.33)

Si f := xp, alors fo® = xg-1(p), et (9.33) devient (9.30) (vérifier).

Par linéarité de l'intégrale, (9.33) reste vraie pour une fonction étagée (justifier, en
partant du cas f = xp et d'une représentation admissible).

Si f est borélienne positive, soit (f;j); une suite de fonctions étagées positives telles
que 0 < f; / f (voir le corollaire 3.7). En appliquant (9.33) et en faisant j — 00, nous
obtenons (9.33) pour f via le théoréme de convergence monotone (vérifier).

Etape 5. Nous avons

J f(x)dx = J g(y)dy, ¥V f : V — [0, 0] borélienne positive. (9.34)
1% U

En appliquant (9.33) a @~ ! eta f o ® | Js|, nous obtenons, en utilisant (9.29),

fmmwsfﬂ@m 9.35)
1% U

Nous concluons grace a (9.33) et (9.35).

Etape 6. Preuve de (9.28) si f est borélienne. Ceci se fait en appliquant (9.34) a fi et en
retranchant les deux égalités obtenues.

Etape 7. B € By est v,,- négligeable si et seulement si ®~*(B) < U est v,-négligeable. 1l suffit
de montrer que, si B € By est négligeable, alors 1 (B) est négligeable.

Pour un tel B, (9.34) appliquée a f := xp donne

0=m(B) = | x5y = | xarm@ o= [ ewld 936

1l s’ensuit que |Jo(y)| = 0 vy-p. p. sur @~1(B) (proposition 6.50 a)). Comme, par
ailleurs |.J5(y)| > 0 en tout point, nous obtenons que v, (®~1(B)) = 0.
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Etape 8. Preuve de b). Supposons f : V — R Lebesgue mesurable. Soit f : V — R bo-
rélienne et soit B € %y un borélien négligeable tel que f = f sur V\B. Alors § :=
fo®|Js| = g en dehors de 'ensemble ® (). Nous concluons grace a a) et a I'étape 7
(justifier I'existence de J? et B, et la conclusion finale).

Etape 9. Preuve de (9.28) si f est Lebesgue mesurable. Avec les notations de 1'étape précé-

dente, nous avons, en utilisant (9.28) pour fet le corollaire 6.46, les égalités au sens du
théoreme du changement de variables

fv f(a)dx = JV fl@)do = L g(y) dy = f 9(y) dy. CQED

U

9.7 Ensembles Lebesgue négligeables

Cette section prépare a la preuve du théoréme du presque changement de variables
9.21. Les résultats présentés donnent des exemples utiles d’ensemble Lebesgue
négligeables.

9.16 Proposition. Soient U un ouvert de R" et ¥ € C'(U,R™), avec m > n. Si

E c U est v,-négligeable, alors ¥(E) est v,,-négligeable. o
9.17 Corollaire. Soient U un ouvert de R" et ¥ € C*(U,R™), avecm > n.Si E < U
est un fermé v,-négligeable, alors V(E) est un borélien v,,,-négligeable. o
Exercices

9.18 Exercice. Montrer qu’une courbe dans R? est Lebesgue négligeable. o
Démonstrations

Commencgons par établir un résultat classique sur les recouvrements dya-
diques.

9.19 Proposition. Tout ouvert U de R" est union a. p. d. de cubes d. d. d. o

Démonstration de la proposition 9.19. Reprenons les notations de la section 9.3. Posons
My :={Ce2y; CcU}
et, par récurrence,
M;:={Ce2;; CcU\ UCreMou...uM;_y C'y.
Chaque 2; étant dénombrable, M esta. p. d., d’ot1 U;M; est a. p. d. Par construction,

les cubes qui apparaissent dans U ;M sont d. d. d. L'inclusion ucey. p. C < U étant claire
q Pp 77 gty
par construction, il reste & montrer que Uceu, M; CoU.
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Soit x € U. Alors x appartient a exactement un cube C; € 2;, pour tout j. Si C; € M;
pour un j, alors x € Ucey,m,C. Pour conclure, il suffit de montrer que le contraire meéne
a une absurdité.

Si, pour chaque j, C; ¢ M;, alors en particulier Cy ¢ My, d’ott Co nU* # &, ou encore
il existe zg € Cy N U°. Il s’ensuit que dist(x, U¢) < |z — zolleo < 1.

Montrons, par récurrence sur j, que dist(z, U¢) < 1/27, j € N. (En admettant ce fait,
nous obtenons que dist(x, U¢) = 0. U étant fermé, ceci donne la contradiction z € U*.)

Passage de j — 1 a j : comme z € Cy ¢ M, { = 0,...,5 — 1, nous avons = €
U\Ucemyo...om;_, C. Parailleurs, comme = € Cj, nous avons C; < R™\(Ucenyo...om;_,C)
(justifier, par exemple sur un dessin). Compte tenu du fait que C; ¢ M;, nous obtenons
C; n U # . Comme ci-dessus, nous en déduisons que dist(z, U¢) < 1/27. CQFD

Le résultat suivant est une variante du théoreme 4.35 a) dans le cas particulier
des ensembles négligeables.

9.20 Proposition. Soit £ — R". L'ensemble E est Lebesgue négligeable si et seule-
ment si : pour tout £ > 0, il existe une famille a. p. d. de cubes (C;); telle que
FE c UiCi et Z,L Vn(Oi) < E. &

Démonstration de la proposition 9.20.

« == » Il existe un ouvert U tel que E < U et v,(U) < ¢ (corollaire 4.27). En utilisant
la proposition 9.19, nous écrivons U comme 1'union d’une famille a. p. d. (C;); de cubes
disjoints. Alors £ < u;Cj et X v, (C;) = v, (U) < e.

«<=» Avec e := 1/m, m € N*, soit (C"); la famille de I'énoncé. Posons B := N, u; CI".
Alors B est un borélien contenu dans chaque u;Cj", donc v,-négligeable (justifier). Par
ailleurs, B contient E, donc E est v,-négligeable. CQFD

Démonstration de la proposition 9.16. Soit, pour ¢ € N*,
Up:={zxeR"; |z|on < ¥, dist(z,U°) > 1/},

de sorte que U, / U, U, / U, U, est compact et Uy = Upy 1.

Nous avons ¥(E) = uyU(E n Uy); il suffit donc de montrer que V(E n Uy) est v,-
négligeable, V ¢. Nous pouvons ainsi remplacer F par E n Uy, et donc supposer que £
Us.

Soit gy := dist(Uy, (Ugs1)¢), qui est > 0 (pourquoi?). Soit ¢ < (g¢)". Soit (C;); une
famille a. p. d. de cubes tels que £ < u;C; et Y}, v,(C;) < e. (L'existence des cubes
découle de la proposition 9.20.) En particulier, nous avons v, (C;) < ¢ pour tout i, d’ott
chaque cube est de taille < '/ < ¢,.

Quitte a enlever de la suite les cubes « inutiles » (qui n’intersectent pas E), nous pou-
vons supposer £ n C; # J, pour tout i. Considérons, a i fixé, un pointy € £ n C; < Uj.
Siz e Cy, nous avons |z — y|o < ¢, d'ou dist(x, Uy) < . Il s’ensuit que u;C; < Upy ;.
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Soit, pour chaque i, 2" le centre de C; (voir la définition 9.6). Pour x € Cj, le segment
[z, %] est contenu dans C;, donc dans Uy, ;. Le théoréme des accroissement finis donne
() |9(x) — B(2') oo < Clla — s, 2 € Gy, 01t C := max{|DB(y) | ; y € Upy1} < 0.

Si 4; est la taille de C;, alors (*) équivaut a ®(C;) = B(®(x?), C;/2). Nous trouvons
que

®(F) c u;B(®(z"),C5;/2),
d’ou

vn(B(E)) < Y C™67 < C™e ™ ) 1y (Ch) < Ce . (9.37)
Nous complétons la preuve en faisant ¢ — 0 dans (9.37). CQFD

Démonstration du covollaire 9.17. Au vu de la proposition précédente, il suffit de montrer que
U(E) est un borélien. Or, E étant fermé, il existe une suite (K;); de compacts de R" tels
que E = U;K;. Comme V(K;) est compact, donc borélien de R™, I'ensemble V(E) =
u;V(K;) est un borélien. CQFD

9.8 Théoréeme du « presque changement de variables »

9.21 Théoréeme (Théoréme du presque changement de variables). Soient Uj,
U, E, ® avec les propriétés suivantes :
i) U est un ouvert de R" et ® € C'' (U, R™).
ii) U < U; est un ouvert. Si nous posons V := ®(U), alors ® : U — V est un
C*-difféomorphisme.
iii) £ < U;\U est un fermé v,,-négligeable.
Soit F' := ®(E).
Sif:VUF ->R,s0itg: ULuE —R,g:=fod|Js]
Nous avons :

a) g estborélienne si f l'est.t
b) f est Lebesgue mesurable si et seulement si g 1" est.

c) f aune intégrale (par rapport a la mesure de Lebesgue) si et seulement si
g en a une, et dans ce cas

f fdAnzf gd)\nzf fo<I>|J¢|d)\n=ffocI>|Jq>|d)\n. (9.38)
VUF UuFE UuFE U

1. Du corollaire 9.17, V' u F est borélien.
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Démonstrations

Démonstration du théoréme 9.21.

a) Supposons par exemple que f : V — R; le cas ot f peut prendre les valeurs +oo est
similaire. Si B € %y, alors (fo®)~}(B) = &~ 1(f~1(B)) € By (en utilisant le théoréeme
3.5 et I'exercice 2.20). Il s’ensuit que g est borélienne (justifier).

b) Les parties E et F' étant v,-négligeables (£ par hypothese, et F' grace au corollaire
9.17), nous avons f Lebesgue mesurable«<= fxp: 'este= fy 'este= gy l'est (ici,
nous utilisons le théoréeme du changement de variables)<= g est Lebesgue mesu-
rable.

¢) suit du théoréme du changement de variables 9.14, en notant que les intégrales sur &/
et F\V sont nulles. CQFD

9.9 Changements usuels

Comme expliqué dans 'aperqu, la motivation du théoréme du presque chan-
gement de variables 9.21 vient des (presque) changements de variables usuels,
que nous rappellerons dans cette section.

9.9.1 Coordonnées polaires

Tout point de R? s’écrit sous la forme

(z,y) = (rcosf,rsinf), avecr := (2% +y*)/?> = 0 et 0 € [0, 2n[.

Si (z,y) # (0,0), alors cette écriture est unique et, de plus,

=0 x>0ety=0.

Posons

®:R? - R? &(r,0) := (rcosf,rsinf).

Nous avons ® € C* et det Jo(r, 0) = 7.

Il s’ensuit de ce qui précede que ® est une bijection de U :=]0, oo[ x 0, 27| vers
V = R*\([0, o0[x{0}).

Par ailleurs, nous avons det J3 # 0 sur U, d’ott ® : U — V est un difféomor-
phisme.

Avec FE := 0U et F' := [0,0[x{0}, nous avons ®(F) = F et F est un fermé
Lebesgue négligeable (justifier).
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Nous pouvons donc appliquer le théoreme 9.21 (avec U; := R?):si f: R? > R
est Lebesgue mesurable, alors

J fdr = f f(rcosf,rsinf) rdiy(r,0)
R? [0,00[x[0,27]

au sens du théoréeme du changement de variables.

9.9.2 Coordonnées sphériques
Soit x = (w1, 79,23) € R Soit p := (22 + 22)/2. 1l existe § € [0, 27] tel que
(x1,m9) = (pcosh, psinb).

Par ailleurs, (p, x3) s’écrit sous la forme (p,xz3) = (rcos g, rsinp), avec r > 0
et € [—7/2,7/2[ (la condition sur ¢ vient du fait que p > 0). Il s’ensuit que tout
point 2 € R? s’écrit sous la forme

x1 = rcosycosh,
xo =Tcospsing, avecr >0, p € [—7n/2,7/2[, 0 € [0, 27], (9.39)

T3 = rsin .

Si, de plus, = ¢ ({(0,0)} x R) u (]0,0[x{0} x R), alors nous pouvons prendre
r>0,p €| —mn/2,71/2] et O €]0,27] et, pour un tel choix des coordonnées r, ¢, §,
I'écriture (9.39) est unique.

Soit

d:R* - R ®(r,¢0,0) := (rcospcosh,rcospsinf, rsing).

Avec

Uy :=R3 U :=]0,00[x] — 7/2,7/2[x]0, 27|
et

V= RA\(({(0,0)} x R) U (]0, 0[x{0} x R)),

® est une bijection de classe C'! entre U et V.

Par ailleurs, nous avons det J3(r, 0, 0) = —r?cosp, d’ott det J3 # 0 sur U et
donc @ : U — V est un difféomorphisme.

Avec E := 0U et F' := ({(0,0)} x R) u (]0,0[x{0} x R), nous avons E fermé,
A3(E) = 0et ®(F) = F (vérifier).
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Le théoreme du presque changements de variables 9.21 donne : si f : R* - R
est Lebesgue mesurable, alors

JR3 fdds

= J f(rcos pcosf,rcospsinf, rsin ) r? cos  dAs(r, @, 0)
[0,00[ x [—7/2,7/2] % [0,27]

au sens du théoreme du changement de variables.

9.9.3 Coordonnées cylindriques

Si (z1,12) € R?\(]0, o[ x{0}), alors (w1, z2, z3) = (rcosf, rsinb, x3), avec r > 0,
0 < 0 < 2m, I'écriture étant unique.

Le théoréme du presque changement de variables, appliqué avec

O(r,0,x3) := (rcosb,rsinb, x3), (qui satisfait det Jo(r, 8, x3) = r),
Uy :=R3 U :=]0,0[x]0,2r[xR, V := R*\([0, 0[x {0} x R),
E:=0U, F :=[0,0[x{0} x R,

donne:si f : R? — R est Lebesgue mesurable, alors
fdrs = J f(rcosO,rsin, x3)rdis(r,0, zs)
R3 [0,00[x[0,27] xR

au sens du théoreme du changement de variables.

9.9.4 Coordonnées sphériques généralisées

Soit ¢,, : R — R",

D, (r,01,05,...,0, 1) := (rcosbycosby...cos, 1,rcosbcosby...sinb, 1,
rcosfycosby...cos0, 3sinb, o, ..., rsinb).
Tout point de R" s’écrit sous la forme z = ®,(r,0y,0s,...,0,-1). La preuve

de cette assertion se fait par récurrence sur n, le cas n = 2 correspondant aux
coordonnées polaires. Passage de n — 1 a n : soit p := /2% + z3. Nous appliquons
I'hypothese de récurrence a (p, zs, . . ., ), qui s’écrit donc sous la forme

(p, T3, ... ,.Z'n) = (I)n,l(r, 91, e ,Hn,g).
Il s’ensuit que p = rcos b, ...cosf,_o, d’ottil existe 6,,_; tel que

zr1 =1cosl...cosb,_5cosb,_1etxy =rcosb;...cos0,_ssinb,_;.
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Nous concluons a I'égalité x = ®,,(r, 61,6, ...,60,_1).

Une preuve analogue par récurrence montre (nous omettons les détails) que
I'on peut prendre r > 0, 6,,...,0,_5 € [-7/2,7/2] et 6,,_; € [0, 27].

Le jacobien de ®,, est

det Jp, = (—1)"+D/2Hn=1 005029, cos" 30, ... cos O,,_s. (9.40)

Preuve de (9.40) par récurrence sur n, les cas n = 2,3 étant déja vérifiés. Si
ai,...,a,—1 désignent les cooordonnées de ®,,_,, alors

®,, = (a1 cosb,_1,a18n0,_1,a9,...,6,_1).

Il s’ensuit que

cosO,_1J,, —aisin, 4
sinf,_1J,, ajcosf,_q

Jo, = Jas 0
e 0
Jan, 1 0

En développant le déterminant de Jp, selon la derniere colonne, nous obte-

nons Jg, = (—1)"a1Js, ,, relation de récurrence qui permet d’établir facilement
(9.40).

Avec
Up:=R" U :=]0,00[x] — 7/2,7/2[*%x]0,27[, E := U,
F = U2 (R x {0} x RI71) U ([0,00[x {0} x R""?), V := R™\F,

n—17/

nous déduisons (comme pour les coordonnées sphériques) que ® : U — V est un
C'-difféomorphisme, que E est un fermé \,-négligeable et que ¢(F) = F.

Le théoréme du presque changement de variables 9.21 donne :si f : R* — R
est Lebesgue mesurable, alors

fd\,

Rn

= J fod,r" tcos" 20, cos" 30, ...cos0,_od\,
[0,00[x [—7/2,7/2]"—2x[0,27]

au sens du théoréeme du changement de variables.

9.10 Intégrales de référence

Comme pour les intégrales généralisées, quand nous étudions la nature d"une
intégrale de Lebesgue il est utile de disposer d"une liste d’intégrales de nature
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connue. Dans la suite, nous munissons R™ de la norme euclidienne, notée | |. Bx
désigne la boule ouverte centrée en 0 et de rayon R, B(0, R).

9.22 Proposition. Pour a,b € R, nous avons :

1
a) © — —— est intégrable sur B;\{0} si et seulement si a < n.

]

b) z — Tz est intégrable sur B /,\{0} si et seulement sia < nou[a =n
x|% In|x
etb > 1].
1
C) T +— W est intégrable sur R™\ B, si et seulement si a > n.
€T a
d) z— m est intégrable sur R™\ B, si et seulement sia > n ou [a = n et
x|% In|x
b > 1]. o
Démonstrations

Démonstration. Nous faisons la preuve de b) ; preuves similaires dans les autres cas.

En passant en coordonnées sphériques généralisées et en appliquant le théoréme de Tonelli
8.24, nous avons, avec g(f1,. .., 0,_1) := cos" 20 ...cos 0, o (justifier) :

fB ol v, - fR X8y o\ (03 () 2] In fo ~bd,
172 n

Xj0,1/2((r) 1= Inr| g duy,

a J\[0,00[X [—m/2,m/2]"—2x[0,27]
= J = In g | "bg du,
10,1/2[x[—m/2,7/2]7—2 x [0,27]

1/2
= C’J 0t n e b duy,
0

ou C est le produit d’'intégrales de Riemann

/2
C:= cos" 16, db .. f
—7/2 —7/2

/2 2m

COS Gn,g d9n72 J d@nfl.
0
Nous avons 0 < C' < o0, ce qui montre que l'intégrale de départ est finie si et seulement

1/2
si lintégrale (de Lebesgue ou généralisée) f 1/(r¢ "1 Inr|®) dv; est finie, ce qui équivaut &
a<noula=nethb>1]. : CQFD
9.11 Pour aller plus loin

Voici un résultat utile, plus fort que le théoreme du changement de variables
9.14.
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9.23 Théoreme. Soit @ : U — V telle que:

i) U,V sont des ouverts de R".
ii) ® est différentiable et bijective.

Pour f : V — R, nous avons

ff dw—ff ) 1o (o)) dy 9.41)

au sens du théoreme du changement de variables.

Pour la preuve, voir Rudin [19, Theorem 7.26].

Une autre extension utile du théoreme 9.14 est la formule de I'indicatrice de Ba-
nach (voir Evans et Gariepy [7, Section 3.3.2, Theorem 1 avec m = n]). Voici un
cas particulier, simple a énoncer et qui sera abordé comme exercice de synthese,
de cette formule.

9.24 Théoréme. Soit ® € C'(U,V), avec U, V ouverts de R™. Si f : V — R est
Lebesgue mesurable, alors

| @ mmidy = | s o @) e 9.42)
au sens du théoreme du changement de variables. o
Ici, # est la mesure de comptage, donc

Iy card A, si A est fini
C | o, sinon '
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Chapitre 10

Espaces X

10.0 Apercu

Nous avons déja vu I'importance des fonctions intégrables (autrement dit :
des fonctions mesurables telles que J| fldp < o0), par exemple comme majo-
rantes dans le théoréeme de convergence dominée. Dans le langage probabiliste,

une fonction intégrable est une fonction f qui a une espérance E(f) := | fdP fi-
nie. Une autre quantité importante est la variance V(f) := J( f—E(f))*dP, qui
est finie a condition que J f*dP soit finie.

D’autres conditions similaires jouent un role important : par exemple, la condi-

tion J |f]?dP < oo intervient dans 1’étude de la vitesse de convergence dans le

théoreme central limite; la condition f |f|P dP < w0, avec 1 < p < 2, pour la validité

du théoreme central limite, etc.

Nous allons présenter ici un « chapeau » commun a toutes ces propriétés, qui
mene aux espaces de Lebesgue £F,avec 1 < p < ow0:

o 1/p
LP = {f:X—JR; f mesurable et | f|.» := (f\f\p> <oo}.

La définition de l'espace .2’ fait intervenir une nouvelle notion, celle de sup
essentiel, qui est un sup adapté a la théorie de l'intégration, donc ne tenant pas
compte des ensembles négligeables.

Les espaces . sont des espaces vectoriels, et f — || f| .» Vérifie 'inégalité tri-
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angulaire, mais n’est pas une norme. Nous allons pallier ce défaut en définissant
des cousins des espaces .£7, les espaces L”; la définition est conceptuellement
compliquée, mais concretement facile a maitriser.

Ces espaces sont des espaces normés par | |.» (inégalité de Minkowski, théo-
réme 10.26) et complets (théoreme de Fatou 10.28).

L’autre notion importante de ce chapitre est celle d’exposant conjugué : si 1 <
p < 0, le conjugué de p est le nombre 1 < g < oo défini par

L'inégalité de Holder (théoreme 10.18) affirme que, si f € £P et g € £9, avecp
et ¢ conjugués, alors fg est intégrable et

fio

L'inégalité de Cauchy-Schwarz s’obtient en prenant p = ¢ = 2 dans l'inégalité de
Holder.

< J ol < 11w lglr

Dans la section 10.4, nous énongons le théoreme de représentation de Riesz 10.31,
qui, de maniere informelle, montre que I'inégalité de Holder est la seule inégalité
possible dans les espaces L” avec 1 < p < .

Dans tout le chapitre, (X, .7, ) est un espace mesuré fixé. f,g, etc. : X — R
sont des fonctions mesurables. Méme sans mention explicite, la mesurabilité des
fonctions concernées est assumée dans chaque énoncé. Le p. p. est relatif a la
mesure /L.

Compétences minimales attendues.

a) Comprendre la différence entre .£7 et L”.

b) Comprendre la définition de ..

c) Savoir montrer qu'un objet est bien défini pour une classe f € L”.

d) Savoir utiliser les inégalités de Holder et Minkowski.

e) Savoir utiliser le théoréeme de Fatou et son corollaire. o

10.1 _Z? versus P

Dans cette section, nous définissons les espaces de Lebesgue -£F et LP et donnons
quelques éléments pour comprendre les regles de calcul dans L”.
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10.1 Définition (Espaces de Lebesgue .Z7).

a) Sil<p<ow,

”ﬂm:<JMOW=(LUVWye

b) Sip = oo,
Iflze := esssup | f| := min {M e R; |f(z)] < M p.p.}.

Q) LP=L°(X,p):={f: X >R, |fllr <0}

10.2 Notation. Une notation alternative, tres répandue, pour les normes || |z» est | |,.

Cette notation est cohérente avec les notations des normes usuelles dans R" : si x =

(x1,...,2,) € R", et si nous identifions x a une fonction f : {1,...,n} — R, alors
||, = ||fllLe, ot la seconde norme est calculée par rapport a la mesure de comptage
sur {1,...,n}.

Attention toutefois au danger suivant : si f : X — R, | f|+ peut désigner, selon le
contexte, soit sup | f|, soit esssup | f|. o

10.3 Définition (Espaces de Lebesgue L?).

a) LP = L*(X, p) := L7/ ~.Ici, ~ est I'équivalence f ~ g si et seulement si
f=gp-p

b) Si f € LP, alors nous posons | f|zr := |g|r», ol g est une fonction arbitraire
de la classe d’équivalence définissant f.

10.4 Remarque.

a) La définition |f|z» := |g|rr est correcte, au sens ol |¢|r» ne dépend pas du choix
de g dans la classe de f, mais ceci demande une preuve; voir 'exercice 4.22 b). En
particulier, ceci implique que, si g € £? et h ~ g, alors h € 7.

b) Voici une conséquence de l'item a). Nous pouvons définir de la méme maniere | f|z»,
1 < p < o, si f est une classe d’équivalence de {g : X — R; g mesurable} pour ~.
Nous avons alors la définition équivalente de L” :

LP := {f; f estune classe d’équivalence telle que | f|r» < o0}. o

10.5 Notation. Par abus de notation, et bien qu'un élément de L” soit une classe d’équi-
valence et non pas une fonction, nous écrivons

1/p
pr=(fmmm) sil<p<o

Le sens de cette égalité est que pour tout représentant g de f, 1’égalité précédente est
vraie si nous remplacons a droite f par g.

Abus de notation analogue dans L®. o
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Nous continuons par deux remarques essentielles pour comprendre, d"une
part, le sens des énoncés concernant les espaces L?, d’autre part, la facon de défi-
nir les opérations dans les espaces L”.

10.6 Remarque. Lorsqu’il s’agit d'une propriété des espaces L”, la premiére
question a se poser est si sa preuve (qui fait intervenir des fonctions, et non
pas des classes) est indépendante du choix de la fonction dans la classe d’équi-
valence.

Illustration pour I'inégalité de Cauchy-Schwarz (théoreme 10.18 avec p =
q = 2). Pour prouver cette inégalité, nous allons montrer que

1/2 1/2 B
J|f191’ < (J|f1‘2) (f ’91|2> , Vibg: X - R (10.1)

En prenant, dans (10.1), f; dans la classe de f et g; dans la classe de g,
nous obtenons

[ 171911 < 17152l

Pour conclure, il suffit de montrer que f; g; est dans la classe de f g; or,
ceci découle de I'exercice 10.11 b).

10.7 Remarque.

a) Sil <p < wet fe. P alors la proposition 6.48 (appliquée a | f|?) et la remarque 6.47
montrent qu'il existe, dans la classe d’équivalence de f, une fonction g finie partout.

b) Si f € X%, s0it A := {x € X;|f(x)] > esssup f}. Alors A € .7 est négligeable,
d’ott ¢ = f x4c est dans la classe de f. Notons que g est, par construction, bornée, en
particulier finie partout.

¢) Ainsi, lorsque nous travaillons avec une classe f de L?, nous pouvons toujours consi-
dérer un représentant fini partout (et, si p = o0, borné).

d) En particulier, si f,g € L? alors nous pouvons définir la classe f + g comme celle
de fi + g1, avec f; (respectivement ¢;) dans la classe de f (respectivement g) finie
partout. Dans ’esprit de la remarque 10.6, nous laissons au lecteur le soin de vérifier
que la classe f + g obtenue ne dépend pas du choix de f; et g;. o

La remarque suivante montre que 1'espace L?(X, i) n’est pas, dans un sens a
préciser, plus riche que l'espace LP (X, u1).

10.8 Remarque. Nous pouvons identifier de maniere naturelle les classes d’équivalence
des fonctions .7-mesurables et .7-mesurables. En effet, soit f; : X — R une fonction
7 -mesurable. Alors (proposition 4.19 a)) il existe une fonction .7 -mesurable g; : X — R
telle que fi = g1 pu-p. p. (ou, ce qui est équivalent, telle que fi = g1 f-p. p.).

Notons : f la classe de f; par rapport a (X, 7,1), g la classe de g; par rapport a
(X,.7,7), G la classe de g; par rapport a (X, .7, p1). Par choix de g;, nous avons f = g.
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Par ailleurs, nous avons G < g (vérifier). L'application f — G est bien définie et bijective,
de réciproque G — g (vérifier).

Cette identification naturelle s’étend aux espaces LP : si f; € ZP(X,f), alors les
classes respectives satisfont f € LP(X, 1) et G € LP(X, u), ce qui donne une bijection na-
turelle, f — G, entre LP(X, 1z) et LP(X, ;1). Cette bijection préserve la norme : || f| »(x 7) =
|G| r(x ) (Vérifier).

En particulier, nous pouvons identifier LP(R", \;,) a LP(R", vp,). o

Exercices

Cet exercice donne quelques propriétés simples de || |.». L'item d) est particu-
lierement important de point de vue théorique.

10.9 Exercice.

a) |[tflee = |t||fle, Vt € R,V f: X — R (avec la convention 0 - o0 = 0).
b) Si f =gp.p. alors|f— gl = 0et|f|Lr = |g]Lr-

¢) |[flz» = Osietseulementsi f =0 p.p.

d) La définition de | f||z= est correcte, au sens suivant. Soit A := {M € [0,00]; |f(z)] <
M p. p.}. Montrer que A est non vide et a un plus petit élément, m. Cet m est le plus
petit nombre C' de [0, 0] avec la propriété | f(x)| < C p. p., et donc m = || f|| L.

e) |f +glee < | flze + lglLe pourp =Tetp = o0.(Ici, f,g: X - R) o

La définition de || ||~ est assez absconse. L'exercice suivant donne un cas ott

[flle = sup|f].

10.10 Exercice. Soit U un ouvert de R", muni de la mesure de Lebesgue sur #y;. Si f €
C(U), montrer que | f| > = sup|f]. o
U

L’exercice suivant montre que la relation ~ « commute » avec les opérations
sur les fonctions.

10.11 Exercice. Soit (X, .7, ) un espace mesuré. Nous considérons des fonctions f, g :
X — R (pas nécessairement mesurables). Montrer que la relation d’équivalence « f ~ g
si et seulement si f = g p. p. » a les propriétés suivantes.

a) Sif~ fietg~gy,alors f+tg~ fi+tg1,Vte R (acondition que les fonctions soient
finies en tout point).

b) Si f ~ fietg~ gi,alors fg~ f101-

) Sif~getsi®:R - R,alors®of~dog.

d) Dans cette question, X := R" et y1 := \,. Soit 71, f () := f(x — h),Vz,he R".Si f ~ g,
alors 7, f ~ 9, ¥V h. o

Dans le méme esprit, nous mentionnons la propriété suivante, utilisée dans la
définition du produit de convolution (dans le chapitre 11).
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10.12 Exercice. Nous munissons R" de la mesure de Lebesgue. Soient f, g, fi,g1 : R —

R, avec f ~ fi et g ~ g1. Soit x € R". Montrer que h ~ hy, ol
h(y) = f(x—y) 9(y), hi(y) = filz —y) g1(y), Yy e R™. o

L’exercice suivant introduit des espaces tres importants, les espaces (7.

10.13 Exercice (Espaces /7).
a) Si p est la mesure de comptage, alors I'égalité p. p. équivaut a 1'égalité. Ainsi, nous
pouvons identifier naturellement 7 et LP.

Si X = N muni de la mesure de comptage sur &(N), alors nous définissons
P =PN):=LP=IFP Vi<p<ool

b) Si (ay)n est une suite indexée sur n € N, montrer que

1 .
H(a ) Hep = (Zn |an|p) /p’ sil <p<
n)n = .
supy, |an|, sip =0

c) Montrer que si 1 < p; < py < ®, alors 1t pr < P2 < (. De plus, ces inclusions
sont « continues » :si 1l < p < r < 00, alors |(an)nller < [(an)nller-
d) Soit (ay), € 7, avec p < co. Montrer que pour tout r > pnous avons limg_,, ||(an)n e =

I(an)nller-
e) Sil <r < o et (ay), est une suite arbitraire, alors lims , [ (@n)nles = [[(@n)nler- o

Cet exercice est une suite « concrete » de la remarque « abstraite » 10.8.

10.14 Exercice.

a) Nous travaillons dans (R",.Z,, \,). Montrer que toute classe d’équivalence contient
un représentant borélien.

b) Méme propriété si a la place de R" nous considérons une partie borélienne de R”.

¢) Généralisation? o

Un autre exercice fondamental. Nous le commenterons a sa fin.

10.15 Exercice. Nous supposons . finie.
a) Montrer quesi 1 < p; < py < o, alors L® < LP? « [Pt < L1,
b) Soit f € LP, avec p > 1. Montrer que pour tout 1 < r < p nous avons lim,_,, || f|rs =

Il o

10.16 Remarque (Inclusions entre les espaces L?). En général, il n’y a pas de
relation d’inclusion entre L? et L9, avec p # ¢ : nous n’avons pas L? c L4.

Il existe deux exceptions notables.
a) Sil < p; < py < oo, alors (1 < (Pr < (P2 < (*,

Les espaces (? croissent avec p.

t. Nous définissons de méme ¢*(A), avec A a. p. d.
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b) Sipestfinieetl < p; < py < o0, alors L' > LP' o [P2 o [°.

Si pu est finie, les espaces LP décroissent avec p.

Pour l'item a), voir I'exercice 10.13 c); pour l'item b), I'exercice 10.15 a).

10.2 Inégalité de Holder

Cette section est dédiée a la preuve de l'inégalité de Holder et a deux de ses
« réciproques » qui montrent que cette inégalité ne peut étre améliorée. La pre-
mieére « réciproque », la proposition 10.19, servira dans la preuve de 'inégalité
de Minkowski dans la section 10.3; elle intervient dans de nombreuses preuves
« par dualité » en analyse fonctionnelle. La deuxieme « réciproque », la proposi-
tion 10.20, intervient également dans des preuves d’analyse plus avancée, comme
celle du théoreme d’interpolation de Riesz-Thorin.

Commencons par une définition essentielle dans ce contexte.

10.17 Définition (Exposants conjugués). Les nombres p, g € [1, c0] sont conju-

Co .11
gués (ou exposants conjugués) si et seulement si — + — = 1.1#
p q

10.18 Théoreme (Inégalité de Holder). Si p, ¢ sont conjugués, alors

[f gl < | flee lglze, ¥ £, g (inégalité de Holder) . (10.2)

En particulier, nous avons

[faller < | flzz lglzz, ¥ f, g (inégalité de Cauchy-Schwarz) . (10.3)

Les inégalités s’entendent pour des fonctions ou pour des classes d’équi-
valence.

10.19 Proposition (Formule de dualité LP-L9 (I)). Soient p, ¢ exposants conjugués.
a) Sil < p < o, alors nous avons

£l = sup { [soi9e20 19l = 1}, Vfer (10.4)

De plus, nous pouvons remplacer dans (10.4) le sup par max et considérer
uniquement des fonctions g telles que f g > 0.

1. Notons que nous ne pouvons pas avoir en méme temps p = o et ¢ = . Si, par exemple,
p < w, alors ¢ = p/(p—1). Sinous avons en méme temps g < o, alors, par symétrie, p = ¢/(¢—1).
1. ¢ est désigné comme le conjugué de p (et réciproquement).
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b) Si p est o-finie, alors 'égalité (10.4) reste vraie pour p = . o
10.20 Proposition (Formule de dualité LP-L9 (II)). Soient p, g exposants conju-
gués.

Soit f : X — R telle que f g soit intégrable pour tout g € ..
a) Sip=1,alors f e £'.
b) Si i est o-finieet 1 < p < oo, alors f € Z7.

En particulier, sous ces hypotheses nous avons (10.4). o

Exercices

L'inégalité suivante, classique, sert dans la preuve de 1'inégalité de Holder.
Elle généralise l'inégalité élémentaire a* + b* > 2 ab.

10.21 Exercice (Inégalité de Young). Soient 1 < p,q < o0 exposants conjugués. Montrer
que

alP b
ab< —+ —, Va,be [0,0][. (10.5)
p q
. a? b
Indication. Etudier, pour b fixé, la fonction a — — + — — ab. o
p q

L’'inégalité de Holder a des variantes a plus de deux facteurs.

10.22 Exercice. Soient 1 < po, ..., pr < o tels que Z§=1 1/p; = 1. Montrer que
|fife-o frllor < | fillze | follve o I frloews ¥ fos oo fo s X — R o

Nous savons déja que, si p est finie, alors L™ < LP sip < r. L'exercice qui suit
donne permet d’estimer ™ || f|1» en fonction de | f| 1.

10.23 Exercice. Nous supposons p finie. Si 1 < p < r < o0, alors
[£lze < ()P f L, ¥ S
Ceci implique en particulier la conclusion de I’exercice 10.15 a). o

L'inégalité qui suit est un exemple simple d’inégalité d'interpolation.*

10.24 Exercice. Soient 1 < py < p < p1 < 0.
1 0 -0
a) Montrer qu’il existe un unique 0 €]0, 1] tel que — = — + -7
b Po p1
b) Montrer que [ £[ze < |9 [fI72/, ¥ f- o

t. Estimer : donner un ordre de grandeur. En analyse, le sens est plutot : majorer.

t. Du verbe interpoler, utilisé en philologie : « introduire un texte dans une ceuvre a laquelle il
n’appartient pas ». En mathématiques, 1'un des sens est : «intercaler des valeurs ou des termes in-
termédiaires dans une série de valeurs ou de termes connus ». En analyse, l'interpolation consiste
a estimer (donc majorer) des valeurs d"une fonction entre deux valeurs connues. Dans notre cas,
nous connaissons | f|rro et || f||Le:, et nous estimons | f| .
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Démonstrations

Démonstration du théoréme 10.18. 11 suffit de travailler avec des fonctions (voir la remarque
10.6).

Sip = 1et ¢ = o, nous devons montrer que

[ 1791 < esssup ol [ 111

qui est vraie (vérifier). Argument similaire sip = cwetq = 1.

Supposons maintenant que 1 < p,q < 0. Nous pouvons aussi supposer que 0 <
|fllze < 0 et0 < |g|za < oo (justifier). Dans ce cas, nous avons |f| < « p. p. et |g] < ®©
p- p- (justifier) et donc nous pouvons travailler avec des fonctions finies en tout point
(voir également la remarque 6.47). Pour de telles fonctions et pour A €]0, oo[, I'inégalité
de Young donne

_ @) lg@)

/(@) g(x)| = [A]f (@)1 [A™ |g()]] ) Aig o TEX (10.6)
En intégrant (10.6), nous obtenons
AP 1
[ 1791 = S0 + ol (107)

En choisissant, dans (10.7), la valeur de A qui minimise le membre de droite de (10.7), a
savoir
R
it

nous obtenons (10.2) (vérifier). CQFD

Démonstration de la proposition 10.19. L'inégalité de Holder implique « > » dans (10.4). Il suffit
donc d’établir « < ».
a) Soit d’abord p = 1. Soit g := sgn f.F Alors |g||p~ < 1 et Jfg = | fllz (vérifier).

Soit maintenant 1 < p < c0.5i | f|» = 0,1a conclusion est claire. Supposons | f||z» > 0.

Soit h(x) := |f(x)|P~! sgn f(x). Alors h est mesurable et |h| 1« = HfHIi;l (vérifier). Soit
g := h/||h| L4, de sorte que |g| L« = 1. Nous avons

Jf9=0ﬂhLﬂfUW=\fm-

1. Faire une étude de fonction pour justifier ce choix de A.

1, sit>0
t. Rappelons la définition de la fonction «signe » : sgn (t) = < 0, si¢=0.
-1, sit<0
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b) Supposons M := | f|r» > 0, sinon la conclusion est claire. Soit (X,,),, une suite crois-
sante telle que X,, /" X et u(X,,) < o0, ¥n.Soit 0 < € < M et soit

A=A, :={zeX; |f(zx)] =M —e}.

Nous avons p(A) > 0 (justifier). Soit h,, := xanx, sgn f, qui satisfait |, |1 = p(A N
Xp) (vérifier). Par théoréme de la suite croissante, pour n suffisamment grand nous
avons j(AnX,) > 0. Pour un tel n, posons g,, := hy,/iu(AnX,), de sorte que |g,| 1 =
1. Nous obtenons

sup{ffg;ge.zl, gl < 1} = [ 7o

1
- M—e.
(AN Xy) men 7= ©

Nous concluons en faisant ¢ — 0 dans (10.8). CQFD

(10.8)

La preuve de la proposition 10.20 repose sur le résultat auxiliaire suivant.

10.25 Lemme. Soient 1 < p, ¢ < o0 exposants conjugués.

Soit (ay)), une suite de nombres réels positifs telle que >, (ax)? = oo.

Alors il existe une suite (o), de nombres réels positifs telle que >, (a)? < o0
et Y, a oy = 0. o

De maniere équivalente : si (ay), ¢ ¢7, alors la série ), a; a ne peut pas étre
convergente pour toute suite (o), € 9.

Ainsi, le lemme 10.25 prouve (par contraposition) la proposition 10.20 dans le
cas de la mesure de comptage sur N.

Démonstration du lemme 10.25. Soient 0 = k1 < kg < --- tels que

1
kjiy1—1 /p

d(ap)P | =8i=1

k=k;
(justifier I’existence des k;). Le choix

(ag)P
- Vi>1, Wk <k<ki—1
(077 j(sj)p_lv J=1, ] = < j+1 )

donne une suite ()i avec les propriétés désirées. En effet, nous avons

kji1—1

-yt TN s/ R o
;akak ;;(SJ)Pl k:ij (Cllg) ; j 2;] o0,
k T (S5 k=Fk; 7
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Démonstration de la proposition 10.20.

a) Soit g :=sgn f € £*. Nous avonsj\f| = ffg < o, etdonc f e £

b) Supposons, par I'absurde, que f ¢ £P?. Pour un tel f, nous allons construire une
fonction g € £ telle que fg > 0 et J fg = o0 — ce qui constitue la contradiction
recherchée.
Etape 1. Construction de g si 1 < p < oo et u est finie. Soit B := {x € X ; |f(z)| = o0}. Si

pu(B) > 0, alors g := sgn f xp convient. Ainsi, nous pouvons supposer que p(B) = 0,
ce qui revient a | f| < oo p. p. Nous pouvons donc supposer f finie partout (justifier).

Soit k € Z. Posons Ay, := {x € X ; 2F < |f(x)| < 2¥*1}, de sorte que les Ay sont d. d. d.
et f = 0sur X\ uy Ag. Soit f, := f xa,. D'une part, nous avons

1l ) = f 1P < 2650 p(4y) < o0, VR € Z. (109)

Apg

D’autre part, nous avons

2 Wil = X [ 107

k=—00 k=—00 k=—o0

P = L P = . (10.10)

Ag

0 0
De (10.10), nous avons soit Z kaHip(X) = o, soit 2 ka||’L’p(X) = o0. Nous exami-
k=0 k=—00
nons le premier cas; l’autre est similaire. Nous supposons donc

0
2 Ml = oo (10.11)
k=0

De (10.9) et de la preuve de la proposition 10.19 a), pour tout £ > 0 il existe g, €
L1(Ag) telle que |gk|ra(a,) =1, fegr = O et L fregr = [ felzrcay) = 1kl zexo)-

k
Nous allons prendre g de la forme g = >,;° , o, gk X 4,, avec oy, > 0. Nous avons, par
calcul direct,

9|7 = D) (ax)? | lgkl* = ) ()’

f g ;O (e Lk 9k ];10 Qg

[ro= | o= anlfilor
k=0 Ap k=0

Le lemme 10.25 combiné avec (10.11) montre que 1’on peut trouver oy, tels que
0 o8}
Z ok | fellr(x) = o et Z (a)? < 0.
k=0 k=0
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Pour de tels oy, g a toutes les propriétés désirées.

Etape 2. Construction de g si 1 < p < oo et i est o-finie. Soit (Y;,),, < .7 une suite d. d. d.
telle que X = u,,Y;, et u(Y;,) < o0, ¥n. Notons f, la restriction de f a Y,,, de sorte que
frn est mesurable et

ZL |ful? = L |fIP =0 (10.12)

(vérifier). Si J | frno|P = 00 pour un ny, alors, de I'étape précédente, il existe g,, : Y, —

n

R telle que f |nol? < 00, frg gne = 0 et j fro gny = 0. Dans ce cas, la fonction
Ying

nQ
g 1= gng XY,, a les propriétés souhaitées.

Nous pouvons donc supposer que f |fn|? < oo pour tout n. De la preuve de la

n

proposition 10.19 a), il existe g,, € £(Y7,) telle que

lgnllze = 1, fogn > Oct fy Fogn = Ul oy,

Nous définissons g := >, o, gn X4, avec a;, > 0 a déterminer de sorte que g € 7 et
f g = . Comme dans I'étape 1, ces propriétés sont vraies si nous choisissons (via

le lemme 10.25), des o, tels que Y, o fulzr(v,) = 2 et 3, (an)? < oo (vérifier).

Etape 3. Construction de g si p = o0 et i est o-finie. Soit (Y},), la suite de 'étape 2. Soit
B :={xe X;|f(z)| = co}. Nous avons u(B) = >, p(B n'Y,) (justifier). Si u(B) > 0,
alors 0 < u(B n'Y,) < oo pour (au moins) un n. Pour un tel n, g := sgn f xBnv,
convient (vérifier). L'étape 3 est donc complétée si u(B) > 0.

Ainsi, nous pouvons supposer que p(B) = 0, d’ou |f| < o p. p. Posons A; = {z €
X;j < |f(z)] <j+1},Vj e N*. Notons que les A; sont d. d. d. Comme [ ¢ £%,
il existe une infinité de j tels que p(A;) > 0 (justifier). Soient 1 < j; < jo < -+ <
Jr < --- tels que u(Aj,) > 0, Vk > 1. Soit fj, la restriction de f a A;,, de sorte que
fx € L®(A;,). De la preuve de la proposition 10.19 b), il existe g, € L1 (A}, ) telle que
lgkllzra;,) =1 fugr = Oet

| feoez 21y = /252 020k

Si nous posons g := >, (1/k%) gk x4,, , alors par calcul direct [g] 1 = X, (1/k%) <
w (d’ottge L) et

192 Y00 inle=> 3 25 = 5 5~ carp

k>1 k>1 k>1
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10.3 Norme et complétude

Dans cette section, nous montrons que L” est un espace normé complet (théo-
reme de Fatou 10.28), et en particulier que || |» est une norme sur LP (inégalité de
Minkowski, théoreme 10.26).

10.26 Théoreme (Inégalité de Minkowski).

a) Sil <p<a,alors ||f + g|ee < ||flle + |9]zr, ¥ £, g
b) (LP, | ||lz») est un espace normé et (£7, | |.») est un espace « semi-normé »."

10.27 Corollaire. L’application L” 5 f — || f||z» € R est continue. o

10.28 Théoreme (Théoreme de Fatou). L” est un espace normé complet, V1 <
p <ot

10.29 Corollaire. Si f,, — f dans .#?, alors il existe une sous-suite (f,, ), et une
fonction g € Z7 telles que

a) fu, — fp-P-
b) [ful <gp-p o

10.30 Proposition. Dans L?,

< fg== ffg, Vigel? (10.13)
est un produit scalaire, et | f| 2 =< f, f >1/28 o
Démonstrations

Démonstration du théoréme 10.26. Nous pouvons travailler avec des fonctions finies en tout
point (justifier).

a) Lescasp = 1 et p = o suivent de 'exercice 10.9 e). Nous pouvons donc supposer
1 <p<awetaussi|f|rr <0, |g|rr < c0.

La fonction ¢ +— ®(t) := |t|P étant convexe, nous avons ®((s + t)/2) < (®(s) +
®(t))/2, Vs, t € R, d’ott |s + t[P < 2P~ (|sP + [tP), V s, ¢ € R (vérifier). Ceci implique

1. Un espace semi-normé est un espace vectoriel muni d’une « semi-norme ». Une semi-norme
x — ||z|| vérifie toutes les propriétés de la norme sauf |z =0 — z = 0.

1. Un espace normé complet est un « espace de Banach ». Donc L? est un espace de Banach.

§. L? est donc un espace normé complet dont la norme provient d’un produit scalaire : c’est
un « espace de Hilbert ».

t. Vérifier la convexité de la fonction ® en étudiant la monotonie de sa dérivée.
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|f +glP < 2P~L(|fP + |g|P). En intégrant cette inégalité avec f, g € £, nous obtenons
que [+ ge ZP.

Comme f + g € £?, nous pouvons appliquer la proposition 10.19 a). Avec ¢ le conju-
gué de p, nous obtenons

I1f + glow = SupU(f f g b he 29 Rl < 1}

< sup{ffh; he %% |h|La < 1} —i—sup{fgh; he 29 |h|La < 1}
= [fllze + lglze-

b) Les propriétés de (semi-)norme de | |» suivent de 1’exercice 10.9. CQFD

Démonstration du covollaire 10.27. Ceci est vrai pour toute norme (car une norme est, d’apres
I'inégalité triangulaire, lipschitzienne de constante 1). CQFD

Démonstration du théoréme 10.28. Nous pouvons travailler avec des fonctions (justifier).

Rappelons le principe suivant de preuve. Pour montrer qu'un espace métrique (en
particulier, normé) est complet, il suffit de montrer que toute suite de Cauchy contient
une sous-suite convergente. Pour construire une telle sous-suite dans le cadre du théo-
reme 10.28, nous reprenons essentiellement la preuve du théoréeme 7.5.

Soit ( f,,)n une suite de Cauchy dans .Z? et soit ( f,,, )i une sous-suite telle que

ank - fnk+1"LP < 2_k_1, Vk > 0.

Supposons d’abord 1 < p < co. Pour tout k& > 1, posons

k—1

gk = ‘fno‘ + Z ‘fnj+1 - fn]|

§=0
La suite (g ) étant croissante, nous pouvons définir g := limy, gy.
L'inégalité triangulaire et 1'inégalité de Minkowski impliquent

|frl < g1 < get|gilor < [ faolr + 1. (10.14)

Le théoreme de convergence monotone et la deuxiéme partie de (10.14) donnent
lgll» < o0. Nous avons en particulier g(z) < o p. p. Si z est tel que g(x) < o0, alors

| fao (@] + D | (Fy i — ) (@)] = g(z) < 0.

7>0

Il s’ensuit que pour un tel z la série fu,(2) + >;50((fn;11 — fn;)(2)) converge vers
un f(x) tel que |f(x)| < g(x) (justifier). Les sommes partielles de la série étant (f,,, (z))%,
nous obtenons f,, () — f(z) et |f,,(z)|P < (g(x))?. Pour les autres z, nous définissons

f() = 0.
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De ce qui précéde, nous avons f € Z?. Le théoreme de convergence dominée (va-

riante p. p.) donne J |fnp — fIP = 0,d’ou f,, — fdans £7.

Enfin, supposons p = . Soit B € .7 négligeable tel que f,, soit bornée sur X\B.
Soit A, € .7 un ensemble négligeable tel que |f,,,, — fn,| < 277! dans X\A. Soit
A = B u U,A, € 7, qui est encore négligeable. Sur X\A4, f,, est bornée et la suite
(fn,. )i est de Cauchy pour la norme uniforme. Elle converge donc uniformément vers
une fonction bornée f. En posant f(z) = 0siz € A, nous avons f € Z* et f,, — f dans
L (vérifier). CQED

Démonstration du corollaire 10.29. ( fy)n étant une suite de Cauchy, si 1 < p < o le corollaire
découle de la preuve du théoreme 10.28.

Sip = ®, a) découle de la preuve du théoreme 10.28, et pour b) nous pouvons prendre
g = sup,, || fal e CQFD

Démonstration de la proposition 10.30. L'inégalité de Cauchy-Schwarz implique que < f,g >
est bien défini. La linéarité dans chaque variable et la symétrie étant évidentes, il suffit
de vérifier que < f, f >= 0 = f = 0. Ceci découle de la derniére égalité de 1’énoncé,
qui est claire. CQFD

10.4 Pour aller plus loin

Soient p, g exposants conjugués. Si g € L4, alors I'inégalité de Holder montre
que "application

T:IP >R, T(f) :szg, Vfelr, (10.15)

est linéaire, continue et de norme < | g|| 4.

Sil < p < o, la proposition 10.19 (appliquée a | | .«) montre que la norme de
T est égale a |¢| .. De méme pour p = 1, si i est o-finie.

Le résultat suivant montre que (10.15) donne toutes les applications linéaires et
continuesT" : LP — R.

10.31 Théoréme (Théoreme de représentation de Riesz). Soit 7" : LP — R une
application linéaire et continue.

a) Sil < p < o, alors il existe g € L telle que

T(f) = ff g,V fell (10.16)

De plus, la norme de T est |g| za.
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b) Sip = 1 et p est o-finie, alors il existe g € L™ telle que

T(f) = ffg, VfelL. (10.17)

De plus, la norme de T est |g| .

Le théoreme ne mentionne pas L : les applications linéaires et continues sur
L* sont connues, mais tres difficiles a décrire.

Pour la preuve du théoréme 10.31, voir par exemple Lieb et Loss [16, Theorem
2.14]. Voir également 1’éclairage sur la similitude entre la preuve de ce résultat et
celle d’un autre théoreme de représentation de Riesz, le théoreme 14.19, apporté
a la fin de la section 14.4 et surtout dans la section 14.5.

198



Chapitre 11

Convolution

11.0 Apercu

La convolution est historiquement apparue dans la résolution des équations
différentielles, mais ses utilisations les plus fréquentes sont liées au lissage des
fonctions, c’est-a-dire a I’approximation d une fonction peu réguliére (par exemple
discontinue) par des fonctions plus lisses (par exemple de classe C).

Donnons un exemple simple de telle approximation. Soit f : R — R continue.
Posons

1 T+

Fé(x) := > fly)dy, Ve eR, Ve > 0. (11.1)

Tr—e&

Le théoreme de Lagrange donne 'existence d'un point { = {(z,¢) €|z —e, z+¢]
tel que F*(z) = f(£). Quand ¢ est petit, { est proche de z, et donc, du moins
intuitivement, F° est proche de f.' Par ailleurs, F*© est plus lisse que f : si f
est continue, alors F* est de classe C' (théoreme de Leibniz-Newton), et plus
généralement, si f € C*, alors F* € C*1.

Dans ce chapitre, nous allons expliquer un procédé général d’approximation.
Il est basé sur le produit de convolution, qui associe a deux fonctions f,g : R* — R
la « fonction »

frg(x):= . fw) gz —y)dy = . flx—y)g(y)dy; (11.2)

les guillemets attirent 1’attention sur le fait que les intégrales de (11.2) n’existent
pas nécessairement.

t. Et, en effet, si f est uniformément continue, alors F'°* — f uniformément sur R quand ¢ — 0.
Si f est « seulement » continue, alors F* — f simplement quand ¢ — 0.
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La formule (11.1) peut se réécrire comme

Fe(z) = %f(y) X[=cc](z — y) dy, (11.3)
R

qui est une convolution.

Dans un premier temps, nous allons donner des conditions sur f et g (inéga-
lité de Young, théoreme 11.2) qui assurent que le produit de convolution est bien
défini.

Par la suite, nous allons décrire une bonne classe de fonctions g telles que f = g
soit lisse (proposition 11.7).

La partie la plus importante est celle qui donne le mécanisme proprement dit
d’approximation. Si nous revenons a (11.3), nous avons F* = f = g., ou
1 1
g(x) = SX-11, ge(x) := gg(x/g), VreR, Ve >0. (11.4)
Le résultat fondamental de ce chapitre, le théoréeme 11.9, affirme que, si p :
R — R est convenable, " alors, pour 1 < p < w et f € £?(R), nous avons

f#p.e C°(R) et f*p, — fdans ZP(R) quand ¢ — 0. (11.5)

Enoncé convenablement, le méme résultat reste vrai dans les espaces L?.

La section 11.3 contient des conséquences de ce résultat d’approximation, et
des généralisations de celui-ci, sous des hypotheéses plus faibles sur p (théoreme
11.27).

Nous finissons par le théoreme d’approximation de Weierstrass 11.29 : « toute
fonction continue sur un compact de R” est limite uniforme d’une suite de fonc-
tions polyndmiales », théoréme dont la preuve « historique » passe par la convo-
lution.

Compétences minimales attendues.

a) Savoir appliquer I'inégalité de Young.

b) Savoir raisonner « par densité », en utilisant la densité de C'(2) dans .£7((2)
sil < p < oo (théoreme 11.11). o

Dans ce chapitre, nous considérons uniquement des fonctions ou classes d’équi-
valence f, g, etc., définies sur R” ou sur une partie borélienne de R" et qui sont
Lebesgue mesurables. La mesure sous-jacente est \,, sur la tribu .&),. Cette mesure
étant compléte, nous pouvons travailler si nécessaire avec des fonctions définies
p- p- : pour de telles fonctions, les notions de mesurabilité et intégrabilité sont
bien définies (remarque 8.36).

t. p doit étre bien plus lisse que notre g, et d’ailleurs 1’existence d’un tel p n’est pas évidente.
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11.1 Inégalité de Young

11.1 Définition (Produit de convolution). Le produit de convolution de f, g :
R"” — R est

frg(x):= . flx—y)g(y) dy, (11.6)

défini pour les x € R™ tels que la fonction y — f(z — y) g(y) a une intégrale.

D’apres 1'exercice 10.12, la définition du produit de convolution a aussi un
sens pour des classes f et g. Dans la suite, nous travaillerons soit avec des classes,
soit avec des fonctions boréliennes. (Rappelons que dans chaque classe nous pou-
vons choisir un représentant borélien; voir ’exercice 10.14 a).)

11.2 Théoreme (Inégalité de Young). Soient 1 < p,q < cotelsque 1/p + 1/q >
1. Soit 1 < r < oo défini par 1'égalité 1/r = 1/p + 1/q — 1.
Soient f € LP(R™), g € L4(R"™). Alors :
a) Le produit de convolution f * g est défini presque partout et définit une
fonction Lebesgue mesurable.

b) Nous avons f g e L"(R") et
I+ glr < 1F)ze llglze- (11.7)

c) Sil/p+1/q =1 (et donc r = ), nous avons les conclusions plus fortes
suivantes : f = g est défini en tout point, et | f = g(x)| < ||f]z» |lg]|lze, V@ € R™.

Exercices

L’exercice suivant montre que le produit de convolution est commutatif.

11.3 Exercice. Nous avons f = g(x) = ¢ * f(z), au sens olt 'une de ses quantités existe si
et seulement si l’autre existe et dans ce cas elles sont égales. o

Démonstrations
Démonstration du théoréme 11.2. Nous pouvons travailler avec des fonctions boréliennes (jus-
tifier).

c) Par symétrie du produit, nous pouvons supposer p < o (justifier). Avec h(y) := f(z—
y), I'inégalité triangulaire 6.23 a) et I'inégalité de Holder donnent

|f # gl(z) < flh(y)g(y) dy < [h|e lglLe = 1 flze [9lLe, Ve e RY
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(justifier la derniére égalité), ce qui au passage montre que f * g est défini en tout point
(justifier).

a) + b) Supposons maintenant 1/p + 1/¢q > 1 et donc 1 < r < co. Il suffit de traiter le cas
des fonctions positives. En effet, si les conclusions du théoréme sont vraies pour | f| et
lg|, alors f* g(z) est défini pour tout x tel que | f| = |g|(z) soit fini, et pour un tel z nous
avons

frg@)=frrgi(x) = frrg(z) = foxgi(x)+ f*xg_(x)

et

|f # gl(x) < [f] = gl(2),

d’ot1 les parties a) et b) du théoreme (justifier).

Si f, g sont boréliennes positives, alors f * g(z) existe (mais peut étre infini) pour
tout z, car il s’agit de I'intégrale d"une fonction borélienne positive (vérifier que y —
f(x—y) g(y) estborélienne). Il suffit donc de montrer (11.7), car dans ce cas nous avons
f+ge Z"(R") etdonc f = g(x) < oo pour R"\4, avec A — R" borélien négligeable.
De maniere équivalente, (11.7) donne que y — f(x — y) g(y) est intégrable pour tout
x € R™\ A (ce qui donne la partie a) du théoreme).

Notons les relations suivantes: p < r, g < r et

11~+rp/<:—p>+rq/<:—q> :1+<;‘1>+(;‘1> -

En utilisant ces faits et 1'exercice 10.22 (avec k := 3, p1 = 1, p2 := (rp)/(r — p),
ps = (rq)/(r — ¢) et la convention 1/0 = <), nous obtenons, pour tout z € R" et avec

h(y) := flxz —y):

Frgle) = | P g7 IHP () g () dy

< |2/ g 1 DA pomion 19T | ey i—a)

r r 1-—p/r 1—q/r
— B2 g R gl e
1/r
- (  Pa-ngw dy) LIS gl

(vérifier et justifier les deux dernieres lignes, en considérant séparément les cas ot
p=rouq=r).

Ceci implique (via le théoreme de Tonelli)
Il = [ gt de <1157 lali [ ([ - aa) ao
Wt ol [ ([ =) gt dy = 1615 ol
(vérifier), d’ou (11.7). CQFD
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11.2 Régularisation

Dans cette partie, nous travaillons dans R” muni de la norme euclidienne
usuelle, désignée par « | | »." Les intégrales s’entendent par rapport & la mesure
de Lebesgue.

Rappelons le résultat suivant de calcul différentiel.

11.4 Lemme. II existe une fonction ¢ € C*(R", R), non identiquement nulle, telle
que:

i) 0<(<1si|z]<]1.
ii) ((z) =0si|z| > 1} o

La fonction ¢ est alors intégrable d’intégrale strictement positive (justifier). En
divisant ¢ par son intégrale, nous obtenons ainsi l'existence d"un noyau régulari-
sant. Les noyaux régularisants jouent un role fondamental dans ’approximation
d"une fonction par des fonctions lisses.

11.5 Définition (Noyau régularisant). Un noyau régularisant est une fonction
p e C*(R™ R) telle que il existe 0 < R < oo tel que
i) p(xz) = 0si |z| < R.
ii) p(x) =0si |z| = R.
iii) p(x)dr = 1.
R
Si, de plus, R = 1, alors p est un noyau régularisant standard.

Une autre classe de fonctions d’intérét dans les procédures de régularisation
est C*(Q).

11.6 Définition. Si k € N u {0} et Q est un ouvert de R”,

CH(Q) := {p e C*(Q, R) ; il existe un compact K <
tel que p(x) =0, Vo e Q\K}.

Le résultat suivant montre que la convolution avec des fonctions de C*(R")
«lisse » les fonctions et donne une formule trés importante, (11.8).

t. Donc |z| = |z||2, Yz € R™.
1. Voici un exemple explicite de telle fonction (dont nous ne vérifierons pas ici les propriétés).

((x) = e~V 6] < 1
- |0, sifz|>1"
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11.7 Proposition. Soient 1 < p < cwetk e N u {w0}.
Soient f € ZP(R") et ¢ € C*(R"). Nous avons :

a) [+ est défini en tout point.

b) f=peCk.
¢) Pour toute dérivée partielle 0* d’ordre < k,
0N (f o) = [+ (%) (11.8)

La notation suivante est dans l'esprit de (11.4).

11.8 Notation. Si p : R” — R, nous posons

1
pe(x) = E—np(w/s), Ve>0,VxeR" o (11.9)

Le résultat suivant est le résultat central de ce chapitre.

11.9 Théoréme. Soit p un noyau régularisant. Soit 1 < p < o0. Nous avons

f#pe — fdans ZP(R") quand ¢ — 0, V f € ZP(R"). (11.10)

En particulier, C*(R") n .Z?(R") est dense dans .Z?(R").
De méme, C*(R") n LP(R™) est dense dans LP(R™).

11.10 Remarque. Notez I'ambiguité de la formulation de la derniéere partie du théoreme.
Au sens strict du terme, C° n LP n’a pas de sens, car L? contient des classes et C* des
fonctions. Le sens de I'énoncé est le suivant : pour tout f € L?, il existe une suite (f;);
telle que :

a) [ eCPnLPVj.

b) Pour tout représentant g € £? de f, f; — g dans ZP.

Une formulation équivalente est que, avec f; comme ci-dessus, la classe [ f;] € L? de
fj vérifie [f;] — f dans L”. o

Une conséquence facile du théoréme 11.9 est le résultat suivant.

11.11 Théoréeme. Soient 1 < p < w et Q < R"™ un ouvert. Alors CP(12) est
dense dans £7(12).

De méme, C'°(2) est dense dans L?(2).

11.12 Remarque. Le théoreme 11.11 est a la base de la stratégie la plus utilisée
pour montrer des propriétés de toutes les fonctions de 'espace £7((2), avec
1 <p<wetouvertde R":

1. Etablir la propriété pour les fonctions f € C©(Q).

204



Petru Mironescu Mesure et intégration

2. Montrer que l'ensemble des fonctions de .£?(2) qui ont la propriété étu-
diée est un fermé.

Nous illustrerons cette démarche dans la section 11.3 (preuve des propositions
11.21, 11.24 et du théoreme 11.27).

Exercices

Voici quelques propriétés fondamentales de p., avec p noyau régularisant stan-
dard.
11.13 Exercice. Soit p un noyau régularisant standard. Montrer, pour toute > 0:
a) pg( )=>0silz| <e.
b) p:(x) =0si|z| = e.

c) fﬂe—l °

Cet exercice est un complément de la proposition 11.7. Cette fois-ci, c’est f qui
est supposée de classe C*.

11.14 Exercice. Soient f € C¥(R") et ¢ € C.(R™). Nous avons :

a) f * ¢ est défini en tout point.

b) f*peCk.
¢) Pour toute dérivée partielle 0“ d’ordre < k,
0U(fxp)=(0"F) = . (11.11)

d) Si f est un polyndme ' (de n variables) de degré < m, alors f * ¢ est un polyndme de
degré < m. o

L’exercice suivant, dans 'esprit de I'exercice 4.32, sera utilisé dans la preuve
du théoreme 11.9.

11.15 Exercice. Soit K < R" un compact. Pour j € N*, soit

K; = {z e R"; dist(z, K) < 1/5}.
Alors K; est un compact, Vj, et K; \, K. o

L’exercice qui suit sera utilisé dans la preuve du théoreme 11.11.
11.16 Exercice. Soit 2 un ouvert de R"™ (muni d'une norme). Pour j € N*, soit
ji={zeR"; |z| <y, dist(z,U°) > 1/5}.

Alors K est un compact, Vj, et K; / U. o

t. Ou plut6t une fonction polyndmiale.
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L’exercice suivant montre que la procédure d’approximation de la preuve du
théoreme 11.11 permet d’approximer une fonction dans plusieurs espaces .Z” a
la fois.

11.17 Exercice. Soient 1 < py,...,p, < 0. Soit f € LP1(Q) N ... " ZLP(Q). Montrer qu’il

existe une suite (¢;); € CF(Q) telle que ¢; — f dans ZP(2),i=1,...,k. o
11.18 Exercice. En prenant n = 1 et f := g, ,[, montrer que les théoremes 11.9 et 11.11
et le lemme 11.19 sont faux si p = 0. o
Démonstrations

Démonstration de la proposition 11.7. Rappelons le résultat suivant : une fonction continue sur
R"™ qui s’annule en dehors d’un compact est bornée.

Etape 1. Existence de f  0%p si 0% est d’ordre < k. Soit R < oo tel que ¢(x) = 0, V|z| > R.
Soit 0 une dérivée partielle d’ordre < k. Alors 0y est continue et s’annule en dehors de
B(0, R) (justifier), donc il existe une constante finie C,, telle que [0%p(x)| < Cy, V2 € R™.

Soit ¢ le conjugué de p. De ce qui précede, 0%¢ € £ (justifier), et donc f = 0%y est
défini en tout point (théoréme 11.2 c)).

Etape 2. f *  est continue. Soit h(y,z) := f(y) p(z — ), z,y € R?, de sorte que f * p(z) =
h(y,z) dy. Nous appliquons le théoreme 7.10. La continuité par rapport au parametre

étant claire, il faut obtenir la majoration exigée par le (i”) du théoreme. Soit 2 € R™. Alors
p(z—y)=0si|z—z| <let|y| =r:= R+ |z|+ 1, car dans ce cas nous avons |z —y| > R
(justifier). Il s’ensuit que

fro) = [ hly.a)dy. ¥z e B,
B(0,r)
De ce qui précede, nous avons la majoration
h(y, 2)| < 9(y) := Colf W) XBon(W), ¥z € Blx,1).

Pour conclure, il suffit de noter que g est intégrable, car, par 1'inégalité de Holder, si ¢
est le conjugué de p alors

lglzr < Collflre IxBom e = ClflLe (avec C = C(r) < o).

La continuité de f * 0%¢ (avec 0 dérivée partielle d’ordre < k) se montre de la méme
maniere.

Etape 3. Preuve de 0;(f * ) = f = (3;). Le raisonnement est analogue a celui de I'étape 2;
on utilise le théoreme 7.14 au lieu du théoreme 7.10 (vérifier). Par récurrence sur 1’ordre
de différentiation, ceci permet d’établir c) pour tous les o concernés.

Pour conclure, f * ¢ a,jusqu’al’ordre k, des dérivées partielles continues qui vérifient
c). Elle est donc de classe C* et a les propriétés a)—c). La preuve est compléte. CQFD
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L'ingrédient clé de la preuve du théoreme 11.9 est le lemme suivant.

11.19 Lemme. Soit 1 < p < . Soient f € Z?(R") et > 0.

Alors il existe une fonction étagée de la forme g = }; a; xx,, avec K; compact,
Vj, telle que || f — g|» < 6.

De maniere équivalente, I’espace vectoriel engendré par les fonctions y x, avec
K < R" compact, est dense dans .£?(R"). o

Démonstration du lemme 11.19. Nous pouvons supposer f borélienne (justifier). Soit ( fx ), une
suite de fonctions boréliennes étagées telle que sgn f; = sgn f, Vk, fr — fet|fi] ./ |f]
(I'existence d"une telle suite découle de la preuve du théoreme 3.5). Par convergence do-
minée, nous avons | fi, — f||z» — 0; par ailleurs, f;, € £7, V k (justifier).

Chaque f, étant une somme finie de la forme ;; a; x4,, avec A; borélien et v,,(4;) <
o (la derniere propriété découlant de fj, € .£7;justifier), il suffit de montrer la conclusion
du lemme si f = x4, avec A borélien de mesure de Lebesgue finie (détailler). Dans ce
cas, rappelons que pour tout € > 0 il existe un compact K < R" tel que l’'on ait K < A et
vn(A\K) < € (corollaire 4.27).

Nous obtenons x4 — xk|r = |xa\xlzr = (n(A\K))/P < £l/P_ ¢ étant arbitraire,
nous obtenons le résultat désiré de densité. CQFD

Démonstration du théoréme 11.9. Nous considérons uniquement un noyau régularisant stan-
dard; le cas d'un noyau régularisant général est analogue.

Pour la deuxieme partie du théoreme, il suffit de noter que f * p. € C*(R") (proposi-
tion 11.7) et d’appliquer (11.10).

Soit
X :={feZ°R"); f*p. — fdans ZP(R") quand € — 0}. (11.12)
Par linéarité du produit de convolution par rapport au premier argument, X est un

sous-espace vectoriel de .ZP.

Etape 1. X est fermé dans £P. Soit (f;); = X avec f; — f dans £P. Soit § > 0. Alors il
existe un j et un eg tels que | f; — fllor < 6/3 et | fj * p- — fillLr < /3, V0 < & < &o.
L'inégalité de Young et le fait que | p-||;1 = 1, Ve (exercice 11.13) donnent

If # pe — floe < (f = £3) % pelloe + | f5 % pe = filee + | f5 — fllie
< |f = fillee + 1 f5 % pe — fillee + | f5 — fller <0, VO < € < &o.

0 étant arbitraire, nous obtenons que f € X.

t. Par abus de langage, comme expliqué dans la remarque 11.10, la conclusion du lemme 11.19
est que les fonctions étagées de la forme g = >}, a; xx; sont denses dans LP(R"). Par ailleurs, la
conclusion reste valable si nous remplagons R™ par un ouvert de R"; ceci découle de la preuve
du lemme 11.19.
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Au vu du lemme 11.19 et de ce qui précede, afin de conclure il suffit de montrer

Etape 2. Pour tout compact K = R", nous avons xx € X. Soit K un compact de R™ et § > 0.
Posons, pour j > 1,

Kj = {z e R"; dist (v, K) < 1/j} = Uzex B(z,1/j) (11.13)
(justifier la deuxieme égalité en utilisant le fait que, si F' — R" est fermé et y € R", alors il

existe z € F tel que dist(y, F') = |y — z|).

L'ensemble K; est compact, V¥ j, et nous avons K; \, K (exercice 11.15). Comme
vn(K1) < o, le théoreme de la suite décroissante implique 1'existence d’'un j tel que
vn(K;\K) < 6 (justifier).

Posons ¢p := 1/5. Soit 0 < € < (. Notons les faits suivants (évidents sur un dessin;
les justifier en utilisant la deuxiéme égalité dans (11.13)) :

size Ketye B(0,¢), alorsx — y € Kj, etdonc xg, (z —y) = 1; (11.14)
siz ¢ Kjetye B(0,¢), alorsz —y ¢ K, etdonc xg(z —y) = 0. (11.15)

Il s’ensuit de (11.14) que

re K = Xk, * pe(2) =J XK; (T —y) pe(y) dy = fB(O )pe(y) dy,
€

B(0,¢)
=1 = xx(x),
d’ou
re K = Xk(v)— XKk *p(2) = (XK; — XK) * pe(2) = XK;\K * pe(T). (11.16)

De méme, (11.15) donne (vérifier)
z¢ Kj = xk(z)— xK *pe(x) = 0. (11.17)
Par ailleurs, pour tout point € R" nous avons (vérifier) 0 < xx * p-(x) < 1, d’ott
ve KAK — |xi(@) — i #pe(@)] = v #pela) < 1. (11.18)
En combinant (11.16)—(11.18), nous obtenons
XK — XK * pe| < Xrcj\i * e+ XKk VO <€ <o (11.19)
L’'inégalité (11.19) et celles de Minkowski et Young donnent (détailler) :

IxXr = Xk * pellr < XK \i * PellLe + X&)\ | L2
< Ixxpklee el + Ixe, e = 2 Xk lle (11.20)
= 2 (Vu(K\K))YP < 26YP, V0 < € < &.

0 > 0 étant arbitraire, nous obtenons (11.10) pour f = xk. CQFD
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En examinant la preuve de (11.19), nous déduisons le résultat suivant.

11.20 Lemme (Existence de fonctions plateau; lemme d’Urysohn). Soient

K c U c R", avec K compact et U ouvert.

II existe une fonction ¢ € CF(U) telle que :
i) 0<p<lsurU.
ii) ¢ = 1sur K. o

Démonstration du lemme 11.20. Soit eg := dist (K, U¢), de sorte que €9 > 0 (pourquoi?).

Soit 0 < € < €0/2. Posons

L:={zxeR";dist(z,K) <e}, M :={zreR"; dist(z, K) < 2¢}.

Alors K < L ¢ M < U et M est un compact (vérifier). Soit p un noyau régularisant
standard. La preuve de (11.19) implique que ¢ := x, * p- a toutes les propriétés requises;
en particulier, p(z) = 0sixz ¢ M, etdonc p € CL(U). CQFD

Démonstration du théoréme 11.11. Soit f € ZP(Q). Soit f le prolongement de f avec la valeur
0 a R™\(), de sorte que f € ZP(R"). Soient e > 0etg e C*(R") n LP(R") telle que
If =9l zerny < &/2;existence de g suit du théoréme 11.9.

Soit g la restriction de g a Q. Nous avons g € C*(Q) n ZP(1) et (justifier)
1f = 9lr) < If = Gle@wny <e/2.

Il reste & trouver h € CX(Q) telle que g — | r () < /2.

Rappelons le résultat suivant de topologie : il existe une suite (K;);>1 de compacts
telle que K; €2 (voir I'exercice 11.16).

Soit, comme dans le lemme 11.20, p; € CF(12) telle que 0 < ¢; < 1 et p; = 1 sur Kj.
Nous avons ¢; — 1 simplement dans € (justifier). Comme [gp; — g| < |g| et gp; — ¢
simplement, nous obtenons par convergence dominée que ||g p; — gllrr() — 0. Pour j
suffisamment grand, h := g ¢; convient. CQFD

11.3 Pour aller plus loin

Sil < p < o, nous savons (théoreme 11.11) que C(€2) est dense dans .Z7(12).
Ce résultat permet, dans certains cas, d’établir des propriétés de toutes les fonc-
tions f € Z7(2) en étudiant uniquement les fonctions de C'°(€2). Nous donnons
ici quelques exemples typiques.

11.21 Proposition. Soient p, ¢ exposants conjugués. Si f € LP(R") et g € L9(R"),
alors f = g e C(R"). o
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Démonstration de la proposition11.21. Nous avons soit p < 0, soit ¢ < 00. Supposons par
exemple p < c0.

Etape 1. Preuve si f € C*(R™). Dans ce cas, la conclusion découle de la proposition 11.7.

Etape 2. Preuve si f € £P(R™). Soit (f;); = C*(R™) telle que f; — f dans #7 (I’existence
de la suite découle du théoreme 11.11). Nous pouvons travailler avec un représentant de
f, encore noté f. Alors l'inégalité de Holder donne

[fi*g(@) = frg(@)| =|(f; = f)*g@)] < |fj = flizr [g]ze — 0 quand j — oo.
Il s’ensuit que f * g est limite uniforme d’une suite de fonctions continues, donc conti-
nue. CQFD

11.22 Notation. Si f : R® - R, 7, f(z) := f(z — h), Va,h € R™. o

L’exercice suivant sera utilisé dans la preuve de la proposition 11.24.
11.23 Exercice. Si f ~ g, alors 7, f ~ 11,9, V h. o

11.24 Proposition (Continuité des translations dans L?). Soit 1 < p < oo. Pour
tout f € £?(R"), nous avons 7, f — f dans .Z?(R") quand h — 0.

De méme dans L”(R"). o

Démonstration de la proposition 11.24. Compte tenu de 'exercice 11.23, il suffit d’établir le ré-
sultat dans .#P(R") .

Etape 1. Preuve si f € C=°(R™). Soit R < o tel que f(x) = 0si|z| > R. Soit h € R” tel que
|h| <1.Si|z| = R+ 1, alors 73, f(z) = 0 et f(x) = 0 (vérifier).

Par ailleurs, soit M := max{|Vf(z)|; x € R"} < oo (justifier la finitude de M). Le
théoreme des accroissements finis donne (vérifier)

|Tnf(x) — f(z)] < M|h|, Yz, h e R™.

Il s’ensuit que, pour |h| < 1, nous avons

)

d =1l = [ mf@) - S ds
B( 1)

SMp\h\pf dz — 0 quand h — 0.
B(0,R+1)

Etape 2. Preuve si f € .£P(R™). Soit ¢ > 0. Soit g € CX(R") telle que |f — g|lr» < /3
(I'existence de g suit du théoreme 11.11). Soit 6 > 0 tel que |79 — g|» < /3 si|h| <
(I'existence de § découle de la premiere étape).

En notant que |kl zr = ||k|z», V k € LP(R™) (vérifier), nous obtenons, pour |h| < ¢ :

lmnf — floe < |lmnf — Thglze + |Thg — glle +llg — fl e
=|m(f =9z + lmng — glrr + |g — fle
=|f —glze + g — gllr + g — fllzr <e.
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€ > 0 étant arbitraire, nous obtenons la conclusion de la proposition. CQFD

Nous allons maintenant considérablement généraliser le résultat de conver-
gence (11.10), en affaiblissant les conditions sur (I’analogue de) p..

11.25 Définition (Approximation de I'identité). Une approximation de I'identité est
une famille (¢%).~ telle que :

i) ¢°:R" — R est (Lebesgue) intégrable, Ve > 0.
ii) J(E =1,Ve>0.

iii) Il existe une constante M < oo telle que f ICF| < M,¥e>0.

iv) Pour tout § > 0, lime_,of 7| = 0.
R™\B(0,5)
Définition analogue lorsqu’il s’agit d"une suite (¢?) 1. o

Un exemple fondamental d’approximation de 1'identité est donné par le ré-
sultat suivant.

11.26 Proposition. Soit p € Z*(R") telle que Jp = 1. Soit, comme dans (11.9),

1
pe(x) := E—np(:zc/e)7 VreR" Ve >0.

Alors (p:)e~o est une approximation de l'identité.

En particulier, cette proposition s’applique lorsque p est un noyau régulari-
sant. o

Démonstration.

1) +1i) + iii) Nous avons Jpg = Jp =1let f |pe| = J\p\ := M < oo (vérifier), de sorte que
1)—1ii) sont satisfaites.

iv) Soitd > 0. Nous avons (justifier, en utilisant le changement linéaire de variables ®(y) := e y)

|pe ()] dz = J lp(y)| dy — 0 quand e — 0,

fR”\B(O,é) R™\B(0,6/¢)

la derniére conclusion étant une conséquence du théoréme de convergence dominée (justi-
fier). CQFD

Le résultat suivant généralise le théoreme 11.9.
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11.27 Théoreme. Soit 1 < p < c0. Soit ((%).~¢ une approximation de l'identité.
Pour tout f € Z?(R") nous avons f = (* — f dans .Z?(R") quand ¢ — 0.
De méme pour une suite (¢7) ;1.

De méme dans LP(R"). o

Démonstration. Etape 1. Preuve quand f € CX(R™). Pour les besoins des résultats a venir, nous
allons estimer la différence f = (¢ — f lorsque f ala propriété plus faible f € C.(R™). Rappelons
quune telle fonction f est uniformément continue sur R™.

Donné ¢ > 0, soit0 < ¢ < 1telque
[Vz, 2’ eR", |z —a'| < 0] = |f(z) — f(a')] <&

Soit C' < w tel que |f(x)| < C, Va € R™ (justifier I'existence de C). Enfin, soit R < oo tel que
f(z) =0si|z| = R.

Pour tout x € R™, nous avons

|f*fm»—fmn:Lﬁﬂx—wcﬂwdy—fm>

| [0 -rercmal
gfﬁ@—@—f@ﬂf@ﬂ@
_J (@ —y) = F(@)| ¢ (y)| dy
B(0,5)
JJ |f(x —y) = f(@)] 1 (y)| dy
R™\B(0,5)

sff 15 (y)| dy
B(0,5)
_l’_

(11.21)
f @ —y) — f@)] )] dy
R\ B(0,5)

<¢ | 1l
S pe— - @l w) dy
R\ B(0,5)

ng+j Flz—y) — F@)] W) dy
R™\ B(0,0)
sM§+J (£ — )| + 1F@)]) ¢ ()] dy
R™\B(0,6)
£M§+2CJ 1¢5(y)] dy-
R™\B(0,6)

Par ailleurs, si |x| > R+ let|y| < 0 < 1,alors f(z) = f(x —y) = 0. Il Sensuit que pour
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un tel z le calcul (11.21) donne

x (" (x) — f(x L= : d
Fc@—s@ls] il @l 1122)

=|f] = (|¢°] XR"\B(O,J))(x)'

Soitr =15, 1= J |¢°(y)| dy, de sorte quelim, g 5. = 0,V > 0. Soite) = 15, :=
R™\B(0,6)

IC¥[ Xrm\B(0,5), qui Vérifie [|[¢)]| 1 = 7.

En utilisant (11.21) si |x| < R+ 1et(11.22)si |x| > R+ 1, nous obtenons, grice al'inégalité
de Youngetavec N = N(R) < o0:

f*f—ﬂ%sf

B(0,R+1)

[ME+KHVm+f [1f] % w]?

R™\B(0,R+1)

<N[ME+207)P + JR [1F] )P (11.23)

n

< NM&+ 2007 + | £, 0], — N MP & quande — 0.

& > 0 étant arbitraire, nous obtenons que f % (* — f dans Z?(R") quand e — 0.
Etape 2. Preuve si f € £P(R™). Soient f € £P(R™) et > 0. Soient g € CX(R™) et gy > 0 tels

que ||f —gllzr <&et]g*(*—g|r <& V0 < e < ep. Pour un tel ¢, nous avons (détailler)

[f# ¢ = fllee < f# ¢ =g Cller + lg* ¢ —glee + g = flee
<I(f=9)*Cller + 28 < If = gllze I +26 < (M +2) &

¢ > 0 étant arbitraire, nous obtenons la conclusion du théoréme pour f. CQFD

Au passage, nous avons montré le résultat suivant (voir (11.21)).

11.28 Corollaire. Soit (¢°).~o une approximation de l'identité. Soit f € C.(R"™).
Nous avons f # (* uniformément dans R" quand € — 0. o

Ce corollaire intervient dans la preuve du résultat suivant.

11.29 Théoreme (Théoreme d’approximation de Weierstrass). Soit K < R” un
compact. Soit f € C(K,R).

Alors il existe une suite de polynomes ' de n variables (P;); telle que P; — f
uniformément sur K.

De maniere équivalente, {P : K — R; P fonction polynémiale} est dense
dans C'(K, R) muni de la norme uniforme. o

1. Ou plutét de fonctions polynoémiales.
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Convolution 11.3 Pour aller plus loin

Démonstration. Nous utilisons le résultat suivant de topologie (théoréme de Tietze) : si B est
une boule de R” telle que K < B, alors toute fonction f € C'(K,R) admet une extension g €
C(R™,R) avec g(z) = 0, Vx € R™\B. Ainsi, quitte 2 remplacer K par B et f par g, il suffit de
montrer le résultat pour la restriction B d’une fonction f € C(R", R) qui s'annule en dehors de
B (justifier). Sans perte de généralité, nous pouvons supposer que B = B(0, R).

Soit f € C.(R™) telle que f(x) = 0si|z| = R. Soit p la « gaussienne standard » dans R",

1 2
— — |z
p(z) = pry Ve eR"™

Rappelons que J p = 1. Laproposition 11.26 combinée avec le corollaire 11.28 donne f  p. —

f uniformément sur R quand ¢ — 0, out

1

e e P/ e >0, Vo e R™ (11.24)
s g

pe(x) =

Soitd > 0. Soite > Otel que || f * pc — f|L» < I, dou (exercice 10.10)

|f *pe(z) — f(x)] <, Vx e R™. (11.25)

Nous allons trouver un polynéme S tel que

[(pe = 8)(2)| <0, Vz € B(0,2R). (11.26)

En admettant lexistence d’'un tel S, nous concluons de la fagon suivante. Pour tout ¢ nous
avons

B(0,R)

f*w@>=f F(0) ol — ) dy. (11.27)

Soit M < o tel que |f(x)| < M,Vz € R™. Siz,y € B(0,R), alorsx —y € B(0,2R). En
combinant ce fait avec (11.25)-(11.27), il s’ensuit que, pour tout = € B(0, R) nous avons, avec
N =N(R) < w,

[f#S(x) = f@)| < |f = [S(x) = pel(@)] + [(f * pe = F)(@)]

<[ swIs - pdw - vy +9
B(0,R)

< M&f dy+6=NG.
B(0,R)

d > 0étantarbitraire nous obtenons, pour une suite (.5;) ; convenable de polyndmes, f+S; —
f uniformément sur B quand j — o0. Pour conclure, il suffit de noter que f * S; est un polynéme
(exercice 11.14 d)).
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Ainsi, pour compléter la preuve il suffit de trouver S satisfaisant (11.26). Rappelons que le dé-
veloppement en série de 'exponentielle converge vers 'exponentielle uniformément sur les com-
pacts:siT > Oet{ > 0, alors il existe k tel que

k
e~
=0

l
Llee viel-n1. (11.28)

~

Soit k tel que (11.28) soit valide avec T := 4 R? /2 et £ := 7"/2 " §. Posons

k 2/,.2\¢
1 (=l=*/e%)
S = . .
£=0
De (11.28), (11.29) et (11.24), nous avons (11.26) (vérifier!). CQFD
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Chapitre 12

Séries de Fourier

12.0 Apercu

Dans ce chapitre, nous considérons des fonctions f : I — C, avec I < R inter-
valle. Le but est d’écrire f comme une « superposition d’ondes (co)sinusoidales »,
ou encore comme la somme d’une série de Fourier.

Le choix de I n’est pas important, les plus populaires étant / =]0,1[ et I =
10, 27[. Nous travaillons dans I =]0, 2n[, muni de la tribu de Lebesgue et de la mesure
w=(1/m(I)) A\ = (1/(27w)) A\;. Ainsi, si 1 < p < o0, alors

o 1/p
Ifl = <i [ |f<x>|pdas) E 12.1)

21 Jo

Toutes les (classes de) fonctions f considérées sont supposées étre Lebesgue intégrables
sur I. I étant de mesure finie, il s’ensuit que I'hypothese d’intégrabilité est satis-
faite si f € LP(I) pour un p > 1 (remarque 10.16). Selon un principe rencontré a
plusieurs reprises, les énoncés comprennent des classes de fonctions, les preuves
se font sur des fonctions.

Si f: R — C est 2r-périodique et suffisamment lisse (de classe C"* suffit, voir
la section 12.4), alors nous avons

n=00 n=N
flz) = Z cn(f)e™ = th{lw 2 cn(f)e™, Vo eR, (12.2)
n=—o0 N—ooo n=M
avec
27
alf) =g | ey (123)

t. Rappelons la conventionj g(x)dr = J gdA;.
Ja.bl

a
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Séries de Fourier 12.0 Apercu

La définition (12.3) s’obtient a partir du calcul formel * suivant (avec §)), le sym-
bole de Kronecker) * :

= S alpen

n=—au
1 21 1 2 M=
il ) flz)e ™ de = %L ; dx
1 2 1 m=00 21
= 5 ) flx)e das=2— Z L dx
= 27?521
1 21 m
e % f(l’) e " dr = Z Cm(f) 5:1 = Cn(f)
0

m=—0o0

Ce calcul permet de dégager la définition (12.3). Ses lignes formelles sont la
premiére et la troisieme, car il faut pouvoir justifier (12.2) et la permutation de la
somme et de l'intégrale.

Dans ce chapitre, nous allons justifier et donner un sens a la premiére égalité
(12.2). Ce sens ne sera pas, en général, celui de la deuxieme égalité de (12.2).

La section 12.1 permet de faire le lien entre (12.3) et la décomposition d'un
vecteur dans une base orthonormée. Ce sujet sera revu dans le chapitre 14, dans
le cadre des espaces de Hilbert; nous donnerons ici le cadre minimal permettant
de comprendre (12.3) si f € L*(I).

La section 12.2 est consacrée a 1'égalité (12.2) si f € L?(I). Le résultat principal
est le théoreme de Fatou 12.4 qui affirme que
n=N
f= lim Z cn(f) e™ dans L*(I).

M——0o0
N—o0 n=M

Ce résultat est complété par 1'égalité de Parseval (12.13)

foﬁ @) =27 Y Jea())P

n=—0

et par le théoréme de Riesz-Fischer 12.8.

t. En analyse, un calcul formel est un calcul que I'on ne peut pas nécessairement justifier. En
dehors de 'analyse, cette expression est synonyme de calcul symbolique Calcul formel (Wikipédia)
En anglais, il n'y a pas d’ambiguité : formal computation en analyse, vs symbolic calculus.

) 4 1 sii—i
t. Le symbole de Kronecker &}, avec i, j € I, est défini par 67 := 0’ S% ! . I,
, sii#
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Un autre résultat significatif qui sera obtenu dans cette section est le lemme de
Riemann-Lebesgue 12.9.

La section 12.3 est dédiée au comportement ponctuel " de la série >, 7 ¢, (f)
e : plus spécifiquement, on s’intéresse a la validité de (12.2) (ou d"une variante
de (12.2)) a = fixé. Pour des fonctions dérivables par morceaux, cette convergence
(énoncée proprement) est le contenu du théoréme de Dirichlet 12.13.

Dans la cas d’un fonction continue par morceaux, la série de Fourier peut
ne pas converger. La bonne notion de convergence est celle de convergence en
moyenne; le résultat de convergence correspondant est le théoreme de Fejér 12.15.

La section 12.4 est dédiée a la convergence uniforme ou normale de la série
de Fourier. Cette section est plus avancée que les autres et peut servir de base
a la préparation a 'agrégation. Notons, dans cette introduction, deux résultats
marquants et simples a énoncer (Corollaire 12.25) :

a) Si f(0) = f(2n) etil existe « > 0 et C' < w tels que |f(z) — f(y)| < Clz —y|%,
Va,y € [0,27], alors >_  ci(f)e™ converge uniformément vers f quand
n — .

b) Si f(0) = f(27m) etil existe a > 1/2 et C' < o tels que | f(z) — f(y)| < Clz —y|%,
Vaz,ye|0,2r],alors X7 c,(f)e™ converge normalement vers f.

n=—oo N

Dans la section 12.5, nous mentionnons sans preuve d’autres résultats célébres
de (non) convergence.

Compétences minimales attendues.

a) Savoir utiliser 1'égalité de Parseval, le théoreme de Fatou et le théoreme de
Riesz-Fischer.

b) Savoir utiliser le théoreme de Dirichlet. o
12.1 Un peu d’algebre bilinéaire
Soit H un espace vectoriel complexe, muni d’un produit scalaire complexe

<, >,% qui induit la norme |z| :=< z,7 >'2,Vx € H.

Si (ej)jes = H est une famille orthonormée,  alors pour tout = € H et toute

t. Ponctuel : en tout point z € 1.

1. Nous considérons un produit scalaire linéaire dans le premier argument et antilinéaire dans
le deuxiéme argument. L'exemple typique est C? 3 (z1,22) — z1%3. C'est le produit scalaire des
mathématiciens. Les physiciens considerent des applications antilinéaires dans le premier argu-
ment, linéaires dans le deuxieéme argument. L'exemple typique est C? 5 (21, 22) — Z120.

§. Donc <ej,ep>=0,Vj#Llet<eje; >=1,Yj.
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Séries de Fourier 12.1 Un peu d’algebre bilinéaire

famille finie L < J nous avons les propriétés suivantes.

2 2

|||* = Z <mze; > e + 93—2 <z, ej > €
jeL jeL 2 (12.4)
:2| <ze; >+ :U—Z<:c,ej> e;ll
jeL jeL
d’ot1 en particulier
Ml<we > < |z (12.5)
jeL
Siz e Vect{e;; je L}, alors z = 2 <z,e; > €
Jet (12.6)

et o> = > [ <z e > |*.
jeL

Nous allons appliquer ceci a ’espace L? := L?(]0, 27[), avec le produit scalaire

1 2m 1 2m
<fozm g | s = 5| sgan (127)
12.1 Notation. Sin € Z,
en(z) =", Yrel. (12.8)

(Pour étre plus précis, nous travaillons avec [e,] plutdt qu’avec e,,. Néanmoins, par
souci de simplicité, dans les formules nous identifions e,, a sa classe.) o

12.2 Définition. Si f € L' := L'(]0, 27[), le n® coefficient de Fourier de f (n € Z)
est

1 21

enlf) f@a@w=if7m§mm 129)
2 Jo

Si f € L?, nous avons ¢, (f) =< f, e, >.

Il est immédiat que c,(f) dépend uniquement de la classe de f.

La suite (e, )nez étant orthonormée (exercice 12.3 b)), les relations (12.4), (12.6),
respectivement (12.5) avec J := Z et L := {n € Z; ng < n < n;} donnent l'inégalité
de Bessel

n1 1 2m | N1 2
2 leNP =g | | 20 enlh)e™| da
n=ngo @ 0

e (12.10)
1 Yy
<o | IF@Pde = 13 ¥ € 0. 20D
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et 'identité

ni 2 ni 2
M= S aner] 4= 3 aer] | (12.11)
n=ng L? n=ng L2
Exercices

12.3 Exercice.

a) Montrer que (12.7) définit un produit scalaire sur L.

b) Montrer que la famille (e;,),cz définie par (12.8) est orthonormée dans L? muni du
produit scalaire (12.7). o

12.2 Séries de Fourier dans 2

12.4 Théoréme (Théoréme de Fatou et égalité de Parseval). Soit f € L? = L?
(]0,27(). Alors :

a) (Théoreme de Fatou) Nous avons

0 n=N
f= ) clf)em = lim ' c(f)e™ dans L. (12.12)
n=—u ]\J4V_—)>_oooon=M

b) Nous avons l'égalité de Parseval

['e) 2m
D el = 52 | 7@ do = 1113 (12.13)

n=—0o0

12.5 Remarque. Une somme de la forme z — ZZ;]E en(f) €™ est un polyndme trigono-
métrique, c’est-a-dire une somme finie de la forme ), a,e"". o

12.6 Définition. Si f € L', nous posons

n

Sulf) =) clf)ex (12.14)

k=—n

En combinant le théoréme 12.4 et le corollaire 10.29, nous obtenons la consé-
quence suivante.

12.7 Corollaire. Si f € £ = £?%(]0,2x[), alors il existe une sous-suite (n;); de N
telle que

Su;(f)(x) — f(x) quand j — oo, pour presque tout x €]0, 27| o (12.15)
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Séries de Fourier 12.2 Séries de Fourier dans 2

L'inégalité de Bessel (12.10) implique que, si f € L?, alors la suite (¢, (f))nez des
coefficients de Fourier de f appartient a ¢*(Z). Remarquablement, la réciproque
est vraie. C’est le contenu du théoréme suivant.

12.8 Théoreme (Théoréeme de Riesz-Fischer). Soit (a, ).z une suite telle que

a0

Z |an|? < .

n=—0o0

Alors il existe une et une seule fonction f € L?> = L*(]0,2x[) telle que
cn(f) = an, VneZ

La preuve du théoreme 12.4 se fait par densité, en commengant par des fonc-
tions de C'(]0, 27[). C’est une situation analogue a celle rencontrée dans la sec-
tion 11.3. Voici un autre résultat important dont la preuve est dans cet esprit.

12.9 Lemme (Lemme de Riemann-Lebesgue). Soit f € L' = L'(]0,2x[). Nous
avons ¢, (f) — 0 quand |n| — oo. o

Exercices

12.10 Exercice. Soit

PzZanem' zZanen

nel nel

(avec I  Z fini) un polyndme trigonométrique. Montrer que P € .#! et que

inel
cn(P) = in s%n . o
0, sing¢l
12.11 Exercice. Que donne 1’égalité de Parseval pour f(z) = x? o
Démonstrations

Démonstration du théoreme 12.4. L'ingrédient fondamental dans la preuve est le résultat sui-
vant de densité, qui sera démontré plus tard.

12.12 Théoreme. Soit g € C([0, 27]; C) telle que ¢g(0) = g(2). Soit € > 0.
Il existe un polynome trigonométrique P tel que |g(z)—P(z)| < ¢,V € [0, 27].

De maniere équivalente, soit Cper := {g € C([0,27];C); g(0) = g(27)}, muni
de la norme uniforme. Alors les polyndmes trigonométriques sont denses dans
Cher- o

pér
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Démonstration du théoréme 12.4 (en admettant le théoréeme 12.12).

a) Soit f € £? et soit e > 0. Soit g € CX(]0, 27() telle que | f — g| ;> < e ('existence de g
suit du théoreme 11.11). Soit P un polyndme trigonométrique tel que |g(x)—P(z)| < ¢,
Va € [0,2n] (existence de P suit du théoreme 12.12). Notons que g — P||;2 < ¢, ce
qui implique | f — P|;2 < 2e.

Soient ng,ny € Z tels que P = Z;“:no an €n. S1 M < nget N > ni, nous avons

N

>l en(P)en =P (12.16)
n=M

(justifier, en utilisant 1’exercice 12.10).

Pour de tels M et N, il s’ensuit que

N N
Hf— S ealfeal < =P+ P= ) elf)en
n=M L2 n=M L2
N N
=|f— Pl + Z cn(P) en — Z en(f)en
n=M n=M L2
= f = Plzz+| D ealP = fen
n=M L2

< |[f = Pl + [P = fll2 < 4e.

Au passage, nous avons utilisé : (12.16), la linéarité de 'application f — ¢,(f) (la
justifier) et I'inégalité

n1

Z cn(9) en

n=ng

< glz2, Vge L2

.2
qui découle de (12.10).

e > ( étant arbitraire, nous obtenons que

N
lim ' cn(f)en = f dans .£2. (12.17)

M——0o0
N—ow n=M

b) découle de (12.6) et de (12.17). En effet,

2

0 N

N
2 (AP = Jim > je(f)F = lim | Y en(f)en) =72 cam
k=—00 N—op n=M N—oop lIn=M L2

Démonstration du théoréme 12.8. Existence. Soit P, := >, __ aiej. L'identité (12.6) donne,
pour0 <n <m:

| P — Pall32 = Z ager| = Z lax|* — 0 quand n,m — oo.

n+1<|k|<m 2 ntllklsm
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Séries de Fourier 12.3 Comportement ponctuel des séries de Fourier

Il s’ensuit que (P,), est une suite de Cauchy dans .¥ 2 Par complétude de .¥ 2 (théo-
réme de Fatou 10.28), il existe f € .#? telle que P,, — f dans #? quand n — . Sin > |k,
alors ¢ (P,,) = ay, (exercice 12.10), d’ott (justifier)

ler(f) = arl = ler(f) — cu(Po)l = ler(f — Po)| = | < f — Pr, e > |
<|f = Palrz lenlrz = | f — Pulrz — 0 quand n — o0,

ce qui implique ¢, (f) = aj pour tout k.

Unicité. Notons que, si cx(f) = ck(g) pour tout k € Z, avec f,g € L?, alors I'égalité de
Parseval appliquée a f — g donne f = g. CQFD
Démonstration du lemme 12.9. Soient f € £* et e > 0. Soit g € C*(]0,2n]) telle que ||f —

gl < e (Uexistence de g suit du théoréeme 11.11).

Sin # 0, alors une intégration par parties donne

1 2m B 1 21 , _
ule) = 5 | o) e e = o [ @) e,

1
d’ot < — 1'-0 d — 0.
0 fen)] = - g/ — 0 quand o

11 existe donc ng tel que |c,(g)| < € si |n| = ng. Pour un tel n, nous avons

len ()] < lea(g)] +len(f — )| < len(g)] + 1f — gl < 2e. CQED

12.3 Comportement ponctuel des séries de Fourier

Dans cette section nous travaillons avec des fonctions (au lieu de classes). La
question fondamentale étudiée est le comportement de la suite

n

Sulf)(x) = > al(f)e* neNzell

k=—n

Il sera commode de travailler avec des fonctions définies d’abord sur [0, 27|,
qui sont prolongées par 27-périodicité a R. Par exemple, si f(z) = z, z € [0, 27|,
alors le prolongement 27-périodique de f est

T
—r—2 E(—) VreR?
flz)=a—2m o x
Toutes les fonctions définies dans cette section sont supposées 2m-périodiques et inté-
grables sur I =)0, 2x|.

Le premier résultat fondamental de cette section est le théoreme de Dirichlet.

t. L'étude du comportement de Y, _ ¢ (f) e’*® quand m — —oo et n — o0 de maniere indépen-
dante est un sujet tres délicat qui dépasse largement le cadre de ce cours. Dans cette section, nous
considérons uniquement le cas ot m = —n.

1. E(z) désigne la partie entiére de z.
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12.13 Théoréme.

a) (Critere de Dini) Soit 2 € R. S’il existe deux nombres f(xy+) et une fonc-
tion G € £1(]0, 7[) telle que

|f(woL) — f@o £ y)| <yG(y), VO <y <m, (12.18)

alors

f(zo+) + f(wo—)

Sul ) (o) — T

quand n — oo. (12.19)

b) En particulier, (12.19) est vraie si f a des limites latérales f(zo+) en zy, et
les limites

lim f(zo £ y) — fzoL)
y—0 Yy

existent et sont finies.

¢) (Théoreme de Dirichlet) En particulier, (12.19) est vraie en tout point x, €
R si f est « dérivable par morceaux ».

Si, dans le théoreme précédent, nous voulons abaisser la condition de régula-
rité sur f de « dérivable » & « continue », alors la bonne notion de convergence est
celle de convergence en moyenne (théoreme de Fejér 12.15), la moyenne étant définie
ci-dessous.

12.14 Définition. Si f € Z', nous posons
So(f) + S1(f) + - Su(/f)

n+1

T,(f) :=  VYneNt (12.20)

12.15 Théoreme (Théoreme de Fejér).
a) Soit zg € R. Si f a des limites latérales finies f(zo+) en x, alors

f(xo+) + f(z0—)
2

T.(f)(zo) — quand n — oo. (12.21)

b) Si f est continue, alors 7,,(f) — f uniformément quand n — oo.

De maniere équivalente, soit f € C([0,2n]) telle que f(0) = f(2x). Alors
T.(f) — f uniformément sur [0, 27| quand n — co.

t. (Tn(f))n estla moyenne de Cesaro de (S,,(f))n.
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Séries de Fourier 12.3 Comportement ponctuel des séries de Fourier

Exercices

L’exercice suivant est fondamental. Il montre que, dans les calculs, on peut rem-
placer |0, 27| par tout intervalle de longueur 2.

12.16 Exercice. Soit f 2m-périodique et intégrable sur |0, 27[. Montrer que :

a) f estintégrable sur tout intervalle borné.

27 a+2m
b | f(y)dy=j f(y)dy, VacR. 5

a

Les noyaux de Dirichlet interviennent dans la preuve du théoréme de Dirichlet
12.13.

12.17 Définition (Noyau de Dirichlet). Le n® noyau de Dirichlet (n € N) est
Dy(z):= ) €* VzeR o (12.22)
k=—n

12.18 Exercice. Soit f 2mw-périodique et intégrable sur |0, 27[. Montrer que :

1 2

Su(N@) =5 [ £~ 9) Dalw)dy
| o (12.23)
=5 fa:— y) Dp(y)dy, Ve R,
sin n+1/2 )7 Siydon
sin y/2
sin(ny) cotan (y/2) 4+ cos(ny), siy ¢ 2n7Z
2n + 1, siye2nZ’
— | Duy)dy = o (12.25)

o
Les noyaux de Fejér interviennent dans la preuve du théoreme de Fejér 12.15.
12.19 Définition (Noyau de Fejér). Le n® noyau de Fejér (n € N) est

Dot it D
=20 P yen o (12.26)
n+1

12.20 Exercice. Soit f 2m-périodique et intégrable sur |0, 27[. Montrer les propriétés sui-
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vantes.
1 21
Tu(f)(@) =5 | flz—y) Fuly) dy
) (12.27)
— f flz— (y)dy, Vx € R,
sin?[(n + 1)y/2] )
(n + 1) sin?(y/2)’ sty ¢ 2nZ , (12.28)
n+1, siye22nZ
(y) dy (12.29)
f n(y) dy = f Fo(y)dy == (12.30)
0 -7

Par ailleurs, montrer que
a) F,(y)>0,Yn,VyeR.
b) Pour tout0 < § < 7, F,, — 0 uniformément sur [—m, —d] U [d, 7] quand n — c0.
¢) Pourtout0 < § <,

J F,(y)dy — 0 quand n — co. o (12.31)
[—m,—=d]u[d,7]

Démonstrations

Démonstration du théoreme 12.13. Etape 1. Preuve de (12.19) sous I'hypothese (12.18). Posons
[f (o —y) — f(wo—)] cos(y/2)

" (/) , si0<y<m
TIZ [fwo —y) = flwo)] cos(y/2) .
sin(y/2) S msyst

et

_ Jf@o—y) = flwo—), si0<y<m
h(y) := , .
f(xo —y) — f(zot+), si —m<y<0

Notons que

lg(y)| < G(lyl), V0 < |y <,

)
sin(y/2)

avec G comme dans (12.18). La fonction

Y
I=m a0} sy 2o

se prolongeant par continuité en 0 et +, il existe une constante C' < o telle que

l9(y)l < CG(lyl), VO < |y| <. (12.32)
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Par ailleurs, g est mesurable (justifier). De (12.18) et (12.32), g est intégrable sur | — 7, [
(détailler).

De maniere analogue,
()] < WIG(lyl) < 7G(Jyl),
et donc h est intégrable sur | — 7, 7.
En utilisant I’exercice 12.18, nous obtenons (détailler)

S f(ao) = HEHEICZ) LT 0y ) D) dy

—T

1 0
7 paos) Daty) ay

—217r B sin(ny) g(y) dy + % B cos(ny) h(y) dy
=ﬁ - g(y) [e" —e "] dy
1 T
+ - -
1
:2*1[0771(9) - Cn(g)] +

h(y) [e™ +e™"¥] dy

Slen(h) + ea(h)]

— 0 quand n — oo,
la conclusion finale étant une conséquence du lemme de Riemann-Lebesgue.

Etape 2. Preuve des items b) et c). Il faut montrer que les hypotheses des items b) et c)
impliquent 'existence d"une fonction intégrable G ayant la propriété (12.18). Posons

G(y) == fzo + y)y_ f(@o+) ‘ n ’f(wo - y)y_ f(xo—)

, Vo< y<m.

Alors G est mesurable et satisfait, par construction, (12.18).

Si f est comme dans l'item b), alors GG a une limite finie en 0, et donc G est bornée (et
donc intégrable) dans un voisinage |0, €[ de 0. Par ailleurs, si y > ¢, nous avons

G(y) < e (|f(wo +y)| + [f(@ot)| + [ f(wo = y)| + |f(zo-)]) := H(y),
et cette majorante est intégrable (justifier), d’ott G est intégrable.

Enfin, I'item c) est un cas particulier de l'item b). CQFD
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Démonstration du théoréme 12.15. Etape 1. Preuve de I'item a). Soit ¢ > 0. Soit 0 < § < 7 tel que
0<y<d = |f(xzoLty) — flzot) <e. (12.33)
Posons
my = max{F,(y); 6 < [y| < 7},
de sorte que

lim my, =0 (12.34)

n—aoo
(exercice 12.20).

En utilisant I’exercice 12.20 et (12.33), nous obtenons, avec a := [ f(xzo+) + f(x0—)]/2:

T f (o) —al = flx—y) Faly) dy — 7 fzo+) — 7 f(20—)

1 s
oL
1 (0
<o— | |fle—y) = flzot)| Fuly)dy

27
+ 2177J: [f(z—y) = f(zo—)| Fuly) dy
s
9

T )5
| el + 1 a0o)] + 1o = )] + £+ )] dy
™ Jlom]
<o | Fulw)dy + (1 @o+)] + | flao-))

2o [ @) ds

My
= + 7(|f(xo+)| + |f(zo—)| + 2| f]l;) = € quand n — co.
Il s’ensuit qu'il existe ng tel que |T), f(x0) — a| < 2¢, Vn > ny.

Etape 2. Preuve de I'item b). Rappelons qu’une fonction continue et périodique sur R est
bornée et uniformément continue. Il s’ensuit qu’il existe un ¢ indépendant de zy tel que
(12.33) soit satisfaite, et pour ce 6 nous avons, en reprenant les calculs précédents,

T f(wo) — al <&+ (1 f@o+)| + | (wo=)| + 2/ 1)

m
<e o+ "2l +21f]1) — € quand n — 0.

Nous en déduisons I'existence d'un ng indépendant de x tel que |1}, f(zo) — a| < 2¢,Vn >
ng, d’ot1 la conclusion de l'item b). CQFD

Démonstration du théoreme12.12. Au vu du théoréme de Fejér (item b)), il suffit de prendre
P :=T,(g) avec n suffisamment grand. CQFD
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12.4 Comportement global des séries de Fourier

La question fondamentale étudiée dans cette section est celle de la conver-
gence uniforme ou normale de la suite (S, (f)). " Notons que la convergence nor-
male dg la séo1;ie de fonctions Y,"___ c,(f)e™ revient a la convergence de la série
numérique >, |c.(f)].

Dans ce qui suit, les fonctions f sont continues* et 2r-périodiques.Elles sont donc
en particulier uniformément continues sur R.S

La philosophie générale est que plus f est lisse, plus la convergence de sa série
de Fourier est forte. Notons, par exemple que, si f € C?, alors

oe]

=D elf)em, (12.35)

n=—00

la série de (12.35) étant normalement convergente (exercice 12.26). Une quantité
qui mesure la continuité de f est le module de continuité.

12.21 Définition. Le module de continuité de f est 6 — w(d), ou

w(d) :=supf{|f(z) — fy)|; z,yeR, |z —y| <}, VO<d<2rT o (12.36)

L’interprétation intuitive de la taille de w est que plus w(d) tend vers 0 rapide-
ment quand 0 — 0, plus la fonction f est lisse. (Voir néanmoins 1’exercice 12.28.)

On peut montrer que, dans (12.36), le sup est un max (exercice 12.27).

Il sera instructif d’illustrer la calcul de w(6) et les résultats généraux qui suivent
sur les fonctions holderiennes, qui sont une généralisation des fonctions lipschit-
ziennes.

12.22 Définition. Soit 0 < « < 1. Une fonction [ : [0,27] — C est a-holderienne si
| floa < 00, ot

| floa = sup {M z,y € [0,2n], v # y} :
[ =yl
Une fonction est holderienne si elle est a-hdlderienne pour un a. o

t. Pour la convergence de la suite (7,(f)), le théoreme de Fejér 12.15 fournit une réponse
convenable.

1. On ne peut espérer de la convergence uniforme de (S,,(f)) en I’absence de la continuité de
f, car une limite uniforme de fonctions continues est encore continue.

§. Voir l'étape 2 de la preuve du théoréme 12.15.

4. La définition la plus courante du module de continuité est légerement différente, mais pour
énoncer les résultats de cette section la définition via la formule (12.36) convient.
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Si f est a-holderienne sur [0, 27] et, de plus, f(0) = f(27), alors le prolonge-
ment par périodicité de f est continu et nous avons (exercice 12.29)

w(8) < 2|flca 6%, 0 < 6 < 2. (12.37)
12.23 Théoreme. (Théoreme de Jackson) Si

lim c(8) | In | = 0, (12.38)
alors S,,(f) — f uniformément quand n — . o

12.24 Théoréme. Si

Lw(s
f A0 45 < o0 (12.39)
0
alors la série >,°__ c,(f) €™ converge normalement vers f. o

En combinant les théorémes 12.23 et 12.24 avec I'inégalité (12.37), nous obte-
nons le résultat important suivant.

12.25 Corollaire. Soit f : [0, 27] — C une fonction telle que f(0) = f(2).

a) Si f est a-holderienne pour un o > 0, alors Y;_ ¢ (f) e* converge uni-
formément vers f quand n — .

b) (Théoreme de Bernstein) Si f est a-holderienne pour un a > 1/2 (donc, en
particulier, si f est de classe C*, ou si f est lipschitzienne), alors la série

Zfz_ » Cn(f) e™ converge normalement et sa somme est f.

Exercices

12.26 Exercice. Soit f € C*(R) une fonction 27-périodique. Montrer que

£ - "
len(f)] < M , VneZr.

mx

. . . 2 s . . o0
En particulier, si f € C*, montrer que sa série de Fourier z — ».°_ ¢, (f)e"* converge

normalement, et que la somme de la série est f. o

12.27 Exercice. Soit f : R — C continue et 27-périodique. Soit w son module de conti-
nuité,

w(0) :==sup{|f(z) — f(y)|; z,y e R, |x —y| <}, VO < I < 27. (12.40)

1. Montrer que, dans (12.40), le sup est un max.
2. Montrer que w est continue et croissante. o
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12.28 Exercice. Soit f : [0,27] — C une fonction telle que w(d) = o(d) quand § — 0.
Montrer que f est constante (et réciproquement). o

12.29 Exercice. Soit f : [0,27] — C une fonction a-holderienne telle que f(0) = f(27).
Nous notons encore f son prolongement par 27-périodicité.

1. Montrer que
w(0) < 2|f]cad®, V0 < § < 2. (12.41)
2. Améliorer (12.41) a
w(d) < 217 f|cad®, V0 < § < 2m. o
12.30 Exercice. Montrer que Sy, (T, (f)) = Tn(f). o
12.31 Exercice. Montrer que
1S ()l e < IDnllzallflljw, ¥V f : R — C mesurable, bornée, 2m-périodique.c (12.42)

12.32 Exercice.

1. Montrer que

IDn(y)| < &min((n +1/2)|yl,1), ¥n = 0,Y0 < |y| <. (12.43)

On pourra utiliser les inégalités suivantes :
|sint| < min (|¢],1),Vt e R,
2
sint > =t, Vt e [0,7/2].
™
2. En déduire que

|Dpll;r <1+Inm+In(n+1/2), Vn > 0. o (12.44)

12.33 Exercice. Montrer que

2

™ .
|Fo(y)| < Wmm(((n +1)y/2)%,1),Vn=0,Y0 < |y| <. o (12.45)
12.34 Exercice. Si f estlocalement intégrable et 2r-périodique, montrer que ¢, (f(-+h)) =
e, (f),VheR,¥nel. o
Démonstrations

Démonstration du théoréme 12.23. Etape 1. Stratégie générale de la preuve. La fonction f étant
continue, nous avons T),(f) — f uniformément (théoreme 12.15 item b)). Il suffit donc
de montrer que S,(f) — T,(f) — 0 uniformément. En notant que 7,(f) = Sn(T.(f))
(exercice 12.30), nous devons montrer que

Sp(f —Tn(f)) — 0 uniformément quand n — co. (12.46)
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La preuve de (12.46) repose sur les exercices 12.31 et 12.32, qui donnent

150 (f = Ta(fDlpe < (1 + 1w +In(n+1/2)[f = To(f)ll - (12.47)

Pour compléter la preuve du théoréme, nous allons obtenir les résultats suivants :

™ T w(y)

— Ty w < —w(2/(n+1))+ f —= dy, 12.48
I =TaDle < GeCfr )+ s | =y (12.48)
sous I’hypothese (12.38), nous avons }in(l) 0 |1Ind| f w;g;) dy =0, (12.49)

- 5

résultats qui, combinés avec (12.47), permettent de conclure (vérifier).

Etape 2. Preuve de (12.48). En reprenant le début de la preuve du théoreme 12.15, et en
utilisant les propriétés de F;, (exercices 12.20 et 12.27), la définition de w, et la monotonie
de w (exercice 12.27), nous obtenons successivement, pour tout z € R :

1
Cor

1 (™ 1 (™
<3 | el Fuwyay - jo w(y) Foly) dy

2/(n+1) 7r
<7r(n+ 1)J’ wly) dy + T J‘ w(gz/) i
0 n+1Jome1y Y

T f () = f(2)]

[ ve--renrw dy|

—T

(12.50)

Y

< 2w(2/(n+1))+ T F “) 4.

n+1 Joynir) Y2
On obtient (12.48) en prenant, dans (12.50), le sup sur z.

Etape 3. Preuve de (12.49). La régle de ’'Hospital « ? /o0 », qui s’applique car w est continue
(exercice 12.27), donne, grace a 'hypothese (12.38),

" w(y) J, & -
lim(5|ln5]J —deyzlim%zlim T 0 T
6—0 s Y 6—0 - 6—0 +
dIno 02Iné 62 (Ind)? CQFD
. —w() Ino
T
Iné

Démonstration du théoréme 12.24. Rappelons que notre principal but est de montrer la conver-
gence de la série >, |en(f)]-

Etape 1. Utilisation de 1'égalité de Parseval et du module de continuité. Pour 0 < h < 2, soit
fu(z) := f(z + h), Yo € R.Nous avons

cn(fn) = € cn(f) (12.51)
(exercice 12.34) et, clairement,
Ifn = fllze < 1fn = flipe < w(h). (12.52)
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De (12.51), (12.52) et I'égalité de Parseval (12.13), nous obtenons

e¢]
D1l = 1P len(f))? < w?(h), YO < h < 2. (12.53)

n=—aoo

Etape 2. Controle de Y. |c,(f)| si |n| est de l'ordre de 1/h. Prenons h := 1/2¢, avec £ € N, et les
n € Z vérifiant 2¢ < |n| < 21, Pour de tels n et h, nous avons 1 < |nh| < 2, et donc

lemh — 112 = C, (12.54)

C:=min{|e" —1*; 1< |t| <2} >0
(justifier le fait que C' > 0).
De (12.53), (12.54), et I'inégalité de Cauchy-Schwarz, nous obtenons

2
( > cn(f))< e = 1Plen(f)?

2t <|n]<26+1 20<n]<20+1 (12.55)

! 2 2 VeeN
x Z |6m/2‘f —1J2 = C2 w™(1/2%), €.

2t<|n| <261

Etape 3. Comparaison série-intégrale. La monotonie de w (exercice 12.27) et la sommation
par paquets (proposition 6.40) donnent

1/2¢

1/2¢ 1/2€+1)
f 53/2 d(S - Z f/ﬂﬂ 53/2 do > EL o532 do

/2[+1
(12.56)

=3 fm w(1/27) ds = 2732 % 212w (1/2%).

(=0 J1/2+1 (1/26)%2 >1

Etape 4. Convergence normale de la série de Fourier. En utilisant la sommation par paquets,
(12.55), (12.56), et I'hypothése (12.39), nous obtenons

Dl =leoDI+D D0 lealD] < leo(f)] + C 22”2 (1/2)

n=—o0 >0 2£<|n|<2€+1 £>0
21/2 1 w((s)
<leo(f)] + 2o )+CJ063/2d5<oo

Etape 5. Identification de la limite. Notons S(f) := Y cu(f) €™, qui est continue,
comme somme d’une série normalement convergente de fonctions continues. Du corol-

laire 12.7, il existe une suite n; /" o telle que

lim Z cr(f) e*® = f(x) pour presque tout z € R. (12.57)
J—0

k=—n;

Nous avons donc S(f) = f presque partout d’oti, par continuité de S(f) et f, S(f) = f
partout (justifier). CQFD
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12.5 Pour aller plus loin

Les résultats des sections précédentes, notamment la comparaison entre le
théoreme de Fejér 12.15 et le théoreme de Dirichlet 12.13, montrent que la « bonne »
notion de convergence des séries de Fourier est la convergence en moyenne : il est
plus approprié d’approcher f par T,,(f) plutot que par S,(f). Ce phénomene est éga-
lement illustré par le phénomene de Gibbs, instabilité numérique associée a S,,(f)
(mais pas a T,,(f)) étudiée en analyse numérique. (Voir, dans Hewitt et Hewitt
[13], la présentation historique des phénomenes de ce type.)

Néanmoins, I'étude du comportement de la suite (S,,(f)), a été I'un des mo-
teurs importants du développement de 1’analyse entre 1850 et 1970. Signalons,
sans preuve, quelques résultats marquants.

12.35 Théoreme (Critere de Jordan). Si f : [0, 27[— R est monotone (et étendue
par 2r-périodicité a R), alors

f(xot+) + f(wo—)

Sulf) o) — HE

quand n — o0, Yz € R. o

12.36 Théoréeme (Théoréme de du Bois-Reymond). Il existe une fonction continue
et 2r-périodique f telle que S,,(f)(0) 4 f(0) quand n — 0. o

12.37 Théoreme (Théoreme de M. Riesz). Soient 1 < p < w et f € £ =
2?(]0,2x[). Nous avons S,,(f) — f dans .£? quand n — . o

12.38 Théoréme (Théoreme de Kolmogorov). Il existe une fonction f € £! = £*
(]0,27[) telle que la suite (S,,(f)(xo)) diverge, V z, € [0, 27]. o

Enfin, une amélioration remarquable du corollaire 12.7.

12.39 Théoreme (Théoreme de Carleson-Hunt). Soient 1 < p < w et f €
P = £7(]0,2x[). Nous avons S,,(f) — f p. p- sur [0,27] quand n — o0}

Pour une description historique de ces problemes, une bonne référence est
Edwards [6, Chapitre 10], qui contient aussi des (ébauches de) démonstrations
de ces résultats, sauf du dernier. La preuve du dernier théoreme est longue et
difficile, méme si elle a été beaucoup simplifiée entre 1973 et 2000; voir Grafakos
[9, Chapitre 11].

t. Cette propriété négative est vraie pour «la plupart » des fonctions continues, mais donner
un sens précis a « la plupart » nécessite un formalisme qui ne sera pas développé ici.

1. Le cas p = 2 est d1 a Carleson, qui conjectura que le cas général 1 < p < o devait se faire
de maniere analogue. Une preuve pour 1 < p < o fut trouvée ultérieurement par Hunt.
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Chapitre 13

Transformée de Fourier

13.0 Apercu

Nous étudierons dans ce chapitre, qui est un pendant « continu » du chapitre
12, les propriétés basiques de la transformée de Fourier.

Les fonctions considérées sont définies sur R™ et a valeurs complexes; elles
sont supposées Lebesgue mesurables et/ou intégrables (par rapport a la tribu et a

la mesure de Lebesgue). Rappelons la définition de la transformée de Fourier si
feZ = LYR) =L (R,C):

76) = 7)) = f e f(x) di, V€ € R. (13.1)

Notons que si f = g p. p., alors f = gen tout point. Nous pouvons donc définir

f pour une classe f € L'(R), le résultat étant une fonction définie de maniere
unique en tout point de R. Pour cette méme raison, nous allons faire les calculs
de transformée de Fourier sur des fonctions et non pas sur des classes.

La définition et les remarques précédentes s’étendent aux fonctions définies
sur R". Si f € Z(R"), alors

&) = 7)) = f e~ f() di, V€ € RY, (13.2)

Rn
Ici, - désigne le produit scalaire standard dans R" : - § = 37, 2.

Le début de la section 13.1 est dédié aux propriétés fondamentales de la trans-
formée de Fourier, par exemple au lien entre f’ et f (proposition 13.4) ou au calcul
de f # g (proposition 13.1 c)).

Le résultat fondamental de cette section est la formule d’inversion (théoreme
13.7), qui permet de calculer f en fonction de f. C’est ’analogue du théoréme de
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Dirichlet 12.13 qui permet de calculer f en fonction des coefficients de Fourier
cn(f), neZ.

La section 13.2 est dédiée a la transformée de Fourier dans .#2. La définition
de celle-ci est problématique : une fonction de -£? n’est pas nécessairement in-
tégrable, et dans ce cas l'intégrale de (13.1) n’est pas définie. C’est le théoréme de
Plancherel 13.19 qui permet de donner un sens a la transformée de Fourier pour
une telle fonction. Celle-ci n’est pas définie comme une intégrale, mais comme
une (classe d’équivalence de) limite d’intégrales, en approchant f dans .£? par
des fonctions de .Z! n Z2. C’est 1'un des résultats les plus subtils de ce cours.

Le champ des applications de la transformée de Fourier (et des séries des Fou-
rier) est immense, et ne peut pas étre détaillé ici. A titre d’illustration, nous présen-
tons dans la section 13.3 une application potentielle de la transformée de Fourier
a la résolution d’une équation aux dérivées partielles.

Compétences minimales attendues.

a) Savoir calculer les transformées de Fourier usuelles.

b) Savoir utiliser les propriétés fondamentales de la transformée de Fourier dans
L0

¢) Savoir utiliser le théoréeme d’inversion de Fourier.

d) Comprendre la définition de la transformée de Fourier dans L. o

Certaines propriétés de la transformée de Fourier s’obtiennent par des inté-
grations par parties et/ou par « récurrence » sur les dérivées partielles. Les deux
deviennent plus compliquée dans R" avec n > 2; c’est pourquoi parfois les ar-
guments sont détaillés uniquement en dimension un. Il est instructif d’essayer
d’adapter ces arguments aux dimensions supérieures.

13.1 Transformée de Fourier dans L!

Nous travaillons dans L' := L'(R"). Comme expliqué dans l'introduction, la
transformée de Fourier se calcule pour des fonctions f € £!, mais le résultat ne
dépend que dela classe [ f] de f dans L'. Ce qui explique les énoncés donnés pour
des classes, accompagnés de preuves faites pour des fonctions. Il conviendra de
vérifier, dans chaque énoncé (exemple typique : la proposition 13.3) que les hy-
potheses faites et les conclusions sont « robustes », au sens ou elle ne dépendent
pas du choix d’un représentant dans une classe de L.

Voici les premiéres propriétés fondamentales de la transformée de Fourier
dans L.
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13.1 Proposition. Soit f € L. Nous avons

a) ]?est continue et

~

IFO < [fller, VEeR™ (13.3)

b) (Lemme de Riemann-Lebesgue)

lim f(£) = 0. (13.4)

frg=13 (13.5)
et
f©g©de=| f(z)§()d. o (13.6)
R™ Rn
13.2 Notations.
a) « désigne un multi-indice o = (o, ..., o) € N

b) La longueur de avest |af := 77, |-
) SizeChetae N, 2% := (1)* - (x,)*".
d) Si f estde classe C!, alors 0% f := (01)* - - - (0p)" f. o

Si f est «mieux que L' », alors la transformée de Fourier a quelques propriétés
supplémentaires.

13.3 Proposition. Soient f € L'(R) et k € N*. Si J l2|* | f(x)| dz < o, alors feck
R
et (&) = () f(€),V0 < L <k, V¢
Plus généralement, soient f € L'(R") et k € N*. Si f |z|* | f ()| dx < oo, alors
R?’L

FeChetoof (&) = (i) f(€), Yo tel que || < k. o

—

13.4 Proposition. Si f € C*(R") etsi 0°f € £,V atel que |a| < k, alors 0vf(£) =
() f(§), Vatel que |af < k. o

Le résultat suivant est important a plusieurs titres. D’une part, il donne un
exemple concret de fonctions f telles que f soit intégrable; cette propriété, qui est
plus forte que la conclusion lim¢|_, f(& ) = 0 du lemme de Riemann-Lebesgue,
nous permet d’appliquer la formule d’inversion de Fourier (voir le théoréeme
13.7 et le corollaire 13.9). D’autre part, cette proposition est le résultat clé dans
la preuve du théoreme de Plancherel 13.19.
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13.5 Proposition. Si f € C"*1(R"), alors f € C*(R™) et f est intégrable. o

Nous arrivons enfin au résultat le plus important de cette section, la formule
d’inversion.

~

13.6 Notation. f(x) := f(—x). o

13.7 Théoreme (Formule d’inversion de la transformée de Fourier). Soit f €
ZHR").

a) Supposons f continue et ]?inte’gmble. Nous avons

fla) =@ [ o= Feyde i

~
A~ A~
~ ~

= 2m) " f(—z) = 27) " f(x), Yz e R™.
b) Supposons finte’gmble. Nous avons

fla) =@m™ [ e=tfe)de i

~
~ ~
~ -~

=2m) " f(—x) = (2m) " f(z) p. p- dans R".

13.8 Corollaire. La transformée de Fourier .% : L' — L® est injective. o

En combinant le théoreme 13.7 et la proposition 13.5, nous obtenons le résultat
suivant.

13.9 Corollaire. Soit f € C""!(R"). Nous avons

flz) = (@2m)™ f e € f(€)dE, Yz e R™ (13.9)

n

Exercices

L’exercice suivant sera utilisé dans la preuve de la proposition 13.3.
13.10 Exercice. Montrer que

|z%| < |z|l®l, Yz e R”, Va € N o (13.10)

L’exercice suivant sera utilisé dans la preuve de la proposition 13.4.

13.11 Exercice.
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a) Soit g : R — R continue et intégrable. Montrer qu’il existe une suite R; — o telle que
19(R))| + l9(~Ry)| — 0 quand n — o,

De maniere équivalente, lim inf (|g(x)| + |g(—x)]) = 0.
R—0 |z|>R

b) Soit g : R" — R continue et intégrable, avec n > 2. Donner un analogue de a) faisant
intervenir des intégrales sur les spheres {z € R"; |z = R;}. o

13.12 Exercice. Nous nous proposons ici de montrer (pour simplifier, uniquement pour
n = 1) que, pour k£ > 2, il y a trop d’hypotheses dans la proposition 13.4.
a) Prenons d’abord k = 2. Soit f € C?(R).
(i) Exprimer f(xz + 1) en fonction de f(x), f/(x) et f” en utilisant la formule de
Taylor a l’ordre deux sous forme intégrale au point x. En déduire une formule
pour f'(z).
(ii) Montrer qu’il existe une constante C' < oo telle que ||f'|;1 < C(||fllzr + | /"] 11)-
(iii) En déduire que, pour n = 1 et k = 2, la conclusion de la proposition peut s’obte-
nir sous les hypothéses plus faibles f € C?, f, " € L.
b) Soit maintenant k > 3. Soit f € C*(R).
(i) Bxprimer f(z+1), f(z+2),..., f(z+k—1)enfonctionde f(z), f'(z),..., f* D (z)
et f*) en utilisant la formule de Taylor a 'ordre k sous forme intégrale au point
. En déduire des formules pour f'(z),..., f*=D(z).

(ii) Montrer qu’il existe une constante C' < o telle que ||f/|[z1 + -+ + [f* V| <
Ol e + 1F P L)

(iif) En déduire que, pour n = 1 et k > 2, la conclusion de la proposition peut s’obte-
nir sous les hypothéses plus faibles f € C¥, f, f*) e £, o

L’exercice suivant aborde des propriétés basiques, utiles dans le calcul de
transformées de Fourier, et dans la preuve du théoreme 13.7. Il convient de justi-
tier le fait que, dans les preuves, on peut travailler avec des fonctions (au lieu de
classes).

13.13 Exercice.

a) Soient f € L*(R") et e > 0. Rappelons que f-(z) = e f(x/e), Vo € R™
(i) Montrer que f- € L'.
(ii) Montrer que ﬁ(f) = f(a §).

(iii) Montrer que 172 < | fl 2, Ve >0,VEe R

b) Soient f € L'(R") et h € R™. Rappelons que 7, f(z) = f(x — h),Vz € R".
(i) Montrer que 7, f € L'.
(ii) Montrer que 7{;3(5) = e ¢ f(f), VEeR™
c) Soit f € LY(R").
(i) Montrer que f € L.
(ii) Montrer que ?(5) = ?(—f), VEeR™
d) Soit f € L'(R™). Rappelons que f(z) = f(—z), Vx € R™,
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(i) Montrer que fv’ e L.

~ ~ ~

(ii) Montrer que f(§) = f(—¢€) = f(§), Ve R™ o

Nous présentons ici un calcul fondamental : la transformée de Fourier des
« gaussiennes » (centrées).
13.14 Exercice.
a) Soit a > 0. Soit g* : R — R, ¢%(x) := e’”z, x € R. Nous nous proposons de calculer
h® .= ;E
Rappelons que f e dx = /2,
R

(i) Montrer que g% € £* et calculer h%(0).
(ii) Montrer que h® € C! et donner la formule de (h%)'.

§n(€)

(iii) En utilisant une intégration par parties, montrer que (h®)'(¢) = o Indi-
a
/
cation : ze”*/% = —1/(2a) <e“w2) .
(iv) Obtenir la formule
— N2 2044
e_“IQ(f) _ (E) €7/ (4a)
Sous une forme plus compacte, nous avons
ey (T2 1/4a)
7= (2) " g/
b) Plus généralement, soit ¢%(z) = e~ |‘”|2, x € R™. Montrer que
~ T\ /2
7€ = (5)" g/, va> 0, vee R o

13.15 Exercice. Dans R, soit f := x(o,1]- Montrer que f € £ ! mais que f ¢ ' En déduire
que la formule d’inversion (13.8) ne s’applique pas a foutes les fonctions de .#. o

Voici trois calculs classiques de transformées de Fourier.

13.16 Exercice.
a) Soit f : R — R, f(z) := e~ |, V2 € R. Calculer 7.
1
b) Soitg: R — R, g(v) := ——, Yz € R. Calculer g. o

1+z
13.17 Exercice. Soit A > 0. Soit
o0
flx) = f e M (4m )2 e 1P/ gr v g e R™
0
a) Montrer que f € Z(R").
b) Calculer . o
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Démonstrations

Démonstration de la proposition 13.1.

a) Pour montrer la continuité de f, nous appliquons le théoreme 7.10 a 1a fonction (z, §) —
e~@€ f(x), en utilisant I'identité [e =¥ f(z)| = | f(2)|.

Pour (13.3), notons que

~

Fel< [ le =< )l de = 1l
b) Le raisonnement se fait par densité, en partant de g € CZ(R"™) et en utilisant (13.3)
(justifier cette démarche, en adaptant la fin de la preuve du lemme 12.9).

Soit g € C(R™). Nous prenons sur R” la norme | |. Soit R < o tel que g(z) = 0 si
|20 = R.

Soit £ € R™\{0}. Soit j = j(&) tel que |¢]|c = |&;]| > 0. Sans perte de généralité, nous
supposons j = 1.

Nous écrivons un point de R" sous la forme z = (z1,2’), avec 2’ € R"~L. Le théoréeme
de Fubini donne (justifier)

R
1] ([ emogoayan ) e a
[-R.R"~1 \J-R

R
- 1J (J e 1810, g (a1, 2) dxl) e da! = L319(5):
1&1 J—r,Rp—1 \J-R =

d’ou [g(&)] = (1/[€lle0) [Vgl] L1 — 0 quand [¢] — co.
c) L'inégalité de Young donne f * g € L'. En utilisant le fait que

f (@ — )] l9(y)| dedy < o
R xR™

(vérifier), le théoreme de Fubini et un changement affine de variables permettent de
justifier le calcul suivant (détailler)

Fa0) = [ e=tregwar— [ e ([ fa-noway) as

_ Jn Une—“'ff(:vy) dl‘) 9(y) dy

— Jn <J ) e UTTVE £z — ) d:ﬁ) e Y g(y)dy

~

-[ ( [ s dz) e~ g(y) dy = F(€)(6).

L’identité (13.6) est une application directe du théoréeme de Fubini, dont ’application
est justifiée par le fait que

[ ls@lg()] dad <
R™ xR™

(détailler). CQFD
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Démonstration de la proposition13.3. Notons que pour 1 < ¢ < k nous avons ¢ < 1 + t¥,
¥t > 0.' En combinant cette inégalité avec I'inégalité (13.10), nous obtenons que la fonc-
tion z — x“ f(z) est intégrable si |a| < k. Ceci permet d’appliquer le corollaire 7.15 et
d’obtenir les formules de 1"énoncé (justifier). CQFD

Démonstration de la proposition 13.4. Nous considérons uniquement le cas n = 1, qui repose
sur I'exercice 13.11 a). La preuve pour n > 2 est similaire et est basée sur la partie b) de
I'exercice.

La preuve se fait par récurrence sur k; le point essentiel est le passage de k = 0 a
k = 1. Soit (R;); comme dans l’exercice 13.11 a) avec g = f. Nous avons (justifier)

R .

?({) = JR e e f(x)dr = lim ’ e e f(x)dx

Jj— —R;

R; R
= lim [e*”“"5 f(x)] + zfj e flx)dx | = z&f e % f(z) du,
Jj—oo —R; —R; R

qui est I'égalité désirée. CQFD
Démonstration de la proposition 13.5. Sous ’hypothese plus faible f € C.(R"), nous avons

f 2] ()| dz < o0, ¥k e N
Rn

(vérifier), d’ol1 f e C” (proposition 13.3).

Si|a] < n+1,alors 0°f € L' (vérifier). La proposition 13.4 et 'inégalité (13.3) im-
pliquent

~

1€ [ F(€)] < Cay V]l <n+1,¥VEeR™

En prenant o := (0,0,...,0), & := (n+ 1,0,...,0), a := (0,n + 1,0,...,0),...,a :=
(0,0,...,n + 1) et en sommant les inégalités obtenues, nous obtenons

(1+ el 17 )] < (1 +3) fj\”“) ()] < C <o, VER™,
J
d’ot, pour C’ < oo convenable,

VEeR™

~ C '’
< < ,
O = T = T g

(justifier).

Par comparaison avec les intégrales de référence, f € . CQFD

1. Montrer cette inégalité en examinantlescas 0 <t < lett > 1.
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Démonstration du théoréme 13.7.

Etape 1. Preuve de (13.7) pour x = 0 si, de plus, f est bornée. 1'identité (13.6) avec g :=
(2m)~" g, ot g%(z) := e~ %**, 4 > 0, z € R", donne (grace a 'exercice 13.14)

@r) | f&) e ag = (1/(ara))? | f(z) e lEP/E) gy (13.11)
Rn Rn
Z:\’Ia I:‘T]a

La domination

F© e <1f©) Yaz 0, vee R,
I'hypothese f € £1 etle théoreme 7.10 donnent (justifier)

~

lmfo= ()" | (o) de. (13.12)

Pour étudier J,, posons ¢ (x) := (1/(47r))”/26_‘x|2/4, de sorte que 1 € £ et =1
Rn

(vérifier). Nous avons J, = f(x)%,1/2(x) dz. Le changement de variables z = ®(y) :=
Rn
a'/? y donne (vérifier)
Jo=| J@Py)v)dy— | F0)%(y)dy = J(0) quand a 0. (13.13)

Le passage a la limite dans (13.13) se fait en utilisant le théoreme 7.10 et repose sur la
continuité de f et sur la domination

[F(@y) ()] < (sup [f)) [¢(y)], Ya =0, VyeR"
(vérifier).
Nous concluons la premiere étape grace a (13.11)—(13.13).

Etape 2. Preuve de (13.7) si, de plus, f est bornée. Soit k := 7_, f,* dont la transformée de

Fourier est £ — "¢ ]? (&) (exercice 13.13 b)). La fonction k vérifie les hypothéses assumées
al’étape 1 (vérifier), d’ou

Cry ™ | e flede = em | RO dE = KO = f(o),

ce qui équivaut a (13.7) pour un = quelconque.

Etape 3. Preuve de (13.8). Soit p un noyau régularisant. Soit f¢ := f # p.. Nous avons
f¢ € C* (proposition 11.7), f¢ est intégrable (ceci découle de I'inégalité de Young avec
p = 1 et g = 1) et bornée (conséquence de I'inégalité de Young avec p = 1 et ¢ = 0,

t. Pour la notation v,1/2, voir la formule (11.9).
1. Voir la notation 11.22.
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en utilisant le fait que p. € £®). Par ailleurs, nous avons ﬁ =7 pe (proposition 13.1).
Comme [pz(¢)| < 1 (exercice 13.13), nous obtenons que f¢ € .#!. Grace a la deuxieme

étape, il s’ensuit que
frpela) = @n)" | e P de
—— n
=f(z)

~ (13.14)
- @2m) f (e € e, Ve > 0, Vo e B

=L (x)
Nous allons maintenant faire ¢ — 0 dans (13.14). Grace a l'exercice 13.13 a) (appliqué a
p), au fait que p(0) = J p = letal’hypothese f e #1, nous obtenons

lim Le(z) = (2m) ™" f e € f(€)dE, Va e R, (13.15)

n

Par ailleurs, nous avons f¢ — f dans #! quand ¢ — 0 (théoréme 11.9). 1l s’ensuit
qu’il existe une suite ; — 0 et un ensemble négligeable A — R" avec f% (z) — f(x)
quand j — o, Vz € R™\ A (corollaire 10.29). En combinant ce fait avec (13.14) et (13.15),
nous obtenons (13.8).

Etape 4. Preuve de (13.7). De (13.8), I'égalité (13.7) est vraie p. p. Le membre de droite de
(13.7) est continu (car la transformée de Fourier de f 'est, grace a la proposition 13.1).
Nous avons donc I'égalité p. p. de deux fonctions continues sur R”, ce qui revient a une
égalité partout (exercice 4.39 b)) et implique (13.7). CQFD

Démonstration du corollaire13.8. Si f € Z1(R") et f = 0, alors f = 0 v,-p. p. (théoreme 13.7
b)) et donc la classe de f est nulle. CQFD

13.2 Transformée de Fourier dans 2

Dans cette section, nous allons donner un sens naturel a fsi f e L2 (théoréeme de
Plancherel 13.19). La clé est I'identité (13.16), qui repose sur la formule d’inversion
de Fourier (théoréme 13.7, et plus spécifiquement le corollaire 13.9).

13.18 Proposition. Soient f € L'(R") et g € C"™!(R"). Nous avons

J©u©a - | f@ge)d o (13.16)

13.19 Théoreme (Théoreme de Plancherel).
a) Soit f € L' n L? = LY(R") n LA(R™). Alors f € L2 et || f]z2 = (27)™2 | f] 2.
b) L'application L' n L? 5 f — Z(f) = F € L? admet une et une seule
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extension continue de L? vers L2.
Par abus de notation, cette extension est encore notée .#, et nous posons
Fi=F(f),VfelL?

c) Z : L* — L? ales propriétés suivantes :

O | FOFEd=n)" | f@)ga)de,Vfige L.

@) [fllzz = @m)"2 | fllz2, ¥ f € L2
(iii) .#, # ! sont linéaires, continus et bijectifs .

(iv) f = (27r)_"]/?\, Vfel?

13.20 Remarque.

a) Si f € L? nous n'avons pas nécessairement f € L'.YSi f € L*\L!, la for-
mule f &) = J e~ f(x) dx n’a pas de sens et ne définit pas 7.
R™
b) Néanmoins, le théoréeme 13.19 permet de donner une définition naturelle de

f pour f € L?, de la maniére suivante.

(i) Nous prenons une suite (f;); telle que f; € L' n L?,V jet f; — f dans
L?* quand j — o0} Alors la suite (f;); converge dans .£2. Si sa limite
est g, alors la classe de g ne dépend pas du choix de la suite, et par
définition nous posons f := [g]. (Avec un abus de notation, ]? =gq.)

(ii) Le long d’une sous-suite (fjk)k , hous avons ?J\k — g p. p., et donc
f(§) = limgo0 5, (€) P- P-

(iii) Considérons le choix particulier f; = fxpo; ), j € N*. Alors f; €
L'~ L? et f; —» f dans L? quand j — oo (vérifier). Il s’ensuit que,
pour tout f € L?, il existe une suite d’entiers j, — o (en principe
dépendante de f) telle que

7 (&) = lim et f(x) dz, pour presque tout £ e R". o
= J B0

Exercices

13.21 Exercice. Calculer les transformées de Fourier des fonctions suivantes.
a) f:R >R, f(x):=(sgn z)e 1, vz e R
1
b) g: R —C, = ——,VrxeR. o
) g g() oA L

t. Prendre par exemplen = let f(z) =1/(1 + |z|), Vz € R.
t. Par exemple, nous pouvons considérer une suite (f;); = C*(R") telle que f; — f dans L?
quand j — o (voir le théoreme 11.11). Alors nous avons également f; € L', V j (pourquoi?).
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Démonstrations

Démonstration de la proposition 13.18. Notons que f, § € L' et f, g € L (justifier). Grace a

I'inégalité de Holder (cas p = 1, ¢ = o), nous obtenons f g, f g € L. 1l s’ensuit que les
deux membres de (13.16) sont donnés par des intégrales convergentes.

En utilisant la formule (13.7) et le corollaire 13.9, nous obtenons (justifier 1'utilisation

du théoréeme de Fubini)

e [ swawae= [ s ([ evcaeae) i

s (00
f dr | g

d’ot1 la conclusion. CQFD

Démonstration du théoréme 13.19.

a)

b)

La formule (13.16) s’applique en particulier si f € C**1 := C?*1(R™). En prenant
g = f, nous obtenons

12 = @m)™2 | flL2, ¥ f € CIHL. (13.17)

Soit f € L' n L% Alors il existe une suite (g;); = CX(R") telle que g; — f dans L' et
dans L? quand j — oo (exercice 11.17). De (13.17), nous avons

135 — Gkl 2 = (2m)™? | gj — gr|lz2 — 0 quand j, k — 0,

ce qui montre que la suite (g;); est de Cauchy dans L% Nous obtenons !’existence
d’une fonction (ou plutdt classe) h € L? telle que g; — h dans L? (théoréme 10.28).
Quitte a passer a une sous-suite, nous pouvons également supposer que g; — h p. p.
(corollaire 10.29).

Par ailleurs, nous avons g; — f dans L, ce qui entraine g; — ? uniformément (inéga-
lité (13.3)).

La limite p. p. d’une suite étant unique p-p- (justifier), nous en déduisons que f=h
p. p., d’ott en particulier f € L2 et §j — f dans L2,

En appliquant (13.17) a g; et en passant a la limite sur j, nous obtenons la validité de
(13.17) pour tout f € L' n L? (vérifier).

Rappelons le résultat suivant de topologie. Soient X,Y des espaces de Banach, et Z
un sous-espace vectoriel de X. Soit 7" : Z — Y une application linéaire et continue. Si
Z est dense dans X, alors T' admet une et une seule extension continue T:X —>Y.
De plus, T est linéaire.
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Appliquons cecia X =Y = L?, Z := L' n L? et T := Z. Z contient C*(R"), donc
Z est dense dans X (justifier). D’apres le point a), T' est continu, de norme (27)™2. La
conclusion de b) découle de ce qui précede (justifier).
c) (i) Légalité est vraie si f,g € CX(R") (proposition 13.18). Soient f,g € L? et des
suites (f;);,(g;); € CL(R") telles que f; — f et gj — g dans L? quand j — oo.
Nous avons

CIGESC0k ‘f f3(x) g (@) dar, ¥ j. (13.18)

Si <, > est le produit scalaire complexe dans L?, alors (13.18) équivaut a

< [5.3 >= @0)" < fi.9; >, V. (13.19)

Pour obtenir c) (i), nous passons a la limite j — oo dans (13.19). Nous avons par
exemple

<fAj7gAj>—<?,§>‘
:’<f/\j,gf—\g>+<f/—\f §>}

)< fi:9i—9 >( ’< fi— g>’

<[,

=@2m)" [ fill L2 lgj — 9l
+@m)" | f5 = flig2 lglg: — 0 quand j — oo.

L2 191z

|5 =5l,2+ |5 =7

Le passage a la limite dans le membre de droite de (13.19) se justifie de maniere
similaire. Nous obtenons la validité de (i) pour tout f, g € L.

(ii) Il suffit de prendre g = f dans (i).

(iii) Montrons d’abord que l'image de .# est fermée dans L2 En effet, soit (h;); =

7 (L?) une suite qui converge vers un h € L2. Soit f; € L2 tel que f; = h;. De (i),
nous avons

Ifi = fallze = @7)™™2 |h; — hy| 2 — 0 quand j, k — oo.

Nous obtenons que ( f;); est une suite de Cauchy dans L? et donc il existe f € L?
tel que f; — f dans L? quand j — @ (theoreme 10.28). Il s’ensuit que h; — f
dans L? quand j — o (justifier), d’ot1 f = h et donc h € .Z(L?).

Par ailleurs, I'image de .# contient C°(R"). En effet, si ¢ € CZ(R"™), alors nous
avons d’une part (justifier)

9=3=F(2n) " Z()).

t. Nous donnons une preuve directe de ce fait, mais nous aurions pu invoquer le résultat plus
général suivant. Soit 7' : X — Y linéaire et continu, avec X espace de Banach et Y espace normé.
S’il existe une constante C' > 0 telle que (*) |Tz||y = C|z|x, Va € X, alors I'image de T est
fermée. Dans notre cas, X = Y := L?, T := Z, et nous avons |.Z(f)|zz = (27)"? | f|z2, ¥V f € L?,
ce qui montre a la fois que .# est continu et que (*) est vérifiée.
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D’autre part, nous avons .7 € L' n L*; ceci découle des propositions 13.1 a)
et 13.5. Il s’ensuit que .#§ € L? (utiliser I’exercice 10.24). Donc, comme affirmé,
nous avons g € .Z (L?),V g € CX(R").
De ce qui précede, .7 (L?) est fermé dans L? et contient C*°(R™), qui est dense
dans L? (théoreme 11.11). Il s’ensuit que .7 (L?) = L?, d’ou .F est surjectif.
La propriété c) (ii) montre que .# est injectif. Donc .% est bijectif.
F étant bijectif, la propriété c) (i) donne |.Z =1 (f)|| 2 = (27) 2| f| 12 (vérifier).
En particulier, .# —1 est continu.

(iv) se démontre de la maniére suivante. La formule est vraie si f € C(R"). De
ce qui précéde, chacun des membres de I'égalité est continu pour la topologie

de L2. Par densité de C*(R™) dans L?, la formule reste vraie pour tout f € L?
(justifier). CQFD

13.3 Pour aller plus loin

La transformée de Fourier a d’innombrables applications, par exemple en
théorie du signal, traitement d’images et équations aux dérivées partielles. Pour
expliquer le role joué par la transformée de Fourier dans 1’étude des équations au
dérivées partielles, partons d"un calcul formel, qui montre que la résolution d"une
équation différentielle fait apparaitre un produit de convolution et nécessite de
pouvoir calculer une transformée de Fourier inverse.

Considérons 1"équation
u— Au = f dans R", (13.20)
*u *u *u
i A est le laplacien, Au := .
ou A est le laplacien, Au ) + ) + FENE

Si nous avons le droit de prendre la transformée de Fourier dans (13.20) et si
la proposition 13.4 s’applique, alors (13.20) devient

(1+ € a(e) = F(€),vEeRY, (13.21)

ce qui donne

_ 1 .
u(§) = ngf(f)yvf € R". (13.22)

Admettons qu’il existe une fonction K telle que

~ 1

K(&) = rpreid V¢ e RS (13.23)

t. A nouveau, nous aurions pu invoquer un résultat plus général : si T : X — Y est linéaire,
continu et bijectif, avec X, Y espaces de Banach, alors 7! est continu.
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Alors (13.21) et (13.22) donnent

~

i(g) = K(€) f(€),vE e R™ (13.24)

En comparant (13.21) a (13.6) et en supposant que l'on puisse identifier une
fonction a partir de sa transformée de Fourier," nous obtenons, du moins formel-
lement, 1’égalité

u=K:+f. (13.25)

Nous voyons sur cet exemple le besoin de pouvoir définir la transformée de
Fourier directe ou inverse dans un cadre, le plus large possible, qui préserve les
propriétés de la transformée de Fourier obtenues dans la section 13.1. Le cadre
naturel pour de tels résultats est celui des distributions tempérées introduites par
Schwartz. Pour une introduction rapide et efficace a cette théorie et a quelques
applications aux équations aux dérivées partielles, voir par exemple Hérmander
[14, Chapitre VII].

1. K existe bien! Utiliser I'exercice 13.17 pour le montrer.
t. Ceci est le cas si le corollaire 13.8 ou le théoreme de Plancherel s’appliquent.
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Chapitre 14

Introduction aux espaces de Hilbert

14.0 Apercu

Dans ce mini-chapitre, marginal par rapport au sujet principal du cours, nous
présentons quelques propriétés basiques des espaces de Hilbert, c’est-a-dire des es-
paces de Banach H dont la norme || || est induite par un produit scalaire < , >.
Pour simplifier la lecture, nous considérons systématiquement un espace de Hil-
bert réel; le passage aux espaces complexes n’apporte pas de difficulté supplé-
mentaire.

En dimension finie, les objets fondamentaux qui permettent de mener des
calculs explicites (projection orthogonale sur un sous-espace, calcul de I’adjoint,
diagonalisation des opérateurs auto-adjoints, ...) sont les bases orthonormées. Le
passage aux espaces de dimension (algébrique) infinie pose de nombreux pro-
blémes : par exemple, un opérateur auto-adjoint n’est plus nécessairement dia-
gonalisable. Nous établissons ici trois résultats fondamentaux qui ne nous dé-
paysent pas trop et sont des pendants « infinis » de résultats rencontrés en di-
mension finie :

1. L'existence de la projection orthogonale sur un sous-espace vectoriel fermé de

H (ou, plus généralement, sur une partie convexe fermée non-vide de H);

2. L'existence d'une base hilbertienne ('analogue d’une base orthonormée en

dimension infinie) dans les espaces séparables;

3. La caractérisation des formes linéaires et continues sur H (théoreme de Riesz
14.19).

Compétences minimales attendues.

a) Savoir utiliser I'inégalité de Bessel et I'égalité de Parseval.

b) Savoir étudier et manipuler des séries orthogonales.

c) Savoir utiliser les propriétés de 'orthogonal.

d) Savoir utiliser le théoreme de Riesz 14.19. o
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14.1 Projection sur un convexe fermé

14.1 Proposition. Soit C' une partie convexe, fermée et non-vide de H. Pour
tout x € H, il existe un et un seul y € C tel que

lz —y|| < ||z — 2|, VzeC. (14.1)

14.2 Définition. Le point y ci-dessus est la projection orthogonale de = sur C, et
on note y = pc(z).

La résultat suivant donne une caractérisation utile de la projection orthogo-
nale.

14.3 Proposition. Avec z, C' comme ci-dessus, nous avons

y=poc(zr) < [yeCet <x—y,z—y><0,VzeC]. (14.2)

Dans le cas particulier d'un sous-espace vectoriel fermé F' de H, nous
avons

y=pr(z) < [yeFet <zxz—y,w>=0, Vwe F. (14.3)

14.4 Définition. Soit F' une partie non-vide de H. L'orthogonal de F est

Ft ={yeH;<z,y>=0 VYaeF} (14.4)

On vérifie aisément que F* est un sous-espace vectoriel fermé de H (exercice 14.9

a)).
14.5 Théoréme. Soit F' un sous-espace fermé de H. Alors F @ F+ = H.

14.6 Corollaire. a) Si F est un sous-espace fermé de H, (FL)" = F.

b) Si A est une partie non-vide de H, (A+)" = Vect (A). o
14.7 Corollaire. Soit F' un sous-espace fermé non-nul de H. Alors py est un pro-
jecteur linéaire continu de norme 1. o
Exercices

Cet exercice prépare la preuve de la proposition 14.3.
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14.8 Exercice. Soit f : [0,1] — R une fonction convexe dérivable. Montrer 1'équivalence
des propriétés suivantes :

1. 0 est un point de minimum de f.
2. f(0) = 0. o

Cet exercice prépare la preuve du corollaire 14.6.

14.9 Exercice. Soit F' une partie non-vide de H. Montrer que :
a) F'* est un sous-espace vectoriel fermé de H.
o=l
b) Vect(F) = F*. o
Démonstrations

Démonstration de la proposition 14.1. Etape 1. Existence de la projection. Soit
d:=d(z,C) =inf{|lz — z||; z€ C}.

Soit (y;) < C telle que |z — y;| — d. L'identité du parallélogramme donne (vérifier)

1 1 .
(i — w)/2)) = Sl — yil? + Sl — uel® =l = (y; + w) /21, V3. k. (14.5)

C étant convexe, nous avons (y; +yx)/2 € C,V j, k, d’ot, en utilisant (14.5) et la définition
ded,

1 1 .
Iy — wr)/2]* < §||:v —yil* + §H$ —yi|* —d — 0 quand j, k — oo. (14.6)

De (14.6), nous avons lim; . (y; — yx) = 0, et donc (y;) est une suite de Cauchy de
C. H étant complet et C fermé, (y;) converge vers un y € C. Par ailleurs,

|z =yl =lim |z —y;|| = d < Jlz — 2], V2 € C,

et donc y a la propriété de I’énoncé.

Etape 2. Unicité de la projection. En admettant provisoirement la proposition 14.3, si y1, yo
sont comme dans 1"énoncé, nous avons

<z —y1,Yy2 —y1 >=<0,

<z—y2,y —y2><0.
En additionnant les deux inégalités, nous obtenons [|y2 — y1 H2 <0,dotty; = yo. CQFD

Démonstration de la proposition14.3. « = » Soit z € C. Pour t € [0, 1], nous avons (1 — t)y +
tz € C (par convexité de C') et donc (par définition de la projection)

ft) i=llz — (1= t)y — t2|* > |z — y|* = £(0), YVt e [0,1]. (14.7)
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/ étant convexe et dérivable (justifier), (14.7) équivaut a f/(0) > 0 (voir I’exercice 14.8).
Or, f/(0) =2 <z —y,y — z >, d’ou la conclusion.

« <= » Avec les notations ci-dessus, nous avons f/(0) > 0, et donc f(1) > f(0), ce qui
revienta ||z — z|| > |z —y|,Vz € C.

Le cas particulier d’un sous-espace. « = » Soit w € F. En prenant, dans (14.2), z := y+w €
F, respectivement z := y — w € F, nous obtenons < z — y,w >< 0, respectivement
<z-—y,—w><0,dou<z—y,w>=0.

« <= »Soitze F.Alors<z —y,z—y >=0,carz —y € F. CQFD

Démonstration du théoréme 14.5. F- est un sous-espace vectoriel de H (exercice 14.9 a)). Par
ailleurs, siz € F n Ft, alors < z,x >= 0, et donc = = 0. Enfin, soient 2 € H ety := pp(z).
La proposition 14.3 donne x — y € F*, etdoncz =y + (v —y) e F + F*+. CQFD

Démonstration du corollaire 14.6. a) F- est un sous-espace fermé de H (exercice 14.9 a)), d’oi1,

en appliquant deux fois le théoréme 14.5, F @ '+ = Het F+ @ (FL)L = H. Par ailleurs,
nous avons clairement F' ¢ (FL)l, d’ou l'égalité F = (FL)l.

b) L'exercice 14.9 b) donne A+ = Vect (A)L. Comme l'adhérence d'un sous-espace est
encore un sous-espace (justifier), la partie a) du corollaire donne

(Ai)L = (Vect (A)L)l = Vect (4). CQFD

Démonstration du corollaire 14.7. Soient x1,x9 € H, A € R.Six := 21 + Azg et y := pp(x1) +
Apr(x2), alors z et y satisfont (14.3), et donc y = pr(x). Il s’ensuit que pr est linéaire.

Pour tout ensemble convexe, fermé et non-vide C, nous avons pc(z) = z, Vz € C,
d’ott pc o pc = pc. Dans le cas particulier d"un sous-espace fermé F, nous obtenons que
pr est un projecteur (linéaire).

La décomposition orthogonale x = pr(x) 4+ (x — pr(x)) et le théoreme de Pythagore
donnent

2 2 2 2
lpr@)|I" = =] = |z — pr(z)[” < [lz]"
et donc pr est continu, de norme < 1.

F étant non-nul, il existe x € F'\{0}. Pour cet z, nous avons

lpr (@) = ] < llpe(ll=(,

d’ott |pr| = 1, et finalement |pp| = 1. CQFD

14.2 Bases hilbertiennes

Dans un espace de Hilbert de dimension algébrique infinie, la notion «natu-
relle » de base orthonormée serait la suivante :
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a) (ej)es (avec J famille infinie) est une base algébrique de H, c’est-a-dire
tout z € H s’écrit de maniére unique sous la forme x = } ;_; Aje;, avec
un nombre fini de scalaires A\; non-nuls (pour donner un sens a la somme).

b) La famille (e;), e est orthonormée, c’est-a-dire, pour j, k € J, < ej, e, >= 0
si j # k, respectivement < ¢;,¢; >= 1.

Il se trouve qu’aucun espace de Hilbert de dimension infinie ne possede une base
orthonormée au sens de la définition naive ci-dessus (voir 'exercice 14.17). La
bonne définition d"une base garde l'exigence b), mais remplace, dans la repré-
sentation a), la somme finie par une somme infinie. Afin de simplifier la com-
préhension, nous considérons le cas « le moins infini possible », celui des espaces
séparables, mais il faut garder a l'esprit que cette restriction n’est pas fondamen-
tale pour l'existence d"une base hilbertienne (en général, non-dénombrable).

14.10 Théoreme. On suppose H séparable et de dimension infinie. Alors il existe
une famille orthonormée (e,,),; telle que

:vzz <z, e,>e, YreH. (14.8)

n>1

Ce résultat reste valable en supposant uniquement H pré-hilbertien, sépa-
rable et de dimension infinie.

14.11 Définition. Une suite (e, ),>1; comme dans le théoréeme 14.2 est une base
hilbertienne de H.

14.12 Corollaire. Si (e, ),~1 est une base hilbertienne de H, nous avons

|||* = Z <z,e, >% Vaze H (égalité de Parseval). (14.9)

n>1

En lien avec le corollaire 14.12, voir les exercices 14.14 et 14.15.

Le résultat suivant donne une définition alternative d’une base hilbertienne.
14.13 Proposition. Une suite (e,),>; est une base hilbertienne de H si et seule-
ment si :

(i) La suite est orthonormée.
(ii) L'espace vectoriel engendré par la suite est dense dans H.

De maniere équivalente, (e, ),>1 est une base hilbertienne de H si et seulement
si nous avons (i) et

(ii") Si < z,e, >= 0, ¥n, alors x = 0. o
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Exercices

14.14 Exercice. Soit (e;);>1 une famille orthonormée. Soit (a;);>1 < R. Montrer 1'équiva-
lence

2
Z aje; converge <= Z aj < oo.

j=1 j=>1
_ 2
En cas de convergence de la série, montrer que HZ j=10j ej” =2j=1 G5 o
14.15 Exercice. (Voir la section 12.1) Soit (e;)1<j<n < H (avec N = 2,3, ..., 0) une suite

orthonormée d’une espace pré-hilbertien . Montrer que

Z <z >’< |||, ¥z € H (inégalité de Bessel). o
1<j<N

14.16 Exercice. Avec les notations du chapitre 12, montrer que (z — €%,z est une base
hilbertienne de L?(]0, 27[). o

14.17 Exercice. Soit H un espace préhilbertien ayant une base algébrique orthonormée
infinie %. Montrer que H n’est pas complet.

Indication : soit (e,),>1 = £ une suite orthonormée. Soit z,, := Z;‘:l(l / j2)ej, VYn > 1.
Montrer que la suite (x,,),>1 est de Cauchy, mais ne converge pas. o

Cet exercice éclaire I'’énoncé de la proposition 14.13.

14.18 Exercice. Soit ' un sous-espace vectoriel de H. Montrer I'équivalence des proprié-
tés suivantes :

1. F est dense dans H.

2. Ft={0}. o
Démonstrations
Démonstration du théoréme 14.10. Soit A = {a1,as, ..., ag, ...} une partie dénombrable et dense

de H. Soit Ey := Vect({a1,...,ax}), Vk > 1. Nous avons Fy € Ey < ... etdim Ep;q —
dimEy, <1,Yk > 1.

Etape 1. La suite (Ey)>1 n’est pas stationnaire. En effet, sinon il existe k tel que Ey = Ej,
V¢ > k, et dans ce cas tous les points de A appartiennent a Ej. Il ensuit que (justifier)
H = A c Ej, = Ey, impossible, car H est de dimension infinie.

Etape 2. Construction par récurrence des vecteurs e,, n > 1. Si Ej, est le premier espace
non-nul, alors dim £, = 1 et nous choisissons un vecteur normé e; € Ej. En suppo-
sant construits ey, ..., e, qui forment une base orthonormée de E;, nous considérons
le premier j > ¢ tel que E; # E; (un tel j existe, ¢f la premiere étape). Nous avons
dim E; — dim E; = 1. Nous pouvons donc compléter {e1, ..., e,} a une base orthonormée
{e1,...,en,ent1} de E;. Notons que, grace a 1’étape 1 et par construction, (e,),>1 est une
suite (infinie) orthonormée.
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Etape 3. Preuve de (14.8). Soient = € H et ¢ > 0. Soit a, € A tel que
(14.10)

|z — agl| <e/2.
., €en}) (justifier), et donc
(14.11)

Sin > k, nous avons ay € Vect ({e1,

ap = Z <ag,e; >, Vn=>k.
1<j<n
En combinant (14.11) avec I'inégalité de Bessel (exercice 14.15) et (14.10), nous obtenons,

pour toutn > k,
Z <z, ej>—z| < Z <z,e5 > —ap| + |z — agl
1<j<n 1<j<n
= Z <z —ag, e >+ ||z — ag
1<j<n
<e/2+¢€/2=¢,
CQFD

d’ot1 (14.8).
Preuve du covollaire 14.12. La continuité de la norme, (14.8) et le théoreme de Pythagore donnent
2 CQED

2
: 2
:1171Ln Z <z, e > :Z<x,en>
n>1

1<j<n

2 .

|z||* = hrlln Z <z,ej > €
1<j<n

Preuve de la proposition 14.13. Soit (ey,)n>1 € H une suite orthonormée. Soit

G := Vect ({en,; n > 1}).
«(14.8) = (ii)» Siz € H, alors y,, := >y _;_, < z,€; > €; € G,Vn > 1, ety, — z,dou

z € G, ce qui implique G = H.
« (ii) = (ii") » L'exercice 14.9 b), (ii) et le théoreme 14.5 donnent

[<z,e,>=0,Vn>1] xe{en;nzl}J‘ — el — a:eHJ‘z{O}

— x=0.
«(ii") == (14.8) » L'inégalité de Bessel (exercice 14.15) et 'exercice 14.14 implique 1'exis-
tence de
y::2<x,en>en:lil£n Z <z, e >ej. (14.12)
n>1 1<j<k
=y
Si k > n, nous avons < y, e, >=< x,¢e, >,d ol
<x—y,ey >=li]£n<a;—yk,en >=li}£nO=O,Vn21. (14.13)
CQFD

De (14.13) et (ii"), nous trouvons que = = y. Nous concluons grace a (14.12).
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14.3 Théoréme de représentation de Riesz

14.19 Théoréme. (Théoréme de Riesz) Soit ¢ : H — R une application linéaire
et continue. Alors il existe a € H tel que

o(x) =<z,0a>, Ve H. (14.14)

Et réciproquement.

De plus, nous avons

lell = flall (14.15)

Exercices

14.20 Exercice. Montrer que

|| = max{< x,y >; ye H, |y <1}, Yz € H. o

Démonstrations

Démonstration du théoréme 14.19. Etape 1. Existence de a et preuve de (14.15). Si p = 0,a = 0
convient. Si ¢ # 0, soit F' := Kerp = ¢ ({0}), qui est un sous-espace fermé de H
(justifier). Soit b € H tel que p(b) = 1 (justifier 'existence d'un tel b). Soient ¢ := pr(b)
etd :=b—c # 0. Notons que p(d) = p(b) = 1 et p(x — p(x)d) = 0,Vz € H (et donc
x—p(x)de F,Yze H).Sixze H, nous avons (grace a (14.3))
2
<z, d>=<z—p@)d, d >+ <p(r)dd>=q¢)|d|,

eF =b—pr(b)
etdonc a := d/||d|* convient.

L’égalité (14.15) suit de l'exercice 14.20.

Etape 2. Assertion réciproque. Clairement, H 5 x —< z,a > est linéaire et, de I'exercice
14.20, continue de norme | a|. CQFD

14.4 Pour aller plus loin

L’étude des espaces de Hilbert sera poursuivie dans 'UE d’Analyse fonction-
nelle en master 1. Une excellente référence est Brezis [5].

Les bases hilbertiennes jouent un role important dans 1’analyse des espaces de
Hilbert et au-dela (analyse numérique, étude des espaces L” et d’autres espaces
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de fonctions). Parmi les plus célebres, notons celle de Haar, Hermite, Laguerre,
Legendre et Walsh, dont la construction sera étudiée en master.

Pour conclure ce chapitre, nous ouvrons ici une perspective non-hilbertienne,
dans le prolongement du théoréme de représentation de Riesz 14.19. La preuve
de ce théoreme repose sur deux ingrédients :

a) On peut projeter sur un ensemble convexe, fermé et non-vide de H.

b) Pour tous u € H\{0} et v € H, 'application R 5 t — |u + tv| est dérivable
ent = 0.

Le résultat suivant (voir Willem [22, Chapitre IV, Section 14] pour un énoncé
voisin) permet d’obtenir une conclusion similaire a celle du théoréme de repré-
sentation de Riesz dans le cadre des espaces de Banach.

14.21 Théoreme. (Théoreme de représentation de James) Soit H # {0} un espace
de Banach avec les propriétés a) et b) ci-dessus. Si ¢ : H — R est une forme linéaire
et continue, alors il existe u € H tel que ||u|| = 1 et

d
p(z) = [l [@Ilu + txll]  VYazeH. o (14.16)

t=0

De maniere remarquable, ce théoréme s’applique aux espaces L? avec 1 < p <
. Pour ces espaces, la formule (14.16) donne le théoreme de représentation de
Riesz 10.31 a). (Voir la section suivante.)

14.5 Pour aller encore plus loin

Cette section sera utile plutét au moment d’aborder en master I’analyse fonc-
tionnelle. Elle fait suite a la fin de la section précédente et permet de voir la par-
tie difficile du théoreme de Riesz 14.19 ('existence de a) et la partie difficile du
théoreme de représentation de Riesz 10.31 (I’existence de g) comme des cas par-
ticuliers d'un résultat plus général.

14.22 Théoreme. (Forme « utile » du théoréme de représentation de James) Soit
E # {0} un espace de Banach.

On suppose que :

Pour tout hyperplan affine fermé F' — E, il existe u € F' tel que (14.17)
ull < loll, Yo e P, |

Pour tous u € E\{0} et v € E, I'application R 3 ¢ — |u + tv||
- (14.18)
est dérivable en t = 0.
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Si¢ : E — R est une forme linéaire et continue, alors il existe u € E tel que
u| = 1et

d
@) = Il [ g+ el vaer. > (1419

t=0

14.23 Remarque. La propriété (14.17) ci-dessus équivaut a |0 — u| = dist(0, F'), et donc
la condition a) revient a exiger que 0 ait une projection sur F', qui est un convexe fermé.
Ainsi, 'hypothese (14.17) qui apparait dans le théoreme 14.22 est a priori plus faible que
la condition a) du théoreme 14.21. o

Preuve du théoreme 14.22. Si ¢ = 0, tout u convient. Supposons ¢ # 0.

Etape 1. Choix de F et utilisation de (14.17) pour trouver u. Soit

Fi=¢ " (lel) = {ve E; ov) = llel},

qui est un hyperplan affine de E (car ¢ est une forme linéaire non-nulle) fermé
(car ¢ est continue).

Par définition de la norme |/¢||, nous avons p(z) < ||¢|/|z|, V& € E, et donc
Jv| > 1,VveF.

Egalement par définition de la norme, pour tout ¢ > 0 il existe = € F tel que

x| = 1 et p(x) > @, et donc, si on pose v = Mm, alorsve Fet|v]| <1+e.
£

()
De ce qui précede, nous avons inf,cr ||v| = 1. La propriété a) assure 1'existence
de u € F tel que [Jul| = 1.

Etape 2. Utilisation de (14.18) pour montrer (14.19). Soit x € E. Pour tout ¢ € R, nous
avons ¢(t) > 0, ou

9(t) = llellllw + ta] = (u + tx). (14.20)

De plus, nous avons ¢(0) = 0, et donc ¢ = 0 est un point de minimum de
g. L'hypothése (14.18) nous assure que g est dérivable en 0. Il s’ensuit, de ce qui
précede, que ¢'(t) = 0, ce qui revient a (14.19). CQED

Pour utiliser le théoréme 14.22, il faut pouvoir vérifier les hypotheses (14.17)
et (14.18). Les trois résultats qui suivent ont trait a '’hypothese (14.17).

14.24 Proposition. Dans un espace de Banach F, la propriété suivante :

Si (u;)  E satisfait [|u;| — 1, et |u; +ugl =2, V5, k, (1421)
alors (u;) est une suite de Cauchy, '

implique (14.17). o
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La preuve de la proposition 14.1 utilise implicitement la propriété (14.21).
Dans ce cas particulier, la validité de (14.21) découle de l'identité du parallélo-
gramme. En examinant 'utilisation de cette identité dans le preuve de la propo-
sition 14.1, on constate qu'une « inégalité du parallélogramme », méme avec une
marge d’erreur (quantifiée ci-dessous par ¢) aurait suffit.

14.25 Proposition. (Inégalités du parallélogramme généralisées) Dans un espace
de Banach F, la propriété suivante :

Il existe 1 < p < oo tel que : pour tout € > 0, il existe C'(¢) < o tel que

u+v (14.22)

2

p
[u— ol <ol +C(e) (nuup + ol — 2|5~ ) Vuvek,

implique (14.21) (et donc (14.17)). o

14.26 Proposition. a) Dans un espace préhilbertien E, (14.22) est vérifiée avec
p = 2 et C(e) = 2. En particulier, tout espace de Hilbert vérifie (14.21) et donc
(14.17).

b) Sil < p < m, alors L? vérifie (14.22). En particulier, tout espace L” avec 1 <
p < oo vérifie (14.21) et donc (14.17). o

Démonstration de la proposition 14.24. Si 0 € F, nous prenons u = 0, et (14.21) ne
sert pas. Si 0 ¢ F, alors dist(0, F') > 0. En remplacant F' par (1/dist(0, ")) F, nous
pouvons supposer que dist(0, F') = 1 (détailler). Soit (u;) < F telle que |ju;| — 1.
Pour tous j, k, nous avons (u; + uy)/2 € F, et donc |u; + ui| > 2 (détailler). De
(14.21), la suite (u;) est de Cauchy. £ étant complet et I’ fermé, il existe u € F tel
que u; — u. Il s’ensuit que u € F et [|u]| = 1 = infcp ||v]. CQFD

Démonstration de la proposition 14.25. Soit € > 0. Soit 6 > 0 a fixer ultérieurement.
Soit jj tel que |Ju; | <1+ 4§,V j > jo. Nous avons (de (14.22))

luj — wgl| < [P(1 + &) +2C(£)8]'P, ¥ j, k = jo. (14.23)

Le nombre ¢ étant fixé, en choisissant § de sorte que le membre de droite de
(14.23) soit < 2¢, nous obtenons que la suite (u;) est bien de Cauchy. CQFD

Dans la preuve de la proposition 14.26 b), nous utiliserons le résultat suivant.

14.27 Lemme. Soient 1 < p < w et e > 0. Alors il existe C'(¢) = C(e,p) < oo telle
que, pour a,b € R,

la—b| = elp| = |a— b <Ce) (|a\p+|b|p—2 .

ot blp) | o (14.24)
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Démonstration. Soit
it —1JP

FO = g o2p

VteR\{1}.

La fonction z — |z|P étant strictement convexe (car p > 1), I'inégalité stricte
de Jensen montre que le dénominateur de F'(t) est > 0 (justifier!), et donc F est
continue et strictement positive sur R\{1}. Par ailleurs, nous avons

1
lim F(t) = ———— > 0.

|t|—o0 1—21-»

I s’ensuit que, pour tout € > 0, il existe < C(e) < w tel que

1—21-»
F(t)<C(e), Vttelque |t — 1| > . (14.25)

Par homogénéité, (14.25) implique (14.24) (justifier, en étudiant le cas b = O et,
sib # 0, en prenant ¢ := a/b). CQFD

Démonstration de la proposition 14.26. a) suit de 1'identité du parallélogramme
u—+v
fu—of? =2 (Jul* + 1o - 2“5 ) .

b) Si f, g € £P7, alors (en utilisant (14.24))

fv—gv=f u—gw+f =g
|f—gl<elg] |f—g|=¢lg]
] W (e
|f—gl<elg] |f—g|=¢lg]

P p>
<er [l + @) [ (1rp +1p 27521,

car les intégrandes de la deuxiéme et troisiéme lignes sont positives (pour la
deuxiéme intégrande, justifier en utilisant la preuve du lemme 14.27). CQFD

‘f—g
2

Enfin, nous nous intéressons a la propriété (14.18).

14.28 Proposition. a) Si H est un espace préhilbertien réel et u € H\{0}, alors

[inu + m] Wy e (14.26)
dt im0 lul

b) Sil < p < wetue LP\{0}, alors

d 1
[—Hu + tf||p] = —— f|u|p_1(sgnu)f, VfelP. o (14.27)
dt =0 uly
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Dans la preuve de la proposition 14.28 b), nous utiliserons le résultat suivant.

14.29 Lemme. Si 1 < p < o, alors, pour tous a,b € R,
lla +b]P — [af’| < p2P~ ' (lafP~" + [b"~1)[b]. o (14.28)

Démonstration. La fonction z +— |x|P est dérivable, de dérivée p|z|’~'sgnz. Le
théoreme des accroissements finis donne 'existence d’un ¢ compris entre a et
a + b tel que

ja + 0" —[a]” = plc["~ (sgn ).

On obtient

[la+ 6" —fal”| =plc/~* || < p(|al + [b])"~"[b]

<p[2max{|al, [B[}]7" [o] < 22" (|a"~" + [bP~1)b]. o

Démonstration de la proposition 14.28. a) Il suffit de noter que

ot =/l + 20wy + 2]
et d’utiliser la regle de la chaine (détailler).

b) Considérons l'intégrale a parametre

R\{O} 3t — F(t) :

_ +tfl5 =l _ f lu +tf|P — |ul?
t t ’

FtfP— |ul
Nous avons [ut tf] [ul

— plufP~(sgnu) f simplement quand ¢ — 0 (justi-
tier). Par ailleurs, d’apres le lemme 14.29, la domination

u+ tfP — Jul?

e <2l £ (14.29)

est vraie lorsque |t| < 1 (détailler). L'inégalité de Holder montre que le membre
de droite de (14.29) est dans L' (détailler). Par convergence dominée, il s’ensuit
que lim; o F(t) = p§ |u|P~*(sgnu) f, et donc

d
s e

L’'identité (14.27) suit de (14.30) et de la regle de la chaine (détailler). CQFD

= pf lulP~* (sgnu) f. (14.30)

t=0

Nous concluons cette section par la preuve des théoremes 14.19 et 10.31 (partie
existence) en utilisant les résultats établis ci-dessus.
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Preuve du théoreme 14.19 (partie existence). Soit ¢ : H — R linéaire et continue. Le
théoreme 14.22, la proposition 14.26 a) et la proposition 14.28 a) impliquent qu’il
existe u € H tel que |jul| = 1 et

() = |ell<e,u), Vo e H.

11 suffit alors de prendre a = ||| u. CQFD

Preuve du théoreme 10.31 (partie existence). Soit ¢ : L? — R linéaire et continue. Le
théoreme 14.22, la proposition 14.26 b) et la proposition 14.28 b) impliquent qu’il
existe u € L” tel que [|ul|, = 1 et

o(f) = el f P (sen ) f, ¥ f e L7,

Nous concluons en notant que g = |p|||u[P~*(sgnu) € L4 (détailler). CQFD

14.30 Remarque. Sous I’hypotheése (14.21), on peut définir la projection sur tout convexe
fermé non-vide de E (analogue de la proposition 14.1). De plus, il y a une caractérisation
de la projection analogue a la proposition 14.3. Pour ces propriétés, voir les exercices de
synthese et avancés. o
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Opérations avec les ensembles

a) Nous travaillons dans un ensemble fixé X. L'ensemble de toutes les parties de
X estnoté Z(X).

b) Les parties (sous-ensembles) de X sont notées A, B, etc. « A est une partie de
X »s'écrit Ac X ouX o A.

¢) (Ai)ier désigne une famille de parties de X, indexée par un ensemble quel-
conque (donc pas nécessairement fini ou dénombrable) d’indices.

d) Rappelons les opérations usuelles avec les ensembles.
(i) (Union) AuB:={re X;ze Aouxce B}.
Plus généralement, u;e;A; := {x € X ; x € A; pour au moins uni € I}.
(ii) (Intersection) An B:={rxe€ X;rec Aetx e B}.
Plus généralement, n;e;A; := {x € X ; x € A, pour tous les i € I}.
(iii) (Différence) A\B :={re X;x€ Aetz ¢ B}.
(iv) (Diftérence symétrique)

AAB := (A\B)u(B\A) ={xe X;[reAetx ¢ Blou|zx e Betz ¢ Al}.

(v) (Complémentaire) A°:= X\A:={re X; z ¢ A}.

(vi) (Produit cartésien) Si X, Y sont des ensembles, alors X xY := {(z,y); = €
XetyeY}.
Plus généralement, X; x --- Xy := {(x1,...,2%)); z; € X, Vje [1, K]}

e) Rappelons les principales propriétés de ces opérations.
i (AuB)nC=(AnC)u (BnC).

Plus généralement, (U;e;A;) N C = Uier(A; 0 C) et (Uier4;i) N (UesC)) =
Vier jes (Ai 0 Cj).

(ii) Lesregles du point précédent restent valides si nous échangeons uU et .

(iii) (A°)° = A.
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(iv) Si A < B, alors B¢ < A“.
(v) (Au B)¢ = A°n B°.
Plus généralement, (U;erA;)¢ = Nier(A;i)°.
(vi) (An B)t = A°u B°.
Plus généralement, (n;erA;)¢ = Uier(A4;)°.
(vii) A\B = A n B
(viii) AAB = A°AB°.

Image, image réciproque

a) (Image réciproque) Pour A c Y, f71(A) :={z e X; f(z) € A}.
b) (Image, ou encore image directe) Pour B < X, f(B) := {f(x); z € B}.
c) Rappelons les principales propriétés des images (directe et réciproque).

(1) f N (ierdi) = vierfTH(A)).

(i) f~'(nierAi) = Nierf T (Ad).

(iif) f7(A°) = (f7H(A))".

(iv) f(uierdi) = Vier f(A).

(V) f(nierdi) © nierf(4A).

Exercices

Les exercices suivants récapitulent les principales propriétés des opérations
avec les ensembles, propriétés utilisées dans les preuves.

14.1 Exercice.

a) Si (An)n>0 est une suite croissante, alors U,>0A4, = UnsngAn, V1o € N.
b) Si (A, )n>0 est une suite décroissante, alors N,>0A, = NpsngAn, V1o € N o

14.2 Exercice.

a) An (VierB;) = Uier(A n By).

b) AU (nierB;) = Nier(Au B;) .

Q) (Vierdi)® = nier 45.

d) (nierdy)¢ = Uie[Af.

e) A\(VierBi) = nier(A\B)).

f) (UieIAi)\B = Uie[(Ai\B).

g) A\(nierB;) = vier(A\B;).

h) (ﬁz’eIAi)\B = ﬂie](Ai\B), R

14.3 Exercice.
a) fYVierBi) = Vier f1(B;).
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b) f (MierBi) = Mierf T (Bi).
o fHB) = (f1(B))"
d) Si,deplus,g:Y — Z,alors (go f)~YB) = f (g~ Y(B)). o

14.4 Exercice.

a) f(uierdi) = Vier f(Ai).
b) f(nicrA;) © nierf(A;). En général, I'inclusion est stricte.

c) En général, il n'y a pas de relation d’inclusion entre f(A°) et f(A)°. o
14.5 Exercice. xauB + XA~B = XA + XB- o
14.6 Exercice. Ac A; u... U A, sietseulementsixys <, XA, - o
14.7 Exercice. Ac Bu (A\B) € Bu (AAB). o
14.8 Exercice. Si A  Bet A © U A;, alors A € Uier(A; N B). o

14.9 Exercice.

a) (A9)A(B%) = AAB.

b) (Uierdi)\(VierBi) © UierAi\B;.

Q) (Vierdi)A(VierBi) € Uit A;AB;. o
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Lebesgue intégrable, 106
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complete, 57
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de Lebesgue, .Z,, 67 produit, 135
engendrée, 7 (<), 34
induite, 28 égalité de Parseval, 257
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Feuille de TD # 0
Opérations sur les ensembles

Cadre, notations

1. Nous travaillons dans un ensemble fixé X .

2. Les parties (sous-ensembles) de X sont notées A, B, etc. « A est une partie de X » s’écrit
Ac XouX o A.

3. Lensemble de toutes les parties de X est noté #(X).

4. (A;)ier désigne une famille de parties de X, indexée par un ensemble quelconque (donc
pas nécessairement fini ou dénombrable) d’indices.

5. Rappelons les opérations usuelles avec les ensembles.
() Union)Au B:={xe X;xe Aoux € B}.
(i) (Intersection) AN B:={xe€ X;z € Aetz € B}.
(iii) (Différence) A\B :={re X;xe€ Aetx ¢ B}.
(iv) (Différence symétrique)

AAB := (A\B)u (B\A) ={ze X;[reAetx ¢ Blou|[r e Betx ¢ Al]}.

(v) (Complémentaire) A° = X\A :={x e X;z¢ A}
(vi) (Produitcartésien)Si X,Y sontdesensembles,alors X xY := {(z,y); x € X ety €
Y.
6. Une suite (A,,),>x de parties de X est croissante si A,, < A, 11, Vn > k. Elle est décrois-
santesi A, D A1, Vn = k.
Exercice #1. (Echauffement)

a) Dessiner «avec des patates » les ensembles A U B, A n B, A\B, A°, AAB.
b) Calculer (AAB)AA.

Exercice # 2. (Propriétés fondamentales) Montrer les propriétés suivantes.

) An (UierBi) = Vier(An B)) et Au (NierBi) = nier(A U By).

b) (Uierdi)® = nicr Af et (NicrAi)® = Uit A7,

Q) A\(UierBi) = nier(A\B;) et (Uier Ai)\B = Uier (A:\B).

d) A\(nierBi) = ier(A\Bs) et (Nicr Ai)\B = nier(A\B).

€) (Vierdi) X (Ujes Bj) = UiijersAi x Bjet (Nigp Ai) ¥ (NjesBj) = NjperxsAi X Bj.

f) Déduire de la question précédente deux formules pour (U,esA;) X (NjesB;), respective-
ment deux formules pour (N A4;) X (UjesBj).

Exercice # 3. Soient X un ensemble et A et B deux parties fixées de X .

a) Simplifier les conditions suivantes portant sur la partie C' de X.

HAUVCcBUC;({HANCcBnC; [)(AnC)u(BnC =.
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b) On définit f : Z(X) —» P(A) x P (B) par f(C) := (A n C,B n C). Déterminer,
pour le couple (A, B), une condition nécessaire et suffisante pour que f soit (i) injective;
(ii) surjective.

Exercice # 4. (Fonction indicatrice) Soit X un ensemble. Pour une partie A de X, on définit
1, size A

sa fonction indicatrice x 4 : X — Rpar xa(x) := _ .
0, siz¢ A

a) Calculer yg et yx.Pour A ¢ X fixéet Y = R, calculer x (V).

b) Exprimer simplement en fonction de x4 et xp les fonctions x ac, x4~B, Xaup (dans le
cas général et dans le cas particulier ot A N B = (&), xann, Xj-1(a) (@vec f : Y — X).

c) Rappelons la notation suivante. Si B et C sont des ensembles, alors

BY := {f : C — B} (lensemble de fonctions de C vers B).

Lapplication A — 4 est-elle une bijection de 22(X) dans {0, 1}*?
d) Montrer, a l'aide des fonctions caractéristiques, 'égalité (AAB)AC = AA(BAC).

Exercice # 5. (Suites d’ensembles) Soit (A,,),>o une suite de parties de X.
a) Si(A,)n=0estcroissante, alors Uy~ Ay = Unso0A,, V1o € N.
b) Si (A, )n>0 est décroissante, alors My,>pn, An = Nps0An, Yo € N.

¢) Soit A := U,0A,. Si(A,)n=0 est croissante, alors la suite (x4, )n>0 €st croissante et
converge simplement vers x 4.

d) Enoncer et prouver le résultat analogue au précédent pour une suite décroissante.
e) Soit A := U,>0A,. Siles A, sont d. d. d. (deux a deux disjoints), montrer que x4 =

Zfzo XAn .

Exercice # 6. (Image directe, image réciproque) On se donne deux ensembles X et Y et une
application f : X — Y.
Si A c X,ondéfinit f(A) := {f(z); x € A}.
Si B < Y,ondéfinit f1(B) :={xe X ; f(x) € B}.
Montrer les propriétés suivantes de l'image réciproque B — f~'(B).
a) [N (VierBs) = Uier fT1(B)).
b) 7 (icrBi) = nierfH(By).
o f7H(B) = (f71(B))".
d) Si,deplus, gestuneapplicationde Y vers unensemble Z, alors (gof) ' (B) = f (g ' (B)).

Pour I'image directe A — f(A), les relations analogues ne sont pas vraies en général.
e) Montrer que f(U;erA;) = Uier f(A4;).

f) Montrer que f(NierA;) © Nierf(A;) et donner un exemple montrant que I'égalité nest
pas vraie en général.

g) Montrer par des exemples quen général il n'y a aucune relation d’inclusion entre f(A°)
et (f(A))".

Exercice # 7. (Injectivité) Soit f : X — Y une application. Montrer que les propriétés

suivantes sont équivalentes.

a) f estinjective.



b) YA C X, fL(f(A)) = A.

0 VaoeX, fH(f({z})) = {z}.

Exercice # 8. (Surjectivité) Soit f : X — Y une application. Montrer que les propriétés
suivantes sont équivalentes.

a) f estsurjective.
by VBcY, f(f'(B))=B.
o VyeY f(f~({y}) = {v}.

Exercice # 9. (Produit cartésien)
a) Soient A,C' € Z(X)et B, D e Z(Y). Montrer I'implication

(AxB)n(CxD)# g = [AnC+# JetBn D # .

b) SiA ¢ XetB c Y, écrire (X x Y)\(A x B) comme une union finie de produits
cartésiens d. d. d.

0 SiAd; c XetB;, cY,Vie [l,n], montrer que (X x Y)\(Ul;A; x B;) sécrit comme
une union finie de produits cartésiens.

Exercice # 10. (Coupes) Si £ < X x Y, soient
VeeX, E,:={yeY; (z,y)e E}etVyeY, BV :={xe X; (z,y) € E}.

a) Si X =Y =R, «dessiner» E, et EY pour une « patate ».

b) SiE:={(z,y) e R?; 2 >0,y >0, x+y < 1}, trouver £, et EY pour chaque z, y € R.

¢) Montrer que (UierE;)y = Uier(Ei)g, Vo € X et (UierE;)? = Uier(E;)Y,Vy e Y.

Exercice # 11. (Union d. d. d.) La notation w;c; A; est utilisée pour la réunion d’'une famille

(A;)ier ensembles deux a deux disjoints (d. d. d.).

a) SiAy, Ay,. .., sontdespartiesde X, soient By := Aget,pourn > 1, B, := A,\(UI) 4;).
Montrer que U; A; = 1; B;.

b) Montrer que (L;erA;) X B = UerA; x B.
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Feuille de TD # 1
sup, inf, lim sup, lim inf, dénombrement

Exercice # 1. Soient A, B des parties non vides de R. Montrer que :

a) M = sup A si et seulement si M est un majorant de A et il existe une suite (z,), < A
telle que x,, — M. Trouver une caractérisation analogue de inf A.

b) Tout A admetsup A €] — 0, o] etinf A € [—o0, 0.

c) sup A etinf A sont uniques.

d) sup (—tA) = —t inf A,V ¢ €]0, co[. Donnerles formulesdesup (tA), inf (tA), inf (—tA).

e) sup (A+ B) =sup A +sup Betinf (A + B) = inf A + inf B.

f) SiAc B,alorsinf B < inf A < sup A < sup B.

g) Si(x,)n>n, = R estune suite croissante, alors lim,, z,, = sup x,, := sup{x, ; n > ng}.
n=no

Trouver 'énoncé analogue pour une suite décroissante.
h) SisupA > z € R, alorsil existeuny € Atelquey > x.

i) Montrer quesup (Au B) = max (sup A, sup B).Y a-t-il des formules pour inf (AU B),
sup (A n B)etinf (A n B)?

Exercice # 2. Que devient ce qui précéde si nous considérons des parties nonvides A, B de
R?

Exercice # 3. Trouver B ¢ A c Rtelsqueinf A = —o0,inf B = 0,supB = letsup A =
2.

Exercice # 4. Trouver A — R tel que sup A et min A existent dans R, mais max A n'existe
pas.

Exercice # 5. Soient A, B deux parties non vides de R telles que sup A = inf B.
a) Montrer que pour tout z € Aettouty € Bonaxz < y. Montrer que pour tout e > 0 il
existex € Aety € Btelsquey —z < e.

b) Inversement, on suppose que pour toutz € Aettouty € Bonax < y. Montrer que si
pour toute > Oilexistex € Aety € Btelsquey — z < ¢, alorssup A = inf B.

Exercice # 6. Déterminer les bornes sup et inf des ensembles ci-dessous :
A = {COS (n%) i n e N};
12n + 107"

b) Ap = {M—M;”EN};

c) Az := {(1 + sin <ng)> Inn;ne N*}.

Exercice # 7. Calculer

cos(xt + m/4) o—o/(1+?)
sup ———————, SUp —————.
2>0, teR 1+ steR 1+ +



Exercice # 8. Trouver tous les ensembles A — R tels que
sup(tA) =tsup A, Vt e R.
Exercice # 9. Soienta, ; € R, Vn, k € N. A-t-on toujours

Sup sup an = Sup sup CLn’k?
n k k n

Exercice # 10. Nous considérons une suite (x,), < R.

a) Siliminfz, > limsup z,, alors x,, — limsup,, z,, = liminf,, z,,.
n n

b) Sia < x, <b,Vn > ny,alorsa < liminf, z,, < limsup,, z,, < b.

¢) Siz, > a,Vn > ngetlimsup, z, < a,alorsz,, — a.

d) Donner des exemples de suites (x,,), et (y,), avec lim sup,, (x,, + y,) # limsup,, x, +
lim sup,, Y.

Exercice # 11. a) Montrer que x,, < y,, Vn > nyg = limsupx,, < limsup y,,.

n n

b) Quelles sont les hypotheéses implicites de la question précédente?

Exercice # 12. Trouver une suite réelle (a,), telle que sup,, a, = 4, limsup, a, = 2,
liminf,, a, = 1etinf, a,, = 0.

Exercice # 13. Calculer lim sup,, z,, et liminf,, x,, pour les suites définies pour tout n € N
respectivement par les formules :
a) o, :=1/(n+1).

n

b) z, = (n+1)V",

0 rn = (2reos (n3)) 57
Ty = cos (n3)) 5—7-
Q) 1z, = 11n 4 2 cos(nm)

Van2 +n—1 "

Définitions. Soit (A, ),>, une suite de parties d'un ensemble X . Les ensembles lim sup,, A,,
et liminf,, A, sont définis respectivement par les formules

limsup 4, := Npsng YUksn Ak, iminf A, 1= Upsng Nisn Ak
n n

Exercice # 14. a) Montrer que x € lim sup,, A, siet seulement si z appartient 2 une infinité
d’ensembles A4,,.

b) Montrer que = € lim inf,, A, si et seulement si il existe un n; (qui peut dépendre de = €
X)telquex € A,,Vn > n,.

¢) Pour tout z € X, montrer les égalités

Xlim sup An(:v) = lim sup x4, (z), Xlim inf A,, (x) = limninf Xa, ().

n

d) Soit (A,,)n=n, une suite croissante de parties de X . Montrer que

limsup A,, = liminf A,, = Upspn, An, Y01 > ng.
n n

Quel est 'analogue de cette formule pour une suite décroissante?
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e) Montrer que

n n n

limsup A,, = (lim sup A2n> U (lim sup A2n+1) ,
liminf A,, = <lim inf A2n> N (lim inf A2n+1> )

Exercice # 15. Déterminer les limites supérieures et inférieures des suites suivantes d’en-
sembles :

a) Ajet Asdonnés, A, = A,,_»,Vn > 3.
b) A2n = [—17 24 n_l[et A2n+1 Z:] —2— n_l, 1], Vn > 1.
o) A, :=]—,a,]avec (a,), < R suite monotone.

Exercice #16. Soit X := [0, 1[. Montrer que tout entier n € N* g’écrit de fagon unique sous
la forme

n=2"+pavecme Net) <p < 2™ 68)

Avec m et p déterminés (en fonction de n) par la formule (1), nous posons

1
A, = ﬁ,]i cX,Vn>1.
2m’ 2m

Trouver lim sup A,, etliminf A,,.

Exercice # 17. Comparer liminf, (A4, u B,) et (liminf, A,) U (liminf, B,). Donner un
exemple de suites telles que

liminf (4, u B,,) # (liminf A4,)) U (liminf B,,).
Exercice # 18. Montrer que (limsup,, A,)\(liminf,, 4,) < limsup,, (4, AA,,41).

Rappels de cours. Dans les trois exercices suivants, on pourra utiliser sans preuve les faits
suivants :
a) Lintervalle [0, 1] < Rrlest pasa. p. d.
b) Si A « Nestinfini, alors A est dénombrable.
c) S’il existe une bijection ® : A — B, alors:
(1) Soit A et B sont tous les deux finis;
(ii) Soit A et B sont tous les deux dénombrables;;
(iii) Soit aucun des deux ensembles rest a. p. d.

Exercice # 19. Prouver ou réfuter les assertions suivantes.

a) Lensemble des nombres premiers est dénombrable.
b) Lensemble des nombres pairs est dénombrable.

¢) Lensemble R est dénombrable.

d) Lensemble C est dénombrable.

e) Lensemble N x R est dénombrable.

f) Lensemble Z(N) = {A; A < N} est dénombrable.



Exercice # 20. a) Soient n € N* et py,...,p, n nombres premiers distincts. Montrer, a
'aide de I'application

©:N" >N, N3 (ki,....ky) = @k, ... k) :=pi*---pkr e N,

que N™ est dénombrable.

b) En déduire que le produit cartésien d’'un nombre fini d’ensembles dénombrables est dé-
nombrable. Que peut-on dire d’'un produit cartésien infini d’ensembles dénombrables?

c) Montrer que Z¢(N) := {A; A < N, Aestfini} est dénombrable.

Exercice # 21. Un nombre réel = est dit algébrique s'il existe un polyndéme nonnul P € Z[ X |
tel que P(x) = 0. Un nombre réel qui n'est pas algébrique est transcendant.

a) Montrer que tout nombre rationnel est algébrique.

b) Montrer que 'ensemble des nombres algébriques est dénombrable.

c) Montrer que 'ensemble des nombres transcendants n'est pas dénombrable.

Exercice # 22. Soit A — R un ensemble dénombrable. Soit B = A\ A (avec A I'adhérence
de A). Existe-t-il un A tel que :

a) B ait exactement n éléments, pour unn € N donné?
b) B soit dénombrable?
c) Bnesoitpasa.p.d.?

Exercice # 23. Montrer quil existe un nombre réel qui ne peut pas étre décrit par une défi-
nition mathématique.

Exercice # 24. Nous admettons le résultat suivant, qui sera démontré en topologie : tout

ouvert U < Rsécrit U = | |._; J;, avec les J; intervalles ouverts non vides (et d. d. d).

Montrer que [ est a. p. d. Donc : tout ouvert de R est réunion a. p. d. d’intervalles ouverts d. d. d.
(m+4+n)(m+n+1)

Exercice # 25. Soit f : N> — N, f(m,n) := 5 +mn,Vm,n € N.

Montrer que f est bijective.
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Feuille de TD # 2
Tribus, fonctions mesurables, mesures

Exercice #1. a) &(X) est une tribu.
b) 7 = {, X} estune tribu.

Exercice # 2. a) Soit I < R un intervalle. Lensemble % des unions finies d’intervalles
contenus dans [ est un clan (sur I).

b) UnpavédeR" estun ensembledelaforme P = [} x I x - - - x I,,, avec chaque I, intervalle
de R. Lensemble %, des unions finies de pavés de R" est un clan.

¢) Tout élément de %, est une union finie d. d. d. de pavés de R".

Exercice # 3. Prouver ou réfuter les assertions suivantes.

a) Si X estdénombrable, alors toute tribu sur X esta. p. d.
b) Une partie 7 de &2(X) est une tribu si elle vérifie :

i) ge 7.
(i) Ae T — A°e 7.
(i) [A, € T, Vn] = nuend, € J.

Exercice # 4. Le but de cet exercice est de montrer quune réunion arbitraire d’ensembles
mesurables n'est pas nécessairement un ensemble mesurable. Soit

T ={AcR; Aa.p.d.ouda.p.d.}.

a) Montrer que .7 est une tribu.
b) Montrer que .7 # Z(R).
¢) Conclure.

Exercice #5. Si X := {1,2,3} et := {{1}}, alors:
a) le clan (etla tribu) engendré par o7 est {7, X, {1}, {2, 3}};
b) la classe monotone engendrée par .o/ est <7 .

Litem b) contredit-il le théoréme de la classe monotone?

Exercice # 6. Soient X := Net.o/ := {{n}; ne N}.

a) Montrer que 7 («/) = Z(N).

b) Montrer que ¢’ (<) = {A < N; A fini ou A° fini}.

¢) Endéduire que, en général, 7 () # € ().

d) En déduire que si ¢ est un clan et (A, ),»0 < ¥, alors en général U, ~0A, ¢ E et
Nnsod, & €.

e) Montrer que .Z (<) = <.

Exercice # 7. Déterminer les tribus engendrées dans X par la famille o7, ot :
a) X :=Reto :={Z}.



b) X :=Rets := {{n}; neZ}.
) X :=Netw/ = {{0}, {2}, {4},... }.

Exercice # 8. a) Soit ¥ unclansur X. SoitY < X.Alors 4y := {AnY; Ae ¥}estun
clansurY.

De méme pour une tribu .7.
Gy (respectivement Jy) est le clan induit par € sur Y (respectivement la tribu induite par

T surY).
b) SiY e @, alorséy = {A; Aec¥, AcY}.

Exercice # 9. Soit (X, d) un espace métrique. Soit Y < X, muni de la métrique induite par
X. Montrerque By = {BnY; Be ABx}.

De maniére équivalente, %y coincide avec la tribu induite par Zx sur Y (voir 'exercice
précédent).

Exercice # 10. Montrer que si ¥’ estunclanet A;,..., A, € €,alors A; u ... U A, € F.
De méme si on remplace clan par tribu.

Exercice # 11. a) Toute tribu est un clan.
b) Toute tribu est une classe monotone.
c) Si X est fini, alors tout clan est une tribu.

Exercice # 12. Montrer que A,, / A si et seulement si : la suite de fonctions (4, ), est
croissante et converge simplement vers x 4.

De méme, A, \, A si et seulement si : la suite de fonctions (x4, )., est décroissante et
converge simplement vers x 4.

Exercice # 13. Si (¢ );cs est une famille d’ensembles o7, = (X)) telle que chaque <7 soit
un clan (ou tribu, ou classe monotone), alors N;c;.%7% est un clan (ou tribu, ou classe mono-
tone).

Exercice #14. a) Si/ < A, alorsC () < € (B), M () < M (B)et T (o) = T (B).
b) Ona % (¢ («/)) = € (). Propriété analogue pour la classe monotone et la tribu engen-
drées.

Exercice #15. Soit &/ < Z(X).Si A € (<), montrer quil existe une partie a. p. d. #
de o telle que A € T (A).

Indication : considérer ¢ := {Ae T («); 3B < &/ a.p.d.telque A € T(A)}.

Exercice # 16. a) Montrer que 'union de deux tribus n'est pas nécessairement une tribu.
b) Montrer que 'union d’une suite finie et croissante de tribus est une tribu.

c) Cedernier résultat ne passe pas a une union infinie. En effet, pourn € N, soit .7, latribu
sur N engendrée par Z({0,...,n}). Montrer que (.7,,),>0 est une suite croissante de
tribus sur N, mais que U, .7, nest pas une tribu.

Exercice # 17. Prouver ou réfuter les assertions suivantes.

a) Un ouvert ou un fermé est un borélien.
b) Un borélien est un ouvert ou un fermé.
¢) Unintervalle est dans #.

Exercice # 18. Prouver ou réfuter les assertions suivantes.



a) Lensemble [2, 3] n Q est un borélien de R.
b) Lensemble A := {z € R; cosx = sin(sinz)} est un borélien de R.
c) Si B c Restborélienetsi A « B, alors A est borélien.

Exercice #19. Soit (X, d) un espace métrique. Soit f : X — R.

a) Montrer que f estcontinueenz € X <= Ve > 0, il existe unvoisinage V' de x tel que

[y, zeV] = [f(y) - f(2)] <e.

b) Endéduire que {x € X ; f continue en x} est un borélien.

Exercice # 20. Soit (X, d) un espace métrique. Soient f,, : X — R des fonctions boré-
liennes, n € N. Montrer que {x € X ; (f,(z)), converge} est un borélien.

Exercice # 21. Soit ® : X — Y un homéomorphisme entre espaces métriques. Si A < X,
alors A € Ay sietseulementsi P(A) € By

Exercice # 22. a) Soient A € $gn et B € HBrm. Montrer que A x B € Brn+m.

b) Plus généralement, si (X, d) et (Y, J) sont des espaces métriques et si nous munissons
X x Y d’'une métrique produit, alors Zx x By < Bxxy-.

Exercice # 23. Dans cet exercice, nous considérons un espace mesurable (X, .7). Prouver

ou réfuter les assertions suivantes.

a) Une fonction f : X — R qui ne prend quun nombre fini de valeurs est étagée.

b) Sif: X — R"estmesurable,etsig : R" — Restborélienne étagée, alorsgof : X — R
est étagée.

¢) Sif:X — Resttelleque f~}(F) € J pour tout F' = R fermé, alors f est mesurable.

d) Si f: R — Restborélienne et ne s’annule pas, alors 1/ f est borélienne.

e) SiAc X,alors x4 : X — R est mesurable si et seulementsi A € 7.

r+1, six>0

] , est borélienne.
—x, siz <0

f) Lafonction f: R — R, f(x) := {
g) Lafonction f : X — R est mesurable < |f| est mesurable.

Exercice # 24. Décrire les fonctions mesurables f : X — R suivants.
a) X estmunide .7 = {(J, X}.
b) X estmunide 7 = Z(X).

Exercice # 25. Montrer quun fonction monotone f : R — R est borélienne.

Exercice # 26. a) Soit f : R — R dérivable. Montrer que f’ est borélienne.
b) Soit f : R — R continue. Soit x € R. Montrer 'équivalence des propriétés suivantes :

(i) festdérivableenzet f'(z) = /.
(ii) Nous avons la double égalité :

¢ = lim inf{f(x+h)_f<x>;he@*, |h|<i}
h m

m—00

= lim sup{f(x—i_h})b_f(x);he(@*? |h| <%} .

m—00




¢) Endéduire que, si f est continue, alors la fonction g : R — R définie par :

f'(z), sifestdérivableenz
g(z) =

0, sinon

est borélienne.
d) Vraioufaux?Sig = 0, alors f est constante.

Dans les exercices suivants, .7 < &?(X) est une tribu. La mesurabilité des fonctions consi-
dérées s'entend par rapporta .7 .

Exercice # 27. Soient f : X — Rmesurableet g : X — R définie par:

g@y_{L si fla) eQ

0, sinon

Montrer que g est mesurable.
Exercice # 28. Soit f : X — R une fonction étagée. Montrer que f*(B) € 7,V B < R.

Exercice # 29. Soient f,g : X — R fonctions étagées et A € R. Montrer que f + get Af
sont étagées.

Exercice # 30. Soit f : X — R. On définit, pour tout 0 < M < o, la fonction f,; par

f(x), silf(z)| <M
fu(x) =< M, sif(x) > M
—M, sif(x)<—-M

Montrer que f est mesurable si et seulement si f); est mesurable pour tout M > 0.

Exercice # 31. Soit (f,,),=0 une suite de fonctions mesurables de X dans R.

a) Rappeler pourquoi liminf f,, et lim sup f,, sont mesurables.

n

b) Montrer que B := {z € X ; (f.(z)), est bornée} est mesurable.
¢) Soita € R. On définitg : X — [0,00] par g(z) := inf{n € N; f,(x) > a}, avecla
convention inf (J = c0. Montrer que g est mesurable.

Exercice # 32. Soit (X, d) un espace métrique.
a) Soient A € &y et f: A— R continue. Alors f est borélienne.

En particulier, toute fonction continue f : X — R est borélienne.

b) Plus généralement, si f est continue en dehors d'une partie a. p. d. de X, alors f est
borélienne.

¢) Encore plus généralement. Soient A;, A, ..., boréliens d. d. d. tels que X = 1 Ay.
Pour chaque Ay, soit fi, : Ay — R une fonction continue. Soit f : X — R définie par
f(z) := fr(x)siz € Ag. Alors f est borélienne.

d) De méme si, dans le point précédent, on remplace « f, continue » par « fj borélienne »
(voir aussi le point f)).

e) De méme pour des fonctions a valeurs dans R".



f) Soit (X, .7) un espace mesurable. Soient A;, As, ..., mesurables d. d. d. tels que X =
U Ag. Pour chaque Ay, soit fr : Ap — R une fonction mesurable. Soit f : X — R
définie par f(z) := fi(z) siz € Ay. Alors f est mesurable.

g) Montrer que les items a)—e) sont des cas particuliers de I'item f).
h) Obtenir la conclusion de I'exercice # 25 en utilisant I'item b).

Exercice # 33. Soit 4 ¢ Z(X)unclantelque @f € €.Sipu : € — [0, 0] est o-additive,
alors ou bien u () = 0 (et donc p vérifie les axiomes d'une mesure), ou bien u () = o (et
dans ce cas u(A) = w0,V A € 6).

Exercice # 34. Soit X un ensemble. Montrer que I'application p : #(X) — [0, ],

card A, siAestfini
n(A) = { .
0, sinon

est une mesure sur (X ). C'est la mesure de comptage.

Exercice # 35. Prouver ou réfuter les assertions suivantes.
a) SiAe 7, alors u(X) = p(A) + p(A°).
b) Si (A, )n>0 est une suite décroissante d’éléments de .7 et 1(Az) < o0, alors

p(Onz0dn) = lim p(Ay).

¢) SiA,Be T etu(A v B) = pu(A) + u(B), alors A et B sont disjoints.
d) Ilexiste un espace mesuré (X, .7, u) telque {u(A); Ae 7} ={0,1,2}.
e) Il existe un espace mesuré (X, .7, u) telque {u(A); Ae 7} ={0,1,3}.
f) La mesure de comptage sur N est finie, respectivement o-finie.

g) Soient &/ une famille qui engendre .7 et y1, s deux mesures sur .. On suppose que
pour tout Adans .o/ ona iy (A) = ps(A). Alors pour tout 7'dans .7 ona g (T') = ua(T).

Pour cette derniere question : y a-t-il des hypothéses raisonnables a ajouter ou enlever?

Exercice # 36. Soit i la mesure de comptage sur (N, &?(N)). Trouver une suite décroissante
d’ensembles (A, ),>o telle que p(A,) - 1 (Np=04y).

Exercice # 37. Soit ;. une mesure finie sur (X, .7). Soit . < .7 I'ensemble défini par
S i={Ae T pu(A) = 0oup(A) = p(X)}.
Montrer que .% est une tribu.

Exercice # 38. Soit ;1 une mesure o-finie sur (X, 7). Montrer quil existe une suite d. d. d.
(Xn)n © T telleque u(X,) < 0, ¥net X = 1, X,.

Exercice # 39. Soit i une mesure o-finie sur (X, .7). Soit (X,,)n>1 © 7 avec u(X,,) < o0,
Vn=>1letX = u,X,.Posons j,(A) := u(An (X;u...uX,)),VAe 7. Alors:

a) /i, est une mesure finie, Vn > 1.

b) wn /.

Exercice # 40. (Formule de Poincaré)

a) Montrer quesi pu(A; U Ay U ... U A,) < oo alors

,LL(AluAQU...UAn):Z<_1)j+1 Z (A N0 Ayg).

j=1 1<iy<ig<---<ij<n



b) Que devient cette formule dans le cas particulier de la mesure de comptage?

Exercice # 41. Soit .7 une tribu contenant les singletons. Soit ;. une mesure sur (X, .7).
Soit D := {x € X; pu({x}) > 0}. Est-il vrai que D esta. p. d.

a) Sipestfinie?

b) Siu est o-finie?

¢) Sip est quelconque?

Exercice # 42. a) Soit ;1 une mesure borélienne de probabilité sur [0, 1], avec la propriété
suivante :

u(B) >0 = u([0,1\B) =0,V B e By

(i) Construire une suite d’intervalles fermés (/;);~0 < [0, 1] avec les propriétés sui-
vantes: Iy = [0,1], [;41 < [;,Vj = 0, [; estdelongueur27,V j > 0,et u(I;) = 1,
Vi =>0.

(ii) Endéduire qu'il existe un pointa € [0, 1] tel que 1 = 9.

b) Soit v une mesure borélienne o-finie sur R avec la propriété suivante :
v(B) >0 = v(R\B) =0,V Be %g.
Montrer quil existe a € Retb € [0, o[ tels que v = bd,.

Exercice # 43. (Mesures discrétes) Soit .7 une tribu contenant les singletons. La mesure p
sur (X, .7) est continue si, pour tout x € X, u({z}) = 0. u est discréte s'il existe un ensemble
Da.p.d.tel que u(D°) = 0.

a) Montrer que y est continue si et seulement si toute partiea. p. d. Ade X est u—négligeable.

b) Montrer que p est discrete si et seulement si il existe une suite (a,,)_ ., de points de X et

0

n>1

une suite (¢,),., < [0, 0] telles que p = Z Cnla,, -
n=1
¢) Supposons maintenant y o-finie. Montrer que y s’écrit de fagon unique i = ji.+ fig, OU
[ €st une mesure continue et /i, est une mesure discréte.

Exercice # 44. (Mesure image) Soient (X, .7) un espace mesurable et f : X — R" une
fonction mesurable. Soit ;1 une mesure sur .7 . Nous définissons fy i : Bre — [0, 0] par
fep(A) == u(f~Y(A)), VA € Bgn. Rappelons que f,u est une mesure sur Bgn. Cest la
mesure image de y par f.

a) Déterminer f.d,, aveca € X.
b) Soit ;2 une probabilité sur X (donc p(X) = 1). Nous prenonsn = 1. Si B € .7, détermi-
ner (xp) /-

Dans les quatre exercices suivants, A est la mesure de Lebesgue sur les boréliens de R. (Avec
les notations du cours, A = 1;.)

Exercice # 45. Soit U un ouvert de R. Montrer que A\(U) = 0 si et seulementsi U = (.

Exercice # 46. Prouver ou réfuter les assertions suivantes.

a) Si A c Restborélienetsi A(4) > 0, alors il existe un ouvert non vide U < R tel que
Uc A.

Et réciproquement?



b) Si A — Restborélienetsi A\(A) < oo, alors A est borné.

Exercice # 47. Soit B € Artel que \(B) > 0. Soit e > 0. Montrer qu'il existe un borélien
A c Btelque0 < A(A) < e. Indication : recouvrir B avec des intervalles disjoints de taille
<e.

Exercice # 48. Le but de cet exercice est de donner une définition équivalente de A comme

la seule mesure borélienne normée et invariante par translations.

a) Montrer que,siz € Ret A € %, alorsz + A € Py.

b) On fixe z € R. Soit u : Br — [0, 0] définie par u(A) := Az + A) pour A € .
Montrer que £ est une mesure sur Hg.

¢) En déduire que A\(x + A) = A(A) pour tout z € Ret A € By, C’est-a-dire : la mesure de
Lebesgue est invariante par translations.

d) Inversement, soit y une mesure borélienne sur R, invariante par translations et telle que
w([0,1]) = 1. Calculer x([0,1/n[), n € N*. Déterminer la mesure d’'un intervalle arbi-
traire. Montrer que ;1 = A.

e) Prouverouréfuter. Une mesure borélienne sur R, invariante par translations, est un mul-
tiple de la mesure de Lebesgue.

Exercice # 49. Cet exercice fait suite au précédent. Nous nous proposons de montrer que,

si 1 est une mesure borélienne et invariante par translations sur R" telle que x([0, 1[") = 1,

alors p1 = v,.

a) Montrer que u([0, 1/k[") = (1/k)", Vk € N*. Indication : recouvrir [0, 1[" avec des
cubesd. d. d. detaille 1/k.

b) Soit K; comme dans le lemme 9.6 du cours. Montrer que /() = v, (Kj).

¢) Endéduire que p(K) = v,(K) pour tout compact K < R".

d) Conclure.

Exercice # 50. Prouver ou réfuter les assertions suivantes.

a) Une partie d’'un ensemble négligeable est négligeable.
b) Une union a. p. d. d’ensembles négligeables est négligeable.
¢) Une union d’ensembles négligeables est négligeable.

Exercice # 51. Pour des fonctions f, g définies sur X a valeurs dans R ou R", la relation
f ~ gsietseulementsi f = g u-p. p. est une équivalence.

Exercice # 52. Prouver ou réfuter. Une partie d’'un ensemble Lebesgue mesurable de R" est
Lebesgue mesurable.
Exercice # 53. Soit A = \; la mesure de Lebesgue (complete) dans R.
a) Soient f et g deux applications continues de R dans R. Montrerque f = g \—p.p. <
f=9
Deméme pour f,g: A — R,avec A c R" tel que A — A
b) Soit f : R — R. Nous considérons les deux propriétés suivantes.
(P1) f est continue A-p. p.
(P2) Il existe une fonction g : R — R continue telle que f = g A\-p. p.

Montrer que (P1) nimplique pas (P2), et que (P2) nimplique pas (P1).
c¢) Soite > 0. Montrer quil existe un ouvert U dense dans R tel que A(U) < ¢.



Exercice # 54. a) Nous avons i = ﬁet? = 7.
b) .7 est compléte par rapport  7i.
¢) Une partie de X est pu-négligeable si et seulement sielle est i-négligeable.

Exercice # 55. Soit \, la mesure (complete) de Lebesgue sur la tribu de Lebesgue .%,, dans
R™. Montrer que

a) A, est o-finie.
n

b) A, est l'unique mesure sur &, telle que A, (P) = [];_,(b; — a;) pour tout pavé P =
[Tj_1]a;, b;[ de R™.

j=1
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Feuille de TD # 3
Intégrale. Convergence monotone et dominée

Exercice # 1. Ecrire de maniére plus simple la quantité [ f dp lorsque :

a)  est une mesure de Dirac.
b) westla mesure de comptage sur N.

Exercice # 2. Soit (X, .7, u) un espace mesuré. Prouver ou réfuter les assertions suivantes.
a) Sif=xaavecAe 7, alors [ fdp = pu(A).

b) Sif=axa+bxp aveca,be Ret A, Be 7 ,alors [ fdu=ap(A)+bu(B).

¢) Sif: X — [0, ] estintégrable, alors u(f~*(o0)) = 0.

d) Sif:X — [0, 0] est mesurable et satisfait u(f~'(c0)) = 0, alors f est intégrable.

e) Sif: X — [0, 00] est mesurable et satisfait [ f = 0, alors f = 0.

f) Sif:X — [0, 0] est mesurable et satisfait [ f = 0, alors f = 0 u-p. p.

g Sif:X — [0,0]est mesurable et satisfait f = 0 p-p. p., alors [ f = 0.

h) Le produit de deux fonctions intégrables est intégrable.

Exercice # 3. Soit (X, .7, u) un espace mesuré. Si f : X — [0, 0] est mesurable, alors

/fduzsup{(l—a)/udu; u étagée,0 <u< f,0<e< 1}.
Exercice # 4. Dans cet exercice, I désigne un intervalle de R, muni de sa tribu borélienne

et de la mesure de Lebesgue.

L 1
a) Soit I := ]0,1[. Soit 0 < « < oo. A quelle condition la fonction z — — est-elle inté-
:L»a
grable sur /?

b) Méme question avec [ := [1,00[ et [ := |0, o0].
Exercice # 5. a) On consideére la fonction f : [0, 1] — R définie par
r, sire@Q
fl@)=4", :
x®, siz¢Q

Montrer que f est Lebesgue intégrable sur [0, 1] et calculer son intégrale.
b) Mémes questions pour la fonction f : [0, 7/2] — R définie par

F@) = {sinx, si cosz € Q

B sinz, sicosz¢Q

Exercice # 6. Etudier I'existence et la finitude de :

w .
SIn T . , , s .
a) / —dx,aveca = 1, 3/2, ou 2, au sens des intégrales généralisées ou de Lebesgue.
0



3

=)

b) La somme de la série Z

n>1
¢) Lintégrale / (=1

N e

,aveca = 1ou2.

du(n), avec a = 1ou 2, et i la mesure de comptage.

Exercice # 7. (Théoreme de convergence décroissante) Soit (X, .7, ) un espace mesuré.
Soit ( f,,)n=0 une suite décroissante de fonctions mesurables positives sur X , avec f, intégrable.
a) Montrer (via le théoréme de convergence monotone) que lim,, [ f,, du = [ lim,, f,, dp.
b) Montrer par un contre-exemple que 'hypothése d'intégrabilité de f; est essentielle.

Exercice # 8. Soit P une probabilité sur (R, %g). Pourn € N, soit [,, := [, (coswt)*" dP(t).
a) Montrer que [,, < o0, Vn.

b) Montrer que la suite (/,,),>0 est décroissante.

c) Déterminer lign I,.

Exercice # 9. Soit (X, .7, ) un espace mesuré et soit f : X — [0, ] une application

mesurable.

a) Soient A:={re X; f(z)>1},B:={re X; f(r)=1}etC:={x e X; f(x) < 1}.
Déterminer lim,, [, » f"dpu.

b) Déterminer lim,, fX f™dpu. On pourra commencer par le cas olt fX fdu < oo.

Exercice #10. Soit P une probabilité sur (R, g, ). Pourz > 0, soit F'(z fR T dP(t

a) Montrer que F'est décroissante.
b) Soit (z,,) = R, telle que z,, /" co. Déterminer lim F'(x,,).

n

¢) Endéduire lavaleur de lim,_,, F'(x).

Exercice #11. a) Soit [ un intervalle de R. Montrer que si ( f,),>n, €st une suite de fonc-
tions boréliennes positives sur [, alors

/fndulz/(z fn> du1.

n=ng n=ng

b) En déduire la valeur de

0 0
St
= Ji I+

. , . . Yo oe
Exercice # 12. Déterminer, pour tout a € R, lim ™+
n
0

o —1
—> dx.
n

nsin(x/n)

3 dx.

Exercice # 13. Calculer hrn /

Exercice # 14. Dans cet exercice, I est un intervalle de R, muni de sa tribu borélienne et de
la mesure de Lebesgue A (= v1). Montrer que les fonctions suivantes sont intégrables sur /
et déterminer lim,, [, f, dA.

nTsin T

a) I:= [O, 1],fn(:13) = m,Oﬁl <a<?2.



n%x exp(—n’a?)
1+ a2

b) I:=[A o @vec A > 0)et f,(z) :=
o) I:=[0,1]et fu(x) := v/ X[1/n2/n[(T)-

Exercice # 15. Soit f une fonction Lebesgue intégrable sur [0, oo[. Calculer

xr+n

lim / Fla)—— d\(x).
mJo
Exercice # 16. Calculer

o0 : n
lim / Gino) 4
m Jo

T2

Exercice #17. Soit (X, .7, 1) un espace mesuré. Soit f une fonction mesurable positive sur
X . Montrer que

lignn/){ln(l—i—%f) d,uz/deu.

Exercice #18. Soit f : R, — R une fonction Lebesgue intégrable. Calculer

117?1 /000 exp(—nsin® z) f(z) d\(x).

Exercice # 19. Rappelons que, si y > 0, alors la suite ((1 - 2) ) est croissante, de
n n>y

limite e Y.
Soit f,,(x) := n(1 — z)"sin*(nx)x[o.1)(z), Vn e N, Vz e R.
a) Déterminer la limite simple (notée f) de la suite (f,,),>1-

b) Calculer, enutilisantle rappel etle théoreme de convergence monotone, lim,, fR fo(z) dx.
¢) Montrer que lim,, [, fo(z)dz # [ lim, f,(x) dz.

Exercice # 20. Soient (X, .7, i) un espace mesuré et f : X — R une fonction intégrable.
a) Pourn > 0, soit A, := {z € X ; | f(z)| = n}. Déterminer lim,, [, fdpu.
b) Soit A € J tel que u(A) < co. Déterminer lim,, [, | f|*/" dp.

¢) Mémes questionssi f : X — R.

Exercice # 21. Soit P une probabilité sur (R, %) telle que la fonction R 3 ¢ — exp (alt|)
soit intégrable pour tout a € R.

a) Donner deux exemples de telles mesures « de nature différente ».

b) Montrer que ¢t — t" est intégrable pour tout n € N.

c) Soitz € C.

(i) Montrer que ¢t — exp(zt) est intégrable.

(i) Posons F(z) := [ exp(zt) dP(t). Montrer que F' admet un développement en série

entiére de la forme F'(z) = > _, an2", oul'on explicitera les coefficients a,,.

Exercice # 22. Soit (X, .7, ;1) un espace mesuré, avec y finie. Soit f : X — [0, o[ une
fn

dp. Calculer lim,, I,,.
x 1+ /"

fonction mesurable et, pour n > 1, soit [, :=




Exercice # 23. Rappelons que

<1+§> e Vo =>0.
n
Nous considérons, pour tout n > 2, la fonction f,, : |0, o[ — R définie par

1
fn(ﬂf) N AN Vo >0.
gi/m (1 + —)
n
a) Démontrer que, pourn > 2etz > 1, nous avons f,(v) < 4/
b) Montrer que, pour toutn > 2, f, est Lebesgue intégrable sur |0, oo|.

¢) Calculer lim,, fooo fon(z) dz.

Exercice # 24. Pour tout entier n > 1 et tout réel , soit f,,(z) := e "¢ — 2e72"*,

a) Montrerque . ., f.(x)estune série convergente pour tout z > 0, et calculer sa somme
/().

b) Comparer [[°>) ., fu(z)dzet,, ., J* fo(z) dz. Expliquer.

Exercice # 25. Nous munissons l'intervalle [0, 1] de sa tribu borélienne et de la mesure de
Lebesgue A (= v4). Soit (f,,)n>2 la suite de fonctions définies sur [0, 1] par

nw, si0 <z <1/n
fo(z) =% —n?(x —2/n), sil/n<z<2/n.
0, sinon

a) Tracer le graphique de f,,.
b) Calculeretcomparerliminf, [ f,d\, [liminf, f, d\ limsup, [ f,d\et [limsup, f,dA.
¢) Mémes questions avecla suite de fonctions (g, ),>1 définie par go,, := X[0,1/(2p)], ¥V P € N¥,
Gop+1 := X[1/(2p+1),1], VP € N.
Exercice # 26. a) Montrer que la fonction
sin x

fil0,o0[= B, fx) = =,

est Lebesgue intégrable sur |0, oo|.
b) Montrer que, pour tout z > 0, nous avons f(x) = > _, e " sinx.

[C ORI 1
¢) Endéduire que / ST g = E
0

V>0,

er — 1 n2+1

n>1
Exercice # 27. Soient (X, .7, ) un espace mesuré et f : X — [0, o[ une fonction mesu-
rable.
a) Supposons y finie. Pour n € N, soit X,, := f~'([n,n + 1[). Montrer que f est u-
intégrable si et seulementsi > _ nu(X,) < .
b) Nous ne supposons plus y finie. Pour n € Z, soit F, := f~*([2",2"*1[). Montrer que f
est u-intégrable si et seulementsi >, 2" u(F,) < .

Exercice # 28. Soient (X, .7, u) un espace mesuré et f : X — [0, oo[ une fonction mesu-
rable. Posons

Fy(t) := p(f 7 (I, 0D) = u(lf > 1)), VE = 0;
Fy est la fonction de distribution de f.

Pour traiter les questions suivantes, on pourra commencer par le cas ot f est une fonc-
tion étagée.



a) Montrer que F/; est borélienne.
0 ¢]
b) (Décomposition en tranches) Montrer que / fdu= / Fy(t) dt.
X 0

¢) Plus généralement, soit @ : [0, 00[— [0, co[ une fonction croissante de classe C'! avec
0¢]

B(0) — 0. Montrer que / B(f) dp — / &' (1) Fy (8) dt.
X 0
d) (Calcul de moments) Soient1 < p < wet f : X — R une fonction mesurable. Montrer

que

i = [ e utis > ) ae

Exercice # 29. (Lexercice précédent, vue probabiliste) En théorie des probabilités, ;i est une
probabilité, et on travaille plutét avec la fonction de répartition G¢(t) := p([f < t]),Vt = 0.
«Traduire » 'exercice précédent en fonction de G ;.

Exercice # 30. (Inégalité de Jensen) Soit (X, .7, P) un espace probabilisé. Soient I — R un
intervalle ouvert et  : [ — R une fonction convexe.

Nous admettons dans la suite le fait suivant (qui caractérise la convexité de ®). Pour tout
t € I, il existe une fonction affine ¥ (c’est-a-dire, une fonction de la forme W(s) = a s + b,
Vs € R)telle que :
@ Y(s) < P(s),Vsel;
(i) (t) = ().
Soit f : X — I une fonction intégrable.
a) Montrerque [ fdP € I.
b) Si W est affine, comparer les nombres [ W(f)dP etV ([ fdP).
¢) Endéduire l'inégalité de Jensen :

/cp(f)dpch(/fdp). 1)

Exercice # 31. a) Ecrire I'inégalité de Jensen (J) dans les cas suivants :
@) I:=R,o(t) =€, VteR.
(i) I :=]0,00[, ®(t) :=Int, V¢ €]0, oof.
(i) I :=R,1 <p<oo,P(t) := |t|P,VteR.
b) Obtenir, a partir de (J) appliquée a un espace probabilisé et a une fonction convexe conve-
nables, le cas particulier suivant de I'inégalité de Cauchy-Schwarz :

n

" 2
nZ(aj)Qz <Zaj> ,VneN* Vay,...a, €R.
j=1

j=1

"y

=— VA
#X,V c

¢) Que devient (J) si X est un ensemble fini non-vide, 7 = (X)), et u(A)
X?

d) Etsi, de plus par rapport a la question précédente, I =)0, 0| et &(t) = —Int, ¥Vt > 0?

Exercice # 32. (Variables aléatoires indépendantes) Soient (X, .7, P) un espace probabilisé

et f,g : X — [0, 0] des variables aléatoires (=fonctions mesurables). Nous supposons les

variables aléatoires f et g indépendantes, au sens suivant :

P([feAgeB]) =P(feA])-Plge B]), VA B e Zg.

5



a) Soient®, ¥ : [0, co[— [0, o[ deux fonctions boréliennes. Montrer que o f et Wo g sont
indépendantes.

b) Si f, g sont, de plus, étagées, montrer que [ fgdP = [ fdP- [ gdP.

A partir de maintenant, f, g ne sont plus supposées étagées.
¢) Montrer qu'il existe deux suites, (f, ). et (g,)n, de fonctions étagées positives telles que
fn €t g, soient indépendantes, Vn,m, f, / fetg, / g.

(Indication :examiner le procédé d’approximation d’'une fonction mesurable par des fonc-
tions étagées et utiliser la question a)).

d) Montrerque [ fgdP = [ fdP- [ gdP.
e) Si f,gsontintégrables, alors fg estintégrable. Contradiction?
f) Pourquoi ne pas considérer des mesures plus générales que des probabilités?

Exercice # 33. (Mesures a densité) Soit (X, .7, ;1) un espace mesuré. Soit g : X — [0, o0]
une fonction mesurable.

a) Montrer que
v: 7 —|0,0], v(A) :z/gd,u, VAe 7,
A

est une mesure (a densité g par rapport a ).
b) Sous quelles hypotheses sur g cette mesure est-elle :
(1) Finie?
(ii) o-finie?

¢) Dans (R, %g), montrer que dy n'est pas une mesure a densité par rapport a ;.

Exercice # 34. (Formule de transfert) Soient (X, .7, ;1) un espace mesuréet f : X — R"
une fonction mesurable.

Rappelons que la mesure image f, est la mesure borélienne sur R” définie par

fep(B) = u(f~(B)), V B € B

a) Montrer que pour toute fonction borélienne ® : R™ — [0, o[ nous avons la formule de
transfert

/XCI)ofd,uz /n@df*u.

On pourra commencer par ¢ étagée.

b) Par souci de simplicité, nous étudions ce qui suit principalement pour n = 1. En théorie
des probabilités :
1 pest une probabilité sur X.

2 Si f : X — R estune variable aléatoire, ce qui est connu n'est pas u, mais la loi de f,
c'est-a-dire la mesure image f,u, notée Py. (Pour ajouter a la confusion, f est notée
X, et saloi Py, mais dans ce cours X est 'espace ambient des fonctions mesurables.)

3 Lintégrale d’'une variable aléatoire f (si elle existe) est désignée comme l'espérance de f
etnotée E(f).

(i) Montrer que P est une probabilité sur (R, Zg).



(ii) Ecrire, sous réserve d’existence et a laide de Py, E(f), E(f — E(f)):, R 2 t —
E(e/), qui, en langage probabiliste sont, respectivement, l'espérance, la variance et
la fonction caractéristique de f.

(iii) Que deviennent ces formules si Ps est une probabilité a densité par rapport a v ?
o Sif = (fi,---,fn) : X — R"estun vecteur aléatoire (=fonction mesurable), exprimer,

en fonction de laloi de f, la fonction caractéristique R" > ¢ — E (eZ 21 tfff).

Exercice # 35. (Suites croissantes de mesures)
a) Pour k € N, soit (a, x)n=0 une suite telle que

ani =0, Vn, k>0, (HD)
(@n, k=0 est croissante , Vn > 0. (H2)

Soit a,, := limy_,o Ay, V1o > 0.

Montrer que limy Y, o G = Dosp Gn-
b) Soit (X,.7) un espace mesurable. Soit (i )x=o une suite de mesures sur .7 telles que :

(1 (A))r=0 est croissante, VA € 7. (H)

Pour A € .7, soit pu(A) = limy, py(A).
(i) Montrer que u est une mesure sur .7 .

(ii) Montrer que pour toute fonction 7 -mesurable f : X — [0, oo],lasuite ([ fdpuy)
est croissante.

k=0

On pourra commencer par le cas ol f est étagée.
(iii) Montrer que pour toute fonction .7 -mesurable f : X — [0, 0], ona

i [ fd = [

On pourra commencer par le cas ot f est étagée.

. . r+n, sir<-—-n
Exercice # 36. Pour toutn € N, soit f,, : R - R, f,,(x) := {0 o . Montrer
, siz > —n

que :

a) f, aune intégrale par rapport a la mesure de Lebesgue .

b) f. /0.

c) ffnd,u - deM-

d) Quelle hypothése de théoréme de convergence monotone r'est pas satisfaite?

Exercice # 37. En considérant, sur R, les fonctions f,,(z) := —(z + n)_, montrer que 'hy-
pothese f,, > 0 est essentielle pour avoir la conclusion du lemme de Fatou.

Exercice # 38. En considérant, dans R, la suite f,, := X[ n+1[, montrer que 'hypotheése de
domination est essentielle pour la validité du théoréme de convergence dominée.

Exercice # 39. Nous munissons [0, 1] de la mesure de Lebesgue. Pour n € N*, soit m =
m(n) lunique entier tel que m? < n < (m + 1)2. Soient

2
:| ) fn = mXAn-

4 n—m?n+1l—m
" o2m+1 2m+1

Montrer que :



a) [|fa] = 0.

b) Il nexiste pas g intégrable telle que | f,,| < g pour tout n € N*.
¢) Pour tout z € [0, 1], nous avons f,(z) - 0.

En déduire quen général la conclusion de la réciproque du théoréme de convergence
dominée nécessite de passer a une sous-suite.
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Feuille de TD # 4
Intégrales a parameétres

Exercice # 1. Soit f : R — R Lebesgue intégrable. Montrer que la transformée de Fourier de
f, définie par

f(t) = /Re_mf(x) dr, VteR,

est une fonction continue et bornée sur R.

Exercice # 2. (Transformée de Laplace) Soit f : [0, oo — Rune fonction continue et bornée.
Nous posons

F(t) := /Oooe“tf(x) de,Vt>0;

cest la transformée de Laplace de f. (F est plus communément notée .Z f.)

a) Montrer que F est de classe C* sur |0, o[ et calculer F*) pour tout k > 1.
b) Déduire de la question précédente la valeur de fooo e dx,Vk > 1.

Exercice # 3. (Fonction zéta de Riemann) La fonction zéta de Riemann est donnée par la for-
mule

C(s) := Z %, Vs>1.

n>1
Montrer que ¢ :]1,00[— R est de classe C.

Exercice # 4. a) Retrouver la théorie des séries entiéres a partir de la théorie de l'intégra-
tion. Plus précisément, soit (a, ),>o une suite de nombre réels (ou complexes). Soient

R :=sup{r > 0; lima,r" = 0}
et/ :=| — R, R[. Posons F(x) := >, _,a,2",Vx € I. Montrer que F' € C*(I) et que

F® (z) = Z nin—1)-(n—k+Da,z" " Vel

n>k

b) Calculer > _,(=1)"na" ', |z| < 1.

1 _
t:L'l

dt,VzeR.

Exercice #5. Soit f(z) := /
o 1+t

a) Montrer que f est finie si et seulement si z > 0.
b) Montrer que f est continue sur |0, oo].
c) Calculer f(x) + f(z + 1) pour z > 0. En déduire la valeur de 1i<1(1):1: f(x).

1



t—1
Exercice # 6. Soit f(t,x) := ﬁtx pourt €]0,1[ etz € R.
1

a) Montrer que F'(z) := fol f(t, x) dt est finie si et seulement si z > —1.
b) Montrer que F est dérivable sur | — 1, oo| et calculer F'(z).
¢) Calculer lim,_,, F'(z). En déduire la valeur de F'(x) pour = € R.

-1\
Exercice # 7. a) Montrer que la série Z u converge. Notons K sa somme.
n
n>1
b) Soit f(z) := Z T Montrer que f estde classe C' sur | — 1, 1[ et calculer f'(z).
n

n>1

¢) Déterminer f(z) et 1{@1 f(z).
d) Endéduire la valeur de K.

Exercice # 8. Pour x > 0, soient

Flz) = (/0 exp(—2) dt>2 et Glz) = /01 xp(—e(L+ 1)) )

1+¢2

a) Montrer que F et G sont de classe C* sur R,
b) Calculer F'(x) + G'(x) pour z > 0.
¢) Endéduirelavaleurde ] := [,” exp(—t?) dt,ainsiquelavaleurde J := [, exp(—t*/2) dt.

“In(1 2
Exercice #9. Soit I («) := / Mdm,a > 0.

0 1+ 22
a) Montrer que la fonction I : R, — Reest continue sur R, et de classe C! sur R*.

b) Donner la formule de I'(«) si v > 0.
2

(14 22)(1 + ax?)

c¢) Soit & € R*\{1}. Décomposer la fraction en éléments simples. En

déduire la valeur de I'(«) pour v > 0.
d) Calculer I(«) pour o > 0.

0 . 2
Exercice #10. Soit f la fonction définie sur R, par f(¢) := / (sm x) e dx.
0 x

a) Montrer que f est continue sur R, et deux fois dérivable sur R* .
b) Calculer f” etles limites a I'infini de f et f’.
¢) En déduire une expression simple de f.

Exercice # 11. Soit P une probabilité sur (R, %g ).

a) Montrer que, pour tout ¢t > 0, la fonction = — cos(zt) est P-intégrable sur R, . Soit

F(t) = /]R cos(xt) dP(x), Yt = 0.

b) Montrer que F' est continue sur R, .

SENRTINgr 2 .y , . . 1= F(t)
¢) Nous supposons que l'application x — x* est P-intégrable. Déterminer 111]% —

(On pourra établir et utiliser 'inégalité 1 — cosu < u?/2.)
1— F(t)
2
est P-intégrable. (On pourra utiliser le lemme de Fatou.)

d) «Réciproquement », supposons lim ionf < o0. Montrer que l'application z +— 2
t—

2



* cos(at ® 1 —cos(xt) di
Exercice #12. Pourz € R, soient F'(x) := / cos(xQ) dtetG(z) := / CC;S($ ) .
o 1+t 0 t 1+t

a) Montrer que F et G sont continues sur R. Calculer F'(0) et G(0).
b) Montrer que

* gin?t

ot

F(0)— F(z) + G(z) =Clz|, Yz e R, ouC ::/

¢) (i) Montrer que G est de classe C* sur R et que l'ona G”(x) = F(z) pour tout réel x.

(i) En utilisant la question b), en déduire que F' est de classe C* sur R* et est solution
d’une équation différentielle du second ordre que I'on déterminera.

(iii) En déduire lexpression de F'(x) pour x > 0 (on pourra remarquer que la fonction
F est bornée sur R). Calculer enfin F'(x) pour tout réel x.

d) Déduire de tout ceci la valeur de la constante C'.

Exercice # 13. (Transformée de Fourier d’'une gaussienne) Soit a > 0. Soit g,(z) := ez’

pour x € R. Nous nous proposons de calculer la transformée de Fourier de g,, donnée par
= [pe ™ g.(z)dv, ¥t € R. Rappelons que [, e~ dv = /7.

a) Montrer que g, est Lebesgue intégrable et calculer A, (0).

b) Montrer que h, est de classe C* et donner la formule de sa dérivée h.,.

¢) En utilisant une intégration par parties, montrer que h. (t) = (—t hy(t))/(2a).

d) Endéduire que h,(t) = \/fe_ﬁ/(‘m).
a

Exercice # 14. Soit h, la fonction de I'exercice précédent.
Soit f(t) := [, 7" hy(t) da. Montrer que f est de classe C" sur |0, ool

0 1 2
Exercice #15. Pour z € R, soit F'(z) := / exp (—5 (t2 + t2>) dt.
0

a) Montrer que F'est continue sur R.

b) Montrer que I’ est dérivable sur R*.

c) Montrer que, pourtoutx > 0,ona F'(z) = —F(x).

d) Endéduire lavaleur de F'(x) pour x réel.

exp(—x) — exp(—tx)
. .

a) Montrer que pour tout ¢ > 0, la fonction z — f(x,t) est Lebesgue intégrable sur R .

Pourt > 0, soit F'(t) := [,” f(x,t) dz.
b) Montrer que F' est continue sur ]O, ool.

Exercice #16. Pour x > Oett > 0, soit f(z,t) :=

¢) Montrer que F' est dérivable sur |0, «o].
d) Calculer F'(t) et en déduire la valeur de F'(¢) pour tout ¢ > 0.

: : * exp(—a?
Exercice #17. Poury > 0, soit F'(y) := / LQZD dx.
0 1+
a) Montrer que F est continue sur R, .

b) Calculer F'(0) et déterminer lim F(y).
y—00

c¢) Montrer que F’ est dérivable sur R* .

d) Montrer que F est solution sur R* d’une équation diftérentielle du premier ordre s’ex-
primant 3 laidede I := [[* exp(—2?) dx.



e) Endéduire, sous forme intégrale, une expression de F'(y) valable pour y > 0.
f) Pour finir, retrouver (une ne fois!) la valeur de I.

Exercice # 18. (Fonction Gamma d’Euler)

a) Montrer que, pour tout z > 0, lapplication ¢ — t* e~ est Lebesgue intégrable sur R* .
La fonction Gamma d’Euler est définie par

o0
[(x) := / t" e tdt, Vo > 0.
0

b) Montrer que I est continue sur R* .
c) Montrer que I" est de classe C* sur R* .
d) Montrer que I" est strictement convexe.

tan(¢
Exercice #19. Soit F'(t) := / &n(?

a) Montrer que F est de classe C! sur R. Calculer F'(t), puis F(t) .
2
b) En déduire la valeur de / (W) dx.
R x

“sinz

Exercice # 20. Nous admettons la convergence de l'intégrale généralisée / := / dzx.
0 T
0 e—xt
Pour tout t > 0, posons S(t) := / sinx dz.
0 T
a) Montrer que S est de classe C! sur |0, o] et calculer S(¢) pour ¢ > 0.
b) Déterminer lim,_,,, S(¢) et calculer S(¢) pour tout ¢ > 0.
c) Soient A > Qett > 0.
. © e sing 2
(1) Montrer que —dx| < —.
A T A
. , A et sin g sin &
(i) Prouver que, pour tout A > 0, nous avons lim —dx = / dz.
™NO Jo x 0 Xz

(iii) En déduire la valeurde .

Exercice # 21. (Extension harmonique) Soit

U :=Rx]0,0[= {(z,y) e R*; y > 0}.

Iy

Si (z,y) € U, soit P,(x) := T

; P, est le noyau de Poisson. Si f est Lebesgue

intégrable sur R, posons

u(z,y) = /R.Py(x —t) f(t)dt, ¥ (z,y) € U.

a) Montrer que u est finie en tout point de U.

b) Montrer que u est de classe C* sur U.

u Pu ,
¢) Montrer que Au = 0, oit Au(z,y) := Fr + 52 et le laplacien.
x? Oy



d) Si f est continue et bornée, montrer que

li y) = f(z), Vo eR.
lim u(z,y) = f(z), Vo

Ainsi, u est «la » (en fait, une) solution du probléme de Dirichlet

Au=0 dans Rx]0, oo
limpou(z,y) = f(x), VxeR ’

Cet u est lextension harmonique de f.
dt
14t
a) Déterminer 'ensemble D := {x € R; F(x) € R}. Montrer que F est continue sur D.

0
Exercice # 22. Posons F'(z) := /
0

b) Démontrer que F est de classe C* sur D et que

“ tTInt 1

En déduire le sens de variation de F'.
¢) Déterminer lalimite a I'infini de F'.

. *dt :
d) Calculer lim et lim F'(x).
=N\ 1+ t= \,1

Exercice # 23. Le but de cet exercice est de démontrer, pour tout = > 0, l'identité

© et “ sint
[ [y,
o 1+t 0o T+t
“sint

et d’en déduire (2 nouveau!) la valeur de / — dt.
0

—xt

“ e
a) Soit f(x) :2/0 mdt,szo.

(i) Montrer que f est bien définie et continue sur [0, 0.

(ii) Montrer que f est de classe C? sur |0, co[. Calculer f'(z) et f”(x) pour x > 0.
1
(iii) Montrer que f(z) + f"(z) = —,Vz > 0.
x
* sint
b) Soit g(x) := / — dt,V z > 0. Rappelons que ¢(0) existe (en tant quintégrale gé-
0o T

néralisée).

(i) Montrer, par intégration par parties, que g(x) existe pour tout x > 0 (en tant quin-
tégrale généralisée).
(i) Par un changement de variables, prouver que, pour x > 0, nous avons l'identité

* sinu , * cosu
g(x) = cosz du — sinx du.
T x

u u

(iii) Montrer que g(z) est de classe C? sur |0, oo| et calculer ¢/(x) et ¢”(z) pour z > 0.

1
(iv) Montrer que pour toutz > 0, g(x) + ¢"(z) = —.
T



¢) Dans cette partie, nous nous proposons de montrer I'égalité de f et de g sur |0, oo].
(i) Montrer que xh_r)rolo f(z) =0etque 531_1[130 g(xz) =0.
(ii) A partir del'équation différentielle du seconde ordre vérifiée par les deux fonctions,
en déduire que f(z) = g(z) pour z > 0.
d) Dans cette partie, nous nous proposons de trouver g(0).
(i) Montrer que 9161{1(1) g(x) = g(0).
(ii) Endéduire la valeur de g(0).

Exercice # 24. (Continuité de l'intégrale définie) Soit f : R — R une fonction Lebesgue
intégrable. Posons

/ f(t)dt, sizx >0
F(z):= [0z )
- flt)dt, sixz <0
[=,0]

a) Montrer que F’ est continue sur R.
b) Montrer que, si f est continue en 1, alors I’ est dérivableen 1 et F’(1) = f(1).

¢) De méme si on suppose f localement intégrable, c’est-a-dire f est (Lebesgue) mesurable et
[ |f(t)| dt < oo, pour tout compact K < R.
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Feuille de TD # 5
Mesures produit

Notations

1. v, estlala mesure de Lebesgue sur la tribu borélienne %~ de R".
2. )\, estla mesure de Lebesgue sur la tribu de Lebesgue ., de R".
3. Aestlamesure de Lebesgue sur la tribu de Lebesgue %) de R. (Donc A = A;.)

Exercice # 1. Soient X, Y a. p. d., et u, respectivement v, la mesure de comptage sur X,
respectivement Y.

a) Montrer que Z(X)® Z(Y) = (X xY).
b) Montrer que i ® v est la mesure de comptage sur X x Y.

Exercice # 2. Prouver ou réfuter les assertions suivantes.

) I®Y ={AxB;Ae T ,Be .Y}

b) Brn @ Brm = Bgrn+m.

Q) L, ®%Lw =Lnim.

d) v, QUi = Vnien-

e) My ® A\ = Ay

f) Soient (X, .7, u)et(Y, ., v)desespaces mesurés, avec p et v o-finies. Soit £ € T ®.7.
Siv(E,) = 0 pour (presque) tout z € X, alors y ® v(F) = 0.

g) Sip et v sont des mesures o-finies, alors ;1 ® v est o-finie.

Exercice # 3. Soit D := {(z,y) e R*; 2 > 0,y > 0,2 + y < 1}.
a) Dessiner le domaine D dans le plan et déterminer D, et DY,V x,y € R.

b) Montrer que D est borélien.
c) Calculer laire de D et [, (2* + y*) dzdy.

Exercice # 4. Calculer l'aire d’'un disque.

Exercice # 5. Calculer || [0.1]2 T€™ ddy.

Exercice # 6. Dans R?, nous considérons :
(i) Lademi-boule fermée D := {(z,y,2) e R?; 2 >0, 2% +¢? + 22 < 1}.
(ii) Le cone plein K := {(z,y,2) e R*; 0 < z < 1, 2% + y? < 2%},
(iii) Le cylindre plein C := {(z,y,2) e R3; 0 <2 <1, 22 + ¢y < 1}.
En examinant les aires des coupes des ces trois solides a la hauteur z, retrouver l'identité
dArchimede
vol(C) = vol(D) + vol(K),

«vol » désignant le volume d’un solide.

Vérifier cette identité a 'aide de formules connues.



Exercice # 7. Dans IR3, calculer le volume d’un cylindre (plein), pas nécessairement circu-
laire ou droit, en fonction de l'aire de sa base et de sa hauteur. Généralisation a R™?

Exercice # 8. a) Montrer que, si ¢ est une homothétie de rapport k£ dans R", alors
pn(H(A)) = k" pn(A), VA€ Bgn.

b) Comme application, calculer le volume d’une pyramide dans R? en fonction de l'aire de
sa base et de sa hauteur.

c¢) DansR?, deux pyramides qui ont la méme base et la méme hauteur ont le méme volume.
d) Généralisation a d’autres formes et dimensions?

Exercice # 9. Dans R3, on considére deux cylindres (pleins) circulaires droits infinis de
rayon 1. Si les axes des cylindres sont concurrents et orthogonaux, calculer le volume de
leur intersection.

Exercice #10. Pour x € Rety > 0, soit f(z,y) := y*. Soienta et b tels que —1 < a < b.
a) Montrer que f est \y-intégrable sur [a, b] x [0, 1].

1 yb _ ya
b) Trouver la valeur de l'intégrale I := / d
o Iny

1
(14 2262)(1 + y2t?)
a) Montrer que f, est \o-intégrable sur [0, 1] x R..
b) Soit g(y,t) := fol fy(z,t) do. Montrer que g est A\p-intégrable sur [0, 1] x R,.

Exercice # 11. Pour y > 0, soit f,(z,t) :=

,avecz,t € R.

. © /arctant )
¢) Trouver la valeur de I'intégrale [ := / ( ! tn ) dt.
0

Inz

o0
Exercice # 12. a) Montrer que 'intégrale généralisée I := / dx existeetque [ =
0

1
|
2/ 2n;1: dzx.
0 x -1

b) Calculer de deux facons différentes I'intégrale

xr2 —

/ dxdy
R, xr, (1+9)(1+2%y)

En déduire que I = 72 /4.
¢) Déduire des questions précédentes et d'un développement en série entiere de la fonction

T 1_quue
Z 1 —ert 1 _7T2
(20 +1)? 8 2 6

Exercice # 13. En calculant de deux facons différentes I'intégrale

['e] 1
I:= / </ e “sin(2xy) dy) dz,
0 0

.2
)

dx.

o0
déterminer la valeur de / e
0 xr



Exercice # 14. (Variables aléatoires indépendantes a densité) Soit (X, .7, P) un espace pro-
babilisé. Soient f,g : X — R deux variables aléatoires indépendantes (voir 'exercice # 32
de la feuille # 3). Supposons que laloi f,P = Py de f (respectivement laloi g. P = P, de g)
ala densité F' (respectivement (3) par rapport a v (voir les exercices # 33 et 34 de la feuille

4 3).

Soit

FRG:R? - [0,0], FRG(x,y) := F(z)G(y), ¥ (x,y) € R%

Nous considérons le couple (f,g) : X — R? (qui est un vecteur aléatoire, en langage
probabiliste). Montrer que laloi (f, g).P = P, de (f, g) aladensité F'® G par rapporta
Vy.

Exercice # 15. (Transformée de Fourier d'une mesure) Soit 1 une mesure borélienne finie
dans R. La transformée de Fourier de la mesure i est définie par

o(t) = [Rexp(—mt) du(x), VteR.

(En théorie des probabilités, on travaille plutét avec la fonction caractéristique de i, définie par

P(t) = p(—t) = [Rexp (vxt) dp(z), Vt e R.)

a) Calculer o dans les cas particuliers suivants : (i) = dg; (i) u(A4) = A\ (A4 n [0,1]),
YV A € Pr; (iii) u est la mesure de densité e,

b) Montrer que la fonction ¢ est continue et bornée sur R.

c) Soientn > 1eta € R. Montrer que

1 n

5, | exp (1ax) p(z) daz=/RKn(t—G) dp(?),

ou K, est une fonction que I'on explicitera.

n

1
d) Déterminer lim o / exp (rax) o(x) dz.
n 2n J_,
e) En déduire que, si ‘ 1|im (x) = 0, alors u est une mesure diffuse.
xr|—0

f) Méme conclusion si ¢ est Lebesgue intégrable sur R.

Exercice # 16. Soit /. la mesure de comptage sur ([0, 1], B[o.17).
a) Soit A := {(x,); z € [0,1]}. A est-il un borélien de R?? De [0, 1]*?
b) Justifier 'existence des intégrales itérées suivantes, et les calculer.

I = /[0,1] </[071] xa(,y) dA(ﬂf)) du(y),
nef ( JARCY () ) (o),

¢) Quelle hypothése d'un théoréme important n'est pas satisfaite?

Exercice # 17. a) Enoncer les hypothéses et les conclusions des théorémes de Tonelli et Fu-
bini pour la mesure de comptage sur N x N.

3



b) Soit

1, sin=m—1
f:NxN->R, f(mn):=<-1, sin=m+1.
0, sin+m+t1

Calculer > >, f(n,m)et), > f(n,m),etvérifiersiles conditions du point précé-
dent sont satisfaites.

Exercice # 18. Pour (z,y) € [—1, 1]?, soit

f@w,:{uwmﬁ+fﬂ si (2.y) # (0,0)

0, sinon

a) Montrer que les intégrales itérées de f existent et sont égales.
b) La fonction f est-elle A\p-intégrable sur [—1, 1]*?

Exercice # 19. Soient 1, ps deux mesures boréliennes, o-finies, non nulles, sur R, telles
que

1 @ pa(RAN\A) =0, ot A := {(x,2); v € R}.

Le but de cet exercice est de montrer qu'il existe a € Ret by, by €]0, o[ tels que p; = by J, et

o = b d,. (Et réciproquement.)

a) Montrer que si Ay, Ay € Py sont tels que 111 (A1) > 0et us(Az) > 0, alors g ® pa(Ag %
Ay) > 0.

b) Avec A;, A, comme ci-dessus, endéduire que (A; x As)NA # ¢, puisque Ayn Ay # .

c) Soit A € HBg tel que py(A) > 0. En utilisant les questions précédentes, montrer que
w2 (R\A) = 0, puis que p2(A) > 0, et enfin que p; (R\A) = 0.

d) Conclure en utilisant 'exercice # 42 de la feuille #2.

Exercice # 20. Soit p la mesure de comptage sur N, v une mesure o-finie sur X, et soient
fn : X — R des fonction mesurables, Vn € N. Soit f(n,z) := f.(z),VneN,Vze X.

a) Quelles hypothéses supplémentaires doit-on ajouter pour pouvoir appliquer le théoréeme
de Tonellia u ® veta f, et quelle est 'identité obtenue?

b) Quelles hypothéses supplémentaires doit-on ajouter pour appliquer le théoréeme de Fu-
binia u ® veta f, et quelle est l'identité obtenue?

c) Lesidentités obtenues dans les deux questions précédentes restent-elles valides si v nest
plus supposée o-finie?

Exercice # 21. Soient y, v deux probabilités sur Ag. Soient

Fut) = ult,00), Gu(t) i= (] — o0, ), H,(0) := p({t}), Vi e R.

On définit de maniére analogue F,, G, et H,.

a) Montrer que les fonctions F),, GG, et H,, sont boréliennes.
b) Montrer que [, F, dv = [,(G, — H,) dp.
c¢) Soient D, := {te R; H,(t) # 0}et D, := {t e R; H,(t) # 0}.

(i) Expliquer pourquoiles ensembles D, et D, sonta. p. d.



(ii) Montrer 'égalité suivante :
/Fudu+/Fz,du+ > Hu(t) H,(t) = 1.
R R teD,D,

Exercice # 22. Soit ;. une mesure borélienne finie dans R. Soit

1 Y
Hyz,y) =~ | —2  _dut),VzeR, Yy > 0.

.U( y) 7T\/Ry2+($t)2 M() Yy
Par analogie avec I'exercice # 21 de la feuille # 4, H,, est 'extension harmonique de /.
Le but de cet exercice est de montrer que si H,, = H,, alors 1 = v.

a) Montrer que H,, est continue.
b) Soit x € R. Déterminer li{r(l) yH,(x,y).
Y

b
¢) Soienta < bdeux réels. Déterminer li\If(l)/ H,(z,y) dz.
v a

d) Soit v une autre mesure borélienne finie dans R. On suppose que H,, = H, . Montrer que
pw=rv.
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Feuille de TD # 6
Changement de variables

Notations

a) Pourz > 0,T(xz) := [ t"'e~" dt €]0, o[ (Cest la fonction Gamma d’Euler).
b) v, estla mesure de Lebesgue sur les boréliens de R™.

c) A, estla mesure de Lebesgue (compléte) dans R™.

Exercice # 1. On demande de calculer

=
o l+cos?x

Voici une « solution ».

T dx ™1+ tan?x
- 1 - 2 + tan? du
014+ ——0p /0 e

1+ tan?zx

En posantt := tan z, nous avons dt = dz = (1 + tan® 7) dz, d’olt

tan dt 0 dt
[ [t
tano 2+ 1 0 2+t

a) Pourquoi est-ce manifestement faux?

cos? x

b) Ou estlerreur de raisonnement?
¢) Quelle estlavaleurde I?

Exercice # 2. Vrai ou faux. Si ® :]a, b[—]c, d[ est un C'-difféomorphisme et f :]c,d[— R

est mesurable, alors

d b
/ f() d = / F(@(y)) () dy

au sens du théoreme de changement de variables.

Exercice # 3. (Fonction Béta d’Euler)

a) Montrer que, Vo > 0,Vy > 0, lapplication t — t*71(1 — ¢)¥~! est \;-intégrable sur
10, 1].

La fonction Béta d’Euler est définie par

1
B(z,y) := / t" N1 -ty tdt, Yo,y > 0.
0



b) Soientz > 0,y > Oet] := / 21 oY1 e (%9 dsdo. Calculer I en utilisant le
R* xR*

changement de variables dans R? :u = g etv = s + 0.
¢) En calculant I d’'une autre maniére, établir, pour z, y > 0, 'identité

['(z)T'(y)

I(x+y) @)

B(z,y) =
Exercice # 4. a) Soit H : R? — R?, H(u,v) := (s,0),avec s := uveto := u(l — v).
Montrer que H est un C'-difféomorphisme de l'ouvert U =]0, o[ x |0, 1[ sur (R* )?.

b) Calculer I'intégrale I de l'exercice précédent en utilisant le changement de variables H,
et retrouver I'identité (1).

Exercice #5. a) Calculer/ 5 dedy, ou A = {(z,y) € R2:0<z,y<1,0<
Yy

Al+a?+
2 +y? < 1}
2y
b) Calculerlairede D := {(x,y) e R?; = + = <l,z>0,y=> 0} (avec a,b > 0 para-
metres).

o) Caleuler [, (22 + y?) dudy.
d) Soienta,b > 1. Calculerl'aire de B, ot B est 'ouvert délimité par les courbes d’équation
y=ax,y=x/a,y =b/rety = 1/(bx) et contenant le point (1, 1).

Exercice # 6. Pourn > 1,soitU, := {r e R"; 2y > 0,...,2, > 0,29 + -+ + x, < 1}.
Soit S, := A, (U,). Etablir une relation entre S,, et S,,_;. En déduire la valeur de S,,.

Exercice # 7. Soient 0 < a < b. Soit
D:={(z,y)eR*;0<z<y<+a+leta<axy<b}.

a) Montrer que D est un borélien.

b) ATaide du changement de variables u := y* — 22, v := 1y, que l'on justifiera, calculer
Pintégrale I := [, (y* — %)™ (2 + y*) dedy en fonction de a et b.

Exercice # 8. Soit U la partie de R? définie par
U:={(u,v,w)eR’;u>0v>0w>0,uv<1l,uw<1vw < 1}.

a) Montrer que U est borélien.

b) Calculer I := [;; uvw dudvdw. On pourra, aprés Iavoir justifié, utiliser le changement
de variables suivant :

(ZE,y,Z) = (I)(U,U,U)) = (\/w’ \/M, m>

Exercice # 9. Soit f : R* — R une fonction borélienne. Pour a, b, ¢ > 0 fixés, soit

Ia,b,c = / l_a—l yb_l Zc_l f(l' +y+ Z) dxdydz

(R¥)3

x +
etw = —y. Montrer
rT+y r+y+z

que H estun C'-difféomorphisme de (R* )* sur un ouvert U de R? que 'on déterminera.

a) Soit (x,y, 2) A, (u,v,w),o0u:=x+y+ 2,0 :=



b) Enutilisant H et la formule (1), en déduire que

_D@TOT©) [ aipre
Ia,b,c = m/o‘ u +o ! f(U) du. (2)

Exercice # 10. Soient o, 3,7 > 0. Soit

J-—/ dxdydz
o (R¥)3 T+az 4yl + 27

A quelle condition sur «, 3, 7, l'intégrale J est-elle finie?

Trouver la réponse de deux fagons différentes :

a) En utilisant le théoréme de Tonelli.
b) En utilisant (2).
Exercice # 11. Soit B := {(x,y,2) e R®; 22 + % + 2% < 1}.

a) Calculer
L:= / 2|y | 2]t dodydz
B

(@) Enutilisant les coordonnées sphériques.
(b) En utilisant (2).

b) Que retrouve-t-ondanslecasa =b=c=1?

Exercice # 12. Rappelons que fooo e dt = % . Soit
®© 2 2
H,(z) := / e~ @) gt Va >0,V = 0.
0

a) Montrer que la fonction H,, : [0, o0[— R est continue.

b) Calculer H,(0).

¢) Montrer que la fonction H, est dérivable sur |0, oof.

d) Calculer, pour x > 0, H! () en fonction de H,(x). Indication : utiliser le changement de
variable ¢t := %, avec o convenablement choisi.

e) Endéduire que

1
H,(z) = 5\/%6_2\/@, Va>0,Vz>0. 3)

Exercice # 13. Pour o > 0, soit

J(a) = / ey Ha/y) g o1/2 qu gy,
(R*)?

N

a) En utilisant (3), montrer que J(«) = Dol ['(a).

b) Enutilisant le changement de variables u := zy?, v := x/y?, que l'on justifiera, montrer

que
o= Qr(s)




¢) Endéduire la formule I <%> r (a ha 1) VT ['(a), a > 0.

2 - Qa—1
. . . ; o et +e’
Exercice #14. Rappelons que la fonction cosinus hyperbolique est définie par cosh x := —
a) Nous considérons les intégrales suivantes
e dsdt o / dsdt o / dudv
o g2 coshs + cosht’ " Jgecoshs 4+ cosht’ ~ " Jge coshu cosho’

(i) Vérifierque B = 4AetC = 7%
(i) En utilisantle changement de variables s := v — v,t := u + v, calculer B, puis A.
b) Soit H : R* — R, définie par H(z) := [” exp(—a cosht) dt.

(i) Démontrer que H est décroissante et continue sur |0, oo[. Déterminer les limites de
H en 0 etalinfini.
(ii) Montrer que [,” H(z)dz = 7/2.
(iii) Enutilisant lintégrale A, montrer que [, [H(z)]* dx = 7%/4.

dzd
Exercice # 15. Soit J ::/ Y
10,1[x]0,1] I —xy

1
a) Montrer que J = Z —5-
n
n>1

b) Effectuer le changement de variables x := u — vety := u + v et en déduire que

2 dudv
J = 2 4 20
ol—uw+wv
ou @) est un quadrilatere du plan que 'on déterminera.
c) Effectuer le changement de variable u := cost et en déduire que J = 72/6. Rappels :

1— cost
——— = tan(t/2), V¢ € R\wZ, et arctan(z) + arctan(1/2) = 7/2,V 2 € .
S111

Exercice # 16. (Théoréme du changement de variable dans R) Soit ¢ :]a, b[—]c, d|, avec

la, b], Je, d[< R. Nous supposons ® un C*-difféomorphisme, c’est-a-dire : ® € C'*,  bijec-
tifet ®'(z) # 0,V €la, b|.
a) Montrer que ¢’ est de signe constant sur |a, b|.
Dans la suite nous supposons ®'(z) > 0, ¥V x €]a, b[. Nous nous proposons de montrer
la validité du théoréme du changement de variable : si f :]c, d[— R est borélienne et si

g(y) == f(®(y)) ®'(y), Yy €la, b, alors f a une intégrale de Lebesgue si et seulement si
genaune et dans ce cas

d b
/]c,d[fdyl = /]a,b[gdm, ou encore /c f(;p) dr = /a f(q)(y)) (I)/(y) dy. @)

b) Montrer la validité de (4) si f := x;, avec I C]c, d[ intervalle.

¢) Endéduire que (4) est vraie si f = xp, avec B € %) 4. Indication : classe monotone.
d) Endéduire que (4) est vraie si f est borélienne positive.

e) Conclure.

f) Etsi f est Lebesgue mesurable?



g) Etsid'(z) <0,Vz€la,b?

Exercice # 17. Soient f, g : R” — R deux fonctions Lebesgue mesurables. Nous nous pro-
posons de montrer 'égalité

. fle—=y)gly)dy= [ [f(y) gz —y)dy, VzeR" ©)

Rﬂ/
a) Donner un sens a I'égalité (5).
b) Lajustifier.
Exercice #18. Soit | |lanorme euclidienne standard sur R™. Soit f :]0, oo[— R une fonction
borélienne.

a) Nous nous proposons de montrer qu’il existe une constante C' €]0, o[ (dépendant uni-
quement de n, en particulier indépendante de f) telle que

f(lz|)de =C / "1 f(r) dr. (6)
RTL

0

(i) Donner un sens a I'égalité (6).

(i) Lajustifier (pour C convenable).

2 n/2
b) En calculant de deux fagons différentes [, e~ 1" dz, montrer que C' = ﬁ
n

¢) Calculer, en fonction de la fonction I, le volume de la boule euclidienne unité.
Exercice # 19. Soit || | une norme quelconque sur R™. Nous nous proposons de trouver un
analogue de I'égalité (6) de I'exercice précédent pour le calcul de lintégrale [, f(||z]|) dz, ot
f :]0, 0[— R est borélienne.

a) Supposons d’abord f > 0. En utilisant les coordonnées sphériques, montrer I'existence
d’une constante C” €]0, oo| telle que

f(l]) de = € / L f(r) dr. )
Rn 0

b) Montrer que (7) reste encore vraie (dans un sens a expliquer) si f n'est plus supposée po-
sitive.

c) Soient U := {x € R"; ||z > 1} eta € R. Quelle estla nature de [, [[=|* dx?

Exercice # 20. Soit f € .Z*(R). Montrer I'égalité

/R F(a) do = /R Fe— 1)) d.

Exercice # 21. Pour toute fonction /' : R — R borélienne et bornée, soit
I(F) = / : F(ff2+y) :
g2 T2(1 4+ 22)(1 + y?)
a) Montrer que /(F') est bien définie.
b) Calculer I(F)si F(z) :=sinz,Vx € R.
¢) Montrer, en utilisant un changement de variables, que

/ Fa+y) dxdy = 2/ ﬂ dz.
rz T2(1 4+ 22)(1 + y?) r (4 + 22)
d) Soit F\(z) := cos (Az),Vz € R, avec A € R paramétre. Soit G(\) := I(F)). Ecrire G

comme la transformée de Fourier d’'une fonction que l'on précisera.
e) Montrer que, pour toute fonction F' : R — R borélienne et bornée, nous avons

2 2 F
/ FZ) ewtrzvr dxdy = 2/ (2) dz.
R2 Yy R 1+22

5

dzdy.
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Feuille de TD # 7
Espaces L”. Convolution

Cadre. Sauf mention contraire, nous travaillons dans un espace mesuré (X, .7, u1). Les es-
paces ZPet LP,1 < p < o0, sont relatifs a cet espace mesuré.

Exercice # 1. (Inégalité de Young) Soient 1 < p, ¢ < o0 exposants conjugués. Alors

ap q
ab< —+ —, Ya,be [0, 0.
p q

Indication : étudier, pour b fixé, la fonction a — a?/p + b?/q — ab.

Exercice # 2. Soient f, g : X — R mesurables. Montrer les propriétés suivantes.
a) |[tfl, =[] | fl,, Vt e R (avecla convention 0 - oo = 0).

b) Sif = gp.p. alors |f —gl, = Oet|f], = [gl,.

¢) |f], = Osietseulementsi f = 0p. p.

d) La définition de | f| est correcte, au sens suivant. Soit A := {M € [0,0]; |f(x)]| <
M p.p.}. Alors A est non vide et A a un plus petit élément, m. Cet m est le plus petit
nombre C' de [0, c0] avec la propriété | f(x)| < C p. p.

&) |f +glp <[ flp+ lglp pourp = Letp = oo. (Ici, f, g : X —> R))

Exercice # 3. Soit U un ouvert non vide de R”, muni de la mesure de Lebesgue sur %;,. Si
f e C(U), montrer que | f|, = sup |f].
U

Exercice # 4. Soit (X, 7, 1) un espace mesuré. Nous considérons des fonctions f,g : X —
R (pas nécessairement mesurables). Montrer que la relation d’équivalence f ~ g sietseule-
ment si f = g p. p. ales propriétés suivantes.

a) Sif ~ fietg~ gy, alors f+tg~ fi+tgi,Vte R(acondition que les fonctions soient
finies en tout point).
b) Sif ~ fietg~ gi,alors fg ~ fig:.
c) Sif ~getsi®:R - R,alors®o f~Pog.
d) Dans cette question, X := R" ety := \,,.
(i) Soit7,f(x) := f(x —h),Vx,heR".Sif ~ g,alors7,f ~ 7,9, V h.
(ii) Soient f, g, f1,91 : R* — R, avec f ~ fietg ~ ¢1. Soit z € R™. Alors h ~ hy, ol

h(y) :== f(z —y) g(y), ha(y) := filr —y) g1 (y), Vy e R™

Exercice # 5. Nous considérons la relation d’équivalence de I'exercice précédent, mais uni-
quement pour des fonctions mesurables.

a) Nous travaillons dans (R", .%,, \,,). Montrer que toute classe d’équivalence contient un
représentant borélien.

b) Méme propriété si a la place de R" nous considérons une partie borélienne de R™.

¢) Généralisation?



Exercice # 6. Donner un sens aux expressions suivantes.

a) «felP, f=0»

by «[f e L, | fl, = 0] = S =0».

Exercice # 7. Donner un sens aux affirmations suivantes, puis les prouver ou les réfuter.

a) Si f € LP?, alors f est mesurable.
b) Sife LP,avecl < p < o0, alors f est finie p. p.
o fel' = u({xeX;|f(x)]>t}) <|fl/t, Vt> 0.

Plus généralement, si1l < p < wet f € L, alors
fel? = u({reX; |f(x)] >1t}) <|fIb/t*, ¥t > 0(inégalité de Markov).

Exercice # 8. Nous munissons les parties boréliennes U de R™ de la mesure de Lebesgue
An. Décider pour quelles valeurs de p nous avons f € £P(U, \,,) si :

a) U :=]0,1], f(x) := %,aeR.
b) U:=R, f := xq-
o) U :=]0,m], f(x) :=

sin x

sin |z
|

d) U = {x € R"; || = 1}, f(z) :=

standard).

a € R (avec «| | » la norme euclidienne

Exercice # 9. Soit 1 < p < o0. Si f est mesurable, soit

Fy(t) := p({z e X5 [f(2)] > t})
la fonction de répartition de f .
a) Sipuesto-finie, montrer la formule du giteau en étages

112 = / PV () dt. W

0

b) Montrer que (1) reste vraie sans 'hypothése i o-finie. Indications : commencer par une
fonction étagée, et traiter le cas général par convergence monotone.
Exercice # 10. (Espaces (P)

a) Si p estla mesure de comptage, alors I'égalité p. p. équivaut a 'égalité. Ainsi, nous pou-
vons identifier naturellement £ et L”.

Si X = N muni de la mesure de comptage sur &(N), alors nous définissons

P =PN) =% =P, V1<p< .

Nous définissons de méme (P(A), avec A a. p. d. (Cas particuliers importants : A = Z,
A =N*)
b) Si(ay), est une suite indexée sur n € N, montrer que

p)l/P i1 <
<an>np={(2“'a”') alErem

sup,, |an|, sip= 0



c) Montrer que, sil < p; < py < o, alors (! < (P* < (P2 < (. De plus, ces inclusions
sont «continues»:sil < p < r < 00, alors | (@, )n|r < [(@n)nlp-

d) Soit (a,), € €7, avec p < co. Montrer que pour tout 7 > p nous avons limg_,,. |[(a,)n|s =
[ (an)nllr-

e) Sil <r < wet(a,), est une suite arbitraire, alors limg ;. ||(@n)n|s = [|(an)n -

Exercice # 11. (Espaces L” quand la mesure est finie) Nous supposons y finie.

a) Montrerquesil < p; < py < w,alors L < [P? < [P < L,
Plus spécifiquement, montrer que, 1 < p < r < oo, alors || f|, < (u(X))VP=V" | f|l,,
v f.

b) Si une variable aléatoire positive a un moment d’ordre k£ > 2 fini, montrer que ses mo-
ments d’ordre ¢, avec 1 < ¢ < k — 1, sont finis.

¢) Soit f € LP, avec p > 1. Montrer que pour tout 1 < r < p nous avons lim,_,,. | f||s =

| £
d) Sife L®, alors:

@ felP,V1<p<oo.
(ii) Lapplication [1, 0] 3 p — | f|, est continue. En particulier, lim | f|, = | f| .
p—0

Exercice # 12. Rappelons la définition de la fonction Gamma d’Euler :
0
[(x) := / t" e tdt, Vo > 0.
0

Montrer que la fonction z — In(I'(x)) est convexe sur |0, co[. On pourra utiliser la définition
de la convexité et I'inégalité de Holder.

Exercice # 13. Nous travaillons dans / =]0, o[ muni de la mesure de Lebesgue. Soient 1 <

p<ooetfe LP(I). Posons F(x) := [} f(t)dt,Vx > 0.

a) Donner un sens a cette définition. Montrer que F’ est bien définie.

b) Sip = oo, montrer que F est lipschitzienne.

c) Sil < p < oo, montrer que F' est «holderienne » : il existe C' < oo et v €]0, 1| (que 'on
déterminera) tels que |F(z) — F(y)| < C'|x — y|*, Vx,y > 0.

d) Sip = 1, montrer que F est continue.

e) Sip = 1, montrer que F est «absolument continue » : pour tout € > 0, il existe 6 > 0 tel
quesiO <a; <by <as <by <---<a, <b,sonttelsque (by —ay)+ (by —az) +---+
(b, — a,) < 0,alors |F(by) — F(a1)| + |F(by) — F(ag)| + -+ + |F(b,) — F(a,)| < e.
Indication : lemme de Lebesgue.

Exercice # 14. (Lemme de Brezis-Lieb) Soit 1 < p < co. Nous considérons une suite (f;) <
ZP telle que :
) |fill, < Co <0, Vj.
i) fj— f.
a) Montrer que f € Z7.
b) A-t-onnécessairement f; — f dans .£”?

Dans la suite, nous nous proposons de montrer le lemme de Brezis-Lieb

10 = [111+ [ 10~ 517+ o) quandn — . @

3



En fait, nous allons montrer la conclusion plus forte

[ g =187 = 18 = 171 0. 8
c) Expliquer pourquoi (3) = (2).

d) Sip = 1, montrer que

et conclure via le théoréme de convergence dominée.
e) Sil < p < oo, montrer que :

(i) Iexiste C' < oo telle que

C 1t <1
i —je—1p—1<{¢  sll=1
Cleft, sift] =1

(ii) Endéduire que

ClfI, si [ fnl

<Ifl @
C‘fn‘p_1|f’a si|fnl = |f]

P — Lo — fP— 7] < {

(iii) Soit M > 1. On définit

Anar = {z € X5 [fulo)] = M| f(2)]},
Bor = A{z e X5 [fu(x)] > M[f(z)[}.

En utilisant (4) et le théoréme de convergence dominée, montrer que
[l =l =g 1511 =0
An, M

(iv) Montrer que

ch
p 0
/B = ¥

(v) Utiliser (5), la deuxiéme inégalité de (4) et I'inégalité de Holder pour montrer que
Jimsup [ 50 = Uf = P =10 =0,
% n JB,um

(vi) Conclure.

Exercice #15. Soit 1 < p < . Si f,, — fdans Z?et f,, — g p. p., quelle est la relation
entre fetg?

Exercice # 16. a) En examinant la preuve de 'inégalité de Holder, montrer le résultat sui-
vant.

Soient f € LP\{0} et g € L9\{0}, avec 1 < p,q < oo conjugués et f, g > 0. Alors
[ f9=15llgly = BC elo, o[ el que 7 = C'g].

4



b) Sinous ne supposons plus f, g > 0, montrer que

/fg = flsllgly = [3C €]0, o[ telque |f|"~" f = C'|g|*" g].

Exercice #17. a) En utilisant éventuellement l'exercice précédent, montrer le résultat sui-
vant.

Sil<p<wetf,ge LP\{0}, alors
If+3glp = 1flp + lgl, <= [B3C€]0,0[telque f = Cg].

b) Que devient cette conditionsip = 1?

Exercice # 18. Soient 1 < po,...,pp < 0 tels que Z§=1 1/p; = 1. Alors

[fifo-- Sl < WAl [ f2lps - Wfklps ¥ Frs foroos S 2 X

Exercice #19. Soient1 < py < p < p; < 0.

6 1-6
a) Montrer qu’il existe un unique e]() 1[tel que — = — + .
p

Do P1
b) Montrer que | fl, < [ fI, I £],:°,

Exercice # 20. (Inégalités pour des opérateurs a noyau) Nous travaillons dans un espace
produit (X x Y, .7 ® ., u®v), avec j1 et v o-finies. Toutes les fonctions considérées sont
mesurables et, par souci de simplicité, positives. Un noyau est une fonction K : X xY — R,.

Soient 1 < p, ¢ < oo deux exposants conjugués. Nous voulons majorer les quantités

= A(f,9) = K(z,y) f(z) g(y) dp®@v(z,y), avec f: X > Ry, g: Y > Ry,

XxY

B = Hyn—>/ny x) dp(z) avecf:X—>R+.

a) Montrer que
B(f) =sup{A(f,9); g€ L (Y;R,), |lgll, < 1}.

b) Soientar : X — R*,~:Y — R*. En utilisant I'identité (évidente)

K(e,y) f(2) gly) = ([K(af,y)]”p%f(x)> Y ([m,y)]l/q%g(y)) |

I'inégalité de Holder (avec les exposants p et ¢) et le théoréme de Tonelli, obtenir 'inégalité

at9) < ([ Fo) o) ) u<x>)l/p

< ([ cwrmsma >)1/q,

K(z,y)
y 7P)

(6)

ol
K(z,y)

x ai(x)

dv(y), G(y) = dp(z).



) (Inégalité de Schur) En prenant a(x) = 1, v(y) = 1, obtenir l'inégalité de Schur

/a
_lsup/nydV ] [sup/nydu ] £l
zeX yeY

d) (Inégalité de Young) En prenant a(x) = 1 et~(y) = 1, obtenir, pour f,h : R* — R,
Vinégalité de Young || = £, < [[Rl, ]| f]l,-

e) (Inégalité de Hardy) En prenant a(z) = () = 2V/*+9 obtenir l'inégalité de Hardy

/:% (/;f(y)dy)pdx < qp/owf%)dx

f) (Inégalités de Hilbert-Schur-Hardy-Riesz) Préliminaire. Nous admettons la formule des com-
pléments (due a Euler)

* 1 T
/ dt = —  Vo<a<1.”
o (t+1)te sin(ma)

En prenant o(z) = y(x) = 2V/?*9) montrer les inégalités de Hilbert-Schur-Hardy-Riesz

f(x)g(y)
oo Sy TS el
* fa) p
[ 2L a4y (2 s

Exercice # 21. (Inégalité de Hardy, encore) Nous proposons ici une autre approche pour
montrer I'inégalité de Hardy obtenue dans l'item e) de 'exercice précédent. Nous travaillons
dans I =0, oo[muni de la mesure de Lebesgue. Soit 1 < p < 00.8Si f € £P = £P([), nous
posons F'(x) := [* f(t)dt, V> 0.

a) Sife (Jgo ( ), montrer a 'aide d’'une intégration par parties l'inégalité de Hardy

7P ()P p \ [ »
A-TE—MS(;TJ Aﬂ@|m. )

b) Montrer que I'inégalité (7) reste vraie pour tout f € .ZP.

Exercice # 22. (Inégalité de Landau)

a) Soit f : R — R. Si f est Lebesgue intégrable, montrer qu’il existe une suite (R,,),, telle
que :

@ 2n<R,<2n+1,Yn.
(i) f(Rn) —0
b) Si, de plus, f est dérivable, montrer qu’il existe une suite (.S, ),, telle que
N R,<S,< Rn+1; YV n (etdonc S,, — 0).
@) f(Sn) f/(Sn) =
Indication : apphquer le théoréme des accroissements finis & f2.

De méme, il existe (7,), telle que T,, — —wo et f(1},) f'(T,,) — 0.

*, Cette identité peut s'obtenir, par exemple, en appliquant le théoréme des résidus en analyse complexe.



¢) (Inégalité de Landau) Soit f : R — R une fonction deux fois dérivable telle que f soit
(Lebesgue) intégrable et f” soit bornée. Montrer que f’' € Z*(R, vy) et l'inégalité de Lan-

dau
N2 1/
Qnsfuém.

Sn
On pourra commencer par calculer 'intégrale / (f")*(x) dx si, de plus, f € C2.

Exercice #23. a) Soit 1 < p < oo. Montrer que {f € Z?(X, T, u); [ étagée} est dense
dans ZP(X, .7, ). Il convient de distinguerlescas 1 < p < wetp = .

b) On travaille dans (R", %gn, 11), avec ;1 mesure de Radon. Si 1 < p < oo, montrer que

k
{ZanKj ; ke N*, a; e R, K compact, Vj}

j=1
est dense dans £P(R"™, Bgn, ).

Exercice # 24. a) Soit (X, .7, P) un espace probabilisé. Soient f,g : X —]0, 00| deux
fonctions mesurables telles que f - g > 1. Montrer que [ fdP - [ gdP > 1. Indication:
utiliser 'inégalité de Cauchy-Schwarz, c’est-a-dire 'inégalité de Holder avec p = ¢ = 2.

n n
1 2
0 Y~ =n
a.
1 j=1 J

b) Siay,...,a, > 0,alors
J

Exercice # 25. Soient f,g : R — R deux fonctions mesurables. Nous avons f * g(z) =
g = f(x), au sens du théoréme du changement de variables.

Exercice # 26. Soit p un noyau régularisant standard. Alors, pour tout ¢ > 0, nous avons :
a) p-(z) > 0si|z| <e.

b) p-(z) =0si|z| > €.

c) fpa = 1.

Exercice # 27. Une approximation de I'identité est une famille ({¢).-q telle que :
i) ¢°:R" — Rest (Lebesgue) intégrable, Ve > 0.

i) [¢F=1,Ve>0.

iii) Il existe une constante M < oo telle que [ |¢°| < M, Ve > 0.

iv) Pour toutd > 0, lim._, fRn\B(o,é) |Cé] = 0.

a) Montrer que, si p € £ (R") (avec la mesure de Lebesgue) et [ p = 1, alors p.(z) :=
e "p(x/e), e > 0,z € R", est une approximation de l'identité.
b) Soit ((¢).~( une approximation de 'identité.
(i) Si f : R" — R est bornée et uniformément continue, montrer que f = (* — f
uniformément sur R”.
(i) Sil <p < wetfe C.(R"), montrer que f » (¢ — f dans .Z?(R").
(iii) Sil < p < wet f € LP(R") (avec la mesure de Lebesgue), montrer que f «(* — f
dans .Z?(R").

Exercice # 28. Soient f € C*(R") et p € C.(R"). Alors :



a) f = estdéfini en tout point.

b) f * (€ Ck

c¢) Pour toute dérivée partielle 0* d’ordre < k, 0%(f = ¢) = (0*f) * .

d) Si f estun polynéme (de n variables) de degré < m, alors f = ¢ est un polynéme de degré
=m.

Exercice # 29. Soit ) — R" unouvert. Soient 1 < pq,...,pp < 0.So0it f € L7 (Q)n...N
ZPx(Q). Montrer quil existe une suite (¢;); € CF(Q) telle que p; — f quand j — oo dans
2P (Q),i=1,... k.

Exercice # 30. Soit {2 un ouvert de R". Montrer que C*(Q2) n Z%(2) et CF(£2) ne sont
pas denses dans .Z%(12).

Exercice # 31. Nous travaillons dans (R", Zg~, \,,). Soient p, ¢ deux exposants conjugués.
SifelLPetge LY montrer que f * g est continue.

Exercice # 32. Nous travaillons dans (R", Zz~, \,,). Nous nous proposons de montrer le
résultat suivant : si A, B € %, satisfont \,,(A) > 0, \,(B) > 0, alors 'ensemble A + B
contient une boule ouverte non vide.

a) Montrer que I'on peut supposer A et B compacts.

b) Montrer que f := x4 * X p est continue.

c) Calculer [ f et conclure.

Exercice # 33. (Résolution de 'équation de la chaleur dans le demi-espace) Nous travaillons
dans (R",.Z,, \,). | | désigne lalongueur euclidienne standard dans R". (Donc |z| = |z||,,
V2 e R™.) Soit

1

(at) /Qe*|x‘2/(4t), VereR" Vt>0,
T n

Ki(x) =

le noyau de la chaleur.

Soientl < p < wetf:R"” - R, fe_ZP. Sousréserve d’existence, soit
u(z,t) == f Ki(x) = [ Kz —y)dy, Yz eR", ¥t >0.
Rn

a) Montrer que :
i) ue C*(R"x]0,0]).
(i) u vérifie équation de la chaleur homogene

u = Pu .
Lu = g _]lea_gj? = OdanSR X]0,00[.

b) Sil < p < o, montrer que «u(-,0) = f»", au sens ol

limu(-,t) = f dans .£7.

t—0
c) Si f est continue et bornée, montrer que

Pr%u(x,t) = f(z), Ve e R".

+. Noter que u n'est pas définie pour ¢t = 0.



d) Si f est uniformément continue et bornée, montrer que

u(-,t) — f uniformément sur R” quand ¢t — 0.
Exercice # 34. (Produit de convolution de deux mesures) Soient y, v deux mesures boré-
liennes o-finies sur R”. A chaque ensemble borélien de R, nous associons 'ensemble
F=FF):={z,y) eR"xR"; x + y e E}.

a) Montrer que F’ est borélien.

b) Montrer que la formule {(F) := pn® v(F),V E € Brn, définit une mesure borélienne &
sur R". Cette mesure est le produit de convolution des mesures p et v, noté i = v.

c) Montrer que le produit de convolution est commutatif.

d) Siles mesures boréliennes i, v/, n sont finies, alors leur produit est associatif.

e) Montrer que ¢y (la mesure de Dirac en 0) est 'élément neutre de la convolution.

f) Sipetv sontdes mesures a densités f, respectivement g, par rapport a v,,, montrer que
w o+ valadensité f = g.

g) Sipestadensité f parrapporta v, alors u * v aladensité f » v, ot

frv(x) = . flx —y)dv(y), Vo eR"™

Exercice # 35. (Convolution d’une fonction et d'une mesure) Cet exercice fait suite a 'exer-
cice précédent. Si f : R" — R est une fonction borélienne, et ;1 est une mesure borélienne
sur R", nous posons, sous réserve d’existence,

f=v(x):= - flx—y)dv(y), Yo eR".

a) Si f est Lebesgueintégrable et ;s est finie, alors f =y est définie v, -p. p., et est une fonction
Lebesgue intégrable. Indication : théoréme de Fubini.

b) Si f € C*(R™) et j1 est une mesure de Radon, alors f = u est définie en tout point, et est
une fonction de classe C*.

Exercice # 36. (Equations de Cauchy) Nous considérons les équations fonctionnelles (de Cau-
chy) suivantes :

[*R->R, f(r+y) = f(z)+ fly), Vo,ye R, (8)
g:R->T:i={2eC; |2| =1}, gz +y) = 9(x) g(y), Yo,y e R. 9)
Un résultat trés connu affirme que, si f est une solution continue de (8), alors

il existe A € Rtelque f(z) = Az, V x € R (et réciproquement). (10)

Un résultat un peu moins connu affirme que, si g est une solution continue de (9), alors

il existe A € Rtel que g(x) = €1 Yz € R (et réciproquement). (1D

Ces conclusions ne sont plus vraies s'il n'y a aucune hypotheése sur f et g, mais donner
des contre-exemples sort du cadre de cet enseignement. (En demander en algébre.)

Nous nous proposons de montrer que (10) et (11) restent vraies sous 'hypothése plus
faible que f (ou g) est Lebesgue mesurable. Nous assumons cette hypothése dans ce qui suit,
et nous travaillons avec la mesure de Lebesgue.

Pour commencer, nous admettons la propriété qui suit, qui sera démontrée plus loin.

Sige L*(R)\{0}, alorsil existe ) € C*(R) telle que /g(y) Y(y) dy # 0. (12)
R

9



a) Soit g solution Lebesgue mesurable de (9). En multipliant (9) par ¢(y), avec ¢) comme
dans (12) (avec n = 1), et en intégrant dans la variable y, montrer que g € C*(R).

Puis conclure grice au préambule de I'exercice.

b) Soit f une solution Lebesgue mesurable de (8). Soit g := ¢*/. En utilisant la question
précédente pour g, montrer quil existe A € R et une fonction h : R — Z tels que

f(z) = Az + 27 h(z), Yz e R.

c) (i) Soith : R — Z une fonction telle que
h(x +y) = h(x) + h(y), Vx,y e R

(aucune hypothese de mesurabilité).

Montrer que h(z) =0,V x € R.

(i) Conclusion?

d) Montrons (12). Soit A := {y € R; g(y) # 0}.
(i) Expliquer pourquoi A;(A) > 0.

(i) Montrer quil existe X' < A un compact tel que v1(K) > 0. Indication : la mesure
de Lebesgue est une mesure de Radon.

(iii) Soit p un noyau régularisant. Montrer que (12) est vraie si) := (sgn g xx ) * p-, avec
¢ suffisamment petit. Indication : convergence dominée.

e) Généraliser ce qui précede a des fonctions f : R” — Retg: R — T.

10
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Feuille de TD # 8
Espaces de Hilbert

Cadre. Dans ce qui suit, H est un espace de Hilbert réel (sauf si'énoncé précise quil s’agit d’'un
espace de Hilbert complexe), et £/ un espace préhilbertien réel. Le produit scalaire, respective-
ment la norme induite sur H ou F, sont notés { , ), respectivement || |.

Exercice # 1. Soit f : [0, 1] — R une fonction convexe et dérivable. Montrer 'équivalence
0 est un point de minimum de f <= f'(0) > 0.

Exercice # 2. Montrer que, pour toutz € E,
|z = max{(z,y); y € E, Jy| < 1}.

Exercice # 3. Montrer que

1
@y = lle+yl* = le—yl’], vaye E.

Exercice # 4. On consideére un espace vectoriel réel X muni d’'une norme || || vérifiant I'iden-
tité du parallélogramme :

o+ yl* + llz = yll* = 2]=]* + 2[y[*, Y2,y € X.

Lobjectif est de montrer que X muni de cette norme est nécessairement un espace préhil-
bertien. Il s’agit donc de construire un produit scalaire induisant | ||. Compte tenu de I'exer-
cice précédent, posons

1
gy =7 lle+ yI* =z = l*], Y,y e X.

Il reste a vérifier que 'on a bien défini ainsi un produit scalaire.

a) Montrer que, pour tout 2,y € X, ona {(z,y) = (y,z), (z,z) = ||z|* et (—z,y) =
<l’, _y> = —<.73, y>

b) Montrer que, pourtoutx,y,z € X,onalx+y,z2) = {z, 2) +(y, z). (On pourra montrer
d’abord I'égalité suivante : (x + y, 2) = 2(y, 2) + (& — y, 2).)

¢) Montrer, en utilisant b), que, siz,y € X etr € Q,ona{rz,y) = r{x,y). En utilisant un
argument de continuité, montrer que cette égalité reste encore vraie pour tout r € R.

d) Endéduire que (, ) est bien un produit scalaire sur X qui induit la norme || |.

Exercice # 5. (Inégalité de Bessel) Soit (e;)1<j<n < E (avec N = 2,3,...,0) une famille
orthonormée. Montrer l'inégalité de Bessel

Z <l’,€j>2 = H‘CEH27 Vxe k.

1<j<N



Exercice # 6. Soit (e;);>1 < H une suite orthonormée. Soit (a;);>1 < R. Montrer I'équi-
valence

2
Z aje; converge < Z aj < o0.
j=1 j=1

_ 2
aje;| = ijl as.

Exercice # 7. Soient I et G deux sous-espaces fermés orthogonaux de H. Montrer que
F + G est fermé.

j>1

En cas de convergence de 'une des séries, montrer que HZ

Exercice # 8. Soit F' une partie non-vide de H. Montrer que :

a) F* estun sous-espace fermé de H.

by Veet (F)" = F-.

¢) It = Vect (F). En particulier, si F' est un sous-espace fermé de H, alors F*+ = F.,

Exercice # 9. Soit F' un sous-espace de H. Montrer I'équivalence

Festdensedans H < F* = {0}.

Exercice # 10. Soient F et (G deux sous-espaces fermés de H. Montrer que (F + G)* =
FtanGlret(FnG)t=FL+ G

Exercice # 11. Soit H = L?(R), muni de sa norme usuelle.

a) Montrer que

G:z{feH;/Olfzo}

est un sous-espace fermé de H, et déterminer G-.
b) Soient C.(R) I'espace des fonctions continues a support compact, et

F:={f€Cc(R);/01f=0}-

Montrer que F = G.
c¢) Déterminer I'ensemble {g € C.(R); g € F'}.

Exercice # 12. Soient H = L*(]0, 1[) muni de sa norme usuelle et

Ve {feH;/Olf:/ff:o}.

a) Montrer que V est un sous-espace fermé de H. Déterminer une base de V+.
b) Soit f(z) := x. Calculer la projection orthogonale de f sur V, puis d(f, V).

Exercice # 13. Déterminer la quantité suivante

2
inf / |sinz — a — bx|* dx.
0

(a,b)eR?

La borne inférieure est-elle atteinte?



Exercice # 14. a) Déterminer la projection orthogonale sur la boule unité fermée de H.
b) Déterminer la projection orthogonale sur le sous-espace engendré par une famille ortho-
normée finie de H.

Exercice # 15. Soite,(z) := €"*,¥n € Z, ¥ x €]0, 2r[. Montrer que (e, ),cz est une base
hilbertienne de L?(]0, 27|, B0 2x[, 1/(27)11).

Exercice # 16. Montrer quun espace préhilbertien qui a une base algébrique orthonormée
infinie & nest pas complet. Indication : soit (e,),>1 < < une suite orthonormée. Soit
Ty =y, (1/5%)e;, ¥V n > 1. Montrer que la suite (x,,),,>1 est de Cauchy, mais ne converge
pas.

Exercice # 17. On considére R[X | muni de

<PQ > /1 P(2)Q(z) dz, ¥ P,Q € R[X].
0

a) Montrer que <, > est bien un produit scalaire.
b) Montrer quil existe une suite de polyndmes (P, ) ,eny qui converge uniformément vers exp
sur [0, 1].
Montrer que cette suite est de Cauchy dans (R[ X ], <, >).
¢) Endéduire sur (R[X], <, >) rest pas complet.
Exercice # 18. Soit X l'espace vectoriel complexe engendré par les fonctions de la forme
R 5t — ¢ e C ol w parcourt R. Pour f, g € X, soit

I
< >:= lim — t)g(t)dt.
f.g TgI;OQT/Tf( )g(t)
a) Montrer que < , > définit un produit scalaire sur X .

b) Vérifier que la famille (¢ — e™*),,cg est orthonormeée.

¢) X est-il un espace de Hilbert?

Exercice # 19. Soit V' un sous-espace de H. Montrer que toute forme linéaire et continue
sur V' se prolonge en une forme linéaire et continue sur H.

Exercice # 20. Montrer que tout convexe fermé non-vide de H admet un unique élément
de norme minimale.

Exercice # 21. Donner un exemple d’une partie A fermée de (2, telle que dist(0, A) = 1,
mais ne contenant pas d’élément @ vérifiant |a|, = 1.

Exercice # 22. Soit F' — H un sous-espace fermé non-nul. Soit P une projection de H sur
F (c’est-a-dire : P est un endomorphismede H, Po P = Pet P(H) = F).

Montrer I'équivalence entre

1. P estla projection orthogonale sur F'.

2. Pestcontinuet||P| = 1.
3. [(P(z),z)| < ||z||* pour tout = € H.

Exercice # 23. (Polyndmes de Laguerre) Soit y« la mesure sur [0, oo de densité e~ par rap-
port a la mesure de Lebesgue (Cest-a-dire u(B) = [, e “dx, ¥V B € HBjo ). Les polyndmes
de Laguerre sont définis par

e’ d ! -z, n

Montrer que les L,, est un polynéme, ¥ n > 0, et que (L, ),>0 est une suite orthonormée de
LQ([Ov OO[? t%[0700[7 :U’)



Exercice # 24. (Deux identités généralisées du parallélogramme) Soient x4, ..., x, € H.

a) Montrer que
lt1 + (1= t)ao]* + (1 = )21 — 2a]® = thar|* + (1~ t)]Jaz|, VE e R.

b) Montrer que

1
D) lerws + -+ enzall” = aall* + - +

n
(e15sen)e{~1,1}"

¢) Montrer que, sip # 2, alors il nexiste pas d’isomorphisme linéaire entre ¢ et (2. (Sup-
poser par I'absurde quil existe un tel isomorphisme 7' : ¢?(N) — (*(N) et considérer
xXr; = T(ez))

Exercice # 25. Soit H = L*(Q),.7,1). SoitC = {f € H;f > 0}. Montrer que C est un
convexe fermé et que Po(f) = fx(s=0y, V f € H.

Exercice # 26. Soitu € .Z(H). Montrer 'équivalence entre

1. u estune isométrie, c’est a dire ||u(z)|| = ||z|| pour tout z € H.
2. Pourtoutz,y € H,(u(x),u(y)) = {x,y).
3. w*u = Id.

(Indication : penser a identité de polarisation).

Exercice # 27. Si H est séparable, montrer que tout ensemble orthonormé £ < H est au
plus dénombrable. Indication : si G est dénombrable et dense, construire une injection de
FE dans G en considérant des boules de rayon 1/2.

Exercice # 28. a) Soient z,y € E tels que (x,y) = ||z|* = ||y|*>. Montrer que z = y.
b) Soient (x,,) et (y,) deux suites de E vérifiant ||z, | < let|y,| < 1,V n.
1. On suppose que {x,,y,) — 1. Montrer que x,, — y, — 0.

2. Onsuppose que ||z, + y,| — 2. Montrer que z,, — y,, — 0.

Exercice # 29. Soient H séparable, (¢,),~0 < H une base hilbertienne et ( f,,),~0 € H une
suite orthonormée. On suppose que

D llen = fal* < 0.

n=>0

Le but de cet exercice est de démontrer que ( f,),>0 est également une base hilbertienne.

a) Soient N > Oetg € H telque f,, L g pourtoutn > N. Montrer I'inégalité

2
2 2
< lgl* X, llew— full®

n>N

2 (g, en)en

n>N

On choisit maintenant un N € N tel que

2
i llen = ful® < 1.
n>N
b) Montrer que tout vecteur g orthogonala eg, ey, ...,en_1, fn, fn+1,- .., estnul.



¢) On considére les vecteurs

Mo =€n— Y, <en frfu ¥n < N.

k=N
Montrer que tout vecteur g orthogonala ng, m1,...,nv-1, fn, fn+1, .- ., estnul.
d) Soit W l'orthogonal de l'espace V' engendré par les vecteurs fy, fv11,... Montrer que
N, € W pour toutn < N et que W est engendré par g, ..., Nn_1.

e) Conclure.

Exercice # 30. Soient (e,,),>0 une suite orthonormée de H et A := {e,, ; n > 0}.

a) Montrer que A est fermé et borné. A est-il compact?

b) Soit (v, ) une suite de réels positifs de carrés sommables. On note K I'ensemble des élé-
ments x € H qui s'écrivent sous la forme Y. a,e, ot |a,| < «, pour tout n. Montrer
que l'ensemble K est compact.
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Feuille de TD # 9
Séries de Fourier

Notations, cadre

a) Sif :]0,27[— C est Lebesgue intégrable, nous posons

1 2
cn(f) = %/ flz)e ™ dx, VY eZ,
0
N

Sn(H)(z) = D enlf)e™, YN eN,

n=—N
Sf(x):= lim Sy(f)(z) (sicette limite existe),

N—o0

 Su()@) + o+ Sy()(a)
N+1

Tn(f)(z) - YN eN.

b) La série formelle Sf := >\ c,(f)e™ estle développement en série de Fourier (ou la série de
Fourier) de f.

c) Les espaces et normes L? sont considérés par rapport a [ =0, 27| muni de la mesure
1/(2m) Ay, avec \; la mesure de Lebesgue.

1 2m
Exercice #1. a) Montrerque(f,g) := — f(z) g(x) de définit un produit scalaire sur

2m Jo
L2,
b) Posons e, (x) := €"* ¥n e Z,¥ x €0, 2r[. Montrer que la famille (e,,),cz est orthonor-
mée.

¢) Exprimer ¢, (f) alaide de e, et du produit scalaire ci-dessus, et retrouver I'inégalité de
Bessel.

Exercice # 2. Soit f 2m-périodique et intégrable sur |0, 27[. Alors :

a) f estintégrable sur tout intervalle borné.
b [ fy)dy = [T fly)dy,VaeR.

Exercice #3. Soit P = ). _,a,€e" =), ,a,e, (avec ] c Z fini) un polyndéme trigonomé-
an,, sinel

trique. Montrer que P € L' et que ¢, (P) = 0 gl
,  sin

Exercice # 4. Si f est localement intégrable et 2-périodique, montrer que ¢, (f(- + h)) =
e™e,(f),VheR,VneZ.

Exercice # 5. Soit f : R — R la fonction 27-périodique définie par

f(z) = {1, pour x € [0, 7]

0, pourx €|, 2n[



a) Dessiner le graphe f sur [—27, 27].

b) Déterminer Sf.

sin((2n + 1)z)
2n +1

[es}
¢) Calculer, en fonction de z € R, la valeur de la somme Z
n=0

Exercice # 6. Développer en série de Fourier la fonction 27-périodique donnée par f(z) :=
x pour z € [0, 27[. Que donne I'égalité de Parseval?
Exercice # 7. Développer en série de Fourier la fonction 27-périodique définie sur [—, 7|

par f(x) := |sinz|. En déduire la valeur de Z !

= 4n? — 1

Exercice # 8. Développer en série de Fourier la fonction 27-périodique définie sur | — 7, 7]
. 1 1
par f(x) := |z|. Endéduirelavaleurde » —et » —.

Exercice # 9. Soit f : R — Rlafonction 27-périodique définie sur | — 7, 7] par f(z) := 2.

a) Déterminer Sfet Sf(z),z € R.

b) En déduire les valeurs des séries Z %, Z (_12> , Z @ <1F ek Z i4.
n n n n

n>1 n>1 n>0 n>1

Exercice # 10. Soit « €]0, 7| et f : R — Rla fonction 27-périodique définie sur | — 7, 7]
par
1, size|—a,a
() = { el

0, sinon

a) Dessiner le graphe f sur [—27, 27].
b) Calculer SfetSf(x),zeR.
sin(na)?

0]
¢) En déduire la somme de la série Z 5

n=1 n

Exercice # 11. Soit f : R — R la fonction 27-périodique, impaire et telle que f(z) =
(m —x)/2sur |0, x|.

a) Dessiner le graphe de f sur une période.

b) Calculer SfetSf(z),z e R.

L. . sinn 1
¢) Endéduire la valeur des sommes suivantes : Z et Z —-
n>1 n>1 n

Exercice #12. Soit f : R — R la fonction 27-périodique, paire et telle que f(z) = 2z — 7
sur [0, 7].

a) Dessiner le graphe de f sur [—3m, 37| et exprimer f(z) sur [, 27].

b) Déterminer SfetSf(z), z € R.

1

¢) Endéduire la valeur de la somme 2 m
n

n>0
Exercice #13. Soit f : R — R la fonction 27-périodique et vérifiant f(x) = z sur [—m, 7[.

a) Dessiner le graphe de f sur [—3m, 37].
b) Déterminer SfetSf(z), z € R.



(="

on+1

¢) Endéduire la valeur de la somme Z

n>0
Exercice # 14. Développer en série de Fourier la fonction 27-périodique impaire définie sur

[0, 7] par f(z) = x(7 —z). En déduire les valeurs des séries Z % et Z m.

n>1 n>1

Exercice # 15. Soit f : [0,27] — C une fonction de classe C'! telle que f(0) = f(27) et
2
o f(t)dt=0.

a) Exprimer ¢, (f’) enfonctionde ¢, (f), Vn € Z\{0}, et calculer ¢o(f").

b) En déduire que

T 2d 27 ) Qd.
/0 (1) ts/o PP

c) Dans quel cas a-t-on égalité?

Exercice #16. La conclusion deI'item 3 de cet exercice suit du corollaire 12.25 du cours, mais
le but ici est d’en obtenir un preuves plus directe et élémentaire.

1@l

e ,VnelZ*.
n

a) Soit f € C*(R) une fonction 27-périodique. Montrer que |c,, (f)| <

. . . 2 z: : 0 1nx
Enparticulier, si f € C*, montrer que sasériede Fourierxz — " ¢,(f) €™ converge
normalement, et que la somme de la série est f.

b) Dans cetitem, nous améliorons la conclusion de I'item a). Nous supposons f € C*~1(R),
f 2m-périodique, et f*~1 de classe C* sur [0, 27]. Montrer que Y. |n|?* |c, (f)|? converge.

c) Si f est continue, 27-périodique, et de classe C'! par morceaux, montrer que sa série de
Fourier converge normalement vers f.

Exercice # 17. (Noyau de Dirichlet) Soit f 27-périodique et intégrable sur |0, 27 (. Soit

N
Dy(x) := Z et YreR;
k=—N

Dy est le noyau de Dirichlet.

a) Montrer que

Sxf(e) = = [ fle—y) Dnly)dy = = / " f(e—y) Dnly)dy, Y € R.

2m Jo 2 ).

b) Montrer que

sin((N + 1/2)y)

, , siyé¢2nZ
Dyl(y) = sin(y/2)
2N + 1, siye2nZ
_Jsin(Ny) cotan (y/2) + cos(Ny), siy¢2nZ
ON +1, siye2nZ

) Montrer que [ Dy(y) dy = fir Dy(y)dy = .



Exercice # 18. (Noyau de Fejér) Soit

_ Dy+Dy+---+ Dy

Fy:
N N +1

, VN e N,

ol D; est le noyau de Dirichlet (Fiy est le noyau de Fejér). Soit

So(f) + S1(f) +--- + Sn(f)
N+1

Twn(f) = VN eN.

Montrer les propriétés suivantes.

a) Si f est 2r-périodique et intégrable sur |0, 27|, alors

To(P)a) = 5= [ S =) Px(dy = 5- [ fla =) Fuly) dy, v e
sin?[(N + 1)y/2]

b) Fiv(y) = § (N + 1) sin*(y/2)’
N +1, siye 2n7Z

siy ¢ 2w 7

En particulier, Fiy(y) > 0,Vy, V N.

o [ Fn(y)dy = 2.
d) Pourtout0 < ¢ < 7, Fiy — 0 uniformément sur [—m, —d] U [, 7| quand N — oo.

En particulier, pour tout 0 < § < 7,
/ Fy(y)dy — 0quand N — 0.
[—m,—d]u[é,7]

Définition. Si f : R — C est continue et 27-périodique, son module de continuité w est
w(8) = sup{| F(x) — F(3)]; 7y e R, |z —y| < 6}, Y0 < 6 < 2. W

Exercice #19. a) Montrer que, dans (1), le sup est un max.
b) Montrer que w est continue et croissante.

Exercice # 20. Soit f : [0,27] — C une fonction a-holderienne telle que f(0) = f(2n).
Nous notons encore f son prolongement par 27-périodicité.

a) Montrer que
w(8) < 2|f]cad®, Y0 < § < 27, @)

b) Améliorer (2) 2 w(d) < 2'7%|f|cad®, V0 < § < 27.

Exercice # 21. Soit f : [0,27] — C une fonction telle que w(d) « § quand § — 0. Montrer
que f est constante (et réciproquement).

Exercice # 22. Montrer que S,,(T,,(f)) = Tn(f)-

Exercice # 23. (Pour une mise en perspective de cet exercice, voir I'exercice # 26.) Montrer
que

150 ()]l o < |1 Dnllill fllo, ¥V f : R — C mesurable, bornée, 2r-périodique.



Exercice # 24.

a) Montrer que

D, (y)| < 1mim((n +1/2)|y[,1), Yn>0,VY0 < |y| <.

Y|

On pourra utiliser les inégalités suivantes :
2
|sint| < min (|t],1),Vt e R, sint > —t, Vt e [0,7/2].
T

b) En déduire que
|Dplly <1+ Inm+In(n+1/2), Vn > 0.

Exercice # 25. Montrer que

2

g i (0 D2, 1), Y= 0, Y0 <y <

[Fn(y)] <

Exercice # 26. (Produit de convolution de fonctions périodiques) Soient f, g : R — C deux
fonctions 27-périodiques, avec f intégrable sur |0, 27 et g continue. Nous définissons

2m
[rg(x) = %/0 flz—1t)g(t)dt, VxeR.

a) Montrer que le produit de convolution f = g(x) est bien défini, V x € R.

b) Montrer que f = g est 2m-périodique.

c¢) Calculer les coefficients de Fourier de z — f(x — t) en fonction de ¢ et de ceux de f.
d) Endéduire les coefficients de Fourier de f = g en fonction de ceux de f et g.

e) Généraliser ce qui précede au casou f € £P et g € £, avec p et ¢ conjugués.

Exercice # 27.

a) Montrerque Ty (f) = f = Fy,V1 <p <00,V fe LP(I), f 2n-périodique.

b) Avec p et f comme dans la question précédente, montrer que 7 ( f) est 2r-périodique,
Tn(f) e 27T et [Tn(f)lp < [ flp-

c) Soitl < p < . 8i f € CP(I)et f est prolongée par 2m-périodicité a R, montrer que
|Tn(f) — f|, — 0quand N — co. Indication : utiliser le théoréme de Fejér.

d) Soitl < p < 0. 8i f € LP(I) et f est 2w-périodique, montrer que | (f) — fll, — 0
quand N — co. Indication : utiliser la question précédente et la densité de C°(I) dans
2°P(I).

e) Calculerc,(Tn(f)),VN e N,Vn e Z.

f) En déduire que «les coefficients de Fourier d’'une fonction déterminent la fonction » : si
f e LY(I) et f est 2w-périodique, alors [c,(f) =0, Vne Z] = f =0.

Exercice # 28. (Inégalités faibles de Bernstein (I)) Commengons par la fin de l'histoire, qui
dépasse le cadre de cet enseignement. En général, 'ordre de grandeur d’'une fonction ne
donne aucune information sur 'ordre de grandeur de sa dérivée. Par exemple, les fonctions
x — fn(x) := sin(nz) satisfont toutes | f,,| < 1, maisleurs dérivées peuvent étre arbitraire-
ment grandes quand n — o0. Le théoréme de Bernstein donne une inégalité entre f’ et f si f est
un polyndme trigonométrique de degré fixé. Il affirme que, si f est un polynéme trigonométrique
de degré < n, alors

max | f(«)] < n max|f(z)]. (3)



Nous allons montrer une forme plus faible, avec un facteur supplémentaire 3, de cette
inégalité, et une version L? de celle-ci :

1f' ], <3n|flp V1 <p< oo,V polynéme trigonométrique f dedegré <n. (4

a) Soit g(x) := €™ f(x). Si f est un polynéme trigonométrique de degré < n, montrer
Iidentité suivante (avec F,, le polyndme de Fejér, et T,, comme dans I'exercice précédent) :
f(x) =wm f(x)—2me™ (9= F,)(z) = f(x)—2me " (T,(g9))(z),YVz e R. (5)

b) En déduire (4).

Pour la suite de cet exercice (inégalités faibles de Bernstein (I1)), voir 'exercice # 43 de la
feuille d’exercices de synthese et avancés.
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Feuille de TD # 10
Transformée de Fourier

Cadre

1. Nous travaillons dans R™ muni de la mesure de Lebesgue.

2. «-»estle produit scalaire standard dans R" : z - £ := Z?Zl z; &, YV, & e R

1/2
3. «||»estlanorme euclidienne standard dans R" : |z| := <Z?:1(:)sj)2> ,VoeR™

Exercice # 1. a) Soient f € L}(R") ete > 0. Soit f.(x) := ™" f(z/e),Vx € R".
(i) Montrer que f. € L.
(i) Montrer que ﬁ(&“) = f(e £).
(iii) Montrer que |f-(€)| < | f|,, Ve >0,V ¢ e R™.
b) Soient f € L}(R") eth € R"™. Soit 73, f(x) := f(x — h), V2 € R".
(i) Montrer que 73, f € L'.
(i) Montrer que 7, (£) = e~ f(£), V& e R™.
¢) Soit f € LY(R").
(i) Montrerque f e L.
(ii) Montrer que ?(5) = ?(—5), VEeR™
d) Soit f € L*(R"). Soit f(z) := f(—x),Vz € R".
(i) Montrer que fe L.

~
~ ~ A~

(ii) Montrer que f(&) = f(—=&) = f(£),VE e R™.

Exercice # 2. a) Soita > 0.Soitg” : R — R, 9% (z) = e~***,z € R. Nous nous proposons
de calculer h® := ¢°.
Rappelons que [, e dx = 7'/,
(i) Montrer que g° € L' et calculer h%(0).
(ii) Montrer que h® € C'! et donner la formule de (h?)'.

§h*(€)

(iii) En utilisant une intégration par parties, montrer que (h?)'(¢) = T Indica-

. —ax? —ax? ! ¢
tion:ze = —1/(2a) <e > .

(iv) Obtenir la formule =2 (&) = (m/a)"/? =€/,
Sous une forme plus compacte, nous avons g%(¢) = (w/a)Y/2 g/(4) (¢).
b) Plusgénéralement, soit g%(z) := e @*I*, z € R". Montrer que g%(¢) = (w/a)™/2 g"/142)(¢),
Va>0,VEeR
c) Soit A € M, (R) une matrice symétrique, définie positive. Soit f(z) := =)= Yz €
R™. En utilisant la question précédente et un changement linéaire de variables, calculer

7.

Ax)-x



Exercice # 3. Voici une autre méthode pour calculer la transformée de Fourier des gaus-
siennes. Elle est inspirée par 'analyse complexe.

Soit F: R — C, F(s) := [, e~ @+ dz,
a) Montrer que F est bien définie et de classe C.
b) Montrer que [’ est constante.

s . , . 2
¢) Endéduire la formule de la transformée de Fourierde z +— e *

Exercice # 4. Dans R, soit f := x[o,1]. Montrer que f € .Z" mais que f ¢ £ Endéduire
que la formule d’inversion de Fourier ne s'applique pas 2 toutes les fonctions de .#1.

: * sint : .y TR
Exercice # 5. Rappelons que — dt = 7. (Il s’agit d’'une intégrale généralisée.)
—0
Soit f la question de I'exercice précédent.

a) Montrer que

~

f(z) = lim i/_ e f(€)dE, Yo e R\{0,1}.

R— 27T R

b) Voyez-vous un lien entre la formule ci-dessus et le fait que f € .£??

Exercice #6. a) Soit f : R — R, f(z) := e~1*l, V2 € R. Calculer f.

b) Soitg: R — R, g(z) := vV € R. Calculer g.

1
1+ 22’
Exercice # 7. Soit A\ > (. Soit

e¢]
f(x) = / e M (A t) T2 e gy g e R
0

a) Montrer que f € Z(R").
b) Calculer f .

Exercice # 8. (Résolution de 'équation de Helmholtz) Soit f la fonction de I'exercice précé-
dent. Soit g € C(R™).
a) Montrer que f = g € C*(R") etque f = g € L1 (R").
2 2 2
b) Soit A le laplacien, cest-a-dire Au(z) = 5(6 u)2 () + Cu 0"u
X
Vue C*R"). Calculer Z[(f = (\g — Ag)].
¢) Trouver une solution h € C*(R™) de I'équation de Helmholtz \h — Ah = g.

Exercice # 9. Calculer les transformées de Fourier des fonctions suivantes.
a) f:R—-R,f(r):=(sgnz)el voreR.
1
b) g: R — C, = ——,VzreR.
) g gz) = ——, v

Exercice # 10. a) Soit f € .Z*(R™) une fonction « radiale », c’est-a-dire de la forme f(z) =
g(|z|) pour une fonction Lebesgue mesurable g :]0, o[~ R. Montrer que f est radiale.
b) Méme propriétési f € L*(R").

(1—tH)712 sift] <1

, . Montrer que g € £*.
0, sinon

Exercice #11. a) Soitg: R — R, g(t) := {

2



i|z] <1 y
|z, S? 2] . Calculer f(€) en fonctionde g, V¢ € R?.
0, sijz|>1

b) Soit f : R — R, f() := {

~

On pourra utiliser I'exercice précédent et calculer uniquement f(¢,0), avect > 0.

Exercice # 12. Soit f : R" — R, f(x) := el otta > 0.
a) A partir de la transformée de Fourierde R 5 z + 1/(1 + z?) et de l'identité

1
1+ 22

© 2
= / e~ gt Vo e R,
0

montrer que

—r 1 TeTt e
e = e dt, Vr > 0. @
0

T1/2 $1/2

ax

b) Enutilisant (1) et la transformée de Fourier des fonctions R 3 # — ¢~ %**, ¢ > (), montrer

que

J?(f) = 2n7r(n_l)/2r((n +1)/2) (a2 + ’5|L2)(n+1)/27

avec I'(z) := [ t*~! e~* dtla fonction d’Euler.

Exercice # 13. a) Soient f € L*(R")etg € L'(R"). Montrer que f = g € L*(R") et que
f*g= fg.(Onpourracommencer par f € L' n L?))
b) Si fe L}(R")etge L' n L*(R"), montrer que

frglx) = (27r)_”/ et f(é) 9(&) d¢, pour presque tout x € R". )

n

c) Montrer que (2) est vraie pourtout x € R".
d) Demémesi f, g € L*(R™).

Exercice # 14. Rappelons le résultat suivant du cours. Si f € C*(R) etsi f) € £, Vj e
[0, k], alors

—— A~

0 f(&) = ()" (&), Vj € [0, k]. (3)

Nous nous proposons ici de montrer que, pour k£ > 2, il y a trop d’hypotheses dans ce
résultat, et qu'il suffit de supposer que f € £ et f¥) e L1,

Plus spécifiquement, nous allons montrer que

[fe Z'R), fB e LY R)] = [f e L'R),...,f* Ve 2 (R)].

Ceci fait echo a I'inégalité de Landau (exercice # 22 de la feuille # 7), qui donne
[f < L'(R), f'c L7(R)] — [ ¢ L*(R).

a) Prenons d’abord k = 2. Soit f € C*(R).

(i) Exprimer f(z + 1) enfonctionde f(z), f'(x) et f” en utilisant la formule de Taylor
alordre deux sous forme intégrale au point . En déduire une formule pour f'(z).

(ii) Montrer quil existe une constante C' < oo telle que | f'|1 < C(|fl1 + | f"]1)-

3



(iii) En déduire que, pour k = 2, (3) peut s’obtenir sous les hypothéses plus faibles f €

C2, f, 1" e £V,
b) Soit maintenant k > 3. Soit f € C*(R).
(i) Exprimer f(z+1), f(z+2),..., f(z+k—1)enfonctionde f(z), f'(z),..., f* D (z)

et f(®) en utilisant la formule de Taylor a I'ordre k sous forme intégrale au point .
En déduire des formules pour f(z), ..., f* Y (x).

(ii) Montrer quil existe une constante C' < o telle que |[f/||; + - + [f* V|, <
CUA+ 1 Ph).

(iii) En déduire que, pour tout k > 2, (3) peut s’obtenir sous les hypothéses plus faibles
feCh ffMezn

Exercice # 15. (La fonction caractéristique d’'un vecteur aléatoire détermine sa loi) Si y est
une mesure borélienne finie dans R", nous définissons sa transformée de Fourier parla formule

AQ) = [ e dulo), v R,

a) Montrer que /i est bien définie, et que c’est une fonction continue et bornée.

Nous nous proposons d’établir I'analogue suivant de l'injectivité de la transformée de

Fourier dans L'(R™). Soient j1, .. ., s des mesures boréliennes finies dans R", et soient
ai,...,ap € R. Alors
k k
ZOéjﬁjZO:ZOéj/LjZO. (4)
j=1 j=1

b) Soit i une borélienne finie dans R". Soit X' < R™ un compact, et soit f := y_x. Soit
g := [ = u (voir lexercice # 35 de la feuille # 7).
Montrer que :
(i) g estcontinue et bornée.
(i) g e L1(R").
(i) § = f 7.
¢) Soient yi1, ..., des mesures boréliennes finies dans R" et a1, ..., € R tels que
Z§:1 aj ji; = 0. Montrer que Z?=1 a; g;(0) = 0.
d) Endéduire que Z?:l a; i (K) = 0.
e) En déduire que Z?zl a;pt; = 0. Indication : séparer les j tels que ; > 0 des j tels que
a; < 0.
fy Etablir la conséquence suivante de (4) : si deux vecteurs aléatoires (avec le méme nombre

de coordonnées) ont la méme fonction caractéristique, alors ils ont la méme loi. (Voir
'exercice # 34 c) de la feuille # 3).
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Exercices d’auto-controle

Dans les exercices suivants, préciser le cadre si nécessaire (par exemple, si X apparait
dans I'énoncé, préciser s'il s’agit d'un ensemble sans structure, d’'un espace mesurable, me-
suré, ou métrique).

Exercice #1. Si A < BetC < D, montrer que A\D < B\C.
Exercice # 2. Montrer que AAB = A°AB°.

Exercice # 3. Montrer 'équivalence des propriétés suivantes.

1. AuvCcBuC,vVC.
2. Ac B.

Exercice # 4. Déterminer les ensembles suivants :
sin~*(0) ; sin ([0, 1]) ; sin"*([a, b]), avec a,b € R.

Exercice # 5. Dansun espace normé, écrire les boules (ouvertes, fermées) comme desimages
réciproques de fonctions numériques.

Exercice # 6. Soit (z,,),, — R une suite. Montrer 'équivalence des propriétés suivantes.
1. (x,), est bornée.
2. limsup,, z,, € Retliminf, z, € R.

Exercice # 7. Calculer sup x,, et lim inf,, 2;,,, ot z;,, := In (nm e_") ,Vn e N*,
n>1

Exercice # 8. Proposer et montrer une formule pour lim inf(A4,, U B).
n

Exercice # 9. Rappelons quun nombre réel est rationnel si et seulement si son écriture
décimale est périodique. En utilisant cette propriété, proposer une fonction injective f :
Q n]0, 1] — N2 (Indication : prendre comme I'une des deux composantes de f(x) la partie
périodique de I'écriture décimale.)

Exercice # 10. Montrer que si ¢ estunclanet A;,..., A, € €,alors A; u ... U A, € F.
De méme si on remplace clan par tribu.

Exercice #11. Si (.<7;);c; estune famille d’ensembles o, = &7( X)) telle que chaque <7 soitun
clan (ou tribu, ou classe monotone), alors N;c;.<7% est un clan (ou tribu, ou classe monotone).

Exercice #12. a) Si &/ < B, alors € (&) < €(B), #(H) < M(PB)et T () <
T (B).

b) Ona¥% (¢ (<)) = € (). Propriété analogue pour la classe monotone et la tribu engen-
drées.

Exercice # 13. Dans cet exercice, nous considérons un espace mesurable (X, 7). Prouver

ou réfuter les assertions suivantes.

a) Une fonction f : X — R qui ne prend quun nombre fini de valeurs est étagée.



b) Sif: X — R"estmesurable, etsig : R® — Restborélienne étagée,alorsgof : X — R
est étagée.

¢) Sif: X — Resttelleque f~}(F) € .7 pour tout F' = R fermé, alors f est mesurable.

d) Sif: R — Restborélienne et ne s’annule pas, alors 1/ f est borélienne.

e) SiAc X, alors x4 : X — R est mesurable si et seulementsi A € 7.

r+1, sizx>0

) , est borélienne.
—, siz <0

f) Lafonction f: R — R, f(x) := {

g) Lafonction f : X — R est mesurable < |f| est mesurable.

Exercice # 14. Soient f : X — R mesurableet g : X — R définie par:

o(a) i {1, si fla) eQ

0, sinon
Montrer que g est mesurable.

Exercice # 15. Soit A — X. Alors Y 4 est mesurable si et seulement si A I'est.

Exercice # 16. Prouver ou réfuter les assertions suivantes.
a) SiAe 7, alors u(X) = p(A) + u(A°).
b) Si(A,)n>0 est une suite décroissante d’éléments de .7 et 1(Az) < o0, alors

% (ngOAn) = hTILn M(An)

c) SiA,Be Tetu(Au B) = u(A)+ u(B), alors A et B sont disjoints.

d) Ilexiste un espace mesuré (X,.7, u) tel que {u(A); Ae 7} ={0,1,2}.

e) Il existe un espace mesuré (X, .7, u) telque {u(A); Ae 7} ={0,1,3}.

f) La mesure de comptage sur N est finie, respectivement o-finie.

g) Soient &/ une famille qui engendre .7 et y1, s deux mesures sur .7 . On suppose que
pour tout Adans .o/ ona iy (A) = ps(A). Alors pour tout T'dans .7 ona g (T') = us(T).

Pour cette derniere question : y a-t-il des hypotheses raisonnables a ajouter ou enlever?

Exercice # 17. (Mesure image) Soient (X, .7) un espace mesurable et f : X — R" une

fonction mesurable. Soit i une mesure sur .7 . Nous définissons fui : Brn — [0, 0] par

fapp(A) = u(f~Y(A)), VA € PBgn. Rappelons que f,u est une mesure sur Bgn. Cest la

mesure image de p par f.

a) Déterminer f,d,, aveca € X.

b) Soit ;s une probabilité sur X (donc p(X) = 1). Nous prenonsn = 1. Si B € 7, détermi-
ner (Xp)x«/t-

Exercice # 18. Prouver ou réfuter les assertions suivantes.

a) Une partie d’'un ensemble négligeable est négligeable.
b) Une union a. p. d. d’ensembles négligeables est négligeable.
¢) Une union d’ensembles négligeables est négligeable.

Exercice # 19. Prouver ou réfuter. Une partie d'un ensemble Lebesgue mesurable de R" est
Lebesgue mesurable.

Exercice # 20. Ecrire de maniére plus simple la quantité / f lorsque :

2



a)  est une mesure de Dirac.
b) westla mesure de comptage sur N.

Exercice # 21. Soit (X, .7, ) un espace mesuré. Prouver ou réfuter les assertions suivantes.
a) Sif=xaavecAe 7, alors [ f = p(A).

b) Sif=axa+bxp aveca,be Ret A, Be 7,alors [ f =ap(A)+ bu(B).

¢) Sif:X — [0, 0] estintégrable, alors u(f~!(e0)) = 0.

d) Sif:X — [0, 0] est mesurable et satisfait u(f~'(c0)) = 0, alors f est intégrable.

e) Sif:X — [0, 00] est mesurable et satisfait [ f = 0, alors f = 0.

f) Sif:X — [0, 0] est mesurable et satisfait [ f = 0, alors f = 0 u-p. p.

g Sif:X — [0,0]est mesurable et satisfait f = 0 p-p. p., alors [ f = 0.

h) Le produit de deux fonctions intégrables est intégrable.

Exercice # 22. Dans cet exercice, ] désigne un intervalle de R, muni de sa tribu borélienne
et de la mesure de Lebesgue.

5 1
a) Soit I := ]0,1[. Soit 0 < a < oo. A quelle condition la fonction = — — est-elle inté-
:L»a
grable sur /?

b) Méme question avec [ := [1,00[ et [ := |0, o0].

Exercice # 23. a) On considere la fonction f : [0, 1] — R définie par

_Jz, sizeQ
fa) = {gﬂ, siz¢Q

Montrer que f est Lebesgue intégrable sur [0, 1] et calculer son intégrale.
b) Mémes questions pour la fonction f : [0, 7/2] — R définie par

sin?z, sicoszr¢Q’

F@) = {sinx, si cosx € Q

Exercice # 24. Soit P une probabilité sur (R, Zg). Pourn € N, soit [,, := [ (cosmt)*" dP(t).
a) Montrer que /,, < o0, Vn.

b) Montrer que la suite (/,,),~0 est décroissante.

c¢) Déterminer liin I,.

Exercice # 25. Nous munissons l'intervalle [0, 1] de sa tribu borélienne et de la mesure de
Lebesgue \.
Soit (f,,)n=2 une suite de fonctions définies sur [0, 1] par

n’z, si0<x<1/n
fo(z) =% —n?(x —2/n), sil/n<z<2/n.
0, sinon

a) Tracer le graphique de f,,.

b) Calculeretcomparerliminf, [ f,d\, [liminf, f, d\ limsup, [ f,d\, [limsup, f,dA.

¢) Mémes questions avec la suite de fonctions (g, ),~1 définie par go,, 1= X[0,1/(2p)], V P € N¥,
Gop+1 = X[1/(2p+1),1], VP € N.



Exercice # 26. Soient (X, .7, 1) un espace mesuréet f : X — [0, o[ une fonction mesu-
rable. Posons

Fy(t) := u(f " (b)) = u(lf > 1)), ¥t > 0.

Pour traiter les questions suivantes, on pourra commencer par le cas ot f est une fonc-
tion étagée.
a) Montrer que F'; est borélienne.
b) Montrer que [, fdu = [, Fy(t)dt.
c) Plus généralement, soit ¢ : [O w[— [0, oo[ une fonction croissante de classe C! avec
®(0) = 0. Montrer que [, ®(f)du = [, ®'(t)Fy(t) dt.

Exercice # 27. (Lexercice précédent, vue probabiliste) En théorie des probabilités, 1 est une
probabilité, et on travaille plutot avec la fonction de répartition G4(t) := p([f < t]),Vt = 0.
«Traduire » 'exercice précédent en fonction de G ;.

Exercice # 28. a) Ecrire l'inégalité de Jensen dans les cas suivants :
@) I:=R,o(t) :=¢€",VteR.
(i) I :=]0,00[, ®(t) :=Int, ¥t €]0, oof.
(i) I =R, 1 <p< 0, ®(t):=|t]P,VteR.

b) Obtenir, a partir de I'inégalité de Jensen appliquée a un espace probabilisé et a une fonc-
tion convexe convenables, 'inégalité

n n 2
nZ(aj)Qz <Zaj> ,VneN* Vay,...a, €R.
j=1

j=1

Exercice # 29. En considérant, sur R, les fonctions f,(xz) := —(z + n)_, montrer que
Ihypotheése f,, > 0 est essentielle pour avoir la conclusion du lemme de Fatou.

Exercice # 30. En considérant, dans R, la suite f,, := X[nn+1[, montrer que 'hypotheése de
domination est essentielle pour la validité du théoréme de convergence dominée.

Exercice # 31. (Transformée de Laplace) Soit f : [0, co[— R une fonction borélienn et bor—
née. Montrer que la transformée de Laplace de f, deﬁnle par Zf(a) = fo T f(x
¥ a > 0, est une fonction continue sur |0, co|.

z—1

1
Exercice # 32. Soit f(z) := /
o 1+t

a) Montrer que f est finie si et seulement si x > 0.

dt,Vx e R.
b) Montrer que f est continue sur |0, o|.
¢) Calculer f(z) + f(x + 1) pour z > 0. En déduire la valeur de li\ri%x f(z).

Exercice #33. a) Calculer > _ (—1)"2", |z < 1.
b) Calculer )} _,(—1)"na"', |z| < 1.

0 . 2
Exercice # 34. Soit f la fonction définie sur R, par f(¢) := / <sm x) e " dx.
0 x

a) Montrer que f est continue sur R, et deux fois dérivable sur R* .
b) Calculer f” etles limites a I'infini de f et f’.

4



¢) En déduire une expression simple de f.

exp(—x) — exp(—tx)
" .
a) Montrer que pour tout ¢ > 0, la fonction z — f(t, x) est Lebesgue intégrable sur R .

b) Pourt > 0, soit F'(t fo f(t,x)du.
¢) Montrer que F est continue sur |0, o].

Exercice #35. Pourx > Oett > 0, soit f(¢,z) :=

d) Montrer que I est dérivable sur |0, oo|.
e) Calculer F'(t) et en déduire la valeur de F'(¢) pour tout ¢ > 0.

Exercice # 36.
a) SiXetYsonta.p.d.,alors Z(X)® Z(Y) = Z(X xY).

b) De plus, si i1 et v sont les mesures de comptage sur X et Y respectivement, alors y ® v
est la mesure de comptage sur X x Y.

Exercice # 37. Prouver ou réfuter les assertions suivantes.

) I®Y ={AxB; Ae T ,Be .Y}

b) Brn @ Brm = Bgrn+m.

A% %Lm =Lnim-

d) v, QUi = Vpien-

e) M ® A\ = Aym-

f) Soient (X, .7, pu)et(Y, ., v)desespaces mesurés, avec u et v o-finies. Soit £ € T ®.7.
Siv(E,) = 0 pour (presque) tout z € X, alors y ® v(F) = 0.

g) Sip et v sont des mesures o-finies, alors ;1 ® v est o-finie.

Exercice # 38.
a) Calculer f[o \p ve™ dudy.

> R 2. 2 2
b) Calculer/AHx—dedy,ouA ={(z,y) eR*; 0 <2,y < 1,0 <a®+y* <1}
Exercice # 39. Calculer I'aire d’'un disque.

Exercice # 40. Pour (z,y) € R?, soit
/(x+1)? siz>0etx<y<2r

flx,y) =< =1/(x +1)?, siz>0et2z <y < 3z.
0, sinon

a) Montrer que f : R? — R est borélienne.
b) Montrer que pour touty € R, f(-,y) est Lebesgue intégrable.

c) Soit p(y) := [, f(x,y)dz, y € R. Montrer que ¢ est Lebesgue intégrable et calculer
oy )dy

d) Montrer que pour toutz € R, f(z, ) est Lebesgue intégrable.

e) Soit w = [o f(x,y)dy, x € R. Montrer que ¢ est Lebesgue intégrable et calculer

Jr ¥

f) Quen pensez-vous?
Exercice # 41. Soit U la partie de R? définie par

U:={(u,v,w)eR®;u>0v>0w>0,uv<1,uw<1,vw < 1}.

5



a) Montrer que U est borélien.
b) Calculer I := [, uvw dudvdw.

On pourra, apres 'avoir justifié, utiliser le changement de variables suivant :

(2,9, 2) = @(u,v,w) = (Vow, Vwu, vuv).

Exercice # 42. Soient f, g : X — R mesurables. Montrer les propriétés suivantes.
a) [tfll, = It| | flp, ¥t e R (avecla convention 0 - co = 0).

b) Sif =gp.p.,alors|f —gf, = Oet|f], = |gl,.
) ||f|l, = Osietseulementsi f = 0p.p.

d) La définition de | f|, est correcte, au sens suivant. Soit A := {M € [0,00]; |f(z)| <
M p.p.}. Alors A est non vide et A a un plus petit élément, m. Cet m est le plus petit
nombre C de [0, 0] avec la propriété | f(z)| < C'p. p.

e |f +glp < Iflp + |gly pourp = Tetp = oo.(Ici, f, g : X - R.)

Dans les trois exercices suivants, ajouter les hypothéses manquantes et montrer les résultats
énoncés.

Exercice # 43. Soient 1 < ps,...,pp < 0 tels que 2521 1/p; = 1. Alors

Lfife o felle < [ fillpy [ f2llps - [ fkllps ¥ fos for oo os fro 0 X

Exercice # 44. Nous supposons y finie. Sil < p < r < oo, alors || f|, < (u(X))Y*~V" | f],,
v f.
Exercice # 45. Soient 1 < pg < p < p; < 0.
1 6 1-46
a) Montrer quil existe un unique 6 6]0, 1| telque — = — + .
P Po b
b) Montrer que | f|, < [ f[7, [ ]}, °,

Exercice # 46. Soit p un noyau régularisant standard. Alors pour toute > 0:

a) p-(x) = 0si|z| <e.
b) p.(x) =0si|z| > e.
C) fpa = 1.

Exercice # 47. Développer en série de Pourier la fonction 27-périodique définie sur | — 7, 7]
par f(x) := |z|. En déduire la valeur de Z — et Z vy

n>1 n>1

Exercice # 48. Soit f : R — Rla fonction 27-périodique définie sur | — 7, ] par f(x) :=

x>

a) Déterminer Sfet Sf(z), z € R.

)" 1
b) En déduire les valeurs des séries Z ot Z Z ORI Z —
n n4
n= n>1

n>1 n>1

Exercice # 49. Soit « €]0, 7| et f : R — Ra fonction 27-périodique définie sur | — 7, 7]
par

f(x) = {1, s%x €[—a,a] .

0, sinon



a) Dessiner le graphe f sur [—27, 27].
b) Calculer SfetSf(x),z eR.

0. 2
¢) En déduire la somme de la série Z M.

2
n=1 n

Exercice # 50. Soit f : R — R Ia fonction 27-périodique, impaire et telle que f(z) =
(m —x)/2sur |0, x|.
a) Dessiner le graphe de f sur une période.

b) Calculer SfetSf(x),z eR.

P ) sinn 1
¢) Endéduire la valeur des sommes suivantes : Z et Z —-

n>1 n>1

Exercice # 51. a) Soient f € L'(R™) ete > 0. Soit f.(z) := e " f(x/e),Vx € R".
(i) Montrer que f. € L'.
(i) Montrer que f.(¢) = f(e&).
(iii) Montrer que |ﬁ(§)] <|fli,Ve >0,V eR".
b) Soient f € L'(R™) et h € R™. Soit 71, f(z) := f(xz — h),Vz e R".
(i) Montrer que 7, f € L.
(i) Montrer que 7, f(£) = e~""€ f(£),V & € R™,
¢) Soit f € LY(R™).
(i) Montrer que f € L.
(ii) Montrer que ?(5) = ?(—f), VEeR
d) Soit f € L'(R"). Soit f(z) := f(—z),Vz e R".

(i) Montrer que f e L',

~
~ ~ A~

(ii) Montrer que f(§) = f(=&) = f(£),VE e R™.
Exercice # 52. Soit f : R" — R, f(z) := e~*l, otta > 0.

a) A partir de la transformée de Fourierde R 5 z + 1/(1 + z?) et de l'identité

1
1+ 22

a0

= / 6_(1+x2)tdt, VzeR,
0

montrer que

IR T Ay
e "= e dt, Vr > 0. (1)
0

wl/2 t1/2

b) Enutilisant (1) et la transformée de Fourier des fonctions R 5 z — ¢~9°°, ¢ > (), montrer
que

F©) = 27T (04 10/2) ey

avec ['(z) := [[” t*~! e~* dtla fonction d’Euler.
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Exercices corrigés

Exercice # 1. Soit (t,),>0 une suite de nombre réels telle que ¢, — oo. Montrer que I'en-
semble A := {t,,; n > 0} a un plus petit élément.

Démonstration. Soit M > tq. Il existe ng > Otel quet,, > M,V n > ng. Si

a = min{tg, ..., tn,—1},
alors il existeun k € {0,...,no — 1} tel que @ = ¢. Par construction, t, < t;,Vj =1 <
ng — 1. Parailleurs, a = t, < tg < M < t,, Vn > ng. Il Sensuit que t; est le plus petit
élément de A. O

Exercice # 2. Déterminer les bornes sup et inf des ensembles ci-dessous :

) A = {COS (n%) i nE N};

b) As = %;nel\] ;
c) Az := {(1+sin <ng)>lnn; neN*}.

Solution.
a) A = {cos <ng> ineE N} ={0,+1,—1}. A est fini, donc sup A; = max A; = +1et

inf Ay = min 4; = —1.

12n + 107" 8 —107" ) , .
b) Nous avons gn—+2 =4—vy,, 00y, = m La suite (1, ),>0 est décroissante.
7 8—10™"
Lavaleur maximale de v, estdoncyy = —. Deplus, lim, v, = 0. Doncinf{ ———;ne N} =
2 3n+2
7 1
0. Il s’ensuit que sup Ay = 4etinf Ay =4 — 5= 5

c) Ona (1 + sin <4ng>> In(4n) = Inn+In4. Doncsup A3 > sup {lnn +In4; n e N*} =

+00, car Inn tend vers +o0. De plus inf A3 = min A3 = 0, car (1 + sin (n%)) Inn est
positive pourn > 1 et 0 pourn = 1.

Exercice # 3. Montrer que x,, < y,, Vn = ny = limsup,, x, < limsup,, ¥,
Solution. Nous allons utiliser le fait (énoncé en cours) que

lim sup z,, = max {lilgn Tp, ; (zn, )k est une sous-suite de (z,,),, ayant une limite} .

n

Ici, on autorise les valeurs +co pour la limite.

Soit donc (z,, ), une sous-suite pour laquelle le max est atteint. Quitte a passer encore
une fois a une sous-suite, on peut supposer que (v, ) 2 une limite. Comme z,,, < y,, pour
tous sauf un nombre fini de &, on a que

limsupz, = lilgn T, < lilgn Yn,, < lim sup y,,. O



Autre solution. Soient X,, := SUpy~, Tk, Yn 1= SUDp>y, Yk-
Pour k > n > ng, nous avons x, < y, < Y,,, dou, en prenantlesup surk, X,, < Y,. 1l
s’ensuit que

limsupx, = lim X,, <limY,, = limsup y,. O

Le lemme suivant sera utilisé dans la résolution de I'exercice # 4.

Lemmel. Soit (z,), une suite de nombres réels et soit (ny ), et (my), des suites strictement
croissantes d’entiers telles que

N = {ng; ke N}u {my; (N}
et les deux sous-suites (z,, ) et (x,, ), ont des limites. Alors

limsup z,, = max(lillcrn T, liin T, ), liminf z, = min(liin Ty li§n Ty )-
n n

Enoncé analogue pour un nombre, fini mais arbitraire, de sous-suites.

Avant de procéder a la preuve du lemme, décrivons un

Principe de preuve. Sia et b sont des réels, pour montrer que a < b, il suffit de montrer que
a < b+ e, Ve > 0.Pour montrer que a > b, il suffit de montrer quea > b —¢,Ve > 0

Lorsque a,b € R U {—0}, pour montrer que a < b, il suffit de montrer que a < M,
VM > b(avec M € R).

De méme, sia,b € R U {oo}, pour montrer que a > b, il suffit de montrer que a > M,
VY M < b(avec M € R).

Démonstration du lemme. Nous allons faire la preuve uniquement pour lim sup et deux sous-
suites, les autres cas étant analogues.

Soit z := max(limy, z,,, , limy x,,, ). Linégalité lim sup,, z, > z suit de (1) ci-dessus. En
particulier, si z = o0, alors nous avons nécessairement égalité.

Supposons z € Ru{—w}. Pour montrer que lim sup,, z,, < z, considérons (comme dans
le principe de preuve décrit ci-dessus) un réel M tel que M > z, de sorte que M > limy x,,
et M > limy x,,,. Par définition de la limite, il existe ko, {y € N satisfaisant z,,, < M,
Vk > ko, eta,, < M,Yl > {.Soit py := max(ny,, my,). Sip > py, alors soit z,, = x,,
pour un k > ko, soit x, = x,,, pour un ¢ > {,. Dans les deux cas, nous avons x, < M. Il
s’ensuit que

X, :=supz, < M,Vn = py,

p=n
dott
limsupx, =limX, <M, VM > z.
Le principe de preuve permet de conclure. O

Exercice # 4. Calculer lim sup,, x,, et lim inf,, z,, pour les suites définies, pour toutn € N,
respectivement par les formules :



Q) 7, = (n+ 1)V,
b) z, = (2 + cos <ng>) 2n7:— T

Solution.

a) Considérons les sous-suites xo,, = 2n + 1 et xy,.1 = 1/(2n + 2). Nous avons lim,, s, =
o et lim,, x9, 1 = 0;le lemme implique lim sup,, x,, = o etliminf,, x,, = 0.

b) Lapreuve dulemme s’adapte a un nombre fini arbitraire de sous-suites (ala place de deux
sous-suites).

Considérons les sous-suites x4, = (12n)/(8n + 1), zo,11 = 2(2n + 1)/(2(2n + 1) + 1)

et Tynio = (4n + 2)/(2(4n + 2) + 1). On a que lim,, x4, = 3/2, lim, x9,41 = let

lim,, 4,42 = 1/2. On conclut que lim sup,, z, = 3/2 etliminf, x,, = 1/2. O
Exercice # 5.

a) Montrer que = € limsup A, si et seulement si = appartient a une infinité d’ensembles
A,.

b) Montrer que x € lim inf A, si et seulement siil existe un n; (qui peut dépendrede x € X)
telquexz € A,,¥Yn > ny.

¢) Pourtout z € X, montrer les égalités

Xlim sup A, (z) = limsup x4, (%), X1im inf An(x) = liminf x4, ().
d) Soit (A,,)n=>n, une suite croissante de parties de X . Montrer que

limsup A, = liminf A,, = Upsn, An, Y11 = ng.

Quel est 'analogue de cette formule pour une suite décroissante?
e) Montrer que

limsup A,, = (lim sup As,,) U (lim sup Agp, 1),

liminf A, = (liminf Ay,) N (liminf Ag, 1) .

Solution.
a) v € limsup A, < T € N, Upapn A <= T € UpzpAp, Vn < Vn, Ik >
ntel que x € Ay.

Prenons la négation

r¢limsup A, < dn,Vk>n:x¢A,.

Lénoncé a droite veut dire quil existe n tel que, si x € Ay, alors k < n, c’est-a-dire, que
x appartient au plus 2 un nombre fini d’ensembles. Donc x € lim sup A,, veut dire que =
appartient a une infinité d’ensembles Ay.

b) z € liminfA, <= x € U, "psn A <= dntelquexr € N, A <=
dntelquex € Ag, Yk > n.

c) Justification de la premiére égalité. De a), nous obtenons

Xlimsup A, (%) =1 <= Vn, 3k = ntelquex € A

<= Vn, 3k >ntelque x4, (z) =1

a b
PN Vn, sup xa,(z) =1 L, limsup x4, (z) =1
k>n " k>n

2)

<= limsup ya,(z) = 1.
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Justification de (@) : une fonction caractéristique x 4 ne prend que les valeurs 0 et 1. Donc

supxa,(z) =1 < 3Jk = ntelque x4, (z) = 1.

k>n

Justification de (b) : la suite (supj~,, X4, (z)), décroit et ne prend que les valeurs 0 ou 1.
Donc soit elle ne prend que la valeur 1, et a la limite 1, soit elle prend la valeur 0, et dans

ce cas elle tend vers 0.

Finalement, comme les fonctions x;;,, sup A,, €t lim sup,, x 4, ne peuvent prendre que
n

les valeurs 0 ou 1, on déduit de (2) que x5, sup A, (x) = limsup,, xa,(z), doule résul-

tat.

Justification de la deuxiéme égalité.

Xlim inf An(x> =1 =

<
<

<

De b), nous obtenons
dntelquex € Ay, Yk >n
dntelque xa,(z) =1, Vk>n
. (¢) .. .
Intel que égﬁXAk(I) =1 < 117511é121£)<14k(x) =1

liminf y 4, () = 1.

Lajustification de (c) est similaire a celle de (b) :la suite (infy~,, x4, (7)), croit et ne prend
quelesvaleurs 0 ou 1. Donc soit elle ne prend que lavaleur 0, et alalimite 0, soit elle prend
lavaleur 1, et dans ce cas elle tend vers 1.

Nous concluons comme pour la premiére égalité.
d) Lasuite (A,)n=n, étant croissante, nous avons Ugs, Ax = Ugsn, Ak, V1 = ny, dolt

lim sup An = NMnp>ng Yk>n Ak = MNn>ng Yk>n, Ak = UanAn-

n

La suite (A,,)n>n, étant croissante, nous avons Ny, Ar = A,,, d’olt
=210 =

lim inf An = Un>ng Nk>n Ak = UnZnoAn = UnanAn-
n

Preuves similaires pour les suites décroissantes.

e) De a), nous avons

x appartient a limsup A4,

n

<= r appartient 3 A,, pour une infinité de n

<= x appartient a A,, pour une infinité de n pairs
ou pour une infinité de n impairs

<= x € limsup Ay, ou x € limsup As, 41
n n

<= x € limsup Ay, U limsup Ay, ;1.
n n

Pour la lim inf, procédons par double inclusion.

x €liminf A, = In, telquex e Ay, Vk >n

= dntelquexr € Ayetx € Aypy1, YVl =>n

= z € liminf Ay, et x € liminf Ay, 1
n n

= x € liminf Ay, N liminf Ay, 1.
n n
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Par ailleurs,
T € limn inf A, N limn inf Agy, i1
— e lirr; inf Ay, etz € limn inf Aoy, i1
= Jdny, natelsquex € Aoy, Vk > nyetz € Agpr1, Vk > no
—xe Ay, Vl{>=n:=max(2ny,2n, + 1) = x € lirnniann.

Exercice # 6. Déterminer la tribu .7 (o7) sur R engendrée par ./ := {{n}; n € Z}.

Solution. Etapel.SiA < Z,alors A € 7 (/). Eneffet, nousavons Aa.p.d. (car A = ZetZ

est dénombrable). Comme A = U, {n}, il Sensuit que A est une union a. p. d. d’éléments
de o7 (donc d’éléments de .7 (7)), dou A € T ().

Etape2.SiA < Ret A < Z,alors A € T (). En effet, la premiére étape montre que
A e T (/). Enutilisant 'axiome ii) d’'une tribu, nous obtenons A = (A°)¢ € I ().

Conclusion provisoire. Nous avons

T ={AcR;AcZouA°cZ}c T (). 3)

Le lemme qui suit montre que .7 est une tribu. Par ailleurs, nous avons & < .7, car
Acod — AcZ — Ac T.

Nous concluons comme suit : de &7 < .7, nous déduisons que 7 (/) ¢ T(T) = T
(la derniere égalité découlant du fait que .7 est une tribu). En comparant cette inclusion a
(3), nous obtenons que I (&) = 7. O

Lemme 2. Soient Y = X deux ensembles. Soit

T ={AcX;AcYouA‘cVY}
Alors .7 est une tribu.

Démonstration. Etape 1. Je T, cargcy.

Etape2.Si A € 7, alors A° € 7. Nous avons deux cas 2 examiner.
1. SiAcY,alors (A°)°= Ac Y,etdonc A€ 7.
2. Si A¢ < Y, alors, clairement A€ € 7.

Dans tous les cas possibles, si A € .7, alors A° € 7.

Etape 3. Si(A,) = 7, alors U, A, € 7. Anouveau, nous avons deux cas 2 examiner.
1. SiA, cY,Vn,alors u,A, c Y,etdoncu,A, € 7.
2. Silexisteunng € Ntelque A, ¢ Y, alors (A4,,)¢ < Y. Il s’ensuit que

(Undn) = nu(A) < (A,,)° Y,

etdonc U, A, € 7.

Dans tous les cas possibles, si (4,) < 7, alors U, A, € 7.

7 vérifie donc les axiomes d’une tribu. O

Exercice # 7. Soit (X, .7) un espace mesurable. Soit (A4,) = .7 une suite d. d. d. telle que
X = u,A,. Pour chaque n, soit f,, : A, — R une fonction mesurable. Soit f : X — R,
f(z) := fu(x)sixz € A,. Montrer que f est mesurable.
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Solution. Posons fn : X > R, fn(m) = . Par définition, la fonction fn

0, sinon

{fn(x), siz e A,

est mesurable.

Notons I'égalité suivante, vraie pour tout ensemble B < R :

(f)"X(B) 0 A, = (f2)"H(B) 0 A, Vn. 4)

Soit B € %. Nous avons (via (4))

F7HB) = un (fu)7H(B) = un ((£2) 7' (B) 1 An)

— U ((fn)*l(B) A An> c7. ®

Pour justifier l'appartenance finale, nous invoquons dans l'ordre : (ﬁl)‘l(B) € 7 (en
utilisant le fait que f,, est mesurable et le théoréme de caractérisation des fonctions mesu-
rables), puis (f,,) "' (B) n A, € 7 (de ce qui précede, A,, € 7 etle fait que .7 est une tribu),

dott, finalement, U, ((f,)"*(B) n An> € .7 (de ce qui précede et I'axiome iii) de la tribu).
De (5) et du théoréme de caractérisation des fonctions mesurables, f est mesurable. [J

Exercice # 8. Soit f : X — R mesurable. Pour 0 < M < o0, soit

f(@), silf(z)l =M
fu(x) =3 M, sif(x)>M
—M, sif(x)<-—-M

Montrer que f est mesurable si et seulement si f); est mesurable, V M > 0.

t sift| <M
Solution. « = »Soitgy : R — R, gy () := < M, sit > M . Alors g, est continue.
—M, sit<-—-M

Il sensuit que fyy = gar © f est mesurable (composée d’une fonction continue et d'une
fonction mesurable).

« <= »8in > |f(x)], alors f,,(z) = f(x). Il sensuit que lim,, f,(x) = f(z). Chaque f,
étant mesurable, f I'est également (comme limite — simple — de fonctions mesurables). [

Exercice # 9. Soit (X, .7) un espace mesurable. Si f : X — R" est mesurableet g : R" —
R est borélienne étagée, montrer que g o f est étagée.

Solution. Soienta; € RetA; € HBgn,j=1,...,k, telsqueg = Z§=1 a;j x4, Alors
k k
gonZGjXAjOfIZanf—l(Aj)- (6)
j=1 j=1

Comme f : X — R" est mesurable et A; € gn, nous avons ffl(Aj) e 7,V
(théoréme-définition des fonctions mesurables a valeurs dans R™). De (6), nous obtenons
que g o f est étagée. O]



Exercice # 10. Soit ¥ un clan sur X. Soit Y < X. Soit %y := {AnY ;Y < X}. Montrer
que Gy estunclansur Y.

Solution. Etapel. & € Gy,car J = & nY et € € (axiome i) du clan).
Etape2. Si B € Gy, alorsY\B € %y. Eneffet, soit A € € telque B= AN Y. Alors

Y\B=YnB'=Yn(AUY) =Y nA)u (Y nY) =ANY € Gy,
car A¢ € € (axiome ii) du clan).

Etape3. Si By, By € 6y, alors Byu B, € 6y. Eneffet, soient Ay, Ay € € telsque B; = A;nY,
j =1,2. Alors

B1UB2= (AlﬂY)U(AgﬂY) = (AluAg)ﬁYEng,
car A; U Ay € € (axiome iii) du clan).
Il s’ensuit que ¥y vérifie les axiomes du clan sur Y. O

Exercice # 11. Soit (X,,),>1 une suite de parties de X. Montrer que U}_, X; / U, X,.
Solution. Nous avons clairement u?lej /. PosonsY := unug?lej, desorteque ug;lXj /
Y. Nous montrons par double inclusion que Y = u,, X,,.

Etapel. NousavonsY — U, X,,. Eneffet, pour chaquen, U}_, X; c U, X;,dottu, U X; ©
Uij = Uan.

Etape 2. Nous avons U, X,, < Y. En effet, nous avons X,, < u?lej, Vn,dou u,X,
Unp u}‘zl X; =Y. O]

Exercice # 12. a) Montrer que la fonction

FA0,0[~ R, fla) i= ===, Vo >0,

est Lebesgue intégrable sur |0, oo|.
b) Montrer que pour tout > 0 nous avons f(z) = >, _, e "*sinw.

© sinx |
En dédui dr = .
¢) En eulreque/0 ] x Zn2+1

Solution. Préliminaire. Notons le calcul suivant d’intégrale généralisée :

®© 1 1
/ e Ydr =—— [e*ax]cfoo = —,VaeCtelque Rea > 0. @)
0 o

«

a) f étant continue, il suffit de montrer que l'intégrale généralisée de f est absolument
convergente (proposition 6.43 b)).

| sin x|

T __

Etude de fol | f(z)| dz. Nous avons ~o+ 1. Le critere de Riemann combiné avec le

théoréme des équivalents donne la convergence de I'intégrale.
Etudede [” | f(z)| dz. Nous avons

@) €~

et —1 e




b)

c)

. , , , . o0 _ . _ . 7
La convergence de l'intégrale généralisée [~ e™* dx (qui vaut 1 — e') combinée avec

1
dzx,
et —1

a0
le théoreme des équivalents donne d’abord la convergence de I'intégrale /
1

|
puis celle de / [sinz]

1 et —1

dz.

o |
. , sinx
En combinant les deux études, nous obtenons la convergence de / H dx.
o ¢ —

Autre approche. En utilisant la majoration |sin x| < |z|, Vx € R, la monotonie des inté-
grales généralisées, une intégration par parties et (7), nous obtenons

0 o0 o0
/ |sinxe$\dx£/ xexdxz—[xez]go—k/ e fdr=1< 0.
0 0 0

Comme e *| = e * < 1,V > 0, nous avons

1 1 1 —x —x\n —xr—nx —nx
e“”—lze_xl—e—xze 2(6 ) :26 :26 ’

n=>0 n>0 n>1

d’ott la conclusion, en multipliant ce qui précede par sin z.

De (7), nous obtenons
o0 1 0
/0 e P sin(yx) dr = %/ e P [e7" — e "] da
1 1 1 Y (8)
- - — v B €0
2 [ﬁ—w BH’V] B2+ 4% pelo.eel:
Yy e R\{0}.

Il s’ensuit de (8) que

w0 1
/ e " sinzdr = —; , Vn e N,
0 n*+1

et donc (au vu de la question b)) I'identité a montrer revient a

oo 0]
/ Z e " sinxdr = Z / e " sinxdr. 9)
0 0

n>1 n>1

Nous présentons deux preuves de (9), 'une utilisant le théoréme de convergence dominée
(théoréme 7.2), lautre le théoréme 7.18.

Preuve de (9) via le théoréme de convergence dominée. Par linéarité des intégrales généralisées,
nous obtenons

e0) e0) o0
/ 2 e "™ sinxdx — 2 / e " sinxdx = / 2 e ™ sinxdx
0 0 0

n>1 n<N n>N

- /0 " (o) d,

1 . 1
msmxz e(zv——l):(;f<x)’ VN >1,Vz>0.

fn(z) = Z e sing = e N

n>N



La majoration |fy(z)| < [f(x)|, VN > 1,Vz > 0, montre que 'intégrale généralisée
de fn est absolument convergente, et donc coincide avec f]()’ o | fv| dv1 (proposition 6.35
b)). De ce qui précede, nous devons montrer que

IRP ‘fN|dV1=:0.

10,00

Ceci s’obtient par convergence dominée (théoreme 7.2), en notant que :
« Az > 0fixé, fy(x) — 0;

+ Nous avons la majoration |fx(z)| < [f(z)|, VN = 1,Va > 0, et|f] est v;-
intégrable (question a)).

Preuve de (9) via le théoréme 7.18. Nous devons montrer que Y, [i [fu| dvy < 0. En uti-
lisant la proposition 6.35 b), la majoration |sinz| < |z|, Yz € R, la monotonie des in-
tégrales généralisées, une intégration par parties, l'identité (7) et le critére de Riemann
pour les séries, nous obtenons

0 0
Z / | ful dvn = Z/ le™™| |sinz|dz < Z/ re " dr
R 0 0

n>1 n>1 n>1
1 —nx]P 1 * —nzx 1 * —nx
= ——[aze ]0—|—— e "dx 22— e ™dxr O
n n Jo n Jo
n>1 n>1
= 1<OO
= "
n>1

0 . 2
Exercice # 13. Soit f la fonction définie sur R, par f(t) := / <Sm x) e " dx.
0 x

a) Montrer que f est continue sur R, et deux fois dérivable sur R* .
b) Calculer f” etles limites a I'infini de f et f’.
¢) En déduire une expression simple de f.

Solution.

a) Etapel. f est continue. Lintégrande (en x) étant continue et positive, nous avons (proposi-
tion 6.35 a))

. 2
f(t)z/ (Sm> et duy (), ¥t > 0.
10,0 \

Pour vérifier la continuité de f, nous appliquons le théoréme 7.10 a la fonction

sin x

k(z,t) = ( >2em, v €]0, o0f, Vit e [0, o0].

T

+ At fixé, v — k(w, 1) est (clairement) continue, donc borélienne.
Az fixé, t — k(x,t) est (clairement) continue.

*

Nous avons

*

Ik(z, )] < (Si”> .= g(z), Y €]0, [, Yt € [0, 0.

X

*

La majorante g est continue, donc borélienne, et (preuve plus bas) intégrable.



De ce qui préceéde et du théoréme 7.10, f est continue sur [0, oo|.

Il reste a vérifier que g est intégrable. La proposition 6.35 a) montre qu'il suffit de vérifier
que l'intégrale généralisée fooo g(x) dx est finie.

Etudede [, g(x) dz. Nous avons g(z) ~o4 1. Le critére de Riemann combiné avec le théo-
reme des équivalents donne la convergence de I'intégrale.

, 1
Etudede [,” g(x) dx. Nous avons g(z) < — - Le critére de Riemann combiné avec le cri-

tere de comparaison donne la convergence de l'intégrale.

En combinant les deux études, nous obtenons la convergence de fooo g(x)dz.

Etape2. f € C'. Nous appliquons le théoréme 7.14.
« At fixé, v — k(x,t) est intégrable (ceci suit de I'étape 1).
+ Axfixé, t — k(x,t)est (clairement) de classe C'.
+ Soit [a, b] ]0, o[ un intervalle compact arbitraire (ce qui correspond a considérer

une boule fermée arbitraire dans |0, «o[). Six €]0, 00| et t € [a, b], nous avons (en
utilisant le fait que ¢t > a et l'inégalité |sinz| < |z|,Vz € R):

)
—tx sSim- T —azx

sin’ z
- e

’atk(xa t)‘ =

x
<ze “:=h(x), Ve >0, Yte|a,bl]

La majorante h est continue, donc borélienne. Par ailleurs, elle est Lebesgue inté-
grable. En effet, son intégrabilité revient (proposition 6.35 a)) a fooo h(z)dx < o0, ce
qui suit de la solution de la question a) de I'exercice # 12.

De ce qui précéde et du théoréme 7.14, f est de classe C'! sur |0, oo[ et (en utilisant égale-
ment le fait que, de ce qui précede, J;(x, t) est intégrable en x et la proposition 6.35 b)) :

* ¢in?

) = / Ok (z,t) dvy(x) = —/ e " dz. (10)
10,00[ 0 T

Etape 3. f € C?. Nous appliquons le théoréme 7.14 2 f/, donnée par (10).
« Atfixé, v — 0;h(x,t) est intégrable (ceci suit de I'étape 2).
« Axfixé, t — 0;k(z,t) est (clairement) de classe C.
« Soit [a, b] =]0, o[ un intervalle compact arbitraire. Nous avons

04(0ik(,1))] = | sin® x e ™| < {(x) := e, YV €]0,0[,Vt € [a,b].

¢ étant intégrable (voir I'exercice # 12), il s’ensuit, de ce qui précede, du théoreme
7.14 et de la proposition 6.35 b), que f € C%(]0, o[ et

o0
)= / sin’ z e din (1) = / sin? z e~ da.
ol )

b) Etapel. Calculde f”. En utilisant la formule

o el _ o 2 6213: 4 e—2m )
smrTr=\\———— = —

21 4

10



c)

et (7), nous obtenons

(8) = 1 1 . 1 2] 1(1 t "
o4 t—2u t+2 4 2t 2+4f

Etape2. Calculdelim,_,, f(t). Soit (t,) = [0, oo| telle que t,, — o0. Soit f,,(z) := k(x,t,),
Vx> 0, desorte que f(t,) = f]o ol fndvy.

« Nous avons f,(z) — 0,V z > 0.
+ Nous avons |f,| < g, avec g la majorante de la question a), qui est intégrable.

De ce qui précede et du théoréme de convergence dominée 7.2, nous avons

lim f(t,) = lim fndry = / 0dv, = 0.
n n ]7’w[

10,00

La suite t,, — oo étant arbitraire, nous obtenons que lim;_,, f(¢) = 0.

Etape 3. Calcul delim,_,, f'(t). Raisonnement similaire a celui de 'étape 2. Le seul chan-
gement vient de la majoration. Soit (¢,,) |0, o[ telle que ¢,, — 0. Le lemme ci-dessous
montre qu'il existe « > 0 tel que ¢,, > a, ¥ n. Nous avons alors la majoration

.9
sinx _
et <ge ™ Vx>0, Vn.

Ok (x, t,)| =

T

La majorante étant intégrable (exercice # 12), nous obtenons, comme dans I'étape 2, que

Etape1. Calcul de f’. De la formule de f”, nous obtenons que
f’(t)—1 lnt—lln(t2+4) +C’—lln v +C,Vt>0 (12)
S 2 2 4 +4 ’

avec C' € R une constante a déterminer. En faisant ¢ — oo dans (12) et en utilisant la
question précédente, nous obtenons C' = 0.

Etape 2. Calcul de f. En intégrant (12), nous obtenons, par intégration par parties :

/f’(t)dt:/{%lnt—iln(t2+4)} dt

1 1 1 1 12
= —tlnt——= [ dt — =t In(t> +4) + = dt
' ™ 2/ 4n(+)+2/t2+4

1 1 1 1 4
= —tInt——t—~tIn(t>+4) + = 1— dt
gt It =gt =gt + )+2/{ t2+4}

1 1
= §t Int — Zt In(t* + 4) — arctan(t/2) + D

— _it In (1 + %) —arctan(t/2) + D,
d’ou
1 4
ft) =5t (1 ; t—) — arctan(t/2) + D, (3

avec une constante D € R a déterminer.
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En utilisant le fait que

4 4
et la question b), nous obtenons, en faisant ¢ — oo dans (13), que D = 7/2, d’out

1 4 T
ft) = _Zt In (1 + t_2) — arctan(t/2) + §’Vt > 0. (14)

Il reste a déterminer f(0). En utilisant la continuité de f sur [0, co[ (question a)) et en
faisant t — 0+ dans (14), nous obtenons

f(0) = lim {—it In <1 + %) — arctan(t/2) + g}

t—0+
1
- g — 7 lim (4/2) 2 In(1 + @) = g

par croissances comparées.

Au passage, nous avons obtenu la formule de Fresnel

0 . 2
[ e -
0 T 2

Exercice # 14. (Fonction Gamma d’Euler)

a) Montrer que, pour tout z > 0, lapplication ¢ — t*~'e~" est Lebesgue intégrable sur R* .

Pour z > 0, soit I'(z) := [,” t*"'e~" dt;T estla fonction Gamma d’Euler.
b) Montrer que I" est continue sur R%.
c¢) Montrer que I" est de classe C™ sur R¥ .
d) Montrer que I" est strictement convexe.

Solution.

a) Il suffit de montrer la convergence de I'intégrale généralisée fooo t*=1 et dt (cfla proposi-
tion 6.35 a)).

= 1,1 — 1 _ _ RN . .
Etudede [, t*~' e~ dt. Nous avons t*~' e~" dt ~o, t*~'. Le critére de Riemann combiné
avec’hypothése x > 0 etle théoreme des équivalents donne la convergence de l'intégrale.

= 0¢] _ _ . 7 — —

Etudede [” t"~' e~" dt. Par croissances comparées, nous avons t“~ ' e~* = o(1/t*) quand
t — oo. Le critére de Riemann combiné avec le critere de comparaison donne la conver-
gence de l'intégrale.

En combinant les deux études, nous obtenons la convergence de fooo t*"te~t dz. En uti-
lisant la proposition 6.35 a) (ou b)), nous obtenons que

o0
[(z) = / t" e tdt = / t"tetdy(t) eR, Vo > 0.
0 10,00[

b) Nous appliquons le théoreme ??. Soit
f(t,z) :=t""te " Vte]0, oo, Vaelo, .

« Az fixé, t — t* 1 et est continue, donc borélienne.
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c)

« Atfixé, x — t* 1 et est continue.
« Soit [a, b] =]0, o[ un intervalle compact. Nous avons

et si0<t<1
(e < {tb_l :_t’ Gt 1 = g(t), Yt €]0,0[, V€ [a,b].

La majorante g est borélienne (exercice # 32 c), feuille # 2). Nous avons (proposition 6.27
b) et proposition 6.35 a))

1 0
/ gdv, = / gdu —i—/ gdv = / g(t)dt +/ g(t) dt.
10,00[ 10,1] 11,00( 0 1

Létude de la question a) montre que les deux intégrales généralisées ci-dessus sont finies,
et donc g est Lebesgue intégrable.
Ce qui précede et le théoréme 7.10 impliquent la continuité de I".
Nous utilisons le corollaire 7.15.
« Axfixé, t — t*~!e~! est intégrable (ceci suit de I'étude faite au point b)).
« Atfixé, o — t* e test C”.
+ Soit [a, b] <]0,0|. Sik € N*etx € [a,b], alors

dkz
’W (t,z)| = |(Int)*t* e
T

|Int|Ftete™t si0<t<1
< = h(t), Vt €|0, 0], Yz € |a,b].
{(lnt)ktb_le_t, sit>1 0 10,0l Ve a,b

Par ailleurs, & est borélienne (voir la question b)) et nous allons montrer plus bas que &

est intégrable. Le corollaire 7.15 donne que I' € C*(]0, «0[) et (en utilisant le fait que, de
dk
Wf (t,x)

ce qui précede, t — est intégrable, et la proposition 6.35 b))

oe}
r®(z) = / (Int)* ==L e dvy(t) = / (Int)kt*~Le tdt, Vo > 0, Vk e N*.
10,00[ 0

Pour établir I'intégrabilité de h, nous raisonnons comme pour la question c), en se rame-
. . . St 1 1
nant 2 la finitude des intégrales généralisées [; |Int| t*~te~tdtet [[“(Int)F t=~L et dt.

Etude de fol |Int|*t*=1e~t dt. Nous avons | Int|*t*~te~tdt ~o, |Int|*t*~1. Le critére
de Bertrand combiné avec 'hypothése x > 0 et le théoréme des équivalents donne la
convergence de l'intégrale.

Etude de [,”(Int)* t*~! e~* dt. Par croissances comparées, nous avons (Int)f t*~l e =
0(1/t?) quand t — co. Le critére de Riemann combiné avec le critére de comparaison
donne la convergence de I'intégrale.

d) Dela question c), nous avons

I(z) = /]0 (0?67 e ()
,00
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de sorte que, clairement, I'(z) > 0, V2 > 0. Montrons que ['’(z) > 0, V2 > 0 (ce qui
permet de conclure). Preuve par 'absurde : sinon, il existe un x > 0 tel que I'’(z) = 0.
La proposition 6.50 a) implique (In¢)*¢*~' e~* = 0 v;-p. p. sur |0, o0[. Dot

vi({t>0; (Int)*t* e #0}) =0,
ou encore v(]0, 1[u]1, o) = 0, contradiction qui achéve la preuve. O

Exercice # 15. Pour x > 0, soient

Flz) = ( /0 " exp(—£2) dt>2 et G(z) i /0 (- (14 1)

1+¢2

a) (i) Montrer que F' et G sont de classe C' surR,.
(i) Calculer F'(x) + G'(x) pour z > 0.
b) Endéduire lavaleurde I = [ exp(—t?) dt.

Solution.

a) (i) Le théoreme de Leibniz-Newton donne que l'intégrale qui apparait dans F' est de
classe C' en x, et donc F T'est également.

Nous étudions (G, qui est une intégrale a parametre x :

1 a2 2 ) 2
G(x) :/ exp(—z (12—1—15 ) gt — / exp(—z (12+t ) n
0 1+t [0,1] 1+t

par égalité des intégrales de Riemann et Lebesgue pour des fonctions continues sur
un intervalle compact.

En notant f(¢,z) l'intégrande dans GG, nous avons que : ¢ — f(t,z) est continue,
donc borélienne, = — f(t, z) est continue, et la majoration |f(¢, )| < 1. Comme 1
est intégrable sur [0, 1], nous obtenons la continuité de G.

. 0 : :
Par ailleurs, z — ﬁ_f (t,2) = —2x exp(—a*(1 + %)) est continue. Si z € [a,b] =
T

[0, o[, alors
| — 22 exp(—2?(1 + t%))| < 2b,

et 20 est intégrable. Il s'ensuit que G € C.
(i) De ce qui précéde et le théoréeme de Leibniz-Newton, nous avons

F'(z) = 2exp(—2?) /01’ exp(—t?) dt,
G'(r) = -2z 1eX —22(1 +t3))dt = -2z exp(—z%(1 + %)) dt,
(@) = =20 [ exp(=a(1+ ) [, e

anouveau par égalité des intégrales de Lebesgue et Riemann.

Pour z = 0, nous avons F’(0) + G’(0) = 0. Pour = > 0, nous obtenons, par le
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changement de variable ¢ = 7/x (dans une intégrale de Riemann) :
F'(z) + G'(z) =2 exp(—2?) /01‘ exp(—t?) dt
— 2z /1 exp(—z?(1 + %)) dt
0
=2 exp(—a?) /Ox exp(—t?) dt
— 2z exp(—2?) /01 exp(—zt?) dt
=2 exp(—x?) /0r exp(—t?) dt
— 2exp(—2?) /Ox exp(—72)dr = 0.

b) Par définition de I'intégrale généralisée, nous avons

dt — lim G(z)

1+¢2 T—00

2 = lim F(z) € lim (F(0) + G(0) — G(x)) = /0 1

r—00 xr—00

1
= [arctan t] — lim G(x) = T lim G(z);
0 T—>00 4 Tr—00
pour (a), nous utilisons le fait, qui découle de la question précédente, que = — F'(z) +
G(z) est constante.

Pour conclure, nous allons montrer que la derniére limite vaut 0 ; ce qui donne I = /4 et
donc (comme I > 0), [ = y/7/2. Une fagon de procéder consiste a appliquer le théoreme
de convergence dominée. Plus simplement, nous avons

exp(—z(1 + t?))

0<
1+¢2

< exp(—z?), Vo =0, Vte0,1],
et donc
1
0<G(x) < / exp(—2?) dt = exp(—z?),
0

d’ott la conclusion, par encadrement. O

Exercice #16. Soit D := {(z,y) e R?; . >0,y > 0,z +y < 1}.
a) Déterminer D, et DY,V x,y € R.
b) Montrer que D est borélien.

c) Calculer laire de D.
d) Calculer [, (2* + y?) dady.

Solution.

a) Siz < 0,alors D, = J. Les contraintes x > Oetx + y < 1 impliquent z < 1, et donc
siz > 1,alors D, = . Enfin, si0 < x < 1, alors

D,={y;y=0etz+y <1} =1[0,1—z].

<, siy <Oouy > 1

De méme, DY = ]
[0,1—y], si0<y<1
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b)

c)

d)

Nous avons D = f~([0,00[) n g~ ([0, 0]) n h7L(] — o0, 1]), o0t f(,y) := x, g(x,y) :=
y, h(z,y) =z +y,V(x,y) € R f, g, h étant continues, il s’ensuit que D est fermé,
donc borélien.

Nous devons calculer v5(D). Nous avons v» = vy ® vy, avec v; o-finie. En utilisant la
définition de la mesure produit, nous avons que x — v4(D, ) est borélienne et positive
(et a donc une intégrale de Lebesgue) et

va(D) — /R (D, dz — /R Yo (@) ([0,1 — ]) da

@ (1—x)dx(i) 1(1—m)d:v= [x—xQ/Q]le = 1
[0,1] 0 =12

(a) Nous utilisons les faits que x — v (D, ) aune intégrale et que [0, 1] est mesurable (car
intervalle, donc borélien).

(b) Carl'intégrale de Lebesgue d’une fonction continue sur un intervalle compact coincide
avec son intégrale de Riemann.

La fonction (z,y) — x? + y? est continue, donc borélienne, et positive. Elle a donc une
intégrale. Par ailleurs, D est borélien. Le théoreme de Tonelli appliqué a la mesure v, =
11 ® vy donne que v — [, xp(x,y) (#* + y*) dy est borélienne et positive, et

/uﬂw%w@=/xﬂﬁwu%w%mw
D R2

=/(/m@mw%ﬁm@w
0,11(2) (/ xo(z,y) (* + °) dy) dx

IS
E\%\

(/RX (x +y)dy)dx
:/[01</]RX x+y)dy)dx
2/[01 (/[01 y (x +y)dy)dx
2/[01 (/O (22 + 12 dy)dw

[x2y+y3/3]y T e

|
\

[0,1]

=/ (1/3 — x + 22 — 42°/3) dx
0,1
/(1/3 x + 2% — 42°/3) dw
0

r=1 1

= [x/?) —2%/2 + 22°%/3 — x4/3] =
=0
Pour (), nous utilisons la mesurabilité de [0, 1] etle fait que z — [, xp(x,y) 2* +y*) dy
a une intégrale.
Pour (b), nous utilisons le fait que D, est borélien (car intervalle) et le fait que y — 2%+ />
a une intégrale (fonction borélienne positive).
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(c) et (d) relévent du fait que I'intégrale de Lebesgue d’une fonction continue sur un inter-
valle compact coincide avec son intégrale de Riemann. N

Exercice # 17. En calculant de deux facons différentes I'intégrale

w0 1
I:= / </ e “sin(2zy) dy) dz,
0 0

)
_,sin“z

o0
déterminer la valeur de / e dz.
0

T

Solution. Soit A :=]0, o[ %[0, 1], qui est un borélien (car produit d'intervalles, donc produit
de boréliens). Soit f(z,y) := e *sin(2zy), V (z,y) € A, qui est continue, donc borélienne.

Pour pouvoir appliquer le théoréme de Fubini dans A par rapport a la mesure v = v; ®
11, il suffit de vérifier que f est intégrable. En utilisant la majoration |f(x,y)| < g(x,y) :=
e,V (z,y) € A, lefait que g est borélienne (car continue) et le théoreme de Tonelli, nous
obtenons

/ |f(z,y)| dxdy (2 / g(x,y) dedy © / (/ e ” dy) dr = / e "dx
A A 10,00[ [0,1] 10,00[

(e) /OO —z —gz]x=00
2 e T dy = [—e ] =1<w,
0

z=0

etdonc f estintégrable. Pour (a), nous utilisons le fait que | f| et g sont mesurables positives
(donc ont une intégrale) ; pour (b), le théoréme de Tonelli local ; pour (¢) le fait que I'intégrale
de Lebesgue d’'une fonction continue positive sur un intervalle coincide avec son intégrale
généralisée.

Nous avons d’'une part, en interprétant I'intégrale en y comme intégrale de Riemann (ou
de Lebesgue sur [0, 1] — les deux sont égales pour une fonction continue) :

I /OO l_ew cos(2xy)r=1 5 — 1/“ e711 — cos(2x) "
0 2z 2 /o x

y=0
0 . 9
__sin“x
= e’ dz.
0 T

Le derniére intégrale ci-dessus est vue comme une intégrale généralisée (elle coincide avec
celle de Lebesgue, I'intégrande étant continue et positive sur 'intervalle d’intégration).

Par ailleurs, nous avons

1Y / </ e “sin(2zy) dx) dy
[0,1] 10,00[
1
- (/ efz (62zxy o eszxy) dl’) dy
21 J10.11 \J70,00
l </ (ef(lszy)x - 67(1+21y)x) dl’) dy
2
[0,1] 10,00[
y 1 1 1
o oy (=3 1)
v Jop \1—2wy 1+ 2wy

2y © / b2y 1 [ 2
dy = dy =—| In(1+4y°)| = —,
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ce qui donne

/OO _Isin2x Inb
e dr = —.
0 4

T

Légalité (a) découle du théoréme de Fubini local; (b) du fait que, sia € C et Rea >

1
0, alors I'intégrale (de Lebesgue ou généralisée) fooo e~ % dx existe et vaut —; (¢) découle de
a

Pégalité de l'intégrale de Lebesgue et celle de Riemann pour une fonction continue sur un
intervalle compact. O

Exercice # 18. Soit B := {(z,y,2) € R3; 2% + y* + 2* < 1}. Pour quelles valeurs de
a,b, c € R avons-nous [ finie, ot

I ::/ 27 |y|Pt |27 dedydz ?
B

Obtenir la réponse

a) Par utilisation du théoréme de Tonelli.
b) En utilisant les coordonnées sphériques.

Solution.

a) Lintégrande f(z,y, z) = || |y|*~! |2|°"! est continue sur B\{0}, donc borélienne, et
positive. Par ailleurs, B est un borélien. Il s’ensuit que I existe. En utilisant la positivité
de f et Iinclusion de boréliens | — 1/4/3,1/+/3[>*c B <] — 1, 1[?, nous obtenons que
J<I<K,ou

J = / 2y 2] dedydz,
1-1/V/3,1/4/3[3

K = / 2|7 |y [Pt |27t dedydz.
]_171[3

Le théoréme de Tonelli local appliqué 2 vz et f sur | — 1, 1] donne

K = / 2] da / " dy / 2"V da
1-1,1] 1-1,1] 1-1,1]
(a) 1 1 1
O / 2] do / " dy / 2 dz
1 -1 1
(b) 1 1 1
= 8/ ||+t d:v/ |y|b_1dy/ Ela2
0 0 0

Ici, (a) découle de I'égalité de I'intégrale de Lebesgue et de 'intégrale généralisée pour des
fonctions continues positives sur un intervalle, et (b) de la parité des intégrandes.

Le critére de Riemann donne : K est finie si et seulementsia > 0,b > 0,c > 0. De
méme pour J. En utilisant I'inégalité / < I < K, nous obtenons

I finie = Jfinie = a >0,b>0,¢c>0 = K finie = [ finie

et donc I est finie si et seulementa > 0,6 > 0, ¢ > 0.
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b) En utilisant les coordonnées sphériques, et en notant que (x, y, z) € B si et seulement si
r € [0, 1[, nous obtenons

I :/ xB(7,y, 2) \l’!a_l \y!b_l ]Z\C_l dxdydz

/ X[O,l[(r) ,r,(lerJrC*l

[—7/2,7/2]x[0,27]
X cosgp)‘”b sin|®™! | cos 0]*! | sin 0]~ drdpdd

—
N

a a+b+c—1 ( a+b—1

Cos )

/ r
[—7/2,7/2]x[0,27]
|s1n @ cos 0|t |sin 0" drdpdh

i/ a+b+c—1 d’f‘/ |(COS gO)a—%b—1| sin<,0|c_1 dg&

[—7/2,7/2]

X / cos0|** |sin0|°~" db
[0,27]

;/ 74(1-"-17-‘,-0—1 d’f’/ (COS QO)CH_b_l‘ Singp\c_l dg@
10,1[ 1—m/2,7/2]

X / | cos ]* | sin 6|~ df
10,27 [

—~
~

1 /2 2m
@ / potbrest dr/ (cos )07 sin | dgo/ |cos 0]~ |sin 6|~ d.
0 0

—7/2

Ici, (a) découle de la définition de I'intégrale sur un ensemble mesurable, (b) du théoréme
de Tonelli local pour la mesure v3 = 11 ® 1 ® 14, (¢) du fait que les points sont Lebesgue
négligeables dans R, (d) de I'égalité de 'intégrale de Lebesgue et de I'intégrale généralisée
pour des fonctions continues sauf en un nombre fini de points et positives sur un inter-
valle. (Il convient de comprendre la derniére intégrale comme la somme d’intégrales gé-
néralisées de fonctions continues positives sur |0, 7/2|, |7/2, 7|, |7, 37 /2|, |37/2, 27 ][.)

Notons que les trois intégrales généralisées de la derniére ligne sont strictement posi-
tives, car intégrales généralisées de fonctions continues et strictement positives, sauf en
un nombre fini de points. Il s’ensuit que / est finie si et seulement si chacune de ces in-
tégrales l'est.

Nous avons fol rotbte=ldr < o« a+ b+ ¢ > 0 (critére de Riemann).
Par ailleurs,
/2 (a) /2
[ tcosop s singl e @2 [ (cosip) sy ds
—7/2 0
(a) découle de la parité de l'intégrande.

Comme (cos )+~ 1(sin p)*™1 ~g, 7!, le théoréme des équivalents et le critére de

. 4 _ . _ . .
Riemann donne que fow/ (cos )20~ 1(sin )~ dy converge si et seulement si ¢ > 0.
Par ailleurs,

/2 w/4
/ (cos go)a+b_1(sin 90)0_1 dp (@ / (cos(m/2 — t))a+b_1(sin(7r/2 — t))c_l dt
w/4 0

/4
= / (sint)***(cost)** dt,
0
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et donc, comme ci-dessus, cette intégrale est finie si et seulement sia + b > 0. (Pour
obtenir (a), nous utilisons le changement de variables (dans une intégrale généralisée)

p=7/2—1.)
Il s’ensuit que la deuxiéme intégrale généralisée converge si et seulement si ¢ > 0 et
a+b>0.

Enfin, en utilisant la 27-périodicité et la positivité de 'intégrande, nous obtenons :
2w ™
/ |cosf]* ! |sing|"~! df :/ |cosf|* ! |sing|"~! df
0 -
@ / |cosf]* ! |sing|"~! df
0
/2

=2/ | cos 0|~ |sin |~ do

0

+2/ | cos | | sin 0]~ df
/2

®) /2
:2/ | cos 0| |sin ]~ df
0
/2
L2 / |cos(r — )" [sin(r — ) dt
0
/2
:2/ | cos]* | sin 6|~ df
0
/2
+ 2/ | cost|*™! | sint|*~! dt,
0

et donc, d’apres 'étude de l'intégrale précédente, la troisieme intégrale généralisée est
finie si et seulement sib > O eta > 0. (Pour (a), nous utilisons la parité et, pour (b), nous
faisons le changement de variables § = 7 — ¢.)

Finalement, I est finie si et seulementsia > 0,b > Oetc > 0. O

Exercice #19. Soit f € Z!(R). Montrer 'égalité

/R F(a) do = /R Fe— 1)) d.

Solution. 1l suffit de montrer 'égalité pour des fonctions Lebesgue mesurables et positives,
puis de retrancherles égalités obtenues pour f, et f_. Soient ¥ :]—o0, 0[— R, U5 :]0, co[—
R,V (z) :=2x—1/z,Va <0,¥y(z) :=x—1/z,¥x > 0. Les tableaux de variations de ces
fonctions montrent quelles sont bijectives. Par ailleurs, elles sont de classe C* et de dérivée
> 0, donc des C'*-difféomorphismes.

Posons @, := \I/j_l,j = 1,2. Pour touty € R, 'équation x — 1/x = y a exactement deux
solutions, une négative, x1 := ®;(y), lautre positive, x5 := ®5(y). En résolvant 'équation,

—\y?+4 + VY2 +4
nous trouvons ; = %, Ty = %

Montrons d’abord que z — g(z) := f(x — 1/x) (qui nest pas définie en 0) est Lebesgue
mesurable. Il suffit de montrer quelle 'est sur | — oo, 0] et sur |0, co[ (pour conclure, nous
la considérons comme une fonction «a accolade » définie presque partout). Le théoréeme du

changement de variables donne que g est mesurable sur | — o0, 0 si et seulement si go ®; | P |
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est Lebesgue mesurable sur R. Or,

1—

Y g0 (y)|% ()] = 1) v 4

est Lebesgue mesurable, comme produit d’'une fonction Lebesgue mesurable et d’'une fonc-
tion continue.

De méme, g o ®,| D, | est Lebesgue mesurable, donc g I'est sur 0, oof.

En utilisant les faits que g est Lebesgue mesurable et positive, que {0} est Lebesgue négli-
geable et que | — o0, 0| et |0, oo[ sont boréliens (donc Lebesgue mesurables), nous obtenons

/Rf(a:—l/x)dxz f(x—l/x)dxz/ flz —1/x)dx

R\{0} —00,0[u]0,00(

:/ flx —1/x)dx + flz = 1/x)dx

/f )| (y |dy+/fm|<1>’ )| dy
b)/f )19 (9)] + 24y /f

Ici, (a) découle du théoréme du changement de variables, (b) du fait que les intégrandes
sont positives, et (¢) du fait que, par calcul direct, en utilisant le fait que ®; est croissante,
j = 1,2, nous avons

1—y/AV/y2+4 1+y/\/y?2+4
D) (y)| + |D5(y)| = P (y) + Py(y) = /rjt /\2/7=1. 0

Exercice # 20. (Inégalité de Hardy) Nous travaillons dans I :=]0, oo[ muni de la mesure de
Lebesgue. Soit1 < p < . Si f € £7 = £P(I), nous posons F'(x) := [ f(t)dt, ¥z > 0.

a) Si f € CP(I), montrer al'aide d’une intégration par parties que

T F(x)[P . (L)p ” 2P da
/O—IP o < (2 /Of()|d. (15)

b) Montrer que I'inégalité (15) reste vraie pour tout f € .£7.

Solution.

a) Soit f € C*(]0,0[). Dans ce cas, les intégrandes de (15) sont continues et positives, et
donc nous pouvons traiter les intégrales soit comme des intégrales de Lebesgue soit, ce
que nous ferons, comme des intégrales généralisées.

Soient 0 < a < b < wtelsque f(x) = 0sixz ¢ [a,b]. Alors F(z) = Osiz < aet
F(z) = F(b) siz > b. Il sensuit que

LG LC T g TP
xP o TP , xP ’

car la premiere intégrale est une intégrale de Riemann finie, et la seconde est finie par
critere de Riemann.

0
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En utilisant la définition de I'intégrale généralisée et en intégrant par parties, nous trou-
vons
“IF ()P MR (z)P MAR(x)P
udmz lim de: lim de

© { [_ (zo|f (Siv'pl]M

v /M [ (@) (2) sgn (F()) dx}

- p—1 rp—1
(16)

IR BN LA O] ¢

M- (p—l)Mp—l

p  [MIF(x)[Pf(z) sgn (F(x))
]:/ rp—1 dac}

_ v [MIF@P () sen (F(z)

p—1M-omw /, xp—1 )

Dans (a), nous utilisons le théoréme de Leibniz-Newton, la régle de la chaine et le fait que
ladérivéedet — [t|P estt — p|t[P~! sgnt.

Pour majorer la derniere intégrale de (16), nous utilisons I'inégalité de Holder avec expo-
santspetq = p/(p — 1). Nous trouvons, pour M > a:

Gl C ) Py LG TG

zp—1

p—1
(i)/ [F@P M f @),
[a,M] b=t

1/p
[ wr da:)
[a,M]

Flo)p O\ @D
F () dx)

[a,M] TP

o (["epas)
) (/M ‘F(xp)’p dz) (r=1)/p
([ wera)”
. (/oo ’F(i)‘p dx) (pfl)/p‘

Ici, (a) et (c) suivent de I'égalité des intégrales de Riemann et Lebesgue pour des inté-
grandes continues sur un intervalle compact, (d) de la monotonie de l'intégrale définie
d’une fonction continue positive, et (b) de I'inégalité de Holder appliquée aux fonctions
|F ()"

ap—1

ap—1

17

continues (donc boréliennes) | f| et x —
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b)

En combinant (16) et (17), nous obtenons

(/Dw |F;xp)|p dx)p < (/OOO |f(:c)|de) (/OOO |F$)|p dx)p_l. 18)

o0
. . : F(x)[? :
Nous savons, d’apres la premiere partie de la preuve, que I = / # dx est finie.
0 T

En combinant ce fait avec (18), nous obtenons (15).

Soit f € .ZP. Alors'intégrande qui donne F'(x) est intégrable et I est continue (proprié-
tés vues ailleurs; elles suivent de I'inégalité de Holder).

Soit (f;); < CP(I) telle que f; — f dans £7. Soit Fj(x) := [ f;(t)dt, ¥ j,Va > 0.
Par I'inégalité de Holder avec exposants p et ¢ = p/(p — 1), nous avons

|Fj(z) — F(a)| <

| wo-seya 2 [ e - sl
10,z 10,2[

1/p (p—1)/p
< ( /][ 1) — f(t)!pdt) ( /][ | dt)

© (e
< P f — [l

Nous avons utilisé : pour (a) et (b), le fait que les intégrandes définissant F;(z) et F(z)
sont finies; pour (c), la monotonie de 'intégrale d’'une fonction mesurable positive par
rapport au domaine d’intégration.

Il s’ensuit que F'(z) = lim Fj(x), V2 > 0. En combinant ce fait avec le lemme de Fatou
j—®

et la premiere partie de la preuve, nous obtenons

N ()P a F(z)P Fi(2)P
0 xP Jo00f TP J0,00[i7® AP

F(z)P b F(z)P
= / lim inf ﬂ dx (g) lim inf “ﬂ
10,00[

j—o0 xP j—00 10,00[ xP

dx

(é) 1iminf/ |fi(x)|P dx @ / |f(z)P dx.
10,00[ 10,00[

J—©

Ici, (a) utilise le fait que l'intégrande est continue et positive, (b) découle du lemme de

. : |Fj(x)P . . 1
Fatou appliqué aux fonctions = +— —————, qui sont continues (donc boréliennes) et

x
positives, (c) de la premiére partie de la preuve, et (d) du fait que la norme est continue
dans un espace normé.

Ceci donne (15) pour tout f € £?, sachant quil faut comprendre la deuxiéme intégrale
dans (15) comme une intégrale de Lebesgue. O
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Exercices de synthese et avancés

Exercice # 1. (Combien de pointsy a-t-il dans [0, 1[?) Six € [0, 1[, soitz = 0,aqaz ... son
écriture en base 2. Soit

f:10,1[—> £2(N*), f(z) := {ne N*; a, = 0}.

a) Montrer que f est injective.
b) Montrer que

P(NNSf([0,1]) = P¢(N¥) := {A = N*; Aestfinie}.

¢) Montrer que &¢(N*) est dénombrable. Il existe donc une bijection ® : N — 7,(N*).
d) Donner un exemple de fonction injective ¥ : N — [0, 1[.
e) Soit

f(z), siz ¢ U(N)
F:[0,1[- Z(N*),F(x) :== < f(¥(n)), siz=V(2n)pourunn e N
d(n), siz = Y

(n 2n + 1) pourunn € N

Montrer que F' est bijective. Il y a donc «autant » de points dans [0, 1| que de parties de
N*.

Exercice # 2. Montrer I'équivalence des propriétés suivantes.

1. limsup,, A, = liminf, A,.

2. Pourtoutx € X :soitdng(dépendantde z)telquex € A,V n > ng, soit I ng (dépendant
dex)telquex ¢ A,,Vn > ng.

Exercice # 3. (Exemple d’ensemble non borélien) Définissons, pour z, y € [0, 1], la relation
x ~ ysietseulementsiz —y € Q.

a) Montrer que ~ est une relation d’équivalence.
Nous pouvons donc écrire [0, 1] comme l'union des classes d’équivalence, qui sont deux
a deux disjointes : [0, 1] = U;e;C;.
Prenons, pour chaque 7, un élément et un seul z; € C; et définissons A := {z;; i € I}.
Posons A, := {q¢} + A,Vqe Q n[-1,1].

b) Montrerque A, N A, = siq # r.

¢) Montrer que [0, 1] © Ugegn[-1,1144 < [—1,2].

d) Ensupposant A borélien, calculer 14 (A,) en fonction de v (A).

e) Endéduirequel < w0 - 14(A) < 3.

f) Conclusion : A nest pas borélien.

g) Renforcer la conclusion a : A n'est pas Lebesgue mesurable.

h) (On ne peut pas bien mesurer toutes les parties de R) Si u : Z(R) — [0, 0] est une
mesure invariante par translations, alors soit . = 0, soit (/) = oo pour tout intervalle
non dégénéré I — R.



Exercice # 4. (Caractérisation des tribus sur les ensembles a. p. d.) Rappelons, pour com-
mencer, quelques propriétés des relations d’équivalence.

1. Soit % unerelation d’équivalence sur X . Soient (.27 );cs les classes d’équivalence relatives
a Z. Alors ces classes forment une partition de X .

2. Réciproquement, si (Z;);cs est une partition de X, et si nous définissons la relation
x ~ ysietseulementsiil existeuni € [ tel que x,y € 27,

alors ~ est une relation d’équivalence dont les classes d’équivalence sont précisément
(%)ie[ .
Montrer les résultats suivants.

a) Si(Z;)ies est une partition a. p. d. de X et si nous posons 7 := {2Z;; i € I}, alors
g(ﬂ) = {UJC[%; JCI}

b) Si, dansla question précédente, I est finie, alors (<) = 7 ().
¢) Soit 7 une tribu sur X . Définissons une relation, de maniere négative, par :

x # ysietseulementsidAe T telquexr e Aety ¢ A.

(i) Ecrire la condition z ~ y.
(i) Montrer que ~ est une relation d’équivalence.
(iii) Supposons X a. p. d. Notons (.Z;)cs les classes d’équivalence de ~. Montrer que

T = {UJCI%; J < I}
d) Comment obtient-on toutes les tribus sur un ensemble a. p. d.?

Exercice # 5. Montrer que )\, la mesure de Lebesgue (complete) sur R, est donnée par la
formule

A (A) = inf {Z(bj —a); Ac u]aj,bj[} VAe 4.

Exercice # 6. (Ensemble maigre de Cantor) Nous travaillons dans R, avec la tribu borélienne
Pr et la mesure de Lebesgue v .

a) Si/ estun intervalle compact de R, alors nous notons I Punion des deux intervalles ob-
tenus en enlevant de / l'intervalle ouvert qui a le méme centre que / et dont la longueur
est un tiers de celle de /. Exemple : si I := [—3, 3] (de centre 0), alors I'intervalle ouvert
quiestenlevéest] — 1,1[, etdonc I = [-3,—1] U [1,3].

De maniére équivalente, si I := [a, b] alors I := [a,a+ (b—a)/3] U [a+ 2(b—a)/3,b].

Montrer que [ est un borélien, et calculer 4 (I) en fonction de v (I).

b) Nous construisons par récurrence une suite (C;),>o décroissante d’ensembles de la ma-
niere suivante :

@ Co = [0,1]
(ii) SiC} s’écrit comme une union finie d'intervalles fermésd. d.d.:C; = uj*, 1, alors
(11 est défini comme C 1 := \_J?L:lfg.
¢) Dessiner Cy, C;, Cs.
d) Montrer que C; est un borélien, v j.



e) Calculer 14 (Cj),j =0,1,2.

f) Proposer et montrer une formule pour 14 (C}).

g) Posons C' := n;>oC;. Montrer que C' est un compact non vide infini.
h) Calculer v, (C).

i) En examinant I'écriture en base 3 des points de chaque C}, puis de C, montrer quily a
«autant » de points dans C' que dans [0, 1]. Plus précisément, en utilisant les bases 3 et
2, déterminer une surjection entre C' et [0, 1]. Puis, conclure en utilisant le théoréme de
Cantor-Bernstein.

Exercice # 7. (Un espace probabilisé non-atomique « ressemble » a [0, 1] avec la mesure
de Lebesgue) Commengons par quelques définitions. Soit (X, .7, 1) un espace mesuré. Un
atome est un ensemble A € .7 tel que u(A) > Oet

[Be T, Bc A] = [u(B) =00up(B) = u(A)].

La mesure p est non-atomique si .7 ne contient aucun atome.

L. Le but de la premiére partie de cet exercice est de montrer la propriété suivante : si P est
une probabilité non-atomique sur (X, .7), alors

il existe une famille (A;)o<;<1 = 7 telleque P(4;) =t, V0 <t <1

1
etA;, c A, V0<s<t<l. )

a) On se propose dans un premier temps de montrer la propriété suivante :

1 2
il existe A € 7 tel que 3 < P(A) < 3 )
Preuve de (2) par I'absurde. Supposons (2) fausse.

(i) Montrer que
[A,Be ., P(A) <1/3,P(B) <1/3] = P(AuB)<1/3.

(i) SoitS :=sup{P(A); Ae 7, P(A) < 1/2}. Utiliser la question précédente pour
montrer que le sup est atteintet que 0 < .S < 1/3.

(iii) Soit A € .7 tel que P(A) = S. Obtenir une contradiction en utilisant le fait que A°
mest pas un atome.

b) Utiliserla question précédente pour construire, par récurrence surn > 0, 2" +1 nombres
0=ay <af <...<aj =1etdesensembles mesurables B.»,0 < j < 27, tels que::

D af =a5,¥n=0,Y0<j<2"
2) ay, —al < (2/3)",Vn=0,Y0<j<2"—1.
3) P(Byy) =a},¥n=0,Y0<j<2"

c) Posons, pourtout( <t <1,

4= U By

n=0 {j ; a?gt}

Montrer que :
i) A, e 7,V0<t <.
() A, c A, V0 <s<t<l.



(iii) Aa;; = Ba?,Vn >0,V0<j<2™
(iv) Conclure.

II. Le but de la deuxieme partie de I'exercice est de montrer que, si P est une probabilité
non-atomique, on peut « envoyer » P sur la mesure de Lebesgue v; sur [0, 1]. Rigoureuse-
ment, cette propriété repose sur la notion de mesure image ®, P. Plus précisément, nous al-
lons construire une fonction mesurable ® : X — [0, 1] telle que

®,.P = 1, Cest-a-dire P(®'(B)) = 11(B), V B € B - 3)

La définition de ® est
®(z) :=inf{t € [0,1]; x € A} €[0,1], Vz € X.
(@) Montrer que

freX;o@)>t}= | (A),Vo<t<l,

seQ;t<s<l

et en déduire que ¢ est mesurable.
(b) En déduire également que

PlreX:®@)>t}) =1t Y0<t<l.

(c) Conclure.

Exercice # 8. (Théoréme d’Egoroff) " Soit (X, .7, 1) un espace mesuré, avec y finie. Soient
fn, [+ X — R des fonctions mesurables telles que f,, — f (convergence simple). Le théo-
reme d’Egoroff affirme que f,, — f « presque uniformément », au sens suivant :

Ve>0,3C e T telque u(C) < et f,, — f uniformément sur X\C.

(La convergence uniforme reviendraita C' = (7.)

Prouver ce résultat comme suit.

Soit (N )x>1 < N. Posons

Ak,Nk = {ZE € X, ‘fn([L‘) — f(l‘)’ < %, Vn > Nk},

B := ﬂkzlAk,N(k)-

(Lensemble B dépend a la fois de la suite ( f,,),, et de la suite (Ny).)
a) Montrer que Ay n,, B € 7.
b) Montrer que f,, — f uniformément sur B.
) Montrer que, pour tout k > 1, il existe Ny, tel que (X \ Ay n, ) < &/2F.
d) Pour N, comme dans la question précédente, montrer que ;(X\B) < . Conclure.

Exercice # 9. (Une partie borélienne bornée de R est « proche » d’'une union finie d’inter-
valles)

+. Ou Egorov.



a) Soit B € %Ay un ensemble borné. Soit ¢ > 0. Montrer qu'il existe des intervalles ouverts
etd.d.d. 1,..., Iy telsque U := wl, soit « proche » de B, au sens suivant :

M(B\U) < cet \(U\B) < e.

b) Méme conclusion si B € .Z|(R) est de mesure finie.

¢) Une propriété similaire est vraie pour la mesure de Lebesgue dans R" (avec des pavés de
R™ a la place des intervalles). Essayer de montrer ce résultat en utilisant les ingrédients
suivants : la mesure de Lebesgue est une mesure de Radon, et le lemme 9.7 du support de
cours.

Exercice # 10. (Théoréme de Louzine *) Soit f : [0, 1] — R une fonction Lebesgue mesu-
rable. Le théoréme de Louzine affirme que f est « presque continue », au sens suivant : pour
tout ¢ > 0, il existe une fonction continue g : [0, 1] — R et un ensemble borélien B < [0, 1]
telsque vy (B) < cet f = gsur|0,1]\B.

Nous nous proposons d’établir une forme plus faible de ce résultat, prouvée par Vitali :
pour tout ¢ > 0, il existe un ensemble borélien B < [0, 1] tel que 14 (B) < e et tel que la
restriction de f a [0, 1]\ B soit continue.

Le passage du résultat de Vitali a celui de Louzine nécessite un résultat de topologie, dit
a Urisohn, que nous ne donnerons pas ici. Un cas particulier de ce résultat nous sera utile
pour la question a) : si F', G sont des fermés non vides et disjoints dans un espace métrique X,
alors la fonction
dist(z, G)
dist(z, f) + dist(z, G)

est continue sur X, vaut 1 sur /" et O sur GG.

Xox—

a) Montrer le théoreme de Louzine si f est la fonction caractéristique d'un ensemble Le-
besgue mesurable A. Indication : «encadrer » A grace a un fermé et un ouvert.

b) Montrer le théoréeme de Louzine pour une fonction étagée.

¢) En utilisant les questions précédentes et le théoreme d’Egoroff, montrer le théoreme de
Vitali.

Exercice # 11. (Lemme de Brezis-Lieb si 0 < p < 1) Cet exercice fait echo a I'exercice #
14 de la feuille # 7. Préliminaire. Un cas particulier du lemme de Fatou est le suivant. Soit
(X, 7, 1) un espace mesuré. Si f,, > 0 est mesurable, Vn, et f,, — [ (simplement), alors
[ f <liminf, [ f,.Lelemme de Brezis-Lieb, qui s'applique a des situations plus générales,

permet, dans ce cas particulier, de « mesurer » 'écart entre [ f etliminf / fn-
n

Dans ce qui suit, les fonctions f,, : X — R sont supposées mesurables, avec (X, .7, )
mesuré.

a) Supposons f,, — f et f intégrable. Montrer que
/|fn| :/|f|+/|fn—f|+0(1)quandn—>oo_

On pourra commencer par établir I'inégalité

=A< ful = 1fu = I <1

et utiliser le théoréme de convergence dominée.

#. Ou Luzin, ou Lusin.



b) De méme si i est compleéte et la convergence f,, — f estp. p.

¢) En déduire le corollaire suivant : si u,,, u sont des fonctions mesurables positives telles
que u, — up.p.,etsi [u, — [u < o0,alors [ |u, —u| — 0.

d) (Attention, hypotheése inhabituelle concernant p) Soit 0 < p < 1. En reprenant la preuve
de a), montrer le résultat suivant. Si f,, — fet [ |f|P < o0, alors

/|fn|p:/|f|p+/\fn—f|p+0(1)quandn—>oo.

Exercice # 12. Montrer que

_dx_Z_

Exercice # 13. Soit (X, .7, ) un espace mesuré tel que 0 < p(X) < 0.8i f : X — Rest
intégrable, montrer qu'il existe ¢, yo € X tels que

o><][f:/‘jt‘<—?<f(mo)

Exercice # 14. Dans ce qui suit, z1, .. ., z, sont des nombres complexes. Le probléeme que
nous étudions est le suivant : montrer qu’il existe J < [1,...,n] tel que la somme S; :=

’Z ied % ’ soit « grande ». Précisons d’abord le probléme. Nous avons

DN EDNE RS

jeJ j=1

et donc S; ne peut pas dépasser S. Nous nous proposons de montrer qu’il existe .J tel que
« S soit une partie significative de S ».

Clairement, pour n = 1 le meilleur choix est de prendre J := {1}, et dans ce cas S; =
= |21|. Etudions le casn > 2.

a) Sin = 2, montrer quil est possible de choisir J tel que
1 2
P Z ZJ‘)

1 . .
et que la constante S est la meilleure possible.

N)I)—t
l\D

b) Sin = 3, montrer qu’il est possible de choisir .J tel que
1
z 35 Z EAE

1 . .
et que la constante 3 est la meilleure possible.

¢) (Je ne connais pas la réponse) Quelle est la meilleure constante sin = 4?

1
En tout cas, elle n'est pas 1 En effet, nous allons montrer le résultat suivant.
1
VneN" Vz,...,2,€C,3J c[1,n]telque S; = —8S. 4)
™

Dans ce qui suit, le produit scalaire des nombres complexes ( , ) est le produit scalaire usuel
dans R?.



d) Soitw = €* un nombre complexe de module 1. Posons
Jy:={je[l,n]; (z,w) = 0}.

(Donc J, contient les j tels que 'angle entre z; et w soit < 7/2.)

Montrer que

2%

JjeJt

> ) (zj,w) = Z<zj,w>+. 5)

JjeJt

x, six>0

Rappelons que x est la partie positivede z : x4 := . .
0, six<0

e) Calculer

2r N
/ Z<Zja elt>+ dt
0 j=1

et obtenir (4) grace a (5) et a 'exercice précédent.
Exercice # 15. Obtenir, 2 partir de 'inégalité de Jensen, 'inégalité de Cauchy-Schwarz

n

n n 2
Z(CL]‘>2 Z(b])22 (Zajb]) ,VneN*,Val,...an, bl,...,bRER.
j=1 j=1

j=1

On pourra commencer par le casottb; > 0, V j.

Exercice # 16. (Lemme de Lebesgue) Soit (X, .7, i) un espace mesuré.

a) Soit (A,)n=0 € 7 unesuite telleque >, _ 1(A,) < 0. Montrer que x4, — 0 p-p. p.
b) Soit f : X — R une application intégrable. Montrer, a l'aide de la question précédente,
le lemme de Lebesgue :

Ve>0,36=6(c, f) > Otelque [A e 7, u(A) < 5] — /|f|d,u<5.
A

Voici une autre approche pour montrer ce lemme.

¢) Montrer le résultat lorsque f est étagée, en prenant § < Tk
max

d) Soit f intégrable.
(i) Montrer quil existe g étagée positive telle que g < |f|et [ ¢ > [|f] —¢/2.
(ii) Montrer que nous pouvons prendre (e, f) := d(¢/2, g).

Exercice # 17. Soit (X, .7, u) un espace mesuré et ( f,,),>o une suite décroissante de fonc-
tions p-intégrables qui convergent vers 0 u-p. p. Montrer que

S fn-f PACIRS

n=>0

On pourra utiliser la preuve du théoreme de Leibniz sur les séries alternées.



Exercice # 18. Nous nous plagons dans le cadre du théoréme de dérivabilité des intégrales
a parametre(s) (théoreme 7.14). Supposons que A est connexe. Montrer que nous pouvons,
dans les hypothéses du théoréme, remplacer 'hypothese (i) par 'hypothése plus faible

(") pour tout A € A, la fonction f(-, \) est mesurable, et il existe un \y € A tel que f(-, Ag)
soit intégrable.

Exercice #19. (Unicité des mesures d la Lebesgue)

L. Soit (X, d) un espace métrique tel que
Bx @ Bx = Bxxx (6)

(nous verrons en partie II de 'exercice une condition suffisante pour la validité de (6)).
Exemple : X = R" muni de 'une des métriques induites par une norme || |.

Une mesure borélienne y sur X est uniformément répartie si elle satisfait la condition sui-
vante :

Ve,ye X,Vr>0,0 < u(B(z,r)) = n(B(y,r)) < 0.
Le but de cet exercice est de montrer que deux mesures uniformément réparties sont
proportionnelles.

En admettant cette conclusion, nous obtenons une autre caractérisation de la mesure de
Lebesgue (voir I'item i) ci-dessous).

Soient 1 et v deux mesures uniformément réparties. Soient g(r) := u(B(z, 7)), h(r) :=
v(B(x,r)),Vr > 0 (ces fonctions dépendent de r, mais pas de z € X).

Dans ce qui suit, U désigne un ouvert non vide et borné de X.

a) Montrer que et v sont o-finies.

b) Montrer que 0 < u(U) < wet0 < v(U) < .

¢) Montrer que V' := {(z,y); x, y € U, d(z,y) < r} estunboréliende X x X.
d) Montrer que

Usz—vUn B(z,r))

est borélienne.
e) Montrer que

[ o0 B dute) = [ w(v Bl vty

U

(On pourra calculer p ® v(V).)
f) Montrer que

) 1

H(U) = lim / (WU  Blz, ) du(z).
) 1

V) = lim s | (U 0 Bwr)) dv(y),

g) En déduire quil existe un réel 0 < C' < oo (indépendant de U) tel que p(U) = C v(U).

8



h) Conclure.
i) Soit d la distance induite par une norme sur R". Montrer 'équivalence suivante :

(i) p estuniformément répartie sur HBgn.
(ii) Hexiste0 < C < oo telle que p = C'v,.

I1. Nous donnons ici une condition suffisante pour la validité de (6), condition qui est satis-
faite en particulier par R" avec 'une de ses métriques usuelles.

Voici une question d’échauffement (voir l'exercice # 22 de la feuille # 2).

a) Montrer que, si (X, d) et (Y, §) sont des espaces métriques arbitraires, alors Bx @ By <
PBx «y . (Penser a la preuve de l'inclusion Brrn ® Brm < Bro+m.)

Donc si une inclusion pose probleme dansla vérificationde (6), il Sagitde By «y < Bx®
By . En général, cette inclusion est fausse, mais donner un contre-exemple dépasse le cadre
de cet exercice.

Un espace métrique (X, d) est séparable s'il existe unensemble a. p.d. A = X dense dans
X,donctelque A = X.

b) Montrer que R" est séparable.
) Si X est séparable, montrer que pour tout ouvert U nous avons

U = U qeareq Bla,r).
B(a,r)cU

d) Si(X,d)et(Y,d)sont séparables, montrer que X x Y est séparable.

e) Si(X,d) et (Y,J) sont séparables, montrer que les ouverts de X x Y appartiennent a
Bx Q By .
f) En déduire que, si (X, d) et (Y, d) sont séparables, alors Bx ® By = Bxxy.

Cas particulier : Brn X Brm = PBgn+m.

Exercice # 20. (Changement de variables) Soient f, g :]0, 0[— [0, o[ deux fonctions bo-
réliennes. Montrer que

/]0700[2 f (g) g(xy) dedy = %/OOO @ dx /OOO g(x) d.

Exercice # 21. (Difféomorphisme qui préserve lamesure) Soit ® : R” — R" un C"*-difféomorphisme.
Montrer I'équivalence des propriétés suivantes :

1. D préserve la mesure, au sens suivant :
vp(®(U)) = v, (U), YU < R" ouvert.

2. [Jo(x) =1, Vze R"oulJp(x) = —1, YV € R"].
Exercice # 22. (Mesure superficielle) Si.S « R?, nous définissons la mesure superficielle (aire)

2/ (S) de S par

1
2/ (S) ;= lim % v3({z € R?; dist(z, 9) < €})

e—0+

(silensemble {z € R3; dist(z, S) < &} est borélien pour tout ¢ > 0 suffisamment petit, et
sila limite existe). Calculer <7 (.5) si :



a) S estune sphere.
b) S estun compact contenu dans R? x {0} (identifié 3 R?).

Exercice # 23. (Mesurabilité) Nous travaillons dans (R", .%,, A,,). Soit f : R — R une
fonction Lebesgue mesurable. Soient g : R — R, h : R" x R" — R, g(x) := f(z — ),
Ve R"(@vecy € R" fixé), h(x,y) := f(x —y),Vz,y e R™.

a) Peut-on invoquer un résultat théorique et en déduire que g et h sont Lebesgue mesu-
rables?

b) Que peut-on dire de g et hsi f est borélienne?
c) Montrer que g et i sont Lebesgue mesurables.

Exercice # 24. (Intégration par parties (I)) Nous travaillons dans (R, Bg, 11 ) et (R™, Bgn, v,).

a) Soitg € C'(R)intégrable. Montrer qu’il existe une suite (R;); < [0, o[ telleque R; — o0,
9(R;) — Oetg(—R;) — 0.
b) Soit h € C'(R), avec h et I/ intégrables.

(i) Montrer que [, h' = 0.
(i) Montrer que, pour toutn € R, [ e™ ' () dx = [, e *"h(z) dx.

0
¢) Soit f € C*(R™), avec f et 6_f intégrables. Montrer que, pour tout £ € R",
T

/n e_”’"gs—i(z) dr =&, /n e f(z) da.
d) Soient f, g€ C'(R")et0 < M < 0. Proposer et montrer une formule de la forme

[ Loparan= [ e

M’M]n axl [7M’M]7L71
g
— flx)=—(z)dx.
/{MW @)+ @
. . , of dg ..
e) Soient f, g € C'"'(R") bornées telles que f, g, o soient intégrables. Montrer que
T T
of g
—(z)g(x)dr = — xr)=—(x)dx.
[ @l [ @5

Exercice # 25. (Intégration par parties (II)) Nous travaillons dans ([0, 00|, Bjo «c[, 11 ). Soient
f,g€ £ Soient F(z) := f[O,z] f(t)dt, G(x) := f[O,w] g(t)dt,¥x = 0.

a) Montrer que F' et GG sont bien définies.
b) Montrer que F’ et GG sont continues et bornées.
¢) Montrer la formule d’intégration par parties

/000 Pla)g(x) de = /OOO f@) dfff/jg(x) dw—/owf(x)a(x) dz.

Exercice # 26. (Calcul d’intégrales oscillantes) Pour 0 < a < 2, soit

o -
I(a) := / P e (intégrale généralisée).
0

l1-0,

10



1. Enétablissant et utilisant I'identité

1 1 * a1 —at
S t* e dt, Va >0,V >0,
z*  T(a) Jy

montrer que

1 [o9) tafl
I(a) = — —dt
(a) ['(a) /0 2 +1

2. En se ramenant a un calcul de fonction Béta d’Euler, montrer que

[(a/2)T(1 — a/2)
I(a) = 2T (a) :

Exercice # 27. (Pseudo-changement de variables) Soit ¢ € C'([a, b], [, d]) telle que ¢(a) =
cet ¢(b) = d. Nous nous proposons de montrer 'égalité

/ f(z)dx = / f(o y)dy, ¥ f : [¢,d] — R borélienne et bornée. (7

a) Soit K < R un compact. Montrer quil existe une suite (f;); = CX(R, [0, 1]) telle que
fi \\ Xk - Indication : lemme d'Urisohn.

b) (i) Prouver (7)si f : [¢,d] — R est continue.
(ii) Prouver (7)si f := xx, avec K < [¢, d] compact.
(iii) Soit

= {B € Bicq; [ = xp satisfait (7)}.

Montrer que &/ = Z|.,q). Indication : classe monotone.
(iv) Prouver (7)si f : [¢,d] — R est borélienne et bornée.

Exercice # 28. (Formule del'indicatrice de Banach (I)) Soient I :=]a, b|c Ret® € C'(I,R).
Soient

—{rel;:¥(x)=0}, Vi=I\F Y :=0V)etW := &(I).

card A, si Aestfini

o0, sinon

Soit #A = {

Nous nous proposons de montrer les propriétés suivantes.

1. W < Rest borélien.
2. Sif: W — [0,0[ est borélienne, alors

Waa— f(z)#2 (z) € [0,0] et I 5y — f(P(y)) |[P'(y)| € [0, 5]

sont Lebesgue mesurables.
3. La formule de I'indicatrice de Banach

/Wﬂx)#@ dx—/f )l dy.

Voici la démarche proposée.

11



a) Montrer que Y est un ouvert.
b) Montrer que Y 3 z — #[®!(z) n V] € [0, 0] est borélienne.
c) Montrer que, avec f comme ci-dessus,

[ e wia = [ @ #ew) oVide

d) Soit K < U un compact. Montrer que

11 (®(K)) < max |9 ()| v1(K).

zeK

Indication : recouvrir K avec des intervalles disjoints, chacun de longueur ¢.
e) Montrer que ®(F') est borélien et que v, (P(F)) = 0.
f) Obtenir les résultats désirés.

g) Montrer que les résultats restent vrais en supposant f Lebesgue mesurable au lieu de
borélienne.

Exercice # 29. (Formule de I'indicatrice de Banach (II)) Soient U < R™ un ouvertet ® €
C*(U,R"). Soient

= {zeU; Jo(x) =0}, V= U\F, Y := ®(V) et W := &(U).

Nous nous proposons de montrer les propriétés suivantes.

1. W < R"est borélien.
2. Sif: W — [0,0[ est borélienne, alors

W f(a) #0 (2) € [0, et U 3y — F(D(y)) [aly)] € [0,]

sont Lebesgue mesurables.
3. La formule de I'indicatrice de Banach :

Aj@#@ ¢m—/f ) o ()] dy.

Voici la démarche proposée.
a) Montrer que Y est un ouvert. Indication : théoreme d’inversion locale.
b) Montrer que Y 3 z — #[®~!(z) n V] € [0, 0] est borélienne.
¢) Montrer que, avec f comme ci-dessus,

/f ) e (y |dy—/ flx “x) nV]dz.

d) Question d’échauffement. Supposons 0 € F'. Montrer que

L a(@([0,2[")

eN\0 gn

= 0.

e) Soit K — F'un compact. Montrer que

vn(P(K)) = 0.

Indications : recouvrir K avec des cubes de taille ¢ et utiliser le raisonnement de la ques-
tion précédente.
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f) Montrer que ®(F') est borélien et que v, (P(F)) = 0.
g) Obtenir les résultats désirés.

h) Montrer que les résultats restent vrais en supposant f Lebesgue mesurable au lieu de
borélienne.

Exercice # 30. (Dérivée de I'intégrale) Nous travaillons dans ([0, co[, Zjo o[, 1). Soit f €
L. Soit F(x) := f[o,z] f(t)dt,¥x > 0.
Soit g € C'([0, 0[).
a) Montrer que [0, 0[5 = — h(z) := f[O,x] g(t) f(x — t) dt est continue.
b) Montrer que z — " g(t)F(x — t) dt est de classe C*, de dérivée h.

Exercice # 31. (Inégalités pour des opérateurs a noyau; cas des exposants non-conjugués)
Cet exercice fait suite a I'exercice # 20 de la feuille # 7. Nous travaillons dans un espace
produit (X x Y, .7 ® .7, u®v), avec i1 et v o-finies. Toutes les fonctions considérées sont
mesurables et, par souci de simplicité, positives. Un noyau est une fonction K : X xY — R,
Le conjugué d’'un exposant s sera noté s'.

Soient 1 < p, g < oo deux exposants. Nous supposons que

11 1 1
)\122————:—/+—/<1,
p q P q
ce qui, en particulier, implique que p et ¢ ne sont pas conjugués. Nous voulons majorer les
quantités

= A(f,9) = KN, y) f(z) g(y) dp@v(z,y), avec f: X >Ry, g: Y — Ry,

XxY

B = Hyr—>/K)‘xy x) du(x) avecf:X—>R+.

a) A quelle condition sur ) correspond l'exercice # 20 de la feuille # 7?
b) Rappeler pourquoi

B(f) = sup{A(f,9); g€ L*(Y;R,), |lg], < 1}.

c) Montrer les identités suivantes :

p q
1=?+p(1—/\) etlza—kq(l—)\).

d) Soienta, 8 : X — R%,~,0 : Y — R%. En utilisant les identités précédentes, montrer

I'identité

Aoy T _ T 1/q' (x) p/q
K. ) £(2) g(y) OK(wﬂ oy <0

XQmePWﬂﬂfmw

a(z)

) (8)
v

X <f PN () g1 (y) —M) .

13



e) En utilisant (8), I'inégalité de Holder a trois exposants (¢/, p’ et 1/(1 — X)) et le théoreme
de Tonelli, obtenir I'inégalité

= (/ F(a) B (@) f*(z)d u<w>)w
(/G )% () ¢ (y) di(y ))1/p’
" (/X (%) o fP(x) du(x)>H ©)

-2

. ( / (%’;)WW §() du<y>>1 ,

K(z,y)
y 79 (y)

ol
K(z,y)

x o ()

F(z) = dv(y), G(y) = dp(z).

f) Notons que F' dépend de K et v, respectivement GG dépend de K et o. Pour « et y fixées,
on définit (5 et § par les équations

(%)wu) = F(z) 87 (z), Yz € X,

Yy Y ,
(Ty)) = G(y) 0" (y), Vy e Y.

Montrer que ces équations permettent en effet de définir [ et § et que, pour ce choix, (9)
devient

a5 = ([ o) o))
x ( /Y [GW)]7" 7(y) g*(y) dV(y)) v .

(10)

g) Comparer (10) a l'exercice # 20 de la feuille # 7 et montrer que (10) est vraie si

1 1
l<pg<owet —+—-=>1.
p q

h) (Inégalité de Schur) En prenant a(x) = 1, y(y) = 1, obtenir l'inégalité de Schur

q
_[sup/nydl/ ] [sup/K:Eydu ] 1f1],-
zeX yeyY

1 1
i) (Inégalité de Young) Soient 1 < P, ) < oo tels que 2 + é > 1.0ndéfinitl < R < @
ar égalité — L 1 L 1.
1 R _—

En choisissant convenablement p et ¢, et en prenant «(z) = 1 ety(y) = 1, obtenir, pour
fih i R™ — Ry, linégalité de Young ||h = || p < |||l £l p-

14



j) (Inégalité de Hardy a poids en 0) Soient 1 < p < 00,0 < r < o, eth :]0,0[— R,.
En choisissant convenablement f et ¢ et en prenant a(z) = (z) = x%/®*?, obtenir
I'inégalité de Hardy a poids en 0

[ ([ran) e (2 [Tarrtiee

k) (Inégalité de Hardy a poids a I'infini) Soient 1 < p < 0,0 < r < o, eth :]0,0[— R,.
En choisissant convenablement f et g et en prenant a(x) = ~(z) = 2'/*9, obtenir
l'inégalité de Hardy a poids a l'infini

[ () o) aes () [arer e
1

R . , . 1
) (Inégalités de Hardy-Littlewood-Pdlya-Levin) On suppose 1 < p,q < o0, — + — > 1.
p

L

Préliminaire. Nous admettons la formule des compléments (due a Euler)

* 1 T
/ dt = — ,V0<a< 1.7
o (t+1)te sin(ma)

En prenant a(z) = v(z) = z"/#+9) montrer les inégalités de Hardy-Littlewood-Pélya-
Levin

/]0,00[2 ($ + y),\ d dy < <sin(ﬂp’/(p/ + q/))) ||f||pHg||q7

=)

q T ' +4)/p ,
dy < | — €
Y (Sm(ﬂp’/ (v + Q’))) 71y

Exercice # 32. (Inégalités de Hardy générales, encore) Cet exercice fait suite aux exercices
# 20e) et 21de la feuille # 7, et aux items j) et k) de 'exercice précédent. Soient 1 < p < o0,
0 <r < ,eth :]0,0[— R, une fonction borélienne. Montrer l'inégalité de Hardy a poids en

0
0 x p 0
/ r ! (/ h(y) dy) dr < <]—?>p/ TPTIRP (2) da (11)
0 0 r 0

et l'inégalité de Hardy a poids a I'infini

0 0 p 0
/ 2! (/ h(y) dy> dr < (]—)>p/ 2P R (7) da. (12)
0 x r 0

Indications : si p = 1, il suffit d’utiliser le théoréme de Tonelli. Sil < p < o0, on
peut procéder comme dans l'exercice # 21 feuille # 7 : (i) établir d’abord (11) et (12) pour
h € C¥([0,0[), via une intégration par parties; (ii) établir le cas général par approxima-
tion.

Parailleurs, pour 1 < p < o0, nous avons vu, dans I'exercice précédent, une preuve basée
sur 'inégalité de Holder a trois exposants. On peut également utiliser 'exercice # 20 de la
feuille # 7 et se ramener a une inégalité de Holder a deux exposants. Pour une troisiéme
preuve, valide y compris pour p = 1, basée sur I'inégalité de Jensen, voir Stein et Weiss,
Introduction to Fourier analysis on Euclidean spaces, chapitre 5, lemme 3.14.

#. Cette identité peut s’'obtenir, par exemple, en appliquant le théoréme des résidus en analyse complexe.
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Exercice # 33. (Construction d’'une fonction dans C°(R)) Nous travaillons dans R muni de
la mesure de Lebesgue. Soit G := Xo,17. Pour ¢ > 0, soit

T

Ge(z) = EG( ),V:UER.

3

a) Si f e ZY(R), montrer que f = G. € C(R).

b) Plus généralement, siey,...,e; > 0, montrer que f « G, *--- = G-, € C77"(R).
Etsi f € C(R)?

¢) Soit (¢;);=0 <0, o[ une suite telle que S := >}, £; < 0. Soit

0, sinon

fo(a) = {(2/50) @l | —eof2l, si0<Teo

Pour j > 1, soit f; := fy+ G, - G.,. Montrer que :
(@) fij(z) =0siz <Oousiz >cy+¢e1+ - +¢j.
(i) f;€C9,¥j>0.
i) ()™ (2)] < 2 /(eoer ... ), Vo,V = 0,Vj > k.
(V) |fjre(x) — fi(x)] < 2(gj41 4+ - - +€j30)/(€0€1),Va,Vj =1,V > 1.
(v) Trouver une majoration analogue a celle du point précédent pour | f;_’i)é (x)— f;k) (x)],
Vo, Vk>0Yj>k+1,¥0> 1.
d) Endéduire que la suite ( f;); converge uniformément sur R vers une fonction f avec les
propriétés suivantes :
i) feC”R,[0,0]).
ii) f(z) =0siz <Ooux > S.

iii) / f(x)dr = 1dou, en particulier, f £ 0.
R

Exercice # 34. (Bases hilbertiennes de polyndmes (1)) Soit / < R un intervalle ouvert non
vide borné muni de la mesure de Lebesgue. Nous munissons L? := L?(I;R) du produit

scalaire «usuel», (f,g) := [, f g.

a) Montrer que si deux fonctions polynomiales coincident p. p. sur /, alors les polyndmes
correspondants sont égaux. Ainsi, nous pouvons identifier tout polynéme avec la fonc-
tion polynomiale associée sur . (Expliquer.)

b) Montrer que nous avons 'appartenance « naturelle » (que l'on expliquera) P € LP(I),
V1<p<oo,VPeR[X]

Soit (Py)r=0 < R[X] une suite de polynomes telle que :
i) deg P, = k,Vk.
0, sij#k
ii) (P;) est une suite orthonormée dans L?; cest-a-dire, (P}, P;) = {17 SI] 7 L
, sij=
Vi, keN.
¢) Montrer que (Py)x=o
d) Endéduire que

» est une base orthonormée de R, [ X]. "

-----

N
P=>(P,P)P,,¥n=0 YN =n,VPeR,[X].
k=0
+. Ici, nous considérons R,,[ X | comme un sous espace de L? — voir le début de I'item b).
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e) Soient f € L?ete > 0. Montrer quil existe P € R[X | tel que | f — P2 < . On pourra
utiliser, par exemple, le théoréme de Weierstrass :sig € C'([a, b]), alors il existe une suite
de polynoémes (Q,,), telle que Q),, — g uniformément sur [a, b].

f) En utilisant les questions précédentes, montrer que pour tout f € L? nous avons

0
Z f; Py) Py, ausens ol Z f, Py) P, — fdans L? quand N — oo (13)
k=0 k=0

et donc (P )r=o est une base hilbertienne de L?(I).
k

d
g) (Polynémesde Legendre) Soient I :=]—1, 1[ et P, € R[X]donnés par P;() := ay, s [(z* — 1)¥]
T
(aveclidentification entre polynomes et fonctions polynomiales). Montrer que pour o, >
0 convenablement choisis (que 'on déterminera), la suite (Py) satisfait i) et ii) et donc
nous avons (13). Les P, sont (2 des constantes multiplicatives pres) les polynomes de Le-
gendre.

On pourra utiliser sans preuve la formule

! ok 2k+1 k|
1— 22k da = VkeN.
/1( ) = s ok ) e

Pour d’autres exemples, voir 'exercice # 36.

Exercice # 35. Cet exercice prépare aux questions b) et c) de I'exercice 36. Soient 1 < p < «©
etg e Lp<[0, OO[, %[0700[7 )\[0700[).

a) SoitH := {z € C; Re z > 0}. Montrer que la fonction

0
Ho>z— F(2) ::/ g(t)ye#dteC
0

est holomorphe.
b) Soita > 0. On suppose que

o0
/ t"g(t)e ™dt =0,Yn=0. (14)
0

(i) Montrer que

o0
/ g(t)e dt =0, Ybel0,al.
0

(ii) Endéduire que F'(z) =0,V z € H.
(iii) En utilisant le fait que la transformée de Fourier dans L' (R, &g, \) est injective, en
déduire que g = 0.

c) De méme, si g € LP(R, &g, \) et on remplace (14) par 'hypothese

/t” g(t) e " qt = 0, Vn >0,
R

aveca > 0, alors g = 0.

Exercice # 36. (Bases hilbertiennes de polyndmes (II))
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a) Soit I — R un intervalle non-dégénéré et soit H un espace de Hilbert de (classes d’équi-
valence de) fonctions sur / tel que I'espace des fonctions polynomiales sur 7 : (i) s'identifie
avec R[ X, (ii) soit contenu dans H, et (iii) soit dense dans H. Si (P, ),>o est une famille
orthonormée de fonctions polynomiales, avecdeg P, = n,Vn > 0, montrer que (P, ),>0
est une base hilbertienne de H.

b) (Polyndmes de Laguerre) On munit / := [0, co| delatribuborélienne et de la mesure iz de
densité e~ parrapport alamesure de Lebesgue. Montrer que, dans L*([0, o0[, B o[, 1t),
les polynomes de Laguerre :

dn
Qn(z) = ﬁnex%(a:” e ), Vn=>=0, Vx>0,

(avec (3, > 0 constantes convenables) forment une base hilbertienne.
¢) (Polyndémes d’Hermite) On munit R de la tribu borélienne et de la mesure v de densité

e~*"/2 Montrer que , dans L2(R, &g, 1), les polyndmes d’Hermite

n z2/2 d" —x2/2
R, (z) := (=1)"y,e W[e ], ¥n=>0,VzeR,
T

(avec y,, > 0 constantes convenables) forment une base hilbertienne.

Exercice # 37. Cet exercice prépare aux questions c) et d) de I'exercice # 38.

Soit (E,,)n=0 une suite de sous-espaces de I'espace de Hilbert H telle que :
(1) E, estde dimension finie, Vn > 0.
(i) £, < E,yq,Vn > 0.
(iii) By u E; U --- estdense dans H.

Onpose E_; := {0}. Soit .%,, une base orthonormée de £, © E,,_1,n > 0. Montrer que
Fou F, U --- estune base hilbertienne de H.

Exercice # 38. (Bases de Walsh et Haar) Soit H := L?*([0, 1[, B[, A\jo,1[)- Pour n > 0, soit
E,:={f:]0,1[— R; festconstantesur [j/2",(j +1)/2"[,Vj=0,1,...,2" —1}.
a) Montrer que les E,, vérifient les hypotheéses de I'exercice précédent.
Indication pour (iii) : si f € C.(]0, 1]) et
folz) = f(5/2"),¥n=0,V0<j<2"—1,Vzel[j/2"(+1)/2"],
alors f,, — f uniformément sur [0, 1[.

b) Calculerdim E,, n > 0.
c) (Base de Walsh) Soit F la fonction partie entiére. Montrer que les fonctions

w](x) = (_1>E(2"1a:)<_1>E(2"2;t) . (_1)E(2nkx)’
Vk>0,VI={n <ng<...<ng}cN*
(avec la convention wg = 1), forment une base hilbertienne de H. C’est la base de Walsh.

Indication :sin > 1, montrer que {w; ; max I = n} est une famille orthonormée conte-
nuedans £, ©O E,,_;.
d) (Basede Haar)Si Hy := let,pourn > 0et0 < j <2" —1,

22§25 /2 <o < (25 4+ 1)/27H
Hjon(z) = =272 si(2j+ 1)/2"" <z < (25 +2)/2"F,
0, sinon

montrer que (Hy)x>o est une base hilbertienne de H. C’est la base de Haar.
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Exercice # 39. (Théoréme d’Orlicz) Soit I < R un intervalle ouvert non vide muni de la
mesure de Lebesgue. Nous considérons une base hilbertienne (e )= = £*de L? = L*(I).
(De telles bases existent : voir, par exemple, 'exercice # 34.)

a) Montrer que, pour tout f € .2, il existe une suite extraite (N;) (qui en principe dépend

de f)telle que

Ny
Y (f.ex)er — fp.p.quand £ — o0,
k=0

b) Endéduire que, pour tout f € .2, nous avons

e¢] e @]

(@) < Y1 e D Ter(@)® = [£15 ) lew(a)]?

k=0 k=0 k=0 (15)
pour presque tout z € [.

¢) Enprenant, dans (15), f := x4, avec A convenable, en déduire le théoréme d’Orlicz : pour
presque tout = € I nous avons Y, [ex(z)]* = 0.

Indication : commencer par 'ensemble

B := {x el; Z:[ek(ﬂc)]2 < oo}

et utiliser I'exercice # 47 de la feuille # 2 pour construire A.

Les définitions suivantes préparent aux exercices # 40— 42.

Définitions. Soit (X, .77) un espace mesurable.

i) Soient y, v deux mesures sur .7 . v est absolument continue par rapport a u (et on écrit
v« p)si,pourtout A e 7, u(A) =0 = v(A) =0.
ii) Soient y, v deux mesures sur .7 . u et v sont étrangeres (et on écrit 4 L v)siona X =
AuB,avecA,Be 7, u(B) =0etv(A) = 0.
iii) Soitp : 7 — R.(Notons que I'on ne demande pas la positivité de p.) j1 est une mesure signée
sip(unAy) =Y, 11(Ay), pour toute suited. d. d. (4,) < 7.

Exercice # 40. (Théoréme de Radon-Nikodym-Lebesgue (I)) Nous nous proposons de mon-

trer le

Théoréme de Radon-Nikodym-Lebesgue. Soient 1, v deux mesures o-finies sur .7 . Alors :

(@) Il existe une fonction mesurable positive h : X — [0, co] et une mesure & étrangere a yu telles
quev = hp+E&.

(b) hestunique p-p. p. et  est unique.

(c) Siv estabsolument continue par rapport a i, alors { = 0, etdonc v = h p.

Dans les parties I et II, nous supposons p et v finies. Le cas général est traité dans la partie III.

I. Existence de h et . Voici stratégie de preuve due a von Neumann. (Pour I'approche originale

de Lebesgue et Hahn, voir l'exercice # 42.) Soit \ := p + v. Soit H := L*(X, 7, \).

a) Montrer quil existe g € H tel que

[ f@avta) = [ f@)g@rana), vi e b
X X
(Penser au théoréme de représentation de Riesz.)
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b) Endéduire que 0 < g(x) < 1alafois A-p. p., v-p. p. et u-p. p. En déduire que I'on peut
supposer 0 < g < 1 partout.
¢) Montrer que

/fTP—m¢ﬂ=/]@dmvfeH1 (16)
X X

d) Montrer que (16) reste vraie pour toute fonction mesurable et positive f.
Soit B := {x e X ; g(x) = 1}.

e) Siv « u, montrer que B est u- et v-négligeable, et que I'on peut supposer B = J et
donc0 < g < 1.

f) Revenons au cas général. Posons {(A) :=v(An B),VAe T et

h(z) = g(x)/(1 —g(x)), siz¢ B
. 0, sirz € B.

Montrer que £ L p, que h est mesurable, et que, pour toute fonction mesurable positive

/)
Af@=éf%+ﬂj@=éf&+éfww

(Pour la dernieére égalité, appliquer (16) & fxp</(1 — g).)
g) En déduire les parties (a) et (c) du théoréme.

I1. Unicité. Soient v = hy o + & = ho p + & deux décompositions de v comme dans le
théoréme.

a) Soient A;, Ay € T tels que ju(A;) = Oet;(A5) = 0,5 = 1,2. Montrer que §;(A) =
& (A) : dabord pour A € T tel que A < A; U Ay; (ii) ensuite, pour tout A € 7. En
déduire que &; = &.

b) Montrer que hy = hy p-p. p. et en déduire la partie (b) du théoreme.

II1. Le cas des mesures o-finies. Traiter le cas général (o i et v sont o-finies) en considérant

une partition X = 11, X,, avec X,, € 7, u(X,,) < o0, v(X,,) < ©, Vn.

Exercice # 41. (Théoréme de Hahn-Jordan)

Nous nous proposons de montrer le

Théoréme de Hahn-Jordan. Soit 1 : .7 — R une mesure signée. Alors :

a) Il existe deux mesures sur .7, finies et étrangéres ('une a lautre) pq, o telles que p =
M1 — M.
b) 11 et uy sont uniques.

Au passage, nous allons utiliser le résultat suivant : une série réelle commutativement conver-
gente est absolument convergente.

Voici la stratégie proposée pour montrer le théoreme de Hahn-Jordan.

a) Posons, pour A € .7,

|1[(A) := sup {2 [1W(Bi)|; (By) = 7, A= ukBk}‘
!
Montrer que || est une mesure finie sur .7 .
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b) Soit v := |u| — u. Montrer que v est une mesure finie et que v < |u/.

Soith € LY X, ,|u|) telle que v = h d|u| (voir I'exercice # 40).
¢) Pour0 <e < 1/2,s0it A:={zxe€ X;1+e<h(x)<2-—e}. Montrer que

[Be 7, Be Al = elul(B) < u(B) < (1 - &) ul(B),

et en déduire que |u|(A) = 0.

d) S'inspirer dela question précédente et montrer que h(x) € {0, 1, 2} ||-p. p. Montrer que
nous pouvons supposer que h(x) € {0, 1,2} en tout point x € X.

e) Soient A, :={zxe X; h(x) =0}, A_:={zre X; h(x) = 2}.Soient y; := pu(An A,),
po = pu(An A),VAe J. Montrer que yu1, iip vérifient la partie (a) du théoréme.

f) Soient yu1, s, V1, Vo mesures positives comme dans la partie (2) du théoréme telles que
W= i3 — flg = V1 — V. Soient Ay, Ay € T tels que 1y (AS) = (A1) = Oetrvy(AS) =
v5(A1) = 0. Montrer que p1(A) = v1(A) = p(An Ay n Ay), VA € 7. Endéduire la
partie (b) du théoréeme.

Exercice # 42. (Théoréme de Radon-Nikodym-Lebesgue (II)) Le cadre est celui de I'exer-
cice # 40. Nous supposons y et v finies. Voici la stratégie originale de preuve de 'existence
de h et &, due a Lebesgue (pour la construction de &) et Nikodym (pour la construction de
h). Largument de Nikodym repose sur le théoréme de Hahn-Jordan. Ceci semble un cercle vi-
cieux, dans la mesure ott nos avons établi ce théoréme via le théoreme de Radon-Nikodym-
Lebesgue. Néanmoins, on peut le montrer sans utiliser le théoreme de Radon-Nikodym-
Lebesgue (voir, par exemple, V. I. Bogachev, Measure theory, vol. I, preuve du théoréme
3.1.1).

I. Constructionde . Soitm := inf{v(B); B € 7, u(B°) = 0}.
a) Montrer quil existe A € 7 tel que pu(A°) = Oetv(A) = m.
b) Montrer, en utilisant la définition de m, que
[CeT,Cc Al = v(C)=0.
) Soit&(C) :=v(C n A%,V C € 7. Montrer que { et v — £ sont des mesures satisfaisant
ELl pety —& <« p.
11. Construction de h. Compte tenu de la partie I, il suffit de travailler avec v — ¢ au lieu de

v. Nous pouvons donc supposer que v < p; sous cette hypothese, nous construisons h telle
que v = hpu.

Soit

F:={f: X —[0,00]; f mesurableet fu < v}.

(Lesensde fuu < wvest: [, fdu<v(A),YAe.T)
a) Montrer que .# est non-vide, et que

[f,9€ F] = max(f,g) e 7.
b) Soit M := sup;c [y f du. Montrer, en utilisant la question précédente, qu'il existe h €

Z telle que [, hdu = M.

c) Soit A := v — hu. Montrer que A est une mesure.
Pour conclure, il suffit de montrer que A = 0. Si x = 0, montrer que v = 0 et conclure.
Siu # 0, nous obtenons la conclusion A = 0 en raisonnant par 'absurde. Soit a :=
A(X) > 0.8Soitb := p(X) €]0,00[ (car u # 0 et p est finie). Soient 0 < ¢ < a/bet
n:=A—cecu=v—(h+e)p.
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d) Montrer que : (i) 7 est une mesure signée; (i) n(X) > 0; (iii) il existe A € .7 tel que
n(A) < 0.

e) Enutilisantle théoréme de Hahn-Jordan et 'hypothése v « p, trouver A € 7 tel que : (i)
n(B)>0,VBe T telque B < A; (i) n(A) > 0;(iii) u(A) > 0.

f) Considérer le fonction h + £y 4 est obtenir une contradiction avec le choix de h.

Exercice # 43. (Inégalités faibles de Bernstein (II)) Cet exercice continue I'exercice # 28 de
la feuille # 9. La philosophie générale est la méme : des inégalités qui ne sont pas vraies
pour des fonctions quelconques sont valides pour des polynémes trigonométriques. Prenons
I'exemple dela comparaison entre | f|, et | f| ., pour des fonctions définies sur |0, 27|, muni
avec la mesure (1/27) \;. Cette mesure étant finie (en fait, une probabilité), nous avons f €
P = fe L7, V1 <r <p< o, etdesexemples simples montrent que 'implication
fe P = [ e £ estfaussesir > p. Néanmoins, nous allons montrer I'inégalité
suivante, d la Bernstein :

5n 1\ VPUr
fus%“wmﬂm(7l ) fl, ¥1<p<r <o,

2 17
V polynéme trigonométrique f de degré < n, avecn > 1.
En combinant (17) avec la conclusion de I'exercice # 28 feuille # 9, nous obtenons
1/p—1/r
7], < 30707 (5n2+ 1> Iflp V1<p<r <o, (18)

V polynome trigonométrique f de degré < n, avecn > 1.

Ces deux inégalités sont faibles, au sens ou les constantes qui y apparaissent ne sont
pas les meilleures, mais I'ordre de grandeur des constantes est bon : il est n'/»~1/" dans (17)
et n'/P=1/m+1 dans (18). On peut montrer que cet ordre de grandeur est optimal, mais nous
n'allons pas vérifier ce fait.

Passons a la preuve de (17).

a) Montrer le cas particulier suivant de I'inégalité de Young pour la convolution des fonc-
tions 27-périodiques :

\f =gl <|flpllglqe ¥Vp,qconjugués,V f e L7, ge L.

(Pour la définition du produit de convolution, voir l'exercice # ?? feuille # 9.)

b) SoitV,, := 2 Fy, 41 — F,,, n € N, avec F} les noyaux de Fejér; V,, est le noyau de de La Vallée
Poussin. Montrer les propriétés suivantes de V,.

M Val@)= > e+ ) (1—%) ee.

lil<n+1 n+1<|j|<2n+1
(i) [Va] < 3.
on + 6
@ Vil = 2.
5 6 1-1/q
i Vil <3 (2E0) v <5

¢) Soit f un polynéme trigonométrique de degré < n (avecn > 1). Montrer que f = V,,_; =

f.
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d) Endéduire que

_ 5n 4+ 1\ 7
=3 (25) 1l

V polynoéme trigonométrique f de degré < n, avecn > 1.
e) Endéduire (17). Indication : inégalité de Holder.

Exercice # 44. (Convolution et transformée de Fourier) Soit f : R — R, f(z) :=
Vax e R.Calculer f * f * - % f (n fois).

2+ 1’

Exercice # 45. (Calcul de transformée de Fourier dans .#’?) Nous travaillons dans le cadre
de la transformée de Fourier dans R.

a) SifeLetr— g(x) :=af(x) e £, montrer que feCletqueg =1f".

—8$2

) , . e .
b) Sie > 0, calculer la transformée de Fourier de x — h.(z) := vt Indication : se
T+
débarrasser du dénominateur.
. 1
¢) Calculer la transformée de Fourier de z — g(x) := —
xXr (3

Exercice # 46. (Transformée de Fourier d'un produit de convolution) Nous considérons
Pégalité

f+9=1[3. (19)

a) Donner unsensa (19)si f € C*(R") et g € Z'(R"), et la montrer.
b) Donnerunsensa(19)si f € Z?(R") et g € £(R"), et la montrer.

Exercice # 47. (Transformée de Fourier dans L?) Nous travaillons dans (R", %g~, v,,). Rap-

~

pelons que, si f € £, alors f € £%, alors que, si f € L?, on peut définir f comme un
élément de L? (théoréme de Plancherel). Nous nous proposons de montrer un résultat simi-
laire pour les fonctions de L?, avec 1 < p < 2.

Nous travaillons avec des fonctions au lieu de classes.

Rappelons que, si f : R™ — C est borélienne, alors la fonction de distribution de f est
F(t) = Fe(t) = v,({x e R"; | f(x)] > t}), YVt > 0.
Les trois premieres questions sont des rappels.

a) Montrer que F : [0, o0[— [0, 0] est borélienne.
b) Pour 1 < p < oo, montrer la formule

o0
fﬁ=p/ 1 F(t) dt.
0

c) Sil <p < wett > 0, montrer l'inégalité de Markov

1113
F(t) < T

A partir de maintenant, nous supposons f € C.(R", R)\{0}.
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d) Montrer que 0 < | f||l < o0,¥1 < r < c0.
e) Poura > 0, soient

f(z), si|f(z)] <a 0, si|f(x)] <
ga(T) =< a, sif(z)>a , ho(z):=< f(x)—a, sif(z)>a
—a, sif(x)<-—a flx)+a, sif(zr)<-—

(i) Montrer que g, ho € C.(R™).
(i) Calculer |g,|l3 et ||k, |1 en fonction de F.
(iii) Montrer que

1
Il = =

PyVa>0,V1<p<oo.

(iv) Soitt > 0. Nous définissons a = a; > 0 comme la solution positive de

115 =5

apl

Montrer que, pour cet a, nous avons

)

ha(§)] < 5, VEER"

l\D

et
{EeR™; [F(6)] >t} < {€ e R™; |3u(6)] > t/2}. (20)

f) Soit 1 < p < 2. Soit ¢ le conjugué de p. En utilisant (20), le théoréme de Plancherel et
I'inégalité de Markov, montrer I'existence d’une constante C' = C), < oo (donton donnera
la valeur) telle que

Hf“q < Cpflp, V f € C.(R", R). 21

g) En utilisant (21), montrer le résultat suivant, apres lui avoir donné un sens précis : la
transformée de Fourier est continue de L? vers L9.

NB. Le théoréme de Hausdorff-Young affirme que (21) est vraie avec C, = (2m)"™ (qui est une
constante inférieure a celle obtenue par la calcul explicite ci-dessus).

La constante C,, = (27) nest pas la meilleure. Le trés difficile théoréme de Babenko-
n/(2p)
n/q P

Beckner affirme que la (meilleure) constante est (27) 2
qn

Exercice # 48. (Inégalités de Nikolski’i) Cet exercice fait echo aux inégalités de Bernstein
(exercice # 28 de la feuille # 9 et exercice de synthése # 43). Le théme est le méme : des
inégalités entre normes | |, et || ||, qui sont fausses en général, sont vraies sous des hypothéses
concernant le support de la transformée de Fourier.

Pour commencer, nous faisons I'hypothese
feZ'RY), (22)

qui permet de considérer la transformée de Fourier f de f; cette hypothese peut étre affai-
blie, mais ceci demande de travailler dans le cadre (qui dépasse ce cours) des distributions
tempérées.
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Lhypotheése essentielle est

fe)=osilg| =R 23)

(avec 0 < R < oo constante arbitraire). C'est 'analogue de la condition « f est un polyndéme
trigonométrique de degré < n », qui équivauta c;(f) = 0si|j| > n.

Sous ces hypothéses, nous nous proposons de montrer les inégalités de Nikolskii divectes

| fllr < CLRMYPVD | Fl,, VI <p <7 < o0, (24)
10 £l < CoRMVP=YDFL| £l W1 < p <7 <0, Vje [L,n], (25)

ou (1, Cy sont des constantes finies qui peuvent dépendre de n, p et r, mais pas de f ou R.
Au passage, sous les hypothéses (22) et (23), nous montrerons que f € C*.

Sous 'hypothese plus forte (26),

F(€) = 0si ¢ = Rousi|¢] <

g ) (26)

nous avons également 'inégalité de Nikolskii inverse, énoncée et prouvée, par souci de simplicité,
uniquementsin = 1:

| fllr < C3RY 271 £, V1< p <7 <o, 27)

ou (3 est une constante finie qui peut dépendre de p et r, mais pas de f ou R.

Voici la démarche proposée pour montrer (24), (25) et (27).

a) (Argument de changement d’échelle) En supposant I'une de trois inégalités vraie pour R =
1, elle est vraie pour tout R. Voici 'argument pour (24). Soit f une fonction vérifiant (22)
et (23). Soit (avec les notations de I'exercice # 1 a) de la feuille # 10) g := fg.

(i) Montrer que g vérifie les hypothéses (22) et (23), la derniére pour R = 1.
(ii) Enappliquant (24) (supposéevraiesi R = 1)a g, etencalculant|g|,, respectivement
|g|, en fonction de | f|,, respectivement || f||,, obtenir (24) pour f.
b) Vérifier que la méme démarche est valide pour (25) et (27).
c) (Preuvede 24)si R = 1)
(i) Montrer quil existe ¢ € C(R") telle que p(§) = 1si [¢| < R.
(ii) Montrer quil existe ¢ € .Z*(R") telle que D =op.
(iii) Montrer que, de plus, ¢ € Z“(R").
(iv) Montrer que ¢ € Z9(R"),V1 < ¢ < .
(v) Soit f vérifiant (22) et (23) avec R = 1. Montrer que f = f = ). Indication : prendre
la transformée de Fourier dans cette égalité.
o 1 1 1
(vi) Sil <p,q,r < wsonttelsquel + — = — + —, montrer que | f||, < ||, [|f]l,-
r p g

(vii) Conclure.
d) (Preuvede (25)si R = 1)
(i) Montrer successivement que ¢ € C'(R"), 0,4 € £1, @(f) =& p(§), 0 €
ZL*(R"),etd;p e LYR™),V1 <qg<ow,Vje[ln].
(ii) Montrer que f € C*(R")etque d;f = f = d;4,V j € [1,n].
(iii) Conclure.
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e) (Preuve de (27) si R = 1) D’apres les questions précédentes, nous savons que f € C*(R)
etque f' € £P(R) (et, par ailleurs, que f’ € Z*(R)). Il reste 2 montrer (27).

(i) Montrer quil existe ( € CP(R) telle que
((g)—l V¢ € Rtel 1<|§|<1
~ % elque 5 < ¢ < 1.

(ii) Montrer quil existe n € £ (R) telle que /) = (.

(iii) Montrer que f = f’ .

(iv) Conclure, sur le modele des questions précédentes.
Exercice # 49. (Caractérisation de la projection sur les convexes fermés) Cet exercice fait
suite a la section 14.5 du cours. Les formules utilisées apparaissent dans cette section.

a) Soit k : R — R une fonction convexe. Montrer les équivalences
E(0+) >0 < [k(t) = k(0), Vt > 0] < [k(t) = k(0), VO<t<1].

b) Soit £ un espace de Banach avec la propriété (14.21). Montrer que, pour tout convexe
fermé non-vide C' = E'la projections sur C' est bien définie, au sens ot : pour tout z € F,
il existe un unique y € C'tel que |z — y| < ||z — 2|/, V 2 € C. Nous notons y = pc ().
¢) Montrer que

d
y=pc(r) <= [yeCet [%\x—y—t(z—y)\\] >0,Vze(C]|.

t=0+

d) Si E estun espace de Hilbert, retrouver la proposition 14.3.
e) SiE = L”,1 < p < oo, montrer que, pour f ¢ C, nous avons

g=rpc(f) = [geCet/If—glp‘l(sgn(f—g))(h—g)307VheC]-
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Devoir surveillé #1
—le 9 octobre 2018—
—durée 45 minutes—

Sujet #1

Question de cours (3 p.). Soit (X, .7, 1) un espace mesuré. Soit (A,) C 7 telle que A, N A.
Montrer que p(A,) — pu(A).

Exercice 1 (2 p.). Soient A, B, C, D des parties de 1’ensemble X. Si A C C' et B C D, montrer
que ANBCCnND.

Exercice 2 (4 p.). Soit (X, .7) un espace mesurable. Prouver ou réfuter les affirmations suivantes.
a) Si A C X, alors x4 est mesurable.

b) Si f, : X — R sont mesurables, Vn € N, alors {x € X ; sup f,,(x) > 0} est mesurable.
neN

Exercice 3 (4 p.). Calculer liminf (1 + cos(n 7)) n.

n—oo

Exercice 4 (9 p.) (exercice commun a tous les sujets). Nous travaillons dans R, avec la
tribu borélienne Ay et la mesure de Lebesgue v;. B

a) Si I est un intervalle compact de R, alors nous notons I I'union des deux intervalles obtenus en
enlevant de I I'intervalle ouvert qui a le méme centre que I et dont la longueur est un tiers de celle
de I. Exemple : si [ = [—3,3] (de centre 0), alors l'intervalle ouvert qui est enlevé est | — 1, 1], et
donc I = [-3,—1] U1, 3].

De maniére équivalente, si I = [a,b] alors I = [a,a + (b—a)/3] U [a + 2(b — a)/3, ).

(i) Dessiner I si I = [0,1] et si I = [0,1/3].

(ii) Montrer que I est un borélien, et calculer v (1) en fonction de v (I).

b) Nous construisons par récurrence une suite (C});>o décroissante d’ensembles de la maniére
suivante :

1. Cy = [0,1].

2. Si C; s’écrit comme une union finie d’intervalles fermés d. d. d. : C; = Uj2 I, alors Cjy est
défini comme Cj;q = L Ty,

(i) Dessiner Cy, Cy, Cs.

(ii) Montrer que C; est un borélien, V j.

(iii) Calculer 14(C};), j =0,1,2.

(iv) Proposer et montrer une formule pour v4(Cj).
(v) Posons C' = N;>C;. Calculer v4(C).

Sujet #2

Question de cours (3 p.). Soit % un clan de parties de X. Montrer les propriétés suivantes :
a) X € €;

b)si A,B€ €, alors ANB €% ;

c)si A, B €%, alors A\ Be%.

Exercice 1 (2 p.). Soient A, B,C, D des parties de I'ensemble X. Si A C B C C' C D, montrer
que C\ BC D\ A.



Exercice 2 (4 p.). Soit (X, ) un espace mesurable. Prouver ou réfuter les affirmations suivantes.
a) Si & : R — R est dérivable et si f : X — R est mesurable, alors ® o f : X — R est mesurable.
b) Si f,g: X — R sont mesurables, alors {z € X ; g(z) = (f(x))*} est mesurable.

Exercice 3 (4 p.). Calculer limsup (1 + (cos(n7/2))?).

n—o0

Sujet #3

Question de cours (3 p.). Soit (X, .7) un espace mesurable. Soit ( f,,),>0 une suite de fonctions
mesurables, f,, : X — R. Montrer que sup f,, est mesurable.

n>0
Exercice 1 (2 p.). Soient A, B, C, D des parties de 1’ensemble X. Si A C C' et B C D, montrer
que AUBC CUD.

Exercice 2 (4 p.). Prouver ou réfuter les affirmations suivantes.
a) Un borélien est un ouvert ou un fermé.
b) Si f: R — R est une fonction dérivable, alors f est borélienne.

Exercice 3 (4 p.). Calculer limsup (—1)" y/n + (—1)".

n—o0

Sujet #4
Question de cours (3 p.). Soit (X,.7) un espace mesurable. Soient fi, fo,...,fn : X = R
fonctions mesurables. Posons f = (f1,..., fn) : X — R"™. Montrer que f~%(B) € F,V B € PBpn.
Exercice 1 (2 p.). Soient A, B des parties de I’ensemble X. Si A C B, montrer que B C A°.

Exercice 2 (4 p.). Prouver ou réfuter les affirmations suivantes.
a) Une fonction étagée est mesurable.
b) Une limite uniforme de fonctions mesurables est mesurable.

(="
n
E ice 3 (4 p.). Calculer li .
xercice 3 (4 p.). Calculer limsup (n—l—l)

n—o0
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—durée 90 minutes—

Question de cours #1 (3 p.). Soit (X,.7, u) un espace mesuré. Soit f : X — R une fonction inté-
grable. Soient A,B € .7 tels que X = AuB.

a) Montrer que f fduet f f du existent et sont finies.
A B

b) Montrer quef fd,u:f fd,u+f fdu.
X A B

Question de cours #2 (3 p.). Soient (X,.7) et (Y,.¥) deux espaces mesurables. Soit .7 ®.7 la
tribu produit de .7 et .7

PourxeXetEcX xY,soit E,={yeY;(x,y)eE}cCY.

Montrer que pour tout x € X et pour tout E € .7 ®.% nous avons E, € .¥.

Exercice #1 (2 p.) Soit (X, .7, u) un espace mesuré. Soient A,B € .7 tels que u(A) < oo et w(B) < co.
Calculer u(A uB) en fonction de u(A), u(B) et u(A nB).

x2 sixel0,1]nQ
E ice #2 (4 p.) Soit /:[0,1] - R, =13 ’ '
xercice #2 (4 p.) Soit £ :[0,1] f() {x3, sixe[0,11\Q

a) Montrer que f est Lebesgue intégrable sur [0, 1].
1
b) Calculer f f(x)dx.

0
¢) Soit K < [0,1] un compact. f est-elle Lebesgue intégrable sur K ? Justifier la réponse.

Exercice #3 (5 p.) Soit n € N*.

n
a) Montrer que pour tout x € [0,n] nous avons e* (1 - f) <1
b) Calculer

lim f feos Ge/m x (1- )" dx.
0 n

n—oo

Exercice #4 (11 p.) Pour ¢ € R, nous considérons I'intégrale généralisée

00 [l 2
f(t)= f [sin x] e " dx e[0,00].
0 X

a) Peut-on réécrire f(¢) comme une intégrale par rapport a une mesure ?

b) Montrer que la fonction ]0,00[> ¢ -L» f(#) € R est continue.
¢) Montrer que f est de classe C! sur 10,00 et que

d) Calculer lim f(¢).
t—o0

e) Déterminer une formule explicite de f(¢) pour ¢ > 0.
f) Calculer, a partir de cette formule explicite, 11\1% f(@).
t

g) En déduire que f(0) = oo, puis que f(f) =00, V¢ <0.
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Devoir surveillé #3
—le 26 novembre 2018—
—durée 20 minutes—

Consignes

1. Répondre aux questions de cours par «vrai » ou « faux ». Réponse correcte = 2 p. Réponse fausse
=-1 p. Non réponse = 0 p.

2. Pour la question a) de ’exercice, il est demandé de mener les calculs de maniere suffisamment
détaillée, et non pas de justifier applicabilité des théoremes utilisés. Idem pour la question c).

3. Pour la question b), un argument méme esquissé est acceptable.

Vraioufaux #1 2 p.--1p.-0p.).Ona 11011 = 1s.
Vrai ou faux #2 (2 p. - -1 p. — 0 p.). [0,1]\ @ est borélien.

1

Exercice (22 p.). Soit f Z]O,OO[X]O, 1[—’ R, f(x,t) = m

a) (8 p.) Exprimer de deux manieres différentes I = f(x,t)dAo(x,t) comme l'intégrale
10,00[x]0,1[

d’une fonction d’'une seule variable.
b) (8 p.) En étudiant 'une des formules de I trouvées au point a), décider si f est A2-intégrable.
¢) (6 p.) Exprimer I comme la somme d’'une série numérique.
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Devoir surveillé #4
—le 10 décembre 2018, durée 60 minutes—

Consignes. a) Préciser la nature des intégrales qui interviennent dans les calculs.
b) Justifier I'utilisation des résultats théoriques (continuité des intégrales a parametre, théoreme
de Fubini, etc.) et préciser a quel type d’intégrale s’applique le résultat utilisé.

Définitions, formules et résultats utiles. a) cos(2x) = 1 -2 sin?(x), Vx € R.
o0 1
b)f e dx=-,VaeC tel que Rea > 0.
0 a

¢) La fonction I' d’Euler est définie par la formule I'(x) = f t*Le7tdt, Vx> 0.

0
-t

Ye
d) Lintégrale généralisée I(y) = f ﬁ dt est convergente, V y > 0. (Ceci servira dans ’exercice 3.)
0

Exercice 1 (7 p.). En calculant, a 'aide du théoreme de Fubini, de deux facons différentes I'inté-
x sin® (x) dx

(o0}
grale I = f e ¥ sin(2xy)dxdy, déterminer la valeur numérique de J = f e
10,00[x[0,1] 0 X

(La réponse attendue ne consiste pas a réécrire J comme une autre intégrale.)
Exercice 2 (9 p.). Pour a > 0, on pose

2 2
J(a)=f e @y a2 gy y.
10,00[x]0,00[

On considere I'application
W :]0,00[ x]0,00[—]0,00[x]0,00[, ¥(x,y) =(u,v), avec u = xyz, v= x/yz,

On admet que V¥ est bijective.

a) Trouver la fonction réciproque ® = ¥ 1.

b) Montrer que ® :]0,00[x]0,00[—10,00[ x]0,00[ est un C!-difféomorphisme.
¢) En utilisant le changement de variables @, montrer que

1 +1
J(a)=-T (E) r (a_) ; ici, I est la fonction d’Euler.
4 \2 2

© exp(—(x2 +1)y)
1+ x2

Exercice 3 (14 p.). Pour y = 0, soit F(y) :f
0

a) Montrer que F est continue sur [0,o0].
b) Calculer F(0).

¢) Proposer, sans justifier du théoréme utilisé, une formule pour calculer ¢ = lim F(y). Déterminer
y—00

dx. Soit J:f exp(—x2)dx.
0

¢ a partir de cette formule.

d) Proposer, sans justifier du théoreme utilisé, la formule de F'(y) pour y = 0. A partir de cette
formule, pensez-vous que F est dérivable en 0? Pourquoi?

e) A partir de la formule trouvée au point précédent (que I'on admet comme vraie pour y > 0),

montrer que F'(y)=—-e™> —, Vy > 0.
Yy

f) En utilisant les questions a), b) et e) et la convergence de I(y) (voir le résultat utile d)), montrer
que

F(y)=2 nye_td Vy>0
= —— —dat, > 0.
N=3-9) 7 y

g) Pour finir, retrouver, a partir des questions c) et f), la valeur de /.
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Controle terminal
—le 11 janvier 2019 —
— durée 180 minutes —

Consignes pour les questions « standard » « vrai ou faux ». Répondre par «vrai » ou « faux ».
Il n’est pas demandé de justifier la réponse. Réponse correcte = 1 p. Réponse fausse = -0,5 p. Non
réponse = 0 p. Pour les questions « difficiles », les points sont doublés.

Vrai ou faux (standard) #1 (1 p. - -0,5 p. - 0 p.). Soit (X,.7) un espace mesurable. Soit A c X.
Alors y4 : X — R (la fonction caractéristique de A) est mesurable.

Vrai ou faux (standard) #2 (1 p. - -0,5 p. - 0 p.). Soit f : R — R. Si f est borélienne, alors f est
continue.

Vrai ou faux (standard) #3 (1 p. - -0,5 p. - 0 p.). Soit (X,.7) un espace mesurable. Soit f : X — R
mesurable. Alors £~1([0,1]1\Q) e 7.

Vrai ou faux (standard) #4 (1 p. - -0,5 p. - 0 p.). Soit (X,.7, u) un espace mesuré. Soit [ : X —

[0,00[ une fonction mesurable telle que f fdu=0.Alors f =0 u-p. p.
X

Vrai ou faux (standard) #5 (1 p. - -0,5 p. — 0 p.). Nous avons HBg ® Br = Bpe.

Vrai ou faux (difficile) #6 (2 p. - -1 p. - 0 p.). Nous travaillons dans R avec la tribu de Lebesgue
et la mesure de Lebesgue. Il existe une fonction f € .Z1(R) telle que sa transformée de Fourier f
soit donnée par f(cf) =siné, VEeER.

Vrai ou faux (difficile) #7 (2 p. - -1 p. — 0 p.). Nous travaillons dans ]0,27z[ avec la tribu de

Lebesgue et la mesure de Lebesgue. Il existe une fonction f € & 210, 27[) telle que ses coefficients
sin(n
de Fourier ¢, (f) soient donnés par c,(f) = f-(l‘l)’ VneZ.
n
Consignes pour les exercices. a) Justifier, si nécessaire, la mesurabilité des fonctions considé-
rées.
b) Préciser la nature (de Lebesgue, généralisée...) des intégrales qui interviennent dans les énon-
cés et les calculs.
¢) Justifier I'utilisation des résultats théoriques (continuité des intégrales a parametre, théoreme
de Fubini, etc.) et préciser a quel type d’intégrale s’applique le résultat utilisé.

2

Deux formules utiles. a) Z — ==

n=17 6
b)f dx—

. . . .. 3 1, si0<x<n
Exercice #1 (3 p.) Soit f : R — R la fonction 27-périodique donnée par f(x) =

-1, si-m<x<0
a) Calculer les coefficients de Fourier de f.

b) Ecrire, & 'aide de ces coefficients, la conclusion du théoréme de Dirichlet appliqué a f.

¢) Ecrire, a ’aide de ces coefficients, la conclusion de I'identité de Parseval appliquée a f.

E
Exercice #2 (3 p.+1 p.) Soit E(x) la partie entiére de x, avec x € R. T Soit f:[1,00[— R, f(x)= ﬁ
x3

a) Ecrire f comme une « fonction définie par une accolade ».

T. Donc E(x) est le seul entier relatif m € Z tel que m <x <m +1.



b) Justifier I'existence de I'intégrale de Lebesgue I = f(x)dx.
[1,00[

¢) Ecrire I comme la somme d’une série numérique. (La réponse attendue ne doit pas contenir le
signe [.)
d) (Question bonus) Donner la valeur de 1.

Exercice #3 (3 p.) Soit n e N*.
n
a) Montrer que pour tout x € [0,n] nous avons e* (1 - f) <1
n

b) Déterminer, en justifiant la conclusion, la valeur de la limite

lim (1 — f)n [cos(x/n) —sin(2x/n)]dx.
0 n

n—o0

Exercice #4 (3 p.) Nous travaillons dans R” muni de la tribu et de la mesure de Lebesgue. Soient
f,g deux fonctions boréliennes telles que f,g € ZL(R"). A I'aide du théoréme de Fubini, dont on
justifiera 'utilisation, montrer que

[ Fogod=[ rozwds.

Exercice #5 (3 p.) Soit (X,.7, 1) un espace probabilisé. " Soit f : X — [0,00[ une fonction mesu-
rable.

a) Déterminer, en justifiant la conclusion, la valeur de la limite I = lim f " du. (Indication : on
n—00

pourra, par exemple, considérer les ensembles {x € X ; f(x)<1}et {x € X ; f(x) > 1}.)
b) Peut-on avoir I = 2? Justifier.
¢) SiI =1, montrer que f =1 u-p. p.

Exercice #6 (7,5 p.) Soit Q = {(x,y) e R?; 0 < x < y}. Soit

I:fﬂ(ﬁ)e_(xzﬂ%dxdy.

a) Calculer I en utilisant les coordonnées polaires. Justifier le changement de variables.

b) A l'aide du théoréme de Tonelli, dont on justifiera l'utilisation, exprimer I comme I'intégrale
d’une fonction y — g(y), fonction g dont on donnera la formule explicite.

¢) En utilisant les points précédents et une intégration par parties qui sera justifiée, trouver la
valeur de I'intégrale généralisée

o (1= —-y2\2
0 Yy

Exercice 7 (7,5 p.) Nous travaillons dans R muni de la tribu et de la mesure de Lebesgue.

2
On pose, pour ¢ >0 et x € R, ®'(x) = —— e~ (X)(4L)

vamt

a) Pour 1 < p <oco et t >0, montrer que ® € Z?(R) et calculer ||®!|z».

Soit f € ZXR). Soit ulx,t) = f * Pl(x), VxR, V> 0.

b) Montrer que u(-,¢) est continue et bornée, V¢ > 0. ¥

¢) Montrer que u(-,t) € LXR), V¢ > 0.

d) Proposer, sans justifier leur validité mais en expliquant votre raisonnement, des formules plau-

ou 0%u
A ,t’_ :t-
ax(x ) axz(x )

e) Si les formules de la question précédente sont vraies, montrer que

ou %u
E(x,t) = @(x,t), Vxe R, Vit>O0.

ou
bl —(x,1),
sibles pour ¥ (x,1)

+. Donc p est une mesure sur .7 et u(X) = 1.
f. Rappelons que u(-,t) est une notation pour la fonction partielle R 3 x — u(x, ).
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Controle terminal
—2esession, le 25juin 2019 -
—durée 120 minutes —

Consignes pour les questions «vrai ou faux». REpondre par «vrai» ou « faux». Il n'est pas demandé de justifier
la réponse. Réponse correcte =1 p. Réponse erronnée =-0,5 p. Non réponse =0 p.

Vraiou faux #1 (1p.—-0,5 p.—0 p.). Soit (X, .7, i) un espace mesuré. Une fonction mesurable et positive sur
X estintégrable.

Vrai ou faux #2 (1 p.—-0,5 p.— 0 p.). Nous munissons R de |a tribu borélienne %g. Soit f : R — R.Si f est
borélienne, alors f est limite simple de fonctions boréliennes étagées.

Vrai ou faux #3 (1 p.—-0,5 p.— 0 p.). Soit (X, d) un espace métrique. Alors les boréliens de X sont ouverts ou
fermés.

Vraiou faux #4 (1p.—-0,5 p.— 0 p.). Nous munissons [0, 1] de la tribu borélienne et de |la mesure de Lebesgue.
Soit f : [0, 1] — R une fonction borélienne. Si f € .£2([0,1]),alors f € .Z*(]0, 1]).

Consignes pour les exercices. a) Justifier, si nécessaire, la mesurabilité des fonctions considérées.

b) Préciser la nature (de Lebesgue, généralisée...) des intégrales qui interviennent dans les énoncés et les cal-
culs.

o) Justifier I'utilisation des résultats théoriques (continuité des intégrales a parameétre, théoréeme de Fubini, etc.)
et préciser a quel type d'intégrale s'applique le résultat utilisé.

Une formule utile./ e dy = g
0

Exercice #1 (3 p.) Soit f : R — R la fonction continue et 27-périodique donnée par f(z) = |z|si|z| < 7.
a) Calculer les coefficients de Fourier de f.

b) Ecrire, a I'aide de ces coefficients, la conclusion du théoréme de Dirichlet appliqué a f.

¢) Ecrire, a I'aide de ces coefficients, la conclusion de I'identité de Parseval appliquée a f.

Exercice #2 (3 p.) Soitn € N*.
2\ 1
x
a) Montrer que, pour tout z € [0, y/n |, nous avons e x (11— —) < 1.
n
b) Déterminer, enjustifiant la conclusion, la valeur de la limite

Vo N
lim (1 _ x—) da.
0

n—00 n

Exercice #3 (3 p.) Nous travaillons dans R™ muni de la tribu et de la mesure de Lebesgue. Soient f, g deux
fonctions boréliennestellesque f, g € Z'(R™).Al'aide duthéoréme de Fubini, dont onjustifiera l'utilisation,
montrer que

~

[ fa@dc= | f@)ge)dr

Exercice #4 (4 p.) Soit (X, 7, i) un espace probabilisé. T Soit f : X — [0, oo[ une fonction mesurable.
a) Déterminer, en justifiant la conclusion, la valeur de lalimite [ = I(f) = lim / arctan (f™) dpu. (Indica-
n—oo X

tion : on pourra, par exemple, considérer lesensembles {z € X ; f(z) < 1}et{z € X; f(x) > 1})

t. Donc pestune mesuresur .7 et u(X) = 1.



b) Nous considérons le cas particulier ot X = [0, 1], muni de la tribu borélienne et de la mesure de Lebesgue.
Pour tout nombre ¢ € [0, /2], construire une fonction f : [0, 1] — [0, co[ borélienne telleque I(f) = c.

Exercice #5 (8 p.) Poura > O etz > 0, posons H,(z) := / e~ (at*+a/t%) gy

a) Donner un sens a l'intégrale qui définit H,(z), puis mont?er son existence.
b) Montrer que la fonction H,, : [0, co[— R est continue.

c) Calculer H,(0).

d) Montrer que la fonction H, est dérivable sur |0, ool

. - . Q
e) Calculer, pourz > 0, H, (x) enfonction de H,(x) (on pourra utiliser le changement de variablet = —, avec
s

o convenablement choisi).
f) En déduire que

1
H,(z) = 5\/562‘/@, Va>0,Vz>D0.

Exercice #6 (7 p.) Nous travaillons dans R muni de la tribu et de la mesure de Lebesgue.

L (x4
On pose, pourt > Oetx € R, &' (z) = —e (a%)/(41),
VAt

a) Montrer que ' € Z'(R),Vt > 0.

b) CaIcuIer@, avect > 0. P

) Montrer, a partir de la formule précédente, que 5 ®* = s+t V5 ¢ > 0.

d) Montrer que ®° * ®! est continue, V s,t > 0.

e) Enutilisant les deux questions précédentes et la formule d'inversion de Fourier, montrer que ®* x ®! = ®s+t,
Vs, t>0.
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Auto-controéle #1
—le ler octobre 2019—
—durée 35 minutes—

Exercice 1. Soient A, B,C, D des parties de I'ensemble X. Si A C C' et B C D, montrer que
A\D cC C\B.

Exercice 2. Soit (X,.7) un espace mesurable. Prouver ou réfuter les affirmations suivantes.
a) Si A C X, alors y4c est étagée.
b) Si f,g: X — R sont mesurables, alors {z € X ; f(z) < g(x)} est mesurable.

Exercice 3. Calculer liminf (1 + cos(nm)) n.
n—oo

Exercice 4. Soit (X, .7, 1) un espace mesuré. Soit B € .7. Soit v : .F — [0, 00|, ¥(A) := u(ANDB),
VA € 7. Montrer que v est une mesure.

Exercice 5. Nous travaillons dans R muni de la tribu borélienne et de la mesure de Lebesgue v.
SOlt f = X[O,l]'
1. Montrer que f est borélienne.

2. Montrer qu’il n’existe pas de fonction continue g : R — R telle que f = g v1-p. p.
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Devoir surveillé #1
—le 7 octobre 2019—
—durée 45 minutes—

Question de cours (4 p.). Soit (X, .7) un espace mesurable. Soit f = (f1, fa,..., fu) : X = R™.
Montrer 1’équivalence des propriétés suivantes :

1. fi : X — R est mesurable, 1 =1,...,n;

2. pour tout B € Bga, [~H(B) € 7.

Exercice 1 (3 p.). Prouver ou réfuter les affirmations suivantes.
a) Un borélien est un ouvert ou un fermé.

b) Soit (X, .7, ) un espace mesuré. Si A € 7, alors u(X) = u(A) + p(A°).

Exercice 2 (3 p.). Calculer liminf(n + 1)71".

n—o0

Exercice 3 (4 p.). Nous travaillons dans R, avec la tribu borélienne %g et la mesure de Lebesgue
Vy.

a) Calculer v1(Q).

b) Soit f = xq@. Existe-t-il une fonction continue g : R — R telle que f =g v1-p.p.?

Exercice 4 (5 p.). Soit (X,.7) un espace mesurable. Soit f : X — R et soit g : X — R,
g :=exp(f). Montrer que

[f est mesurable] <= [g est mesurable].

Exercice 5 (3 p.). Soient A;, Ay, By, By des parties de I’ensemble X. Montrer que

(Al U AQ) \ (Bl U BQ) C (Al \ Bl) U (AQ \ Bg)
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Auto-controle #2
—le 22 octobre 2019—
—durée 60 minutes—

Exercice #1.

1. Montrer que arctany = 1 Vy=0.

Yy
+y2’
arctan
2. Montrer que y — arerany est décroissante sur ]0,o00][.
Yy

3. Soit (X,.7, u) un espace mesuré. Soit f : X — [0,00[ une fonction mesurable. Calculer
lim nfarctan(i).
n—oo n

Exercice #2. Soit n € N*.

x\n
1. Montrer que pour tout x = 0 nous avons (1 + —) e F<1.
n

2. Calculer

n

. X\ —ax
lim (1 + —) e ““dx, avec a € R parameétre.
n—oo 0 n

On distinguera lescasa >1eta <1.

Exercice #3. Pour ¢ € R, nous considérons I'intégrale généralisée

00 [l 2
f(t):f [sinz] e " dxe[0,00].
0 x

1. Peut-on réécrire f(¢) comme une intégrale par rapport & une mesure ?

2. Montrer que la fonction ]0,00[> t»L f(t) € R est continue.

3. Montrer que f est de classe C! sur ]0,00[ et que

4. Calculer tlim f(t).

5. Déterminer une formule explicite de f(¢) pour ¢ > 0.

6. Calculer, a partir de cette formule explicite, 11\1% f(¢t).
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Devoir surveillé #2
—le 4 novembre 2019—
—durée 90 minutes—

b
Consignes. Pour chaque intégrale de la forme f(x)dx, préciser §’il s’agit d’'une intégrale de
a
Riemann, généralisée et/ou par rapport a la mesure de Lebesgue ; justifier son existence et préciser
si les résultats utilisés concernent les intégrales de Riemann, généralisées ou par rapport a la
mesure de Lebesgue.

Question de cours #1 (2 p.). Enoncer et prouver le lemme de Fatou.

Question de cours #2 (4 p.). Soient (X,.7) un espace mesuré et (Y,.¥,v) un espace mesuré, avec
v(Y) < oo.
Montrer que, pour tout E € .7 ® ., I'application X 3 x — v(E ) est .7 -mesurable.

X sinx

dx.

Exercice #1 (8 p.) Nous admettons la convergence de 'intégrale généralisée I = f
0 X
00 XL

sinxdx.

Pour tout ¢ > 0, posons S(¢) :f
0 X

a) Montrer que S est de classe C! sur 10,00[ et calculer S'(¢) pour ¢ > 0.
b) Déterminer tlim S(t) et calculer S(¢) pour tout ¢ > 0.
—00

¢) Soit A > 0. ,
o0 A LIX o1
[ e “sinx da
A x

<2 Vit=0
\A, ety .
A —tx

. A .
. X e sinx sinx
(ii) Prouver que lim ——dx= f dx.
t—0+Jo X 0 X

(1) Montrer que

oo
sinx
dx.

d) En déduire la valeur de I = f
0o X

Exercice #2 (3 p.) Soit f :[0,00[— R une fonction continue bornée. Pour s > 0, soit
o0
ZL(s)= f e f(x)dx.
0

Montrer que .Z est bien définie et calculer lim £(s).

§—00

Exercice #3 (5 p.) Soit f:[0,1] — [0, 1] une fonction borélienne. Calculer
1
lim nf exp (@) - 1] dx.
n—oo 0

n
Indication : On pourra utiliser le développement en série entiére de I'’exponentielle pour mon-
el —1

trer que la fonction y — , avec y > 0, est croissante.
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Auto-controle #3
—le 19 novembre 2019—-
—durée 30 minutes—

1

vn+1

Extzarcice #2. Nous travaillons dans R muni de la mesure de Lebesgue v;. Soient f € L1 et g(x) =
e ,VxeR.

1. Montrer que f * g est continue.

Exercice #1. Soit a,, = , Vn € N. Pour quelles valeurs de p €[1,00] a-t-on (a,) € ¢??

2. Montrer que f * g est intégrable.

Exercice #3. Soient U = {(x,y) e R%; 0 <x < y} et

XYY =%) _(xiy)2
I:f e " dxdy.
U (x+y)* Y

u=x+
1. Calculer I a I'aide du changement de variables { Y , que l'on justifiera.
v=2xy

2. Obtenir la valeur de I en utilisant les changements de variables x =ty et (¢ + 1)y = z.
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Devoir surveillé #3
—le 25 novembre 2019—
—durée 45 minutes—

b
Consignes. Pour chaque intégrale de la forme f(x)dx, préciser §’il s’agit d’'une intégrale de

a
Riemann, généralisée et/ou par rapport a la mesure de Lebesgue ; justifier son existence et préciser
si les résultats utilisés concernent les intégrales de Riemann, généralisées ou par rapport a la
mesure de Lebesgue.

Question de cours (4 p.). Soit (X,.7,u) un espace mesuré. Soit 1 < p < co. Soient f,g: X — R
deux fonctions mesurables.
Montrer que ||f +glle < IfllLr +lIgllLe.

Exercice #1 (10 p.) Soient 0 <a < b. Soit

D={x,y)eR?;0<x<y<VaZ+leta<xy<b).

a) Montrer que D est un borélien.
b) A 'aide du changement de variables u = y% —x

I= f (y% = x2)* (x® + y®)dxdy en fonction de a et b.
D

2 v =xy, que lon justifiera, calculer l'intégrale

1
Exercice #2 (5 p.) Nous travaillons dans (R, %g,Vv1). Soit f :]11,00[— R, f(x) = 7 Pour quelles
x

valeurs de p €[1,00] a-t-on f € £?(]1,00[)?

Exercice #3 (3 p.) Soit f :R—R, f(x)= e~**. Calculer f = f£(0).



Université Claude Bernard Lyon 1 Licence de mathématiques 3° année
Mesure et intégration Année 2019-2020

Auto-controle #4
—le 2 décembre 2019—
—durée 45 minutes—

Exercice #1. Soit f : R — R la fonction 27-périodique définie par f(x)=x, V —m <x < 7. A partir
du calcul des coefficients de Fourier de f, calculer la somme

1
k;) (4k +1)(4k +3)’

Exercice #2. Soit
* —t,—n/2 —|x|?/t n
f(x):f e ‘'t e dt, VxeR".
0

1. Montrer que f est borélienne.
2. Montrer que f est Lebesgue intégrable.
3. Calculer f.
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Devoir surveillé #4
—le 13 décembre 2019—
—durée 45 minutes—

b
Consignes. Pour chaque intégrale de la forme f(x)dx, préciser §’il s’agit d’'une intégrale de
a
Riemann, généralisée et/ou par rapport a la mesure de Lebesgue ; justifier son existence et préciser
si les résultats utilisés concernent les intégrales de Riemann, généralisées ou par rapport a la
mesure de Lebesgue.

Question de cours (6 p.) Soient f,g:R" — <E des fonctions Lebesgue intégrables (par rapport a
la mesure de Lebesgue A,). Montrer I'égalité f * g = f g.

Exercice #1 (6 p.) Soit f : R — R la fonction 27r-périodique définie sur ] — 7, 7] par f(x) = |x|.
1. Parmi les théoremes de Fatou, Dirichlet et Fejér (sur les séries de Fourier), lesquels peut-on
appliquer a f?

1
2. Par utilisation justifiée de certains de ces résultats, obtenir les valeurs des sommes Z —

nz1
et Z

n=1 1

1
Exercice #2 (6 p.) Soient f,g:R— R, f(x) =exp(—2|x|), Vx e R, g(x) = 1o
X
1. Montrer que f,g € Z(R) (par rapport a la mesure de Lebesgue v1).
2. Calculer f et 3.

Exercice #3 (4 p.) Existe-t-il une fonction f : R — C, 27-périodique et telle que f € £2(10,2x[) (par
1

rapport a la mesure de Lebesgue A1), avec la propriété c,(f)=—, Vne Z\{0}?
n
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Controle terminal
—le 7 janvier 2020 —
— durée 180 minutes —

b
Consignes. Pour chaque intégrale de la forme f(x)dx, préciser §’il s’agit d’'une intégrale de

Riemann, généralisée et/ou par rapport a la mesﬁre de Lebesgue; justifier son existence et pré-
ciser si les résultats utilisés concernent les intégrales de Riemann, généralisées ou par rapport
a la mesure de Lebesgue. Lors de l'utilisation d'un résultat théorique, il faudra vérifier que ses
hypotheses sont satisfaites.

Indication. Les exercices #1 — #3 sont standard. Les exercices #4 — #7 demandent plus de ré-
flexion.

Question de cours #1 (2 p.) Soit (X,.7,u) un espace mesuré. Soient f : X — Ret A€ .. Si
I'intégrale f f du existe, montrer que l'intégrale f f du existe.
X A

Question de cours #2 (3 p.) Montrer que $Brn ® Brm = PBrn+m.

Exercice #1 (2 p.) Soit (X,.7) un espace mesurable. Soit f : X — R une fonction mesurable. Soit
g: X—-R,

(x) = 1, sif(x)gZ
£ 0, sifx)ez’

Montrer que g est mesurable.

Exercice #2 (3 p.) Soit f : R — R une fonction borélienne. Si f est Lebesgue intégrable, donner un

sens a f exp(—n|sinx|) f(x)dx (avec n € N) et calculer lim f exp(—n|sinx|) f(x)dx.
R n—o0 Jp

Indication pour Pexercice #3. Si C € C1(Ja,o0[) et lim C(y) =0, alors
y—o00

o0
C(y)= —f C'(¢t)dt (intégrale généralisée), Vy > a.
y

oo exp(—x2y)

1+ 2 dx.

Exercice #3 (6 p.) Pour y =0, soit F(y) :f
0
. Montrer que F' est continue sur R..

. Calculer F(0) et déterminer lim F(y).
y—00

1

2

3. Montrer que F est dérivable sur R}.

4. Montrer que F est, sur R}, solution d'une équation différentielle du premier ordre s’expri-

o0
mant a ’'aide du nombre I = f exp(—x2)dx.
0

ot

En déduire, sous forme intégrale, une expression de F(y) valable pour y > 0.

6. En déduire la valeur de I.



Indications pour P'exercice #4.
(a) Soit f :R—C. Soit g:R—C, g(x) =xf(x), Vx€R. Si f,g € LN (R, Br,v1), alors feCYR,C) et
g=1f".
(b) Partir de I’égalité (x + 1) h(x) = f(x), Vx €R.
(¢) Combien vaut flim h(&)?

——00

(d) SiCeCl(J-oo,al) et lim C(y)=0, alors
y——00
y
C(y) :f C'(t)dt (intégrale généralisée), V y < a.
1
Exercice #4 (5 p.) Soit f € L1 (R, Bg,v1). Soit h: R — C, h(x) = P f(x), Vx € R. Montrer que
xX+1

- ¢ .
h(é) = —zf e F(t)dt, VEER.

—00

Indication pour I'exercice #5. Coordonnées polaires.

Exercice #5 (4 p.) Soit || || une norme sur R2. Montrer qu’il existe une constante C €]0,00[ telle
que, pour toute fonction borélienne f :[0,00[— [0, 0],

[ rasiraz=c [ sz
R2 R2
(Rappelons que | | est la norme euclidienne standard.)

Exercice #6 (3 p.) Soit g € C1([0,27],R). Soit f : R — R la fonction 27-périodique telle que f(x) =
g(x), Vx €[0,2n[. Montrer que

1 27
en(l = fo gD dt, YneZ\ (o),

Indications pour I’exercice #7.
(a) Si K <R est un compact, alors il existe une suite (f;) € C*(R,[0,1]) telle que f; \ xk.
(b) Pour la question 3, utiliser le théoréeme de la classe monotone.

(c) La question 3 est plus difficile, on peut 'admettre et traiter la question 4.

Exercice #7 (8 p.) Nous travaillons dans (R, Zg,v1). Soit ¢ : [a,b] — [c¢,d] une fonction de classe
C1 telle que ¢(a) = c et ¢p(b) = d. Nous nous proposons de montrer I'égalité

d b
f f(x)dx :f FoyNP'(y)dy, V¥ f :[c,d] — R borélienne et bornée. (1)

1. Prouver (1) si f :[c,d] — R est continue.
2. Prouver (1) si f = yk, avec K c[c,d] compact.
3. Soit

A ={B € HPy.q1; [ = xB satisfait (1)}.

Montrer que &7 = B¢ q).

4. Prouver (1) si f :[c,d] — R est borélienne et bornée.
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Contrdle terminal —seconde chance —
—le 25 juin 2020 -
—durée 120 minutes —

Consignes pour la rédaction

b
Pour chaqueintégraledelaforme [ f(z)dx,précisers’ils’agitd’'une intégrale de Riemann, généra-

a
lisée et/ou par rapport a la mesure de Lebesgue; justifier son existence et préciser si les résultats utilisés
concernent les intégrales de Riemann, généralisées ou par rapport a la mesure de Lebesgue. Lors de
l'utilisation d’un résultat théorique, il faudra vérifier que ses hypothéses sont satisfaites.

Exercice # 1. Soient

001_
P [Ty,
0 Xz

o0 1 _
F(t) = / BT e dx, ¥Vt > 0.
0

2

a) Etudier l'existence et la finitude de I en tant quwintégrale généralisée et de Lebesgue.

b) Montrer que F est deux fois dérivable sur |0, co[. Déterminer (en justifiant les calculs) F' & partir du
calcul de F".

c) Calculer .

d) En utilisant I'identité
xr
1—cosx = / sint dt,
0

montrer que

/ smmdx:L
0 T

Exercice # 2.Soit f : R — R,

@) = {xe‘x, siz >0

0, siz <0

-~

a) Justifier lexistence de g := f.

b) Calculer g.
Dans les trois questions suivantes, nous travaillons avec la mesure de Lebesgue v .

c) Calculer ||g||:.

d) Calculer ||g|| .

e) Montrer que ||g]|;2 < /7.

f) Pour quelles valeursdep € [1, 0] a-t-ong € ZP(R,11)?



g) Justifier I'existence de h := 3.
h) Calculer h.

Exercice # 3. Soient f, g :]0, co[— [0, co[ deux fonctions boréliennes. Montrer que

A)mp f (g) g(zy) drdy = %/OOO @ da /Ooog(x) I

Exercice # 4. Soit (X, .7, ) un espace mesuré. Soit f : X — [0, oo[ une application intégrable. Nous
nous proposons de montrer le lemme de Lebesgue :

Ve>0,30=4d(e, f) >0telque [A € T, u(A) <] = /fdu<5.
A

a) Montrer le résultat lorsque f est étagée, en prenant § < ° .
max f
b) Soit f intégrable.
(i) Montrer quil existe g étagée positive telle que g < f et / g > / f—e/2.

(i) Montrer que nous pouvons prendre (e, f) := d(¢/2, g).
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Devoir maison # 1
—arendre le vendredi 23 octobre 2020 -

On pourra utiliser tous les résultats des six premiers chapitres du support de cours (mais pas les
résultats des chapitres suivants).

Exercices de routine

Exercice # 1. Soient A, B, C des parties de 'ensemble X . Si
AUC=BUCetANC=BnNC,

montrer que A = B.

Exercice # 2. Calculer

limsup ((—1)"n* 4+ n” Inn),

n
olta,b € R sont des parametres.
Exercice # 3. Montrer que N[X| est dénombrable.

Exercice # 4. Soit (X, .7) un espace mesurable. Soit f : X — R une fonction telle que
f(a,b]) € 7, Va,beQtelsquea < b.

Montrer que f est mesurable.
Exercice # 5. Soit (F),),>1 C Z(R). Soit

f:R—1[0,00], f(x):= f:ln(l + |x|") x dist(x, F,), Vo € R.

n=1
Montrer que f est borélienne.
Exercice # 6. Expliquer, avec ses propres mots, les notions suivantes :
a) Espace mesuré.
b) Fonction mesurable.
c) L'intégrale de Lebesgue d’'une fonction positive.
d) Fonction Lebesgue intégrable.
Quelles sont les pré-requis dont on a besoin pour définir rigoureusement ces notions?

Exercice # 7. Etudier 'existence et la finitude de

1 —cosxd
xo .
0

avec a € R parameétre, au sens des intégrales généralisées et de Lebesgue.

Exercice # 8. Soit

1
[::/ In(1 —x)dx
0

(intégrale généralisée). Calculer [ :



a) A partir de la définition de l'intégrale généralisée.
b) En utilisant un développement en série entiére.
Justifier par un calcul direct 'égalité des deux résultats obtenus.

Exercice # 9. Calculer

lim (1 — f) dx,
n—oo 0 n

intégrale étant une intégrale de Riemann.
(Il peut étre utile de considérer le développement en série de la fonction ¢ — In(1 +t),avec |t| < 1.)

Exercice # 10. Soit

I, ;:/ cos(nT) 4 n > 9
0 ]. —+ "

(intégrale de Lebesgue).
a) Montrer que [, existe,Vn > 2.
b) Calculer lim I,,.

n—oo
Exercices avancés

Exercice # 11. Soit (z;);>1 C R une suite de réels. Pour chaque ¢ > 0, soit
Up == Ujsi]a; —t)27 2 +1/27].
Montrer que la fonction
f:]0,00[—]0, 00, f(t) :=11(Uy), Vit >0,

est continue et surjective.

Exercice # 12. Soit f : R” — R une fonction Lebesgue mesurable bornée. Montrer qu’il existe g, h :
R™ — R telles que :

a) g et h sont boréliennes.
b) g = hv,-p.p.
o) g(z) < f(x) < h(x),Vx e R™

Exercice # 13. Soit f : R — R telle que :
1. f estbijective.
2. feCh
3. f'(t) >0,VteR.

Soit f.11 la mesure image de la mesure de Lebesgue v, sur %y par f. Rappelons que
f*l/l(B) = Vl(f71<B)), VB S %R-
Montrer que

fun(B) = /B(f‘l)’(t) dvi(t), ¥ B € Bg.

(On pourra commencer par le cas ol B est un intervalle compact.)

Exercice # 14. Soit ¢ : [a, b] — [c, d] une fonction telle que :

2



1. &eC.
2. ®'(t) > 0,Vt € [a,b].
3. ®(a) =cet P(b) =d.

Montrer que, pour toute fonction borélienne et Riemann intégrable f : [c,d] — [0, oo, la fonction
f o ® @' est borélienne, et que nous avons

/ fdr= [ @@ @@ ano 0

(la premiére intégrale étant une intégrale de Riemann).
(On pourra commencer par étudier le cas des fonctions en escalier.)

Exercice # 15. Soit (X, .7, i) une espace mesuré, avec 4 finie. Soit
F :={f: X — R, festmesurable}.

Soit

_ [f =4l Z

Pour (f,) C Z et f € F, montrer I'équivalence des propriétés suivantes :
@ lim d(fn, f) = 0.
n—oo

(i) Pourtoute > 0,

lim pu({e € X |fulw) = f(2)] > ) = 0.
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DMI corrigé

Exercices de routine

Exercice # 1. Soient A, B, C des parties de 'ensemble X . Si
AuC=BUCetANC=BnNC,
montrer que A = B.
Solution (TT). On a que
A= ((AuC)\C)u(ANnC)=((BuC)\C)u(BNC)=B.

Justifions la premiere égalité. Pour montrer l'inclusion C, soitx € A.Six € C,alorsx € AN C etsi
x ¢ C,alorsz € (AUC) \ C.Inversement, ANC C Aet(AUC)\C =A\C C A. O

Exercice # 2. Calculer

limsup ((—1)"n* +n” Inn),

n

outa,b € R sont des parametres.

Solution (JK). On distingue les cas

a >0 oub > 0.Dans ce cas

sup ((—1)* k" + k* Ink) > sup ((2k)* + (2k)"In(2k)) = +oo

k>n 2k>n

et donc

limsup ((—1)"n* + n” Inn) = +oo.

n
a =0 eth < 0.Maintenant n® Inn est une suite qui tend vers 0; donc

limsup ((—=1)" n” 4+ n® Inn) = limsup(—1)" + limn” Inn = 1.

a < 0 etb < 0.Maintenant ((—1)” n®+nb In n) est une suite qui tend vers 0; donc

limsup ((—=1)"n* + n” Inn) = lim ((=1)"n* + n’ Inn) = 0. O

n n

Exercice # 3. Montrer que N[ X] est dénombrable.

Solution (TT). On rappelle que N[.X| dénote I'ensemble de polynémes en la variable X avec des coefhi-
cients dans N. Soit

Dy :={P € N[X];deg P < k}.

Lapplication ®: N*1 — D, définie par ®(a, . .., a;) := S.r_, a; X" est bijective et comme N¥*! est
dénombrable, on conclut que D, est dénombrable. Il ne reste qu'a obsérver que N[.X] = | J, Dj, et de se
rappeler qu'une réunion dénombrable d’ensembles dénombrables est dénombrable. O

1



Exercice # 4. Soit (X, .77) un espace mesurable. Soit f : X — R une fonction telle que
f(a,b]) € 7, Va,beQtelsquea < b.
Montrer que f est mesurable.

Solution (JK). Soit o/ la famille des intervalles ouverts |a, b, a < b, a,b € Q. Montrons que la tribu
T (o) engendrée par <7 coincide avec la tribu borélienne de R. Soit « € R. Comme tout nombre réel
est limite d’une suite décroissante de nombres rationnels, il existe une suite (a,,) C QN]a, +oo[ dé-
croissante t.q. |a, +oo[= J, Jo,, n]. La classe monotone engendrée par o7 et donc aussi la tribu .7 (.«7)
contient donc la famille o7’ des intervalles ouverts |a, +oo[, avec a € R. D’apres la proposition 2.16 b)
(ii), la tribu engendrée par <7’ est la tribu borélienne. On a alors

@sz(d/)cﬂ(d)cﬂﬂg,

les inclusions étant la conséquence des inclusions &7’ C 7 (/) et &f C g (exercice 2.12).
Maintenant, 'énoncé est une application directe de la proposition 3.19. Selon cette proposition, 'hy-

pothése que f~'(Ja,b]) € 7, Va,b € Qtelsque a < bentraine que f~*(A) € , VA € Br etdonc f

est mesurable. O

Exercice # 5. Soit (F},),,>1 C Z(R). Soit

f:R—=[0,00], f(z):= iln(l + |z|") x dist(z, F,), Vo € R.

n=1
Montrer que f est borélienne.

Solution (TT). On se rappelle du cours de topologie que, pour tout F' C R, la fonction dist(-, F') est conti-
nue. En effet,si [' # (),

| dist(x, F) — dist(y, F)| < |t —y| pourtousz,y € R

et dist(x, () = oo pour tout 2. On note également que la fonction f est bien définie (f(x) peut étre fini
ou infini) car tous les termes de la somme sont positifs.

On a donc que pour tout N la somme partielle jusqu’a N est une fonction continue : R — [0, o]
(comme la composition, le produit et la somme de fonctions continues) et f est borélienne, comme limite
simple de fonctions continues. O

Exercice # 6. Expliquer, avec ses propres mots, les notions suivantes :
a) Espace mesuré.
b) Fonction mesurable.
¢) Lintégrale de Lebesgue d’'une fonction positive.
d) Fonction Lebesgue intégrable.

Quelles sont les pré-requis dont on a besoin pour définir rigoureusement ces notions?

Solution (JK).

a) Un espace mesuré est un ensemble X muni d'une tribu .7 et d’'une mesure x. Une tribu est une
famille .7 de parties de X, qui satisfait les conditions : 1) ) € .7, ii) 7 est fermé sous l'opération de
prendre le complémentaire, iii) .7 est fermé sous 'opération de prendre des unions dénombrables.
Une mesure est une fonction i : 7 — [0, +00], qui satisfait u()) = 0 et qui est o-additive, c.a.d.
(U en An) = 2 nen #(Ay) pour une collection d’ensembles A,, € .7 deux a deux disjoints.



b) Soit f : X — R une fonction. Pour parler de la mesurabilité de f, X doit étre muni d’une tribu .7.
On peut donc définir la notion de fonction étagée : c’est une fonction g : X — R qui est combinaison
linéaire d’'un nombre fini de fonctions caractéristiques d’ensembles mesurables A;, g = > | a;x4,,
a; € R, A; € 7.Maintenant f est mesurable si f est limite simple d’'une suite de fonctions étagées.
De plus, une fonction f : X — R™ est mesurable si ses composantes f; sont mesurables.

Il savere quune fonction f : X — R est mesurable si et seulement si 'image réciproque d’'un boré-
lien est un membre de 7.

) Soit f : X — [0, +o0]. Pour parler de I'intégrale de f (au sens de Lebesgue), 'ensemble X doit étre
muni d’une tribu .7 et d’'une mesure y, c.a.d. (X, 7, u) doit étre un espace mesuré, et f doit étre
mesurable.

Une fonction étagée positive est une fonction g : X — R qui est combinaison linéaire positive d’'un
nombre fini de fonctions caractéristiques d’ensembles mesurables A;, g = Y, a;xa, (aveca; > 0).
Pour une telle fonction g, I'intégrale est définie comme

[o- i;aiu<Ai>;

il faut montrer que I'expression a droite ne dépend pas du choix de la combinaison linéaire positive
(des a; et A;) pour exprimer g. Puis on définit 'intégrale de f par

/f = sup{/g;g < f, g étagée positive}.

Il existe une formulation équivalente qui est plus intuitive : toute fonction positive mesurable f est
limite simple d’'une suite croissante (g,,) de fonctions étagées. On a alors

[1=m [

Dans ce cours, l'appellation « intégrale de Lebesgue » d’une fonction est réservée au cas ou X = R",
T = Pgrn (latribu boréliennne) et ;1 =la mesure de Lebesgue.

d) Soit (X, .7, u) un espace mesuré. Une fonction f : X — [0, +oo] (positive!) est intégrable si f est
mesurable et son intégrale [ f est finie. Une fonction f : X — R estintégrable si f; = max{f,0}
et f — f, sontintégrables (d’'une maniere équivalente, | f| est intégrable).

On peut élargir 'ensemble des fonctions pour lesquelles une intégrale existe par le processus de com-
plétion. On utilise la mesure i pour définir qu'une partie A C X est négligable si elle est incluse dans
un B € .7 de mesure nulle. La tribu complétée .7 est la plus petite tribu qui contient .7 et tous les
ensembles négligeables. On appelle donc une fonction .7 -mesurable si elle est mesurable par rap-
port a la tribu complétée. I existe une unique mesure i, qui prolonge y sur .7 et la définition de
lintégrale se fait alors comme plus haut, mais avec la tribu et la mesure complétée. Ca ne change pas
grand-chose, car pour toute fonction f qui est .7 -mesurable on trouve une fonction g mesurable (par
rapport 3 .7) t.q. f = g presque partout etdonc [ f = [ g.

Dans ce cours, 'appellation « fonction Lebesgue intégrable » est réservée au casou X = R", 7 =
P le tribu borélien et ;1 =1a mesure de Lebesgue ou les versions complétées.

]

Exercice # 7. Etudier I'existence et la finitude de

*1 —Cosxd
xo o
0

avec a € R parametre, au sens des intégrales généralisées et de Lebesgue.



Solution (TT). D’abord notons que I'intégrande est une fonction continue positive et donc l'intégrale de
Lebesgue et I'intégrale généralisée coincident. Nous avons que

/Ool—cosxdx_/l1—cosxdx+/°°1—Cosxdx_:h+]2
0 x* 0 x® 1 x°

et nous allons étudier les deux intégrales I; et I; séparément.
Dabordsia > 1,1, < [~ 2 dx < co.D’autre part pour toutk > 0, cos x est négatif dans l'intervalle
[(4k + 1) /2, (4k + 3)7 /2] eton a:

o r(4k+3)m/2 q
L>) / — da.
o J (4k+1)m/2 L
Sia < 0, cette somme est manifestement infinie. Pour a € (0, 1],1a fonction 1/2* est décroissante et
(4k+3)m/2 1 (4k+5)m/2 ¢
/ — dx Z / — dx.
(4k+1)m/2 T (4k+3)w/2 T
Il en suit que

0 pUk+3)T/2 1,8, [Uk+3)T/2 4 0 (Ek+B)T/2
I > / —dx2—< / —dm+2/ —dx)

o J (kt1)rj2 T 2N = Jaktynj2 27 o J (kt3)m/2 T

1 [ 1
2—/ — dx = oo.
2 Jsrpp ¢

En conclusion /5 < oo poura > let Iy = ocopoura < 1.
Maintenant, considérons /; dans le cas ot a > 1. En utilisant le développement limité de cos x, on
1 —cosx
2
finiessia — 2 < 1.
Enfin, on conclut que 'intégrale donnée existe pour tout a et elle est finie ssi [; et I, sont finies ssi
a € (1,3). O

1,2

. . . . . x LY . z

voit que l1rr(1) = 1/2. En particulier, [; < oo ssi / — dx < o0o. Cette derniere intégrale est
T—r 0 X

Exercice # 8. Soit

1
I::/ In(l — z)dz
0

(intégrale généralisée). Calculer [ :
a) A partir de la définition de l'intégrale généralisée.
b) En utilisant un développement en série entiére.

Justifier par un calcul direct 'égalité des deux résultats obtenus.

Solution (JK).
a) Par définition de l'intégrale généralisée,
! 1—¢ 1
[ := lim 6 In(1 — z)dr = lim i Inydy = lim [ylny -y}~ = ~1.

b) On calcule I'intégrale comme une intégrale de Lebesgue (proposition 6.43). On développe In(1 — z)
en série entiere :

+oco 5

In(l1—-1x) = —Z%, Ve 0,1].

n=1



+oo
X s . o . ) \ z PN
On observe que E — est une série de termes positifs sur [0, 1[. D’apres le théoréme 6.34, on peut
n

n=1

échanger la sommation avec 'intégrale dans 'expression

1 +0o " +00 ] " +00 L 1 +00 1
N ML o | R W et

pour la troisieme égalité, nous avons identifié intégrale de Lebesgue et intégrale de Riemann (pro-
position 6.42).

1 1 2
En appliquant + = d’'une maniére iterative on obtient
nn+1) (m+1n+2) nn+2)

1 ok
;n(nﬂ):(uzk)'

Exercice # 9. Calculer
lim [ (1-2)" a,
n—oo 0 n

intégrale étant une intégrale de Riemann.

(Il peut étre utile de considérer le développement en série de la fonction ¢ +— In(1 +t),avec |t| < 1.)

Solution (TT). Comme l'intégrande est une fonction continue positive, on peut considérer l'intégrale
comme une intégrale de Lebesgue. Soit f,,(z) := x[on((*)(1 — 2/n)". Pour tout x > 0,0ona:

fa(x) = Xponi(x) exp(nIn(l —z/n)) = xpn() exp(zg(z/n)),

In(1 —1)

oig: |0, 1[— Restdéfiniepar g(t) := .En calculant ¢/(¢) ouen considérant le développement

en série de g, on voit que g est décroissante sur |0, 1[. On a également lim; .o g(t) = —1.
Montrons que pour tout x > 0 et tout n, f,(x) < foi1(x).Siz > n+ loux = 0,alors f,(x) =
fas1(x) =0.8ix € [n,n+ 1], alors f,(x) = 0et f,+1(z) > 0.Enfinsi 0 < z < n, alors

ful@) = exp(zg(x/n)) < exp(zg(z/(n+1))) = fun(2),

parlaremarque d’avant. De plus, lim,, f,,(2) = X[o,00[(%) exp(—2). En appliquant le théoréme de conver-
gence monotone et en identifiant I'intégrale de Lebesgue avec une intégrale généralisée (proposition
6.43), on obtient que

lim an(x) dx = /000 exp(—z)de = [ — exp(—x)}go =1 O

n—o0

Exercice # 10. Soit

zn;:/ Cos(nT) 4 > 2
0 1+.I'n

(intégrale de Lebesgue).



a) Montrer que [, existe,Vn > 2.
b) Calculer lim I,,.

n—oo

Solution (JK).
. cos(nz) . .y .
a) Lafonctionz — f(z) = T est continue sur R, donc intégrable au sens de Riemann sur [0, b
xn

pour tout b > 0. De plus, | f(z)] <

. D’apres le critére de Riemann, l'intégrale généralisée
1+ a2

converge absolumentsin > 2,c.a.d. lim,_, fob | f(x)|dx est finie. D’aprés la proposition 6.43, f est
alors intégrable au sens de Lebesgue, Vn > 2.

b) Comme l'intégrale généralisée de f converge absolument si n > 2, son intégrale de Lebesgue coin-
cide avec son intégrale généralisée, dans laquelle on peut effectuer une intégration par parties, en

posant
1 n—1 1
u(r) = 1+ 2n v'(z) = cos(nx), donc u'(z)= _ﬁ—x”)” v(z) = ﬁsin(nx).
b cos(nx)
Alors I,, = lim / dx et
b—4o0 0 1 + xm

/b cos(nx)dx 1 sin(nz)]’ N /b 2" Lsin(nz) e
0o 1+an nll4+am], Jo (1+42an)?

Pourb > 1,ona

b n—1 1 b
[t ) [ g [ L1 L2
o (L42m)? 0 ot no —abt -n T

De plus,

1 [sin(nz)]’
n|1l+am

1
<=
0 n

. . N 3 N .
En faisant b — 400, nous obtenons, de ce qui précede, |I,,| < —,Vn > 2,d’ottla conclusion. O
n

Exercices avancés

Exercice # 11. Soit (x;);>1 C R une suite de réels. Pour chaque ¢ > 0, soit
Up = Ujsilz; — /27, 25+ t/27].
Montrer que la fonction
f:]0,00[—]0,00[, f(t) :=11(Uy), ¥Vt >0,
est continue et surjective.

Solution (PM). U, est ouvert (union d’ouverts), donc borélien. Il s’ensuit que f est bien définie.
Par ailleurs, nous avons (via la sous-additivité de la mesure)

F@O) <D nlay — /2,2 +t/2]) =Y /P =2t < 00

j21 j21



et (par monotonie de la mesure)
f(t) Z 1/1(].%’1 — t/27$1 + t/QD =t> O,
d’ou
0,00 []0. 00, lim £(t) = Ot lim f(1) = oo. W
Si0 <t < s,alors U; C Uy, d’ol (par monotonie de la mesure) f est croissante.
Auvu de (1) et de la monotonie de f, pour montrer que f est surjective, il suffit de montrer que f est
continue (car, dans ce cas, son image contient | lim;_,o f(¢), lim;— f(¢)]))."

Enutilisantla propriété (U;c1A;)\ (Uier B;) C Uier(A;\B;) etlefaitquer, (U;) < oo,nousobtenons,
pour(0 <t <s:

0 < f(s) = f(t) =11 (Us) — i (Up) = 11 (Us \ Uy) ' ‘
< vi(Upsi(lz; — s/2, 25+ 5/2 \|o; — /2,25 +/27])
< > villey = /2 25+ /2Ny = /2,25 + /2]
= ‘ (s—t)/2j_1:2(s—t).
Il s’ensuit que f est 2-lipschitzienne, donc continue. O

Exercice # 12. Soit f : R” — R une fonction Lebesgue mesurable bornée. Montrer qu’il existe g, h :
R™ — R telles que :

a) g et hsont boréliennes.
b) g=huv,p.p.
0 g(z) < f(x) < h(z),Vo e R™.

Solution (PM). Soient k : R" — R borélienne et C' € Hgrn Lebesgue négligeable tels que f = k dans
R™\ C (proposition 4.19 a)). Les fonctions

o h R SR, g(z) = k(x), sTa:ER \O,h(x _ k(x), s%meR \C
inf f, sizeC sup f, siz e’

ont toutes les qualités requises (exercice 32 d), feuille 2). O

Exercice # 13. Soit f : R — R telle que :
1. f estbijective.
2. feCh
3. f'(t) >0,Vt e R.
Soit f, la mesure image de la mesure de Lebesgue v, sur g par f.Rappelons que

fan(B) := 1 (fY(B)), VB € Bs.

Montrer que

fan(B) = /B(fl)’(t) dvi(t), ¥V B € By.

(On pourra commencer par le cas ot B est un intervalle compact.)

1. On peut se passer de la monotonie de f, a condition de montrer le résultat suivant : si f :]0, co[—]0, co| est continue,
lim;_o f(t) = 0 et limy_, o, f(t) = 00, alors f est surjective.



Solution (PM). (f~1) est continue (donc borélienne) et > 0. Soit

u(B) = /B(f—l)'(t) dvi(t), VB € By,

Alors j1 est une mesure borélienne a densité (exercice 6.38).
Pour montrer que f,r; = p, nous utilisons la proposition 4.23, avec

¢ = {A C R; Aestune union finie d’intervalles},

desorte que .7 (¢') = Pr (par doubleinclusion,en notantque ¢ C HBg et que € contientles intervalles,
qui engendrent HAg).

Rappelons que % est un clan et que tout élément de % est une union finie d’intervalles disjoints (exer-
cice 1.35). En combinant ces propriétés avec la proposition 4.23, pour conclure a 'égalité f.v; = pil suffit
de montrer que

fari(I) = p(I), VI C Rintervalle, (2)
R = U, 1, avec I, intervalle tel que f.v4([,) < oo, Vn. (3)
Preuve de (3). Soit I,, := [—n,n],n € N*.Alors R = U, [, et

fari(L) = vi(f 7 ([=n,n))) = wa([f~H(=n), [ (0)]) = f7H(n) — 7 (=n) < o0, V.

Preuve de (2) si I est un intervalle compact. Si I = [a, b] C R, alors, par changement de variable z := f~1()
dans l'intégrale de Riemann, nous avons

fonr([a,0]) = ([f (@), T O)]) = £71 ) = f 7M@) = /f dx

- / (F () dt = /[ O dn),

la derniere égalité découlant de la proposition 6.42.

Preuve de (2) pour un intervalle quelconque I. Tout intervalle est 'union d’une suite croissante d’intervalles
compacts. Pour établir ce fait, il y a de nombreux cas a étudier; faisons la preuve dans deux cas particu-
liers.Si I = [a,00[,alors I = U,>1]a,a + n].SiI = [a,b],alors I = U,>y,[a, b — 1/n], ot ng est tel que

b— 1/TL() > a.
Sil, A I,avec chaque I,, compact, alors (théoréme de la suite croissante),
fon(I) = Tim fon (L) = lim u(l,) = p(l). O

Exercice # 14. Soit ¢ : [a, b] — [c, d] une fonction telle que :
1. ¢eCh.
2. ¥'(t) > 0,Vt € [a,b)].
3. ®(a) =cet®(b) =d.

Montrer que, pour toute fonction borélienne et Riemann intégrable f : [c,d] — [0, oo, la fonction
f o ® P’ est borélienne, et que nous avons

/ feyde= [ @@ @@ an0 @

(la premiere intégrale étant une intégrale de Riemann).
(On pourra commencer par étudier le cas des fonctions en escalier.)

8



Solution (PM). f o ® est borélienne, comme composée de deux fonctions boréliennes ?; &’ est continue,
donc borélienne, ce qui montre que f o ® &’ est borélienne.

Preuve de (4) si f est une fonction en escalier. Rappelons qu'une fonction en escalier (sur [a, b]) est une fonc-
tion de la forme f = Z;‘:l cjX1;,oulentier n dépend de f, et les intervalles I; forment une partition de
le,d] :[c,d] = L5, ;.

Si nous montrons que, pour tout intervalle / C ¢, d], nous avons

/ xr() dx:/[b] (@) ' (£) dun (1) € R,

alors, par linéarité des intégrales (de Riemann et de Lebesgue), nous obtenons (4) pour des fonctions en
escalier.

Notons que x ;0P = xo-1(s).> Nous allons admettre les propriétés suivantes, évidentes sur un dessin
(sous les hypothéses 1-3). ®~!(I) est un intervalle. Si I est d’extrémités ¢ < f et ®~1(I) dextrémités
g < h,alors®(g) = eet®(h) = f.

Nous obtenons, d’'une part, que fcd x1(z)dx = f — e, d’autre part (en utilisant le fait que la mesure
de Lebesgue d’'un point est nulle, et donc x¢-1(1) = X[g,5] V1-P- P-)

/ Vi (®(8)) B (£) dun (1) = / Yoo (£) ®(£) din () = / N (1) @ (2) dis (1)
[a,b] [a,b] [a,b]

_ / () dt = D(h) — D(g) = f — e,

ce quidonnel'égalité désirée. Au passage, nous avons utilisé la proposition 6.42 et le théoréme de Leibniz-
Newton.

Preuve de (4) si f est borélienne et Riemann intégrable. Soient (f;), (g,;) deux suites de fonctions en escalier
telles que f; < f < g;,Vj, et fcd(gj — fj) — 0. (Lexistence de ces suites découle du fait que f est

Riemann intégrable.) Notons que fcdf(x) dz = lim; fcd fi(z) dz = lim; f g(z) dzx.
Notons également que f;, f et g; sont bornées. Par conséquent, f; o ¢ @', f o ® P’ etg; 0o PP sont
boréliennes et bornées, donc Lebesgue intégrables sur [a, b]. Par monotonie de 'intégrale, nous avons

Fi(@() (1) dina(t) < | f(B(2)) D'(£) drn(t) < / 9;(®(2)) '(t) dv (),

[a,b] [a,b] [a,b]

d’ot, en utilisant I'étape précédente et en faisant j — oo dans cette double inégalité,

/Cdf(x)dxé @O an / e

ce qui implique (4) et complete la preuve. O
Exercice # 15. Soit (X, .7, i) une espace mesuré, avec 4 finie. Soit

F :={f: X = R; festmesurable}.

Soit

. [/ — 9l

Pour (f,) C Z et f € .Z, montrer I'équivalence des propriétés suivantes :

2. Pour étre complétement rigoureux, si ~ désigne le prolongement par 0 en dehors du domaine de définition, alors
]QTI) = fo d est borélienne (exercice 32, feuille 2 et proposition 3.21) et donc f o ® I'est (définition 3.10). Il faudrait raisonner
de méme pour P’.

3. Ici, ® n’est pas supposée bijective. Donc ® ~! est l'image réciproque, et non pas la fonction réciproque.



@) lim d(f, ) = 0.

(i) Pour toute > 0,
lim p({z € X5 |fu(2) = f(2)] > }) = 0.

Solution (PM). Remarques générales.

t
1. Lafonction h : [0, co[— [0, 00[, h(t) := 11 est continue, strictement croissante et < 1.

2. Sif,g € F,alors f —g,|f —gl,h(|f — g]) € Z (proposition 3.25, corollaire 3.31, corollaire
3.23),et[|f — g| > €] € 7 (théoreme 3.5). Ceci permet de vérifier que toutes les intégrandes qui
apparaissent dans la suite sont mesurables.

3. Lintégrande dans la définition de d( f, g) est une fonction mesurable, positive et < 1, donc inté-
grable (car y est finie).

«(i) = (ii) » En utilisant la monotonie des intégrales pour des intégrandes mesurables positives, et la
monotonie de h, nous obtenons

atr,9)= [ 11 =9 = [ HF =D xirsa = [ X1 = b (llf > 2.

Sid(f,, f) — 0,nous obtenons de ce qui précede que u([|f, — f| > €]) = 0,Ve > 0.

«(ii) = (i) » Soite > 0.En utilisantla proposition 6.35,]a monotonie de / etla monotonie de 'intégrale
pour des intégrandes mesurables positives, nous avons

R B B BN

[[fn—FfI<e]
<[ i hO=ullh- s> h@ulln -2 ©
([ fn—fl>el [|fn—FfI<e]
< ul[[fa = fI > €]) + h(e) p(X).
En faisant n — oo dans (5), nous obtenons

limsup d(fy, f) < h(e) u(X), Ve > 0. (6)

En faisante — 0 dans (6), nous arrivons a lim sup,, d( f,,, f) < 0.Parailleurs, nous avons d( f,,, f) >

0,V n,douliminf, d(f,, f) > 0. Del'exercice 1.9 a), nous obtenons que d( f,,, f) — 0. O

10
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Controle continu
—le vendredi 13 novembre 2020 —
—durée 90 minutes —

Consignes

1. Le seul document accepté est le support complet de cours, sous forme papier. Il ne doit pas conte-
nir des éléments de correction des exercices.
2. Pas d’'ordinateur, tablette, téléphone, calculatrice, montre connectée, ou autre objet connecté.

b
3. Pour chaque intégrale de la forme [ f(x)dx, préciser s'il s’agit d'une intégrale de Riemann, gé-

a
néralisée et/ou par rapport a la mesure de Lebesgue; justifier son existence et préciser si les ré-
sultats utilisés concernent les intégrales de Riemann, généralisées ou par rapport a la mesure de
Lebesgue.

exp(—z) — exp(—tx)
" .
a) Montrer que pour tout ¢ > 0,la fonction z — f(¢, z) est Lebesgue intégrable sur R7 .

Exercice # 1. (6 p.) Pour z > Oett > 0, soit f(t,z) :=

Pour t > 0, soit F(t) := / f(t,2) da.
0

b) Montrer que F' est continue sur |0, oo|.
¢) Montrer que F' est dérivable sur |0, co].
d) Calculer F'(t) et en déduire la valeur de F'(¢) pour tout ¢ > 0.
1
0+ 2)(1 + )
a) Montrer que f, est Ap-intégrable sur [0, 1] x R.

Exercice # 2. (6 p.) Pour y > 0, soit f,(z,t) := ,avecr,t € R.

1
b) Soitg(y,t) := / fy(x,t) de. Montrer que g est A\p-intégrable sur |0, 1] x R..
0

2
o > [arctant
¢) Trouver la valeur de l'intégrale [ := / ( ; ) dt.
0

On admettra I'identité

—2]+212 2 42 y22 V >Otl(] 7& VER
+ t 1 212 x els que xr t .
z Y z T Yy Yy ( +$21L2>(]+yt>’ Y Y,

Exercice # 3. (4 p.) Soit f : R? — [0, o[ une fonction borélienne. Montrer que la fonction g : R — [0, oc],
g(t) ::/ flt,x +e")dv(x),Vt €R,
[t,t+2]

est borélienne.

1

Exercice # 4. (4 p.) Soit f : [1,00[— R une fonction continue telle que | f(z)| < —;,Vx > 1. Montrer
€T

que

/100 (e_f(‘”) —1) do = Z%/loo f(z) dx.

n>1
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Exercice #1. (6 p.) Pour z > Oett > 0, soit f(t,z) :=

a)

b)
)

d)

Contrdle continu
—le vendredi 13 novembre 2020 —
—Corrigé des exercices # let 2 —

exp(—z) — exp(—tx)
” :
Montrer que pour tout ¢ > 0, la fonction « +— f(t, z) est Lebesgue intégrable sur R* .

Pourt > 0, soit F'(t) := / f(t,x)dz.
0

Montrer que F' est continue sur |0, oo[.
Montrer que I est dérivable sur |0, co|.

Calculer F'(t) et en déduire la valeur de F'(t) pour tout ¢ > 0.

Solution (TT).

a)

b)

Exercice # 2. (6 p.) Pour y > 0, soit f,(z,t) :=

a)

b)

Soitt > 0 fixé. Remarquons d’abord que lim, .o f(¢,2) = t—1.En particulierla fonction x — f(t, z)
est prolongeable par continuité en 0 et en utilisantle critére de Riemann etle fait que lim 22| f (¢, z)| =
T—>00

0, on conclut que cette fonction est absolument intégrable dans le sens généralisé et donc Lebesgue
intégrable sur |0, oo|.

Remarquons d’abord que la fonction ¢ — f(x,t) est continue pour tout z > 0. Pour appliquer le
théoréme de continuité des intégrales a parameétre, il suffit de trouver, pour tous 0 < a < 1 < b,
une fonction g, |0, 00] — R qui est intégrable et telle que | f (¢, z)| < gq,(x) pour tout t € [a, b].
exp(—ax) —exp(—=bzx) . , .., . .
Posons g, () = p(—az) p(=br) .Linégalité | f(t, )| < gop(2) est une conséquence du fait
T
que la fonction ¢ — exp(—tz) est monotone et g est ingégrable par le méme argument que dans a)

(sauf que lalimite en O est b — a).

0 :
d) On a que a—{(t, x) = exp(—tz). Soita > 0. Pour tout t € [a, o0, | exp(—tx)| < exp(—az),etla
fonction 2 — exp(—ax) est intégrable sur [0, co[ (son intégrale vaut 1/a) ; on peut donc appliquer le
théoreme de la dérivée d’'une intégrale a parametre et conclure que F'(¢) existe pour tout ¢ > 0 et

1

F'(t) = /000 exp(—tz) dr = ;

La fonction 1/t étant continue, on peut appliquer le théoréme de Leibniz-Newton et obtenir pour
toutt > 0:

t
1
Ft) = F(1) +/ Lds=0+Int=Int.
1

S

(Attention : 'intégrale ci-dessus est une intégrale orientée, c’est-a-dire de Riemann.) O

1
(1+ 222)(1 + y?t?)
Montrer que f, est Ap-intégrable sur [0, 1] x R..

,avecr,t € R.

1
Soit g(y,t) := / fy(z,t) dx. Montrer que g est A\p-intégrable sur |0, 1] x R..
0



2
L  (arctant
c) Trouver la valeur de l'intégrale [ := / ( ; ) dt.
0

On admettra I'identité

! v L v’ L N > 0 tel #y, VteR
— = , Va, els que z # y, :
2?2 —y2 14222 2?2 —y?2 14922 (14 2%2)(1 + y%?) Y d Y
Solution (JK).
1
a) Poury > 0, (z,t) — f,(x,t) est continue, donc mesurable et 0 < f,(z,t) < h(x,t) := T
Y

Par Tonelli!

1
/ Bz, Do (z, £) = / / B, D) dadt — / L g< oo
[0.1] xR+ Ry J[0,1] r, 1 Tyt

par le critére de Riemann. Donc f, est Ao-intégrable.
b) = — f,(z,t)estcontinuesur [0, 1] doncl'intégrale suivante est bien définie dansle sens de Riemann :

1 1 t
1 1 P | 1 dz  arctan(t)
t pum ’t d pu— d pu— _— = ",
909, 1) /0 Sl )z 1+y2t2/0 1+ a222" 1+y2t2/0 I+22t  (L+y22)t

g est continue sur [0, 1] X R, donc mesurable, et positive. Par Tonelli' l'intégrale de Lebesgue de g est

< arctan(t) (11 > tan(t)\
[ s [ [ [ (e
[0,1]xR+ 0 t 0o 1+ y%t 0 t

2
arctan(t) . . .y .
Comme t ——, ) estcontinue et positive, son intégrale de Lebesgue coincide avec son

o Lozt g arctan(t) 2
intégrale généralisée. De plus, | ——— | est équivalente en 0+ a 1 et équivalente en +ooa — el
Son intégrale est alors convergente (critere de Riemann), donc g est Ap-intégrable.
c) Nous avons, pour = # y,
/oo 1 x? gt 7=t x? /OO 1 dz T 0w
o T2—y2 14222 22— fo 1+22x  a2—y22
et, avec l'indication et en utilisant la linéarité de l'intégrale (pour = # ),
& 1 1 r—y ™ 7w |1
/ 242 szt = — 3/2_:_ . @
o l4y“t1+4 2%t rt—y*2 2x4vy
1

est positive et continue sur [0, 1] x [0, 1] x R, donc mesurable.

t) —
(@0 = T mmya T e
Par Tonelli (global ou local, voir la note dessous), nous pouvons calculer I en échangeant 'ordre des
intégrations dans l'intégrale triple :

1 ™ d)\g
[ - 249 249 d)\g — - .
0,1]x[0,1] xRy (1 4+ 222)(1 + y?t2) 2 Joaxjoy T+ Yy

Le fait quon a dérivé (1) seulement pour x # y ne joue pas de rdle, car {(z,y) € [0,1] x [0,1];2 =
y} est de mesure 0. Finalement, en vue de la continuité de I'intégrande, on peut calculer I'intégrale
comme une intégrale de Riemann :

1
/ Az / / dy dr = / (In(1 + z) — In(z))dx
0,1]x[0,1] £+ Y rT+y 0

(14 ) In(1 4+ 2) — zIn(z)]) = 2In2.

Doul = wln2. O]

1. global,sur [0, 1] x R muni de la tribu et mesure de Lebesgue, ou local car [0, 1] x R est un borélien de R?

2
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Exercices de routine

Exercice # 1. Montrer que

—dx—Z—.

n>1

On pourra utiliser le développement en série de 'exponentielle.

Exercice # 2. Soit i une probabilité sur Zg. Pour x € Rety > 0, soit

Hy(z,y) = l/ﬁdﬂ@-

Le but de cet exercice est de montrer que si H, = H,,alors p = v.
a) Montrer que H, est continue.

b) Soitz € R. Déterminer li{‘l(l) yH,(z,y).
y

c) Soienta < bdeux réels. Déterminer h{n/ H,(z,y) dz.
yNO J,
On pourra s'inspirer de la preuve du théoréeme 7.12 et utiliser le théoréme de convergence dominée.
d) Soit v une autre probabilité sur Z. On suppose que H,, = H,. Montrer que ;1 = v.

On pourra utiliser la proposition 4.23.

Exercice # 3. (Mesure superficielle) Si S C R3, nous définissons la mesure superficielle (aire) <7 (S) de S

par

o/ (S) := lim %I/g({l’ € R?; dist(x, S) < })

e—0+

(si lensemble {z € R?; dist(z, S) < £} est borélien pour tout ¢ > 0 suffisamment petit, et si la limite
existe). Calculer o7 () si

a) S estune sphere euclidienne.

b) S estun compact contenu dans R? x {0} (identifié 2 R?).
Pour la question b), on pourra établir une inclusion de la forme

{z € R?; dist(z, S) < e} C K. X [—¢,¢],
avec K. C R? convenable.

Exercice # 4. (Calcul d’intégrales oscillantes) Pour 0 < a < 2, soit

I(a) := / Smax dx (intégrale généralisée).
0



a) En établissant et utilisant I'identité

1 1 0
—:—/ t" e dt, Va >0,V >0,
z I(a) Jo

montrer que

I(a) = — /OO G
a) = .
L(a) J, t2+1
On pourra partir de légalité
/ Y g = lim dx
0 x® A—oo Jq x®

et utiliser une estimation connue pour les intégrales généralisées de la forme / sinz f(x) dx.
A

b) En se ramenant 3 un calcul de fonction Béta d’Euler, montrer que

I'(a/2) (1 — a/2)
o) =—"=rm—

1/2
Indication : faire le changement de variable ¢t = (1 ’ ) .
-z

Exercice # 5. (Théoréeme d’Egoroff (ou Egorov)) Soit (X, .7, i) un espace mesuré, avec u finie. Soient
fn, [+ X — Rdesfonctions mesurables telles que f,, — f (convergence simple). Le théoréme d’Egoroff
affirme que f,, — f «presque uniformément », au sens suivant :

Ve>0,3C € T telque u(C) < cet f, — funiformément sur X \ C. 0))

(La convergence uniforme reviendraita C' = ().)

Prouver ce résultat comme suit.
Soit (Ng)g>1 C N.Posons

Ap N, = {x € X |fulz)— f(x)| < %, Vn > Nk},

B = ﬂ Ak N(k)-
k>1
(Lensemble B dépend a la fois de la suite ( f,,),, et de la suite (Ny)x.)
a) Montrer que Ay n,, B € 7.
b) Montrer que f,, — f uniformément sur B.
¢) Montrer que, pour tout k > 1,il existe Ny tel que (X \ Ay n,) < g/2F.

d) Pour N, comme dans la question précédente, montrer que p(X \ B) < €. Conclure.

Exercice # 6. (Lemme de Brezis-Lieb) Préliminaire. Un cas particulier du lemme de Fatou est le suivant.

Soit (X, .7, pu) un espace mesuré. Si f,, > 0 est mesurable,Vn, et f,, — f,alors/f < lim inf/fn. Le

lemme de Brezis-Lieb, qui s’applique a des situations plus générales, permet, dans ce cas particulier, de

«mesurer » 'écart entre [ fetliminf [ f,.
n

Dans ce qui suit, les fonctions f,, : X — R sont supposées mesurables, avec (X, .7, 1) mesuré.



a) Supposons f, — f et f,, f intégrables. Montrer que

/’fn’:/!f!+/!fn—f\+0(1)quandn—>oo.1

On pourra commencer par établir I'inégalité

=< fnl = 10 = FI < 1A

et utiliser le théoréme de convergence dominée.
b) De mémesi f,, f sontintégrableset f,, — f p.p.
¢) En déduire le corollaire suivant : si u,,, u sont des fonctions mesurables positives telles que u,, — u

p.p.,etsi/un—>/u<oo,alors/|un—u|—>0.

d) (Attention, hypothése inhabituelle concernant p) Soit 0 < p < 1. En reprenant la preuve de a),

montrer le résultat suivant. Si f,, — fet/ | ful? < o0, / |f|P < oo, alors

/|fn|p:/|f]p—|—/|fn—f|p—|—0(1)quandn—>oo. @)

Exercice #7.Soit (X, .7, 1) un espace mesuré et ( f,,),,>o une suite décroissante de fonctions p-intégrables
qui convergent vers O simplement. Montrer que

> [r=] >V

On pourra utiliser la preuve du théoreme de Leibniz sur les séries alternées.

Exercice # 8. Dans ce qui suit, zy, . . ., z, sont des nombres complexes. Le probleme que nous étudions
est le suivant : montrer qu’il existe J C [1,...,n] tel que la somme
SJ = Z Zj
jed

soit « grande ». Précisons d’abord le probleme. Nous avons

n

Sr< Y lml <D lzl=5,

jeJ j=1
et donc S ne peut pas dépasser S. Nous nous proposons de montrer qu'il existe .J tel que «.S; soit une
partie significative de .S ».

Je ne connais pas la réponse a la question c) (et elle n’est pas demandée). Les questions d) et e) sont
indépendantes de a) et b).

Clairement, pour n = 1 le meilleur choix est de prendre J := {1},etdanscecas S = S = |z].
Etudions le casn > 2.

a) Sin = 2, montrer quil est possible de choisir J tel que

1 1
S;255= §Z|Za‘|,

Jj=1

1 . .
et que la constante 5 est la meilleure possible.

1. Rappelons que o(1) quand n — oo désigne une suite (¢, ) telle que le cn = 0.

3



b) Sin = 3, montrer qu'il est possible de choisir .J tel que

1 1
Sy > 552 gé\zﬂ,

1 . .
et que la constante 3 est la meilleure possible.

. , . ) 1
¢) (Je ne connais pasla réponse) Quelle est la meilleure constante sin = 4? En tout cas, elle n’est pas T

En effet, nous allons montrer le résultat suivant.
1
VneN Vz,...,z,€C,3J C[l,n]telque S; > —S. (3)
T

Dans ce qui suit, le produit scalaire des nombres complexes ( , ) est le produit scalaire usuel dans R?.

d) Soitw = e un nombre complexe de module 1. Posons
Jy:={j e[l,n]; (z,w) > 0}.

(Donc J; contient les j tels que 'angle entre z; et w soit < 7/2)
Montrer que

P

JjEJ:

n

> (zw) =) (z,w) )

JEJt j=1

. .. r, siz>0
Rappelons que z . est la partie positivede z : z; := . .
0, siz<0

e) Calculer

2w N
/ Z<Zj7 e')y dt
0

j=1
et obtenir (3) grace a (4).

Exercice # 9. (Intégration par parties (I)) Nous travaillons dans ([0, 0o[, %y o[, 1). Soient f,g € £*.
Soient F(x) = / F(#)dt, ) = / g(t) dt, ¥z > 0.
(0,2]

[0,]
a) Montrer que F et G sont bien définies.

b) Montrer que F' et GG sont continues et bornées.
Pour la continuité, on pourra s'inspirer de la preuve du théoréme 7.12, variante p. p.

c) Montrer la formule d’intégration par parties
/ F(z)g(z)dx = / f(z) da:/ g(x)dx — / f(2)G(z) dx.
0 0 0 0

Exercice # 10. (Intégration par parties (II)) Nous travaillons dans (R, Bg, v1) et (R", Bgn, ).
a) Soitg € C'(R)intégrable. Montrer quil existe une suite (R;),; C [0, oo[telleque R; — oc0,g(R;) — 0
et g(—R]) — 0.
On pourra commencer par montrer que lim lg| = 0, et montrer que l'on peut choisir

o I Jlj<lel <]
Rj 6]]7] + 1[



b) Soith € C'(R), avec h et ' intégrables.

(i) Montrer que / n =0.
R

e (x) dx = m/ e "h(z) du.

(i) Montrer que, pour toutn € R, /
R

R

0
o) Soit f € C'(R"), avec f et 8_f intégrables. Montrer que, pour tout { € R”,
T1

/n e"w'gs—m(x) dr =& /n e " f(2) da.

d) Soient f,g € C'(R")et0 < M < oo. Proposer et montrer une formule de la forme

[ - T R R

M, M al’l

[7M7M]n—1
99
— flx)=—(x)dx.
Lo {0
. 1 , of odg . .
e) Soient f,g € C'"'(R") bornées telles que f, g, 1 D soient intégrables. Montrer que
Iy 0X1
of g
——(x)g(z)dz = — )= (x)dx.
[ @) RCF-C

Exercices avancés

Exercice # 11. (Unicité des mesures d la Lebesgue)
1. Soit (X, d) un espace métrique tel que

Bx @ Bx = Bxxx ©)

(nous verrons en partie II de I'exercice une condition suffisante pour la validité de (5)).
Exemple : X = R"” muni de I'une des métriques induites par une norme || ||.
Une mesure borélienne y sur X est uniformément répartie si elle satisfait la condition suivante :

Ve,ye X,Vr>0,0< u(B(x,r)) = u(By,r)) < occ.

Le but de cet exercice est de montrer que deux mesures uniformément réparties sont proportion-
nelles.

En admettant cette conclusion, nous obtenons une autre caractérisation de la mesure de Lebesgue
(voir I'item i) ci-dessous).

Soient p et v deux mesures uniformément réparties. Soient g(r) := u(B(z, 7)), h(r) := v(B(z,r)),
Vr > 0 (ces fonctions dépendent de r, mais pas de x € X).

Dans ce qui suit, U désigne un ouvert non vide et borné de X.

a) Montrer que et v sont o-finies.

b) Montrerque 0 < u(U) < ocoet0 < v(U) < oo.

c) Montrerque V := {(z,y); z, y € U, d(z,y) < r} estun borélien de X x X.
d) Montrer que

Usxw—v(UNB(z,71))

est borélienne.



e) Montrer que

/ v(U 1 B(z, ) dulz) = / w(U 0 Bly,r)) dvly).
U

U

(On pourra calculer p ® v(V).)
f) Montrer que

. 1

u(0) = tim oo | (U 0 Blar) i),
. 1

V) = tim— | (U 0 Bly.)) dviy)

g) En déduire qu'il existe un réel 0 < C' < oo (indépendant de U) tel que u(U) = C v(U).
h) Conclure.
i) Soitd la distance induite par une norme sur R". Montrer 'équivalence suivante :
(i) pestuniformément répartie sur Bpn.
(i) Hexiste) < C' < cotelleque p = Cv,.
I1. Nous donnons ici une condition suffisante pour la validité de (5), condition qui est satisfaite en parti-
culier par R™ avec I'une de ses métriques usuelles.

Voici une question d’échauffement.

a) Montrer que, si (X, d) et (Y,0) sont des espaces métriques arbitraires, alors Bx @ By C Bxxy.
(Penser a la preuve de l'inclusion Brn @ Brm C PBgru+m.)
Donc si une inclusion pose probléme dans la vérification de (5), il s’'agit de ZBx«y C Bx @ By .En
général, cette inclusion est fausse, mais donner un contre-exemple dépasse le cadre de cet exercice.
Un espace métrique (X, d) est séparable s'il existe un ensemble a. p.d. A C X dense dans X, donc
telque A = X.
b) Montrer que R™ est séparable.

c) Si X estséparable, montrer que pour tout ouvert U nous avons

U= U B(a,r).
acA,reQ
B(a,r)cU
d) Si(X,d)et(Y,0)sontséparables, montrer que X x Y est séparable.
e) Si(X,d)et(Y,0)sontséparables, montrer que les ouverts de X x Y appartiennenta Bx & By
f) En déduire que, si (X, d) et (Y, ) sont séparables, alors Bx @ By = Bxxy-
Cas particulier : ZBrn X Brm = Brotm.

Exercice # 12.(Dérivée de'intégrale) Nous travaillons dans ([0, co[, S o[, v1). Soit [ € L. Soit F'(x) :
F(t)dt, Yz > 0.

[0,2]
Soit g € C([0, o0]).

a) Montrer que [0,00[3 x — h(z) := / g(t) f(z — t) dt est continue.
(0,2]
Indication : on pourra utiliser un changement de variable.



b) Montrer que = — / g(t)F(z —t) dt est de classe C', de dérivée h.
0

Indication : on pourra partir de la définition de la dérivée, et considérer le taux d’accroissement

AmsﬂﬂF@+s—wdﬁ1£ZMﬂ%x—ﬂﬁ

3

,e#0,e > —u.

Exercice # 13. (Théoréme d’Orlicz) Soit I/ C R un intervalle ouvert non vide muni de la mesure de Le-
besgue. Nous considérons une suite (e;)z>o C L? = L?*(I) orthonormée et telle que

f = (f, €k) €k, \V/f e L2 (6)

M8

e
i

0
a) Montrer que, pour tout f, il existe une suite extraite (/V,) (qui en principe dépend de f) telle que

Ny

Z(f? ex) e — f p.p-quand { — oo.
k=0

b) En déduire que, pour tout f € L?, nous avons
@) <D 10 en* Y few@)]® = Ifll72iry D _lex(w)]? pour presque tout z € 1. (7)
k=0 k=0 k=0

¢) Enprenant,dans (7), f := x4, avec A convenable, en déduire le théoréme d’'Orlicz : pour presque tout
x € I nousavons Y, [ex(z)]* = oo.

Indication : commencer par 'ensemble

By = { e1; Y lenw) < J} jEN,

et utiliser 'exercice # 47 de la feuille #2 pour construire A.

Exercice # 14. (Inégalités de Nikolski’)
Nous travaillons dans (R", ZBgn, v,).
Soit f : R™ — R. Nous faisons I'hypothese

feL' R, (8)

qui permet de considérer la transformée de Fourier fde f.
L'hypotheése essentielle est

-~

f(§) =0sif¢[ = R ©)

(avec 0 < R < oo constante arbitraire).
Sous ces hypothéses, nous nous proposons de montrer les inégalités de Nikolskii directes

£l < CLR PV | £, V1< p <7 < o0, (10)
10 fllpr < CoRMYV/P=YIH | £l V1 < p <7 < oo, Vj € [1,n], (11)

ou (4, Cy sont des constantes finies qui peuvent dépendre de n, p et r, mais pas de f ou R. Au passage,
sous les hypothéses (8) et (9), nous montrerons que f € C*.

7



Sous 'hypotheése plus forte (12),

F(€) =0si|¢| > Rousi|¢] < (12)

SR=~

nous avons également l'inégalité de Nikolskii inverse, énoncée et prouvée, par souci de simplicité, uniquement
sin=1:

1l < CsRYP=HYr =1 )l 1w, V1 < p <7 < 00, (13)

ol (5 est une constante finie qui peut dépendre de p et r, mais pas de f ou R.

Voici la démarche proposée pour montrer (10), (11) et (13).

a) (Argument de changement d’échelle) En supposant I'une de trois inégalités vraie pour R = 1, elle est
vraie pour tout R. Voici I'argument pour (10). Soit f une fonction vérifiant (8) et (9). Soit (avec les
notations de l'exercice #1 a) de la feuille #9) g := fr.

(i) Montrer que g vérifie les hypotheses (8) et (9), la derniére pour R = 1.

(ii) En appliquant (10) (supposée vraie si R = 1) a g, et en calculant ||g|
en fonction de || f|| .-, respectivement || f|| .», obtenir (10) pour f.

L, respectivement ||g|| .»

b) Vérifier que la méme démarche est valide pour (11) et (13).
¢) (Preuvede (10)si R = 1)
(i) Montrer quil existe ¢ € C'°(R™) telle que p(§) = 1si [¢| < R.
(i) Montrer qu'il existe ¢b € L'(R") telle que ¥ =o.
(iii) Montrer que, de plus,? € L>(R").
(iv) Montrer quey € LI(R™),V1 < ¢ < oc.
(v) Soit f vérifiant (8) et (9) avec R = 1.Montrer que f = fx*1).Indication : prendre la transformée

de Fourier dans cette égalité.

o 1 1 1
(vi) Sil <p,q,r <ocosonttelsquel + — = - + —, montrer que || ||z < ||¢||za || f]| 2
r p q

(vii) Conclure.
d) (Preuvede (ID)siR =1)

() Montrer successivement que ¢y € C'(R"), 9,9 € Ll,@(f) = 1§ p(§),0;0 € L¥(R"), et
;0 € LY(R"),V1 < g <o0,Vje[ln].

(i) Montrer que f € C*'(R") etque d;f = f * 9,4,V j € [1,n].
(iii) Conclure.

e) (Preuve de (13) si R = 1) D’apreés les questions précédentes, nous savons que f € C'(R) et que
[ € LP(R) (et, par ailleurs, que f’ € L'(R)). Il reste 2 montrer (13).

(i) Montrer quil existe ¢ € C°(R) telle que

1 1
¢(§) = € V¢ e Reelque 5 <[] < 1.

(i) Montrer quil existe n € L'(R) telle que 7 = (.
(iii) Montrer que f = f" * .

(iv) Conclure, sur le modele des questions précédentes.



Université Claude Bernard Lyon 1 Licence de mathématiques 3¢ année
Mesure et intégration Année 2020-2021

Devoir maison # 2
—arendre le vendredi 18 décembre 2020 —

Exercices de routine

Exercice # 1. Montrer que

—d:v—Z—.

On pourra utiliser le développement en série de I'exponentielle.

Solution (TT). Nous avons, pour tout z €]0, 1]

TL

1 (o0}
— = exp(—zIn(z Z n' (x))".

X
n=0

1
Soit [, j, := / 2" (In(x))* dz. En intégrant par parties, nous obtenons, si k > 1:
0

Iy = o (In(z))* 1 —/1 o k(ln(z))" - 27  do = L
A P o Jo n+1 R

Il s’ensuit que

_ (=1)™! (=1l
nn <n+1)n n,0 — (n+1>n+1

Ainsi, en utilisant d’abord le théoreme 6.34, ensuite la proposition 6.43 :

/ > ey as =32 G,

TL' n=0
B O]

n+l n’
(n—l—l)Jr —n

n=0 n=

Exercice # 2. Soit i une probabilité sur Zg. Pour x € Rety > 0, soit

H,(z,y) = 1/%@@)-

Le but de cet exercice est de montrer que si H,, = H,, alors j1 = v.
a) Montrer que H, est continue.

b) Soitz € R.Déterminer li{% yH,(z,y).
y

c¢) Soienta < bdeux réels. Déterminer l%/ H,(z,y) dz.

On pourra s'inspirer de la preuve du théoréme 7.12 et utiliser le théoréme de convergence dominée.



d) Soit v une autre probabilité sur Zg. On suppose que H, = H,. Montrer que ;1 = v.
On pourra utiliser la proposition 4.23.

Solution (JK). H,(z,y) est une intégrale de Lebesgue, bien définie car la fonction ¢ — Vst

Yy A+ (z— 1)
continue sur R, donc mesurable, et positive.

. Y
——~2 _ estcontinue sur R x R>% pour toutt € R, ett - ——————
y? + (x —t)? P y? + (x —t)?
est continue, donc mesurable pour tout (z,y) € R x R>Y. De plus, siyy > 0, alors pour tout y > yo
Y

1
ona s < <g(t) = — et/gdu = — < +oco.ParThm.7.14, H, est continue sur R x R>°.
Y+ (z — 1) Yo Yo

a) La fonction (z,y) —

2 2

Y Y .
b) OnanyH, = — 2 du(t).y —» ——2—— est continue sur R”° et admet une
) Yy ,U«(‘Tvy> /]RyQ + (ZL‘ . t>2 N( ) ) y2 + (CL’ _ t)2

2

limite en 0 pour tout z € Rett € R. De plus, N < g(t) = 1et/gdu =1 < 4o00.Par
y? 4 (z —1)?

Thm.7.2,0n a alors
2

tim vy H,(r.1) = / i ) = / Yoy (Odu(t) = p({x}).

y\0 y —+ (I —t
(Bon, le Thm. 7.2 est formulé avec des limites des suites, mais c’est la méme chose.)
c) Ona

/ny //Rerx_thu(t)d

Commey > 0, (t,x) — est une fonction positive continue, donc mesurable sur R x

Y’ + ( — 1)
[a, b]. Par Thm. 8.24, nous pouvons échanger les intégrales. Or, avec le changement de variable z =

on obtient

Y

b o=t
1 b—t —t
/de—/ ’ dz = arctan | —— | — arctan a-t ,
W Y (x—1)? a-t 14 22 Y y

Y

ce qui donne

b 1 b—t —t
/ H,(x,y)dr = —/ (arctan <—> — arctan (a_)) du(t).
a T JR Y )
arctan (E> — arctan (a — t) ‘ < g(t) :=2et /gdu = 2.
Y Y

De plus,

b—t a—t
Yy — arctan [ —— | — arctan | ——
) Y

est continue sur R~ et a une limite en 0. En effet,

i (actan () —rctan () )
lim | arctan [ —— | — arctan =
y\O0 Yy Yy

d’ott, par Thm. 7.2,

sit ¢ [a,b]
sit €]a,b]
sit € {a,b}

Y

(CN T B

by [ Hy.) o = o, 8) ~ p({a}) ;u({b}).



d) Par Prop.4.23, une mesure borélienne est uniquement déterminée par ses valeurs sur les intervalles

fermés. Avec ce qui precéde, on a

o, =ty [ #y o) o+ 2t o) + 0000 ).

Ainsi, H, = H, implique 1 = v. O

Exercice # 3. (Mesure superficielle) Si S C R3, nous définissons la mesure superficielle (aire) <7 (S) de S
par

1 .
& (S) = lim % vs({z € R?; dist(z, S) < €})

e—0+

(si lensemble {z € R?; dist(z, S) < £} est borélien pour tout £ > 0 suffisamment petit, et si la limite
existe). Calculer o7 (5) si :

a)

b)

So

a)

b)

S est une spheére euclidienne.
S est un compact contenu dans R? x {0} (identifié 2 R?).
Pour la question b), on pourra établir une inclusion de la forme
{r € R?; dist(z, S) < e} C K. x [—¢,¢],
avec K. C R? convenable.
lution (TT).
En utilisant 'invariance par translations de la mesure de Lebesgue, on peut supposer que S = {z €
R3; |x| = R}.Pour0 < e < R, soit S, := {z € R3;dist(z, S) < €}. Montrons d’abord que
S.={reR>R—e<|z| <R+e}
Soit z € S.. Notons que x # 0. Par la compacité de S, il existe y € S tel que |z — y| < €. Soit
zo := (R/|z|)x, de maniére que x, est le point d’intersection du rayon Oz avec S.On a
o] = B = |z — 2] < | — 9] <&,
etdoncz € S..
Inversement, soit x tel que Hx\ — R’ < e.Alors |z — x| < g, 0l est comme ci-dessus, et donc
r € S..
Par ailleurs, S; est fermé et donc borélien.
Rappelons maintenant la formule pour le volume d'une boule de rayon R : f(R) = Vol(B(0, R)) =
Vol(B(0, R)) = (4/3)7R3*.Ona:
1 f(R+e)— f(R—¢)
A (S5) —21_1%2—57/3(55) —ll_{% 9
1 — — —
1 <f<R+e> J(R) | f(R) = J(R s)) PR — iR
2 =0 € €
Soit K = S C R? C R?etnotons K. := {x € R?; dist(z, K) < e} et S. := {z € R*;dist(z, K) <

e}. Montrons d’abord que
K x [—e,¢6] € S. C K. X [—¢,¢].

Nous utiliserons la notation (z, y) pour un point dans R?, ot x € R? et y € R. Pour voir la premiére
inclusion, il suffit de remarquer que si € K, alors le point de K le plus proche de (z, y) est (z,0),
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et donc dist((x,y), K) = |y|. Pour l'autre, si (z,y) € S., alors dist((x,0), K) < dist((z,y), K) < ¢
et |y| = dist((z,y), R?) < dist((z,y), K) < eetdoncz € K. ety € [—¢,¢].
Ensuite, rappelons que si A C R? est borélien, alors A x [—¢, £] est un pavé borélien et

v3(A x [—¢,¢e]) = 1a(A) - (2¢).
On a donc que
vo(K) < (1/2e)v3(S:) < 1a(KyL). 0))

La prochaine étape est de montrer que v5(K.) — v»(K) quand ¢ — 0.On voit que K. C K, pour
e < ¢’ etil suffit donc de montrer que (), K/, = K etutiliser le théoréme de la suite décroissante.
Linclusion D est claire. Pour l'autre sens, soit z € [, K1/, et pour tout n, soit x, € K tel que
|z — z,| <1/n.Onadoncque z, — xetcomme K estfermé,x € K.

Enfin, en prenant la limite dans (1) on obtient &7 (K) = v»5(K). O

Exercice # 4. (Calcul d’intégrales oscillantes) Pour 0 < a < 2, soit

:L'CL

o -
sinx |, ., R
I(a) := / dzx (intégrale généralisée).
0
a) En établissant et utilisant I'identité

1 1 o
—:—/ t" e dt, Va > 0,Va >0,
z¢  D[(a) J,

montrer que

Ia) = = /oo "
“TTw), er1™

On pourra partir de 1égalité

*sinzx ) Aging
dr = lim dx
0 e A—oco Jg e

o0

et utiliser une estimation connue pour les intégrales généralisées de la forme / sinx f(z) dx.
A

b) En se ramenant 3 un calcul de fonction Béta d’Euler, montrer que

[(a/2)T(1 —a/2)
2T (a)

I(a) =

1/2
Indication : faire le changement de variable ¢ = (1 ’ ) .
-z

Solution (JK).

a) Notons

1 o] 2fafl
= —dt
/ ['(a) /0 t2+1

(intégrale de Lebesgue ou généralisée), de sorte que I'identité a montrer est I (a) = J.
Au sens des intégrales généralisés (convergentes si @ > 0 par le critére de Riemann)

['(a) = / s te™ ds S_:mt/ (zt)* e "y dt = x“/ t* e dt
0 0 0
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pour tout z > 0. Donc

S 4 Sin( a—1 —mt
I(a) = lim I(a,A), oul(a,A):= dx = sin(x)t dtdzx.
0

A—+o0 e
sm(x)
Notons également que (a, A) estbien définie en tant quintégrale généralisée convergente, car ~o+
—,eta — 1<1.
o
Ona

|sin(z)t* e | < g(x,t) == wt* e ™

A 00 A
I
/ / g(x, t)dtdx = / (?3 dr < 00,
o Jo o ¢

(cara — 1 < 1). Donc, d’apreés le théoréme de Tonelli, la fonction (z,t) — sin(z)t* te™*, qui est
continue donc mesurable, est intégrable sur [0, A] x R, De plus, on peut échanger l'ordre des in-
tégrales et obtenir

1 = 4 : a—1_-—xt
I(a,A)—m/o /0 sin(x)t*e™ " dxdt.

De méme, en utilisant I'identité

1
. xt . , 7 7 . 7

nous avons

g= ! /OO o / / 2) e dpdt.
— Sln X
), z+1¢

Montrons maintenant que

lim I(a,A) = J,

A—o0

ce qui achéve la preuve.

Pour ce faire, nous utilisons I'inégalité

/ sin(x)f(x)dx‘ < 2f(A), vue en TD, valable pour une
A

fonction f sur [A, +o00[, qui est positive, décroissante, de classe C'! et de limite 0 a I'infini. (L'intégrale
qui intervient dans cette inégalité est une intégrale généralisée.) On lapplique a f(z) := e *, ¢t > 0,
pour déduire que

/ sin(x)e " dx
A

D’ou (via l'inégalité triangulaire et la relation de Chasles pour les intégrales généralisées)

< 2¢ At

|I(a,A) — —‘/ / sin(z)t* e " dtdx

['(a)

2 & _ ts/A & 1 _
< = ta 1 Atdt =/ a—1 sd
=~ Ta / Aar<a>/o ce

2

A——>0quandA—>oo
cara > 0.



b) Avecle changement de variable indiqué, on obtient

Ici B est la fonction Beta de Euler. Elle satisfait I'(x + y) B(x,y) = I'(x)I'(y). Donc

rEra-3)

I = =5 -

Exercice # 5. (Théoreme d’Egoroff (ou Egorov)) Soit (X, .7, ) un espace mesuré, avec 4 finie. Soient
fu, [+ X — Rdesfonctions mesurables telles que f,, — f (convergence simple). Le théoréme d’Egoroff
affirme que f,, — f «presque uniformément », au sens suivant :

Ve>0,3C € T telque u(C) < eet f,, — funiformément sur X \ C. (2)

(La convergence uniforme reviendraita C' = (.)

Prouver ce résultat comme suit.
Soit (N;)k>1 C N.Posons

Ap N, = {x € X; |fulz) — f(x)] < %, Vn > Nk},

B .= ﬂ Ak,N(k)-

k>1

(Lensemble B dépend a la fois de la suite ( f,),, et de la suite (Ny).)
a) Montrer que A; n,, B € 7.
b) Montrer que f,, — f uniformément sur B.
¢) Montrer que, pour tout k > 1, il existe Ny, tel que (X \ A n,) < /2",
d) Pour N, comme dans la question précédente, montrer que p(X \ B) < €. Conclure.

Solution (TT).

a) Onaque Ay n, = (Npsn, Chins OU Crp i= (fo — f)7'(] — 1/k, 1/k[). Chaque C},, est mesurable
comme la préimage d’'un ouvert par une fonction mesurable et Ay v, et B sont mesurables comme
intersections dénombrables d’ensembles mesurables.

b) Par définition, f,, — f uniformément sur B ssi
VEINVn > NVz e B |fu(x) — f(x)] < 1/k.

Etant donné k, il suffit de prendre N := N et utiliser la définition de B.
c) Soiente > (et k donnés. Pour tout NV € N, soit

Cn :={z € X;Vn > N |fu(z) — f(z)| < 1/k}.

Notons que (Cy ) est une suite croissante et, comme f,, — f simplement, | J,, Cn = X. Le théo-
reme de la suite croissante donne ;(Cx)  1(X). Posons

Nj, :=min{N € N; u(Cy) > u(X) —e/2"}.

Il reste seulement a observer que Cy, = Ay v, -



d)

Nous avons :

X\B) <D X\ Apy) <) e/2F =¢,

k

et la question b) nous permet de conclure. O

Exercice # 6. (Lemme de Brezis-Lieb) Préliminaire. Un cas particulier du lemme de Fatou est le suivant.

Soit (X, 7, ) un espace mesuré. Si f,, > 0 est mesurable,Vn, et f,, — f,alors/f < lim inf/fn. Le

lemme de Brezis-Lieb, qui s’applique a des situations plus générales, permet, dans ce cas particulier, de

«mesurer » 'écart entre [ f etliminf / fn-
n

a)

b)
c)

d)

So

a)

Dans ce qui suit, les fonctions f,, : X — R sont supposées mesurables, avec (X, .7, ;1) mesuré.

Supposons f,, — f et f,,, f intégrable. Montrer que
J10d= [111+ [15.= 1+ o) quandn - <.’
On pourra commencer par établir I'inégalité
—[fI<1fal = 1fa = FI < | f]
et utiliser le théoréme de convergence dominée.
De mémesi f,, f sont intégrables et f,, — f p.p.
En déduire le corollaire suivant : si u,, u sont des fonctions mesurables positives telles que u,, — u
p.p.,etsi/un — /u < oo,alors/\un —u| — 0.
(Attention, hypothése inhabituelle concernant p) Soit 0 < p < 1. En reprenant la preuve de a),
montrer le résultat suivant. Si f,, — f et/ |ful? < o0, / | f|P < oo, alors
J10l= [ire s 1= 11+ o) quandn = o ®
lution (JK).
Soient a, b € R. L'inégalité triangulaire |a + b| < |a| + |b| implique |a| = |a —b+b| < |a—b| + |b| et

la — b] < |a| + |b|. Dot —|b| < |a| — |a — b] < |b|].On applique celad a := f,(x) etb := f(z).Ainsi,
[ fn(@)] = |fulz) = f(2)[| < [f(z)| pour tout 2 et n. Ceci montre que | fn ()| — [ fn(x) — f(z)] est
intégrable et que les conditions du théoréme de la convergence dominée sont satisfaites pour obtenir

i [ = 1 = ) = [tmmllfal =10 = 1D = [ 171

Donc ¢, = /(|fn| —\|fu — fl) — /]f| est une suite qui tend vers 0. Ajoutant / |fn. — f] nous
trouvons

Jani=10= 10+ [1n=11= [1r1+ 1= 11+ e

Finalement, comme |f,| — | f, — f| estintégrable et | f,, — f| positive on a (Prop. 6.28)

Jasi=10a= 10+ [1h=11= [l =15 = 415 = 50 = [ 15

1. Rappelons que o(1) quand n — oo désigne une suite (¢, ) telle que le cn = 0.
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b) Comme ci-dessus, mais cette fois-ci nous utilisons la variante p. p. du théoreme de convergence do-
minée. La mesurabilité de f doit étre supposée par hypothese; elle ne découle pas de celle de f,,.

c) Onna pas utilisé le fait que les f,, sont intégrables, mais seulement que f est intégrable. Donc on peut appli-
quer ce qui précéde a f,, := u, et f := u pour déduire que

/!un—u\:/un—/u—i-o(l),

et donc

1im/|un—u|:lim/un—/u:0.

d) Montrons, pour(0 < p < leta,b € R,I'inégalité
la + b|P < |al? + |b]P.

Comme |a — b| < |a+ b| siaetbontsigne opposé il suffit de considérer le cas a, b positifs et, de plus,
a # 0. Par homogenéité (de degré p) de f(x) = 2P, x > 0, il suffit de montrer I'inégalité pour a = 1.
Linégalité correspond doncd f(z+1) < 1+ f(z) pourz > 0. f'(x) = pzP~' est décroissante, donc

f(x+1)f'(z) . Isensuitque | f(y+1)dy < | f'(y)dy,donf(z+1)—f(1) < f(z)—f(0) =
f(z), ce qui permet de conclureo. ’

On déduit de cette inégalité, comme dans le cas p = 1, que —|b|P < |a|? — |a — b|P < |b|?, et le reste
suit exactement comme dans le cas p = 1. H

Exercice #7.Soit (X, .7, 1) un espace mesuré et ( f,,),>o unesuite décroissante de fonctions u-intégrables
qui convergent vers O simplement. Montrer que

R [r=] >V

On pourra utiliser la preuve du théoréeme de Leibniz sur les séries alternées.

n

Solution (TT). Soit S,,(z) := Z(—l)kfk(x). Nous avons que :
k=0
Son+1(x) = Son-1(x) + (fon(2) = font1(2)) < Sona(z) et
Sonv2(x) = Son(2) = (fant1(2) = fans2(2)) = Son().

Ainsi, (S2,+1)n €st une suite croissante, (Sa,,),, est une suite décroissante et, pour tout n, Sa, > San41-
De plus Sy, — San11 = fans1 converge simplement vers 0 quand n — oo. Ceci implique que la fonction

f(@) = lim Sy (2) = lim Sy 1 (2) = > (1) ful)

n

est bien définie. En appliquant le théoréme de convergence monotone, nous obtenons :

/f = /llm S2n+1 zlim/52n+1. (4)

Soit ay, := / fr. Parle théoreme de convergence dominée, a;, — 0. En utilisant le théoréme de Leibniz,

nous avons :
2n+1
Z(—l)kak = lim Z (—1)kak = lim/52n+l.
n n
k>0 k=1
Ceci mis ensemble avec (4) nous permet de conclure. O



Exercice # 8. Dans ce qui suit, 21, . . ., z, sont des nombres complexes. Le probléeme que nous étudions

est le suivant : montrer quil existe J C [[1,...,n] tel que la somme
SJ = Z Zj
jeJ

soit « grande ». Précisons d’abord le probléme. Nous avons

SJ<Z’Z]|<Z‘ZJ’ =5,

jeJ

et donc S ne peut pas dépasser S. Nous nous proposons de montrer qu'il existe .J tel que «.S; soit une
partie significative de .S ».

Je ne connais pas la réponse a la question c) (et elle n’est pas demandée). Les questions d) et e) sont
indépendantes de a) et b).

Clairement, pour n = 1 le meilleur choix est de prendre J := {1},etdanscecas S; = S = |z].
Etudions le casn > 2.

a) Sin = 2, montrer quil est possible de choisir J tel que

2
_Z ZJ|7

l\:>|>—l
DO | =

1 ) .
et que la constante 5 est la meilleure possible.

b) Sin = 3, montrer qu'il est possible de choisir .J tel que

3
lz Z]|7

ool»—*
oo

1 . .
et que la constante 3 est la meilleure possible.

. , . ) 1
¢) (Je ne connais pas la réponse) Quelle est la meilleure constante sin = 4? En tout cas, elle n’est pas T

En effet, nous allons montrer le résultat suivant.
1
VneN Vz,...,z,€C,3J C[1,n]telque S; > —S. (5)
T

Dans ce qui suit, le produit scalaire des nombres complexes ( , ) est le produit scalaire usuel dans R?.

d) Soitw = e un nombre complexe de module 1. Posons
Jo:={j e[l,n]; (z,w) >0}

(Donc J; contient les j tels que 'angle entre z; et w soit < 7/2))
Montrer que

P

jEJt

> Z(zj,w) = Z(zj,w>+. (6)

JjEJt

x, six>0

Rappelons que z . est la partie positive de z : z; := . .
0, siz<0

9



e) Calculer

2w N
/ Z<Zja ey dt

et obtenir (5) grace a (6).
Solution (JK).
a) Etantdonné {21, 25}, on choisit J := {j}, avec j t.q.|z;| = max; |z]. Alors 2|z;| > |21| + |22]. Ceci

montre que S; > §S.Dans le cas ot z; = — 2z, on voit que Sty = 55,2’ =1,2,et Sy = Sp12y = 0.

7 1
Donc max — = — dans ce cas.
Jc{1,2 S 2
b) Etantdonné {z,, 2o, 23} on choisit J = {j},avecj t.q.|z;| = max; |2|. Alors 3|2;| > |21|+ | 22| + 23],
. 1 . ; : :
ce qui montre que S; > 35' Dans le cas ot z; = w’, avec w une racine 3¢ de 1, on voit que S;; =

1 S 1
Spiye = gS,z‘ =1,2,3,et Sy = Sp1233 = 0. Donc max 1,23 FJ =3 dans ce cas. (Ceci utilise

W'+ wi| = [wh|si{i, 5.k} = {1,2,3})

d) Nous avons (par Cauchy-Schwarz)

oz )

JjeJit
e) Nous avons a faire a des intégrales de Riemann de fonctions continues sur [0, 27|. Par linéarité,
on peut échanger l'intégrale avec la somme. Avec r; := |z;| et z; = r;e’¥7, on obtient (z;, ") =
r; cos(p; —t) et donc

n

— Z<Zj’w> = Z(zj,w>+.

JjeJt J=1

>

2 ) 2 @wj+m
/0 (zj,€")pdt = Tj/o [cos(ipj —t)] 1 dp; = 7‘9‘/ [cos(ipj — 1)) d;
)

§—T

[VE]

= frj/ cos(p)dyp = r; [sin(gp)]?g = 2r;.

us
2

Donc

2T n n
[ St =23 1) =25
0 =1 j=1

n n

et
2w N 2m
/ Z(zj, e dt < max (2, e’t)+/ 1dt = 2 max (z,e") 4.
0o 4 0
7j=1

te[0,2m) < te[0,2m] 4
j:l ]21

Donc, avec d),

S <7 max (zj,€") <7 max E Z;
te[0,2m] 4 te[0,27] |4
JjEJt JEJt

On choisit alors ¢ pour maximiser le terme de la droite (le max existe, car ¢ — Z z; ne prend qu'un
JeJt
nombre fini de valeurs) et on pose J := J,.
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Exercice # 9. (Intégration par parties (I)) Nous travaillons dans ([0, 0o[, %o o[, 1) Soient f,g € £*.

Soient F(z) = /[0 S 6w = / g(t) dt, ¥z > 0.

a)

b)

c)

[0,]
Montrer que F et G sont bien définies.

Montrer que F’ et GG sont continues et bornées.
Pour la continuité, on pourra s'inspirer de la preuve du théoréme 7.12, variante p. p.

Montrer la formule d’intégration par parties

/OOO F(x)g(z)dx = /Ooo f(z)dx /Ooo g(x) dx — /OOO F(2)G(x) da.

Solution (PM). Les intégrales de 'énoncé sont des intégrales de Lebesgue.

a)

b)

c)

[0, z] est un borélien de R, donc de [0, co] (exercice 2.19, qui s'applique car [0, z] = [0, 2] N[0, oo]). La

conclusion suit de la proposition 6.35 a).

Il suffit de considérer F'. Une possibilité est de reprendre la solution de I'exercice 24 de la feuille 4

(premiere question).

Voici une autre solution, qui donne une conclusion plus forte. Soient z,y € [0, co[. Supposons par

exemple r < y. En utilisant la proposition 6.35 b) appliquée a f restreinte a [0, y| et le fait que les

intervalles sont des boréliens, nous obtenons F'(y) = F(z) + f(t) dt. De méme, sixz > y, alors
Jz.y]

F(y) = F(x) — f(t) dt.1l s’ensuit que

ly,z]

|F'(y) — F(x)| =

/ f(t) dt‘ < / |f(t)] dt, avec A(x,y) intervalle de longueur |y — z|.
Az,y) A(z,y)

Le lemme de Lebesgue (exercice 15 de la feuille de synthése) donne

lim |F(y) - F(x)| =0,

ly—z|—0

et donc F est uniformément continue.
Linégalité triangulaire et 'hypothése f € #! donnent

Pl -] <[ Apwals [ Ifl<oe,
[0,00] [0,00[

: fXO,:E]

[0,00

et donc I est bornée.

Solent :

h:[0,00—= R, h(z,y) = f(z)g(y), Va,y € [0,00],
A:={(z,y) €[0,00*; 0<y <x}, B:={(z,y) €[0,00[*; 0 <z <y}

Vérifions que h est borélienne. Notons d’abord que son domaine de définition est fermé, donc bo-
rélien. Désignons par ~ le prolongement par 0 en dehors du domaine de définition. Par hypothese,
f,5 : R — R sont boréliennes. Clairement, ;”vg(x, y) = f(x)fj(y) Il s’ensuit quil suffit de montrer
que, sia : R" — R est borélienne, alors R" x R™ > (x,y) — b(z,y) := a(x) est encore borélienne

(puis on applique ce résultat,avecn = m = 1,a f et g, et on utillise la proposition 3.25 a)). Soit
C € PBr.Alors

b1 (C)={(z,y eR"xR™; a(x) € C} = a *(C) x R™ € Brn X Brm C Byntm ;
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pour l'inclusion finale, nous utilisons les définitions 8.1 et 8.2, et la proposition 8.3).

Ensuite, notons que A estborélien (car fermé),donc borélien de [0, co[? (voirla question a)). Il s'ensuit
que B = [0, 0o[*\ A est un borélien de [0, co[%.

Pour compléter la preuve, nous allons montrer (en utilisant le théoréme de Fubini local) que I'égalité
a montrer revient a

| wtedsdy = [ oy)dsdy+ [ b,y dedy;
[0,00[2 A B

au passage, nous montrerons que h est intégrable. En admettant cette équivalence et I'intégrabilité
de h, nous concluons grice a la proposition 6.35 b).

Etape 1. h est vy-intégrable sur [0, co[2. (Et donc, par l'inégalité triangulaire, h est intégrable sur A et
B.) En effet, ceci suit du corollaire 8.25, en utilisant le théoréme de Tonelli local, qui donne

[ mldsdy= [ 5@ [ latldyds < oo
[0,00[?

[0,00( [0,00(

(car f,g € L.
Ceci justifie I'utilisation du théoréme de Fubini local dans les trois étapes qui suivent.

Etape 2. Calcul de / h(z,y) dzdy. Nous avons

[0,00[?

/ Wz, y) dedy = (2) / oly) dy de = / f() de / oy) dy.
[0,00[2 [0,00] [0,00] [0,00] [0,00]

Etape 3.Calculde/ h(x,y) dzdy. Nous avons
A

| vy dody - @ /[ oy = | s@Gds,

[0,00[

Etape 3. Calcul de/ h(x,y) dzdy. Nous avons
B

/B h(z,y) dudy = / o) [ f)dedy = /[ o) [ 1) dedy

10,00( (0,91 [0.9] 0

= /[0 [F(y)g(y) dy.

Exercice # 10. (Intégration par parties (II)) Nous travaillons dans (R, %, v1) et (R", Bgn, ).
a) Soitg € C'(R)intégrable. Montrer quil existe une suite (R;); C [0, oo[telleque R; — 00,g(R;) — 0
et g(—RJ) — 0.
On pourra commencer par montrer que lim lg| = 0, et montrer que l'on peut choisir

I700 J1<2|<j+1]

Rj EU?j + 1[
b) Soith € C'(R),avec h et I intégrables.

(i) Montrer que/h’ =0.
R

(i) Montrer que, pour toutn € R, /

e M (x) dr = m/ e h(x)dz.
R

R
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0
¢) Soit f € C1(R"),avec f et (9_f intégrables. Montrer que, pour tout { € R”,
T1

/n e”'gg—i(x) dr =& /n e " f(x) da

d) Soient f,g € C*(R")et0 < M < oo.Proposer et montrer une formule de la forme

0
/ a—f(x)g(x) dx :/ h(za, ..., zn) d(xa, ... xy,)
[ M, M OT1 [~ M, M]n—1

Jg
— z)——(x) dz.
/[_MM]H (@) 5 (x)

e) Soient f, g € C1(R") bornées telles que f, g, gf 0g soient intégrables. Montrer que
451 €
of
| tweterde =~ [ jw)g @)ds

Solution (PM). Notons que toutes les fonctions de I'énoncé sont continues (ou mieux), donc boréliennes,
et les ensembles sont des intervalles de R ou des fermés de R", donc des boréliens. Il s’ensuit facilement
que toutes les fonctions et les ensembles considérés ci-dessous sont boréliens.

a) Le théoréme de convergence dominée donne
lim lg| = lim / |9x(j5+1 =0
I700 J i<z <j+1 J7oo Jr

(la majoration est ||g|xpj+1| < |g| € ZH.
Via les propositions 6.35, 6.42 et le changement de variables # = —y dans une intégrale de Riemann,
nous obtenons

[ = tstnass [ iglas = [ oo+ oo o

Le théoreme de Lagrange donne I'existence d'un R; €|j,j + 1[tel que

1
/ (lg(@)] + g(—2)]) dx = [g(R;)| + [g(—R;)|,

d’ott la conclusion.
Variante, sous 'hypothése plus faible g borélienne et intégrable. Cette fois-ci, il faut faire le changement de

variable r = —y dans l'intégrale de Lebesgue / lg|.

[—j—1,—4]
Alafindelapreuve,aulieu d'utiliser le théoréme de Lagrange, nous utilisons I'exercice 12 de la feuille
de synthese (appliqué ala mesure de Lebesgue sur |4, j+1]) pour obtenirl'existenced'un S; € [j, j+1]
tel que

95| +1a(~S,)| < /[ U@+ gl

b) () Soit (R;) CJ0,00] telle que R; — oo et h(R;),h(—R;) — 0. Le théoréme de convergence
dominée donne

/h’ = lim [ h'x[_g, R, = lim n
R

7= Jr 72 JI-R; R
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(la domination étant |h/x[— g, r,)| < |W]| € L.
La proposition 6.42 et le théoréme de Leibniz-Newton impliquent

/[Rj,Rj] "= /Rj W (x) do = h(B;) — h(-R;),

—R,;

d’ou la conclusion.

(i) Soitk(x) := e ®h(x),Vx € R.Nous avons k € C*(R) et | k|

= |h|,dotk € £, Par ailleurs,
nous avons k'(x) = —wk(z) + e ™"h'(z),Vz € R,dou |K'| < |

n| || + |I] € £*, et donc

k' € £'. La question précédente donne [ k'(x)dz = 0,ouencore
R

/R (e™"H (x) — wmk(z)) dz = 0.

Pour conclure, il suffit de noter que ik(z) est intégrable (voir ci-dessus) et d’utiliser la linéarité
de l'intégrale (proposition 6.28).

c) Lethéoréme de Fubini donne 'existence de A, B € Hpn-1 tels que :
1. anl(A) = anl(B) =0 5
2. pourtouty = (w9, ...,1,) € R" 1\ A, 2y — f(x1,y) est v;-intégrable;

0 o
3. pourtouty = (zo,...,7,) € R\ B, 1y — a—f(xl, y) est vy -intégrable.
T

Soit C' := AUB € PBrn-1.Siy € R" 1\ (AU B), alors la fonction z; — f(z1,y) vérifie les
hypothéses de la question b), et donc

/ e‘”lglﬁ(xl, y) dry = 1& / e 8 f(zy y)day, Vy € R*I\ C, V€ €R. (7)
R 0x1 R

Ecrivons ¢ = (&1, 7). En multipliant (7) par e, nous obtenons

0
[ L ydn i [ oy dn, vy e RN C VEE R @
R 1 R

Par ailleurs, notons que :

1. fe<t

e Of of e O

1€ _ 1€ 1,
2. ‘e pr x ’— P (x)|,etdoncz — e P (x) e Z°;

3. C,A,B, A\ B, B\ Asontdes boréliens négligeables.

De (8), ce qui précéde, le théoréme de Fubini, et le corollaire 6.21, nous obtenons

e OF _ . Of
wg ZJ dr = Wz1&1t+yn) 2J dx d
[esgn@a=[ L (wr, ) dovdy
:/ /el(x1£1+y'n)aa_f(x1’y) dl‘l dy
R»-1\C JR I
:lfl/ /G_Z(xléﬁy.n)f('fl»y) dry dy
Rr—1\C JR

=151 / / e "Wt f (g y) day dy =& / e dr.
Rr-1\4 JR R"
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d) Notons qu'une fonction continue g sur un compact X C RF est v,-intégrable. Ceci suit de
q g p g

e)

J 1ol < [ maxlol = () mpelal < .

Il s’ensuit que toutes les fonctions considérées ci-dessous sont intégrables, et en particulier que le
théoréme de Fubini local s’applique. En appliquant ce théoreme, la proposition 6.42, la linéarité des
intégrales (qui sont toutes finies) et en effectuant une intégration par parties, nous obtenons

of / / of
o T)dr = Ty, x1, drid
/[—MVM}" 8x1( o) [—M, M1 J [-M,M] am( by)g(en, y) de dy

Moof
= 9 ——(21,9)9(71,y) dz1 dy
[—M, M=t J - T

=[anﬂmwmw—qmeMwm@

/ fz1,y)==(x1,y) dzy dy
[ MM]TL 1

=[anﬂmwmm—umeMwW@

dg
B L1, T,y dlL‘l d
/—M,M]n—l /[—M,M] f( )(9 1( ) Y
_AMMHKMme—umeMWWw

Jg
- /[_MM]W f@) 52 (a) da

Nous obtenons le résultat demandé, avec h(y) := (fg)(M,y) — (f9)(—M, y).
Le produit d'une fonction borélienne bornée et d'une fonction borélienne intégrable est une fonction

0
borélienne intégrable (ceci est un cas particulier de 'inégalité de Young). Il s’ensuit que fg, f 8_9 et
T

a—fg sont intégrables. Soit (M) CJ0, oo[ une suite telle que M; — oco. Le théoréme de convergence
I

dominée donne (comme, par exemple, dans la question b) (ii))

lim of <>g<x>dm-—-/£ OF (1) g(a) d,

Jj—roo [—M;,M;] 81’1 nal'l

Jg
lim r)——(x dx.
i [ g o= [ ot

De ce qui précede et 'identité trouvée a la question d), il suffit de trouver une suite (1/;) telle que

lim (ICf9)(M;, y)| + |(f9)(=Mj, y)[) dy = 0.

— _
I J =M, M)t

En utilisant la monotonie de I'intégrale, il suffit d’obtenir une suite (1/;) telle que

lim () (M, )| + 1(f9)(=Mj, y)|) dy = 0. 9)
J—00 Rn—1
L'existence s’obtient en appliquant la question a) a la fonction borélienne et intégrable
R> = |(fg)(z1, )| dy
Rn—1

(le fait que cette fonction soit borélienne et intégrable suit de I'intégrabilité de fg et du théoréme de
Tonelli). O
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Exercices avancés

Exercice # 11. (Unicité des mesures d la Lebesgue)
L. Soit (X, d) un espace métrique tel que

Bx @ Bx = Bxxx (10)

(nous verrons en partie II de I'exercice une condition suffisante pour la validité de (10)).
Exemple : X = R" muni de l'une des métriques induites par une norme || ||.

Une mesure borélienne y sur X est uniformément répartie si elle satisfait la condition suivante :
Ve,ye X,Vr>0,0< u(B(z,r)) = p(By,r)) < oo.

Le but de cet exercice est de montrer que deux mesures uniformément réparties sont proportion-
nelles.

En admettant cette conclusion, nous obtenons une autre caractérisation de la mesure de Lebesgue
(voir I'item i) ci-dessous).

Soient 1 et v deux mesures uniformément réparties. Soient g(r) := u(B(z, 7)), h(r) := v(B(z,r)),
V7 > 0 (ces fonctions dépendent de r, mais pas de = € X).

Dans ce qui suit, U désigne un ouvert non vide et borné de X.
a) Montrer que y et v sont o-finies.
b) Montrerque 0 < pu(U) < coet0 < v(U) < oo.
c) Montrerque V := {(z,y); z, y € U, d(z,y) < r} estun borélien de X x X.
d) Montrer que

Usz—vUNDB(z,1))

est borélienne.

e) Montrer que

/U v(U 0 B(x,r)) dyx) = / u(U N Bly,r)) dv(y).

U

(On pourra calculer @ v(V').)
f) Montrer que

. 1

u(0) = tim oo [ (U 0 Bla ) i),
. 1

V) = tim— | (U N B(.)) dviy)

g) En déduire qu'il existe un réel 0 < C' < oo (indépendant de U) tel que u(U) = C v(U).
h) Conclure.
i) Soit d la distance induite par une norme sur R". Montrer I'équivalence suivante :

(i) pestuniformément répartie sur Bgn.

(ii) Hexiste0 < C < ootelle que p = Cv,.

I1. Nous donnons ici une condition suffisante pour la validité de (10), condition qui est satisfaite en par-
ticulier par R™ avec I'une de ses métriques usuelles.

Voici une question d’échauffement.
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a) Montrer que, si (X, d) et (Y,0) sont des espaces métriques arbitraires, alors Bx @ By C Bxxy.
(Penser a la preuve de l'inclusion Zrn @ Brm C PBrn+m.)
Donc si une inclusion pose probleme dans la vérification de (10), il s'agit de Bx vy C Bx @ By .En
général, cette inclusion est fausse, mais donner un contre-exemple dépasse le cadre de cet exercice.

Un espace métrique (X, d) est séparable s'il existe un ensemble a. p.d. A C X dense dans X, donc
telque A = X.

b) Montrer que R” est séparable.

¢) Si X est séparable, montrer que pour tout ouvert U nous avons

v= |J Blan).
ac€A,reQ
B(a,r)CU

d) Si(X,d)et(Y,J)sontséparables, montrer que X x Y est séparable.
e) Si(X,d)et(Y,0)sont séparables, montrer que les ouverts de X x Y appartiennenta Bx & By
f) En déduire que, si (X, d) et (Y, ) sont séparables, alors Zx @ By = Bxxy-

Cas particulier : Brn X Brm = Brn+tm.

Solution (PM). Nous supposons X # (). Fixons 2o € X . Notons que les ouverts, et donc en particuliers
les boules ouvertes, sont boréliens, donc mesurables pour 1 et v.

L.

a) Nous allons montrer un peu plus que ce qui est demandé : X est 'union d’'une suite d’ouverts de me-
sure finie (nous en aurons besoin dans la question h)). En effet, nous avons X = U,,>1 B(zg,n), avec
B(xg,n) ouverte, et u(B(xg,n)) < oo,V n.En particulier, ;1 est o-finie; de méme pour v.

b) Soitx; € U (x; existe, car U est non-vide). Soient ro,r; > 0 tels que B(xq,71) C U C B(xg,r0).
(L'existence de ry suit de 'hypothése U ouvert, celle de 7y de 'hypothese U borné.) De par la monoto-
nie des mesures et les hypotheses sur 1, nous avons

0 < p(B(wy,m1)) < p(U) < p(B(wo,10)) < 00,

d’ott la conclusion. De méme pour v.
c) Lafonctiondistanced : X x X — R étant continue, V est un ouvert, car :
LV=d!]—oo,r)N({UxU);
2. | — oo, r|[estun ouvert de R;
3. U x U estunouvertde X x X (comme produit de deux ouverts);
4. l'intersection de deux ouverts est un ouvert.
d) Siz € X, alors

Veo={yeX;(z,y) eV}={yeX; (z,y) e U xUetd(z,y) <r}
_JUNnB(x,r), sizelU
o, siz g U

Cest a ce stade (et dans la question suivante) que nous utilisons I'hypothése (10). Lensemble V appartient a
PBx«x donc, grice a (10), 2 Bx ® Ax.La mesure v étant o-finie, le théoréme 8.9 implique que la
fonction

v(UNB(z,r)), sizelU

Xsx—v(V,) =
= vVe) {Q siz @ U

est borélienne, d’ott la conclusion (en utilisant le fait que U est borélien, et la définition 3.10).
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e) De la question précédente et la définition 6.14, les deux intégrales de I'énoncé existent, et valent
/ v(V,) du(z), respectivement / u(V¥) dv(y). u et v étant o-finies et V' étant borélien, I'égalité
X X
des deux intégrales (et le fait qu'elles valent y ® v (V")) suit du corollaire 8.13.

f) Examinons par exemple la premiere égalité. Si U = X, alors v(U N B(x,r)) = v(X) = h(r),
Vo e U,Vr > 0,etdans ce cas nous avons

1

1
5 [ 0B dnte) = 1 [ By duta) = ). e >0

d’ott la conclusion.
Supposons U # X, et posons, pour ¢ > 0,

U. :={z € X; dist(z,U°) > €}.

Rappelons (propriétés vues en topologie) que U, est un ouvert (quel que soit U) et que, si U est un
ouvert, alors U. U quand ¢ N\, 0. En particulier, la fonction |0, co[> € — p(U.) est décroissante,
et a donc une limite en 0.

Comme chaque U est borélien, ce qui préceéde et le théoréme de la suite croissante donnent

lim p(Ue) = p(U).

e—0+

(Raisonner le long d’une suite £, \, 0.)
Notons les implications suivantes :

relU. = B(r,e) CU = UnNB(x,e) = B(x,¢). (11)
La deuxieéme implication est claire. La premiére suit de

[z €U, y € B(x,e)] = dist(y,U°) > dist(z,U") — d(z,y) > e —d(z,y) >0
— y g U

nous avons utilisé le fait que dist(-, U¢) est 1-lipschitzienne, et le fait que
U ={z e X;dist(z,U°) =0}

(car U¢ est fermé).

Par ailleurs, nous avons (en utilisant la monotonie de l'intégrale des intégrandes boréliennes posi-
tives, le fait que U, est borélien et (11))

%/U(V(UHB(LT))) hi/ ) dp(x) = p(U),
respectivement
1 1
W/U(yme(x,r))) W/ v(UNB(z,1))) dp(x)
:#L/ ) dp(z) = p(Uy).

La conclusion suit de ce qui précede et du théoreme des gendarmes.
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g

h)

)

II.

a)

b)

d)

Notons qu'il existe au moins un U comme dans I'énoncé : par exemple U := B(x, 1).
Des deux questions précédentes, nous avons

g(r)/Uz/(UﬂB(a:,r))du(x)
= lim

= lim g(r)‘
v(U) =0t hlr) / WU N Be,r)) du(z) )
U

Il s’ensuit :

1. quelalimite C' := lim 9(r) existe;
r—0+ h(r)

2. que 0 < C < o0;
3. que nous avons l'identité u(U) = C v(U), pour tout U comme dans I'énoncé.

Légalité u(B) = Cv(B),VY B € Hx, sobtient en combinant le fait que X est 'union d’une suite
d’ouverts de mesure finie (voirlaréponse a a)),le théoreme 4.25 c) (et plus spécifiquement, la deuxieme
égalité dans (4.2)) et le point précédent.

Il suffit de montrer que v, est uniformément répartie, et d’'utiliser ce qui précede.
Nous avons, pour x € R"etr > 0,

Un(B(x, 1)) = vp(x + B(0,7)) = v,(B(0, 7)) ;

nous avons respectivement utilisé le fait que la distance provient d'une norme, et l'invariance par
translations de la mesure de Lebesgue.

Ainsi, il suffit de montrer que 0 < v,(B(0,7)) < oo, Vr > 0.Soient 0 < ry < r; < oo tels que
| — 1o, 70["C B(0,7) C] —r1,r1[". (Lexistence de g, 1 suit de 'équivalence des normes || || et || ||,
et de la forme des boules pour || ||o.) Par monotonie de la mesure, nous avons

0 < (2r0)" = vp(] — ro,mo[") < vp(B(0,7)) < wvp(] —r,m[") = (2r)" < o0,

d’ott la conclusion.

Il suffit de reprendre la preuve de « C » dans la proposition 8.3, en remplagant R" et R” par X et Y.

Q" est dénombrable (exercice 1.14 a)) et dense dans R™ (propriété vue en topologie), d’ott la conclu-
sion.

Nous reprenons essentiellement la preuve de la proposition 2.16 c). L'inclusion « D » est claire. Soit
x € U.U étant ouvert, il existe R > 0 tel que B(z, R) C U. En diminuant si nécessaire R, nous
pouvons supposer que R € Q.

A étant dense, il existe a € Atel que d(z,a) < R/2.Soitr := R/2 € Q. Nous avons z € B(a,r)
(card(z,a) < r)et

B(a,r) C B(z,r +d(z,a)) C B(z,R) C X.

Cecidonne « C ».

Soient A C X et B C Y a.p.d.etdenses (dans X, respectivement Y'). Alors A x B est a. p. d.
(proposition 1.13 ¢)). Par ailleurs, nous avons

AxB=AxB=XxY,

d’ott la conclusion.
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e) Dans cette question, nous allons considérer des boules par rapport a plusieurs distances. Par souci
de clarté, nous mettons en indice la distance correspondante.

Munissons X x Y de la distance naturelle

D((z1,y1), (w2, y2)) := max{d(xy, z2), 0(y1,92)}, V1,20 € X, y1,92 €Y,
de sorte que

Bp((z1,y1),7) = Ba(z1,7) X Bs(y1,7), Vo1 € X, y1 €Y, 7 > 0.
De la question c), nous avons, pour tout V ouvertde X x Y/,

V= U — U By(a,r) x Bs(b, 1) € Bx @ By ;
(a,b)eAxB,reQ (a,b)eAxB,reQ
Bp((ab),r)cV Bp((ab),r)cV

ici, nous avons utilisé le fait que By(a,r) € HBx (respectivement Bs(b,r) € ABy), dout By(a,r) X
Bs(b,r) € Bx @ By, et également le fait que 'union que nous considérons est a. p. d. (via la propo-
sition 1.13 ¢) et a), car A X Besta.p.d., Q est dénombrable).

f) Il sensuit de la question précédente que
Bxxy =T {V;V C X xYouvert}) C T (Bx @ By)=Bx 2 By.
La question a) permet de conclure. O
Exercice #12. (Dérivée de l'intégrale) Nous travaillons dans ([0, o[, Do o[, 1).Soit f € L. Soit F(x) :=
Ft)dt,vx > 0.
“Soit g € ([0, o).
a) Montrer que [0, 00[> = — h(z) := /[0 ]g(t)f(x — t) dt est continue.

Indication : on pourra utiliser un changement de variable.

b) Montrer que = — / g(t)F(x —t) dt est de classe C*, de dérivée h.
0

Indication : on pourra partir de la définition de la dérivée, et considérer le taux d’accroissement

/Hag(t)F(x te—t)dt - / gt F(z —t) dt

€

,e#0, h>—x.

Solution (PM). Notons que f et g sont boréliennes et que les fonctions caractéristiques des intervalles
sont boréliennes. Il s’ensuit que toutes les fonctions considérées ci-dessous ((x, t) — f(z—1t),t — g(t),
etc.) le sont, par application des propositions de la section 3.2.

a) Considérons le changement de variable affine ® : R — R, ®(u) := x — u. Notons les égalités
suivantes, au sens du théoréme du changement de variables :

h(x) = / 90 (& — 1) X0 (£) di () = / 9 — ) ()Xo (& — ) dis (u)

R

- / 9 — ) ()X (0. () dor (0.

Nous allons utiliser la derniere intégrale pour montrer la continuité de h, et en particulier pour mon-
trer a posteriori que l'intégrale qui définit h existe et est finie. Pour ce faire, nous reprenons la preuve
de lexercice 9 b).
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b)

Soient (z,),z C [0,00[ tels que x,, — . Soit k,(u) = g(x — u)f(u)X[p,(w), k(u) = g(z —
w) f(u) X0,z (1), Vu € R, qui sont des fonctions boréliennes (voir le début de I'exercice).
Nous avons k,,(u) — k(u),Vu € R\{z},donck, — kv;-p.p.Parailleurs, nous avons la majoration

()] < [ flxp0,000 € 2 (R).

(Et de méme pour k. Au passage, cette majoration montre que h est bien définie.)
Le théoréme 7.10 implique la continuité de h.

F est continue (exercice 9 b)). Il s’ensuit que la fonction de 'énoncé est bien définie et nous avons
(proposition 6.42)

/xg(t)F(a:—t)dt:/ GO F(z — 1) din (t / gt/ §) dv(s)dn(t).  (12)
0 [0,2] [0,x] [0,z—1]

Nous allons exprimer le membre de droite de (12) viala fonction z — G(x) := / g(t) dt,enutilisant
0
le théoréme de Fubini. Considérons 'ensemble
E:={(s51);0<t<z,0<s<z—t}C[02]

qui est fermé, donc borélien.
La fonction

E 3 (s,t) = g(t)f(s)

est borélienne.

Nous avons (en utilisant la monotonie de I'intégrale des fonctions boréliennes positives, la continuité
de g, et le théoréme de Tonelli local pour v = vy ® 1)

/ 9(t) £ (s)| dsdt < /[ o055 dsd < ol [ 15(0)
0,z]2 X 0,z]2
= xmax|g| |f] < o0.
[0,2] [0,2]

Le théoréme de Fubini local donne

[ o[ soan@an- [ / 160 ) 1)
/ /E t s) dvi(s) dvs (t)
/ / S s) din(t) din (s)
—/[O@]f(S)/g g(t) dvi(t) dM(s)

= S dVl d/\1 S
s [ saning
= [ 96 - sjan)

[0,2]

= f(s)G(x — s)dr(s)

[0,2]

(lavant derniére ligne utilisant la proposition 6.42, et la derniére le fait que l'intégrande est boré-
lienne).
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Posons

H(x) = ' }f(s)G(x —s)dvi(s), Vx> 0.

De ce qui précede et de la preuve de a), pour conclure il suffit de montrer que H est dérivable et que

H'(z) = h(z) = , ]f(s)g(x — 8)dv(s), Yo > 0.

Cette égalité revient a

H - H
lim (z+¢) (z) = h(x), Yz >0,
e—0 g

ou encore

lim H(xz+¢)— H(x) —ech(x)

= 0. (13)

Soite tel que —x < € < 1 ete # 0. Nous allons estimer le numérateur de (13). Considérons le cas ot
e > 0;lecasole < 0 est similaire. Nous avons, en utilisant la relation de Chasles (proposition 6.35
b)), la finitude des intégrales considérées et le fait que les intervalles sont boréliens :

Hiz + ) — H(z) — ch(z) :/ F($)G(x + 2 — 5) din(s)

Jz,z+¢]
—I—/ f(s)(Gx4+e—s5)—G(x—s)—eg(x —s))dv(s)
[0,z]
=1(e) + J(e).
Nous allons montrer que hH(l) ? =0et lin% @ = 0 (d’out la conclusion de I'exercice).
e— e

Estimation de I (g). Soit M := maxj 41 |g| < 0o.Nous avons |G(y)| < My,V0 <y < x4+ 1.11
s’ensuit que

IGlx+e—s)|<Mx+e—s5)<Me, V0O<e<1,Vs€|r,x+el,

d’otut (par inégalité triangulaire et I'intégrabilité de f)

()] < Me / F(3)] din(s).

|z, z+e]

En appliquant l'exercice 9 b) a la fonction | f|, nous avons

i [ 7o) o) =t /[ L @ldnge) - | 1relane) <o

e—0 ]Z‘,$+6] e—0 [0733]

I
Il s’ensuit que lim 1) = 0.
e—=0 &£

Estimationde J(¢). Le théoreme de Lagrange donne l'existence d’'un point intermédiaire { €|z —s, v+
e — s[(dépendant de x, ¢, s) tel que

T+e—S

Gz +e—s)—G(x—s) :/ g(t)dt =¢eg(§).

Tr—s
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Il s’ensuit que, pour 0 < ¢ < let0 < s < x,nous avons

Gz +e—5)—Gx—s) —eg(z—s)| <elg(§) — gz —s)|
< emax{|g(u) —g(v)]; 0 <u,v <z +1, |[u—v| <e}
= eM(e).

Vial'inégalité triangulaire et I'intégrabilité de f, nous obtenons

()] < eM(e) / fldin,

[0,00]

De la continuité uniforme de g sur [0, z + 1], nous avons hn(1) M(e) =0,dou hn(l) J() =0. O
e— e—=0 ¢

Exercice # 13. (Théoréme d’Orlicz) Soit I C R une intervalle ouvert non vide muni de la mesure de
Lebesgue. Nous considérons une suite (e;)z>0 C L? = L*(I) orthonormée et telle que

f=Y (fex)er VfeL (14)
k=0

a) Montrer que, pour tout f, il existe une suite extraite (N,) (qui en principe dépend de f) telle que

Ny

Z(ﬁ ex) ex — fp.p.quand £ — oo.

k=0

b) En déduire que, pour tout f € L?, nous avons

7)]? < Z[(f, ex)]? Z lex(2)]* = 1 f1|Z2n) Z % pour presque tout z € 1. (15)
k=0 k=0 k=0

¢) Enprenant,dans (15), f := x4, avec A convenable, en déduire le théoréme d’Orlicz : pour presque tout
x € I nousavons Y, [ex(z)]* = oo.

Indication : commencer par 'ensemble

Bj::{xel Zek },]GN*

et utiliser 'exercice # 47 de la feuille #2 pour construire A.

Solution (PM). Remarque préliminaire. C'est un énoncé typique pour les espaces L? : il faut traduire les
hypothéses etles conclusions en termes de fonctions, et se convaincre qu’elles ne dépendent pas du choix
du représentant dans la classe. Nous ne vérifierons pas ce point dans ce qui suit, mais il est instructif de
vérifier par exemple que la propriété (15), si vérifiée par une fonction f et une suite (e )0 de Z2(1),
alors elle est également vérifiée par g ~ f et fi. ~ ey.

Dans ce qui suit, nous allons donc travailler avec des fonctions de .£%(1).

a) Lhypotheése (14) est
N
> (f.ex) ex — f dans £*(I) quand N — oo.
k=0

La conclusion suit alors du corollaire 10.28.
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b) Soit C' € B telque 1, (C) = Oet S p’y(f, en) en(z) — f(x),Ya € I\ C.

Pour tout z € [ et tout £, nous avons

2

S (fee@)| <SS le@ < S e Y e

Nous obtenons I'inégalité demandée en prenant, dans ce qui précede, x € I\ C,eten faisant{ — oc.
Pour 'égalité, notons que la suite (e x>0 est orthonormée. Nous avons donc

N, 2

Z(f €k) ek

= £z,

L2(I)

Z[(ﬁ ex)]’ :}H& kz_%[(f, er))” = hm

k=0

c) SiA € Betvi(A) < oo,alors f := x4 est borélienne et || f||2, = v1(A) < oo,etdonc f € Z2.11
s’ensuit que ce qui précede s’applique a f.

Soient

Bw={meh§]%@W§j}AweNﬁ
k=0

et

B = {x el,; i[ek(ﬂf)P < OO} = U;Bj,

qui sont des boréliens (ceci suit des résultats des sections 3.2 et 3.3, et de la proposition 3.11).

La conclusion est v (B) = 0; pour 'obtenir, il suffit de montrer que v4(B;) = 0,V j. Preuve par
l'absurde : supposons v1(B;) > 0 pour un j. Soite > 0 a fixer ultérieurement. Il existe D € % tel
que D C Bjet0 < v1(D) < ¢ (exercice 47, feuille 2). Posons A := D \ C, de sorte que A € %y,
AC Bjet0 <1(A) =1(D) <e.Soit f := ya € L~

De ce qui précede, pour tout x € A nous avons

[e.e]

L= [f@)]® < fl7em D _en(@)]’ < m(A)j <ej.

k=0

En choisissant 0 < £ < 1/j, nous obtenons une contradiction (car A est non-vide, et donc I'inégalité
précédente est vraie pous au moins un ), ce qui acheve la preuve. O

Exercice # 14. (Inégalités de Nikolski’i)
Nous travaillons dans (R", %Bgn, 1,).
Soit f : R" — R. Nous faisons 'hypothése

feL'(R"), (16)

qui permet de considérer la transformée de Fourier f de f.

L'hypotheése essentielle est

fle)=osil¢g| > R (17)

(avec 0 < R < oo constante arbitraire).
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Sous ces hypothéses, nous nous proposons de montrer les inégalités de Nikolskii directes

1fllr < CLR™YP=Y | 1w, V1 < p <7 < o0, (18)
10 f|lr < CoRM/P=VMAL| £, V1 <p<r<oo,VjeE[ln], (19)

ou (1, Cs sont des constantes finies qui peuvent dépendre de n, p et r, mais pas de f ou R. Au passage,
sous les hypothéses (16) et (17), nous montrerons que f € C*.

Sous 'hypotheése plus forte (20),

-~

f(§) =0si|¢] > Rousi|¢] < (20)

SIR=>

nous avons également 'inégalité de Nikolskii inverse, énoncée, par souci de simplicité, uniquement sin = 1:
1Nl < CsRYP N e, Y1 < p < < 00, 2

ou C3 est une constante finie qui peut dépendre de p et r, mais pas de f ou R.
Voici la démarche proposée pour montrer (18), (19) et (21).

a) (Argument de changement d’échelle) En supposant I'une de trois inégalités vraie pour R = 1, elle est
vraie pour fout R. Voici 'argument pour (18). Soit f une fonction vérifiant (16) et (17). Soit (avec les
notations de l'exercice #1 a) de la feuille #9) g := fg.

(i) Montrer que g vérifie les hypotheses (16) et (17), la derniére pour R = 1.

(i) En appliquant (18) (supposée vraie si R = 1) a g, et en calculant ||g|| .-, respectivement || g|| .»
en fonction de || f|| -, respectivement || f|| », obtenir (18) pour f.

b) Vérifier que la méme démarche est valide pour (19) et (21).
¢) (Preuvede (18)si R = 1)
(i) Montrer quil existe ¢ € C'°(R™) telle que p(§) = 1si [¢| < R.
(i) Montrer quil existe ¢ € L'(R") telle que ¢ = .
(iii) Montrer que, de plus, v € L>(R").
(iv) Montrer que ¢ € LI(R™),V1 < g < o0.
(v) Soit f vérifiant (16) et (17) avec R = 1. Montrer que f = f x 1. Indication : prendre la transfor-
mée de Fourier dans cette égalité.

1
(vi) Sil <p,q,r < oosonttelsque 1 + — = — + —, montrer que || f|| .~ < ||¢]|za || f]| -
r P g

(vii) Conclure.
d) (Preuvede (19)si R = 1)

() Montrer successivement que ¢ € C*(R"), 9,9 € Ll,@(g) =& p(§),0;0 € L¥(R™), et
0;¢ € LY(R™),V1 < qg<o0,Vje€[Ln].

(i) Montrer que f € C'(R") etque d;f = f * 9;4,Vj € [1,n].
(iii) Conclure.

e) (Preuve de (21) si R = 1) D’aprés les questions précédentes, nous savons que f € C'(R) et que
[ € LP(R) (et, par ailleurs, que f’ € L'(R)). Il reste a montrer (21).

(i) Montrer quil existe ¢ € C°(R) telle que
1 1
((§) = —, V& eRtelque 5 < [¢] < 1.
1€ 2
(i) Montrer quil existe n € L'(R) telle que 7 = (.

25



(iii) Montrer que f = f' % .

(iv) Conclure, sur le modele des questions précédentes.

Solution (PM). Nous pouvons travailler avec des fonctions (mais attention a la question d) (ii)). Supposons
donc f € #1L. f étant borélienne, les fonctions f. le sont, par composition. Par ailleurs, f est continue
(proposition 13.1). Ceci permet de vérifier que toutes les fonctions qui interviennent ci-dessous sont
boréliennes.

a)

b)

)

Nous établissons en parallele (i) et (ii). Pour ce faire, montrons que
1 fellpr = e D[ fllr, Ve >0, 1 < r < 0. (22)

Sil <r < oo, cette égalité suit, via le changement linéaire de variables x = ey := ®(y) :

£

r 1 r 1 r_n 1 r
HfEHLT = / m"‘f<x/€)‘ dx = nr / ’f(y” € dy = n(r—1) HfHLT
R € R £

Sir = oo, montrons l'inégalité || || L~ < 7"||f||L;la preuve de I'inégalité contraire est similaire.
Soit A € HBgn tel que v,,(A) = Oet|f(x)] < ||fllz=,Vz € R"\ A.Six & €A, alors,z/c & A, et
donc | fo(x)| < e7"||f||L. Le théoréme 9.2 implique que €A est un borélien négligeable. De ce qui
précede, nous avons |f.| < 7| f||L~ vn-p- p., et donc || fe||n= < || f||Lee-

Par ailleurs, nous avons, si f € £,

~

F(€) = f(e€), Ve > 0, VE € RY, (23)

(exercice 13.13 a) (i1)).

Soit f satisfaisant (16) et (17), et soit £ := R. De ce qui précéde, nous avons |[£| > 1 = g(§) =0, et
par ailleurs g € ! (de (22)).

L'inégalité (18) avec R = 1 combinée avec l'identité (22) appliquée a g donnent :
RO fllr < CLRTMYP| £,

ce qui donne (18) pour R quelconque.

Admettons la validité de (19) pour R = 1. Supposons que f € C* (cette propriété sera montrée plus
bas). Nous avons, par calcul direct, 0; f. = g1 (0;f)e, et donc, si f vérifie (16) et (17), nous obtenons
(en utilisant (22) et (19) avec R = 1, appliquée a g := fg) :

R0, fll5r < CoROUP| £l

ce qui implique la validité de (19) pour R quelconque.
Comme ci-dessus, de (21) avec R = 1, nous obtenons (rappelons quen = 1) :

RO flle < C3RTOHD| £

ce qui implique la validité de (21) pour R quelconque.
(i) Clestune conséquence dulemme 11.20.

(i) Notons que C°(R™) C ZY(R", Bgn,v,) (ceci est établi, par exemple, dans la preuve de la
proposition 13.5).
Soit ) := $. Nous avons j € L' (proposition 13.5). Si nous posons ¥(£) := (27) "n(=£),
V& € R7,alors i € £ (exercice 13.13 d) (i) et ?Z = ¢ (corollaire 13.9).
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d)

(ii1)

(iv)

()

(vi)

(vii)

(1)

(i)

De la proposition 13.5, nous avons i) € C*°. Il s’ensuit que

[l o = (2m)7" Sgp\@(—f)\ < (2m) "l < o0

(nous avons utilisé 'exercice 10.9 et la proposition 13.1 a)).
Ceci suit des deux points précédents (voir 'exercice 10.23).
Nous avons f, 1) € L', d’ott (proposition 13.1. ¢)) :

—_— ~ -~ ~

Fx(€) = FOU(E) = F©)p(&) = F(©),

-~

car (par hypothese (16)) ¢(¢) = 11aou f(§) # 0.1l Sensuit que f/*\¢ = fA Comme f x 1) € L*
(par l'inégalité de Young, théoréme 11.2), il s'ensuit que f x 1) = f dans L' (corollaire 13.8).

Ceci suit de I'inégalité de Young et de la question précédente.

Sil < p <r < oo,alors nous avons

1 1 1
1>14-—->1-=>0,
r p p

1 1 1
etdoncilexiste 1 < ¢ < cotelque — = 1 + — — —. De ce qui précede, (18) (avec R = 1) est
r . p

vraie avec C := |9z« < o0.

Nous avons déja vu que ¢ € C*°(R™).

Considérons les propriétés d’intégrabilité de 0;1). Soit n comme dans c) (ii). Par changement
linéaire de variables x = —y := ®(y), les propriétés de J;¢ se ramenent a des propriétés ana-
logues de 9;7 (voir par exemple l'exercice 13.13 d)). Ainsi, il suffit de montrer que 9;n € £,
0;n € L (ce qui implique, comme dans c) (iv), que 9;n € £,V 1 < ¢ < 0).

Nous avons ¢ € £ (voir le début de ¢) (ii)). Par ailleurs, si {(z) := |z|p(z),Vx € R", alors
¢ € C.(R"),etdonc ¢ € .£*. Ainsi, ¢ satisfait les hypothéses de la proposition 13 .4, et donc

Oim(€) = 0;3(6) = G(€), ¥i=1,...,n, V€ € R",

ol (j(z) == —wxjp(x).

Comme, d’une part, nous avons (; € £ (ceci est établi dans la preuve de la proposition 13.4),
nous obtenons, grace a la proposition 13.1 a), que d;n € £*°. Par ailleurs, nous avons ¢; €
C>(R"),etdonc 9;n € £* (proposition 13.5).

Enfin,comme ) € L'etd;jip € L', Vj=1...,n,laproposition13.4etle pointc) (ii) donnent

D0(€) = 1650(€) = 1650(), Yi=1,...,n, VE ER™,

La, il y a une subtilité. L'énoncé demande de trouver, dans la classe de f, une fonction de classe C''. Nous
allons montrer que cette propriété est satisfaite par f * 1. Cette fonction est définie en tout
point et continue (théoréme 11.2 c) et proposition 11.21 combinés avec le fait que ¢ € £).
L’appartenance de f * 1 ala classe de f suit de c) (v). Dans tout ce qui suit, nous remplagons f
par f x 1.

Comme ci-dessus, les fonctions f * 0;1) sont définies en tout point, continues et bornées.
Dans lesprit de la proposition 11.7, nous allons montrer que

0;f = 0;(f x ) = [+ (9;0). (24)

En admettant cette égalité, de ce qui précéde nous avons a la fois f € C'(R") et la conclusion

du (ii).
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e)

(ii1)

(1)

(i)

(i1)

(iv)

Pour vérifier (24), nous utilisons le théoreme 7.18 appliqué a I'intégrale a parameétres

fri(r) = . fW)y(z —y)dy.

Les hypotheéses de mesurabilité et dérivabilité étant immédiates (car f est continue et 1) est C),
procédons aux majorations.

Nous avons

[f)v(z —y)l < [0l fW)], Va,y € R

Cette majorante est intégrable, car f € £t ety € L.
De méme, nous avons

0
— FW)le — )| < 100l W)], Yoy € R
J
Ceci permet d’appliquer le théoréme 7.18 et de conclure.

On conclut comme dans c) (vi)(vii), en utilisant : 'identité d) (ii), l'inégalité de Young, le fait

1
que 0,9 € £,V q,etlexistencede gtelque — + — =1+ —.
b q r

Soit A € C°(R\ {0}) telleque A(§) = 1,V 1/2 < |¢| < 1 (Iexistence de A suit dulemme 11.20),
prolongée avec la valeur 0 en 0. Alors ((&) := —5)\(5), V¢ € R, convient. En effet, nous avons
v

clairement ¢ € C*(R \ {0}). Par ailleurs, ( = 0 dans un voisinage ouvert convenable de 0, et
donc ¢ € C* auvoisinage de 0.

Comme dans ¢) (ii). Attention, ce n’est pas le méme 1) que dans les questions précédentes.

Comme expliqué dans ¢) (v), il suffit de montrer que nous avons égalité des transformées de
Fourier respectives. En utilisant f, f' € £, n € £, e) (ii) et les propositions 13.1 ¢) et 13.4,
nous obtenons

~

Fren(€) = FONE) = € FE)C(E) = F(&),

car, grace a l'hypothése (20) (avec R = 1) etae) (i), nous avons £ (&) = 1laou f(§) # 0.

Comme dans les autres questions, nous avons n € .9,V g, ce qui permet de conclure, grace a
e) (iii) et a 'inégalité de Young. O
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Consignes

1. Le seul document accepté est le support complet de cours, sous forme papier. Il ne doit pas conte-
nir d’ajouts concernant la correction des exercices.

2. Pas d'ordinateur, tablette, téléphone, calculatrice, montre connectée, ou autre objet connecté.
b
3. Pour chaque intégrale de la forme / f(z) dx, préciser s'il s'agit d’'une intégrale de Riemann, gé-

a
néralisée et/ou par rapport a la mesure de Lebesgue; justifier son existence et préciser a quel type
d’intégrale s’appliquent les résultats utilisés.

Exercices de base

Exercice # 1. (2 p.) Soit a > 0. Calculer

00 e—x/n

L, := lim ——dx.
n—oo fo o (1 +x)e

(Le résultat final doit étre un nombre explicite dans R, pas une intégrale.)

Exercice # 2. (2 p.) Pour x € R, soit

. sin(tx)
F(z) = /Rmdt.

Montrer que F'est continue.
Exercice # 3. (1 p.) Montrer que la fonction F' de l'exercice 2 est dérivable.
Exercice #4.(3p.) Soit D := {(z,y) € R?; 2% <y < z}.

a) Dessiner D dansle plan zOy.

b) Calculer /

J dxdy.
DT

Exercice # 5. (2p.) Soit A := {(x,t) € R?; 0 < t < z}.
Montrer que

t g
/ COSY grdt = / ST
AL+ 23 o 1+ a3

Exercice # 6. (2 p.) Calculer

1
———dx
/Rz (1 4 [z])?

(ot |z| désigne la norme euclidienne usuelle de = € R?).

Exercice # 7. (2 p.) Soit
[iR" =R, f(z) =exp(=|z1] = = [zn]), V& = (21,...,2,) €R™,

Calculer f



Exercices

Exercice # 8. (3 p.)
a) Soitz € [0, oo[. Etablir la monotonie de la suite (n (¢”/" — 1)) _ .(On pourra par exemple utiliser
le développement en série de l'exponentielle.)
b) Calculer

lim n/ (e™ — 1)e % dax.
0

n—o0

Exercice # 9.(1p.) Soit F'la fonction de l'exercice 2, qui est dérivable (voir l'exercice 3). Calculer lim F'(x).

T—00

Exercice # 10. (2 p.) Nous travaillons dans (R, %, v/1). Soit

€7 1, si0<[¢] <1

ng_}C’g(@:_{O, si|¢|>1oué=0"

a) Existe-t-il f € Z(R) telle que f = g?
b) Existe-t-il f € L*(R) telle que ]?: g?
Probléemes

Probléme # 1. (4 p.) Soit
E:={(r,y) eR*; 0 <y < z}.

Soit
f : E—>R7 f(il?,y) = Cosyv V(l’,y) € E7
x(l
oul <a < 2.

a) Donner un sens a et montrer 'égalité

[ ([ senw)ie= ([ sepa)a

b) Montrer que f n’est pas intégrable sur £, et donc le théoréme de Fubini ne s’applique pas.

Probléme # 2. (4 p.) Nous travaillons dans (R", Bgn, vy,).
Rappelons la propriété suivante :si f, g € £*(R"), alors

~

. f(&) g(§) dE = s f(x)g(x) de. O
a) Soit
9 R =R, ¢°(z) :==exp(—¢lzi| — -+ —€lzn|), Vo = (z1,...,2,) €ER", Ve > 0.
Calculer ¢°.

b) Sif e Z'(R")estune fonction continue et bornée telle que f € £' montrer,alaidede (1) eta),la
formule d’inversion

L[ Feae.
Rn

Probléme # 3. (4 p.) Soient f, g :]0, oo[— [0, oo[ deux fonctions boréliennes. Montrer que

00 z2/4
T xy) |z — yldedy = 2 T dy | dx.
A)W[Qf( +y) 9(zy) [z — y| dady /O £ )(/0 9(y) y)
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Exercice # 6. (2 p.) Calculer

1
———dx
/Rz (1 4 [z])?

(ot |z| désigne la norme euclidienne usuelle de = € R?).

Exercice # 7. (2 p.) Soit
[iR" =R, f(z) =exp(=|z1] = = [zn]), V& = (21,...,2,) €R™,

Calculer f



Exercices

Exercice # 8. (3 p.)
a) Soitz € [0, oo[. Etablir la monotonie de la suite (n (¢”/" — 1)) _ .(On pourra par exemple utiliser
le développement en série de l'exponentielle.)
b) Calculer

lim n/ (e™ — 1)e % dax.
0

n—o0

Exercice # 9.(1p.) Soit F'la fonction de l'exercice 2, qui est dérivable (voir l'exercice 3). Calculer lim F'(x).

T—00

Exercice # 10. (2 p.) Nous travaillons dans (R, %, v/1). Soit

€7 1, si0<[¢] <1

ng_}C’g(@:_{O, si|¢|>1oué=0"

a) Existe-t-il f € Z(R) telle que f = g?
b) Existe-t-il f € L*(R) telle que ]?: g?
Probléemes

Probléme # 1. (4 p.) Soit
E:={(r,y) eR*; 0 <y < z}.

Soit
f : E—>R7 f(il?,y) = Cosyv V(l’,y) € E7
x(l
oul <a < 2.

a) Donner un sens a et montrer 'égalité

[ ([ senw)ie= ([ sepa)a

b) Montrer que f n’est pas intégrable sur £, et donc le théoréme de Fubini ne s’applique pas.

Probléme # 2. (4 p.) Nous travaillons dans (R", Bgn, vy,).
Rappelons la propriété suivante :si f, g € £*(R"), alors

~

. f(&) g(§) dE = s f(x)g(x) de. O
a) Soit
9 R =R, ¢°(z) :==exp(—¢lzi| — -+ —€lzn|), Vo = (z1,...,2,) €ER", Ve > 0.
Calculer ¢°.

b) Sif e Z'(R")estune fonction continue et bornée telle que f € £' montrer,alaidede (1) eta),la
formule d’inversion

L[ Feae.
Rn

Probléme # 3. (4 p.) Soient f, g :]0, oo[— [0, oo[ deux fonctions boréliennes. Montrer que

00 z2/4
T xy) |z — yldedy = 2 T dy | dx.
A)W[Qf( +y) 9(zy) [z — y| dady /O £ )(/0 9(y) y)
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Contrdle terminal
—le mercredi 6 janvier 2021 —
—éléments de correction —

Exercices de base

Exercice # 1. (2 p.) Soit a > 0. Calculer

oo e—z/n

L, := lim ———dx
n—oo Jo (14 x)°

(Le résultat final doit étre un nombre explicite dans R, pas une intégrale.)

Eléments de correction. Le fait que a > 0 ne joue aucun rdle. Appliquer le théoréme de convergence mo-
notone. Via un changement affine de variables dans une intégrale généralisée, nous obtenons

o0 1 Sl | oQ, sia <1
La:/ —dx:/ =1 1 . . 0
o (1+x)e 1y — sia> 1

Exercice # 2. (2 p.) Pour x € R, soit

Fla) = /R sinltr)

t(1+1¢2)
Montrer que [’ est continue.
Eléments de correction. Si[a,b] C R, nous avons la majoration

sin(tx)
t(1+t2)

124
x [y|

1
, Vo € la,b], Vt € R.
S Wi e S mey i Ve el

Nous concluons en utilisant le fait que

1
/ dt = 1 < o0. O
r 142

Exercice # 3. (1 p.) Montrer que la fonction F' de I'exercice 2 est dérivable.

Eléments de correction. Nous avons la majoration

0 [ sin(tx) cos(tx)
— | —=|| = Ve eR, Vt e R,
Oz {t(l—kt?)H 1+ | =1+ "
et nous concluons comme ci-dessus. O

Exercice # 4. (3p.) Soit D := {(z,y) € R?; 2% < y < x}.
a) Dessiner D dansle plan zOy.

b) Calculer /

J dxdy.
DT



Eléments de correction.

a) D estlouvert borné délimité par la premiére bissectrice et la parabole iy = 2.

b) Sansentrer dans les détails du calcul de chaque intégrale, le théoréme de Tonelli local donne

1 T 1
Y dwdy — y _ ! PV dr =+
/Dxdmdy—/o (/ﬁmdy) dx—2/0($ :v)dx—S. O

Exercice #5.(2p.) Soit A := {(z,t) € R?; 0 < t < x}.
Montrer que

t s
/ cos dudt = / sin IL‘3 .
Eléments de correction. Si le théoréme de Fubini local s’applique, alors (sans entrer dans les détails des
calculs)

/ cost dxdt—/ ! / costdt dx—/ ST dx.
AL+ a3 o 1422\ J, o 1423

Pour justifier l'utilisation du théoréme de Fubini local, nous utilisons le théoreme de Tonelli local
pour obtenir (sans entrer dans les détails)

1 o0 1 xT o0
/ dmdtg/ dmdt:/ / dt dx:/ Yz < 0.
A al+a? o 1+2°\Jo o 1+a°

La derniére inégalité se justifie par une étude d’intégrale généralisée, en notant que l'intégrande se
prolonge par continuité en O, et qu'a I'infini nous avons

cost
1+ a3

X

NOO —2.

1+ a3 x

Nous concluons grace au criteére de Riemann a l'infini. O

Exercice # 6. (2 p.) Calculer

1
——dx
/]R? (1 + [a])?

(ot |z| désigne la norme euclidienne usuelle de » € R?).

Eléments de correction. En passant en coordonnées polaires et en utilisant le théoréme de Tonelli local,
nous obtenons (sans entrer dans les détails)

la derniére intégrale pouvant étre vue comme une intégrale généralisée.
Nous avons, aprés un changement affine de variables dans une intégrale généralisée,

< “s—1 < /1 1 1
/ 7 3dT:/ 3 ds:/ 2 3)ds=35
o (I+7) .S 1 s2 s 2

Il s’ensuit que 'intégrale de 'énoncé vaut 7. O




Exercice # 7. (2 p.) Soit
f R =R, f(z):=exp(—|z1]| — - = |zal), Ve = (21, ..., 2,) € R™

Calculer f

Eléments de correction. Commengons par montrer que f € £ (ce qui implique que l'intégrande dans la
formule de f est intégrable). Le théoréme de Tonelli donne (sans entrer dans les détails)

/n |f ()| dw = </R€'“1'd:c1)n = 2" < 00;

au passage, nous avons utilisé le fait que

/ et dt = / et dt = 2/ e tdt = 2.
R —00 0

Le théoreme de Fubini, justifié par ce qui précede, donne

n

—1x;&; z; __on 1 __on 1

H/ vt =2 g =
[+
J=1

Ici, nous avons utilisé

0 00 e—th-‘rt t=0 e—zt{—t t=o00
/ e et gt = / e Uttt + / et dt = l } + [ ]
R —c0 0 L=, o —1 =], m
1 1 2
= = , V( eR.
1—ZC+1+2< 1+4¢? ¢
Exercices
Exercice # 8. (3 p.)

z/n

a) Soitz € [0, ool. Etablir la monotonie de la suite (n (e
le développement en série de 'exponentielle.)

b) Calculer

- 1))n>1. (On pourra par exemple utiliser

lim n/ (e*/™ —1)e™ % dux.
n—oo 0

Eléments de correction.
a) Nous avons

k

1
(x/n_l _”Zk;nk :Zynglffl

E>1 E>1

Chaque terme de la série décroissant avec n, la suite de 'énoncé est décroissante.

b) Lesintégrandes étant positives, et,de ce qui précéde,décroissantes avec n, nous utilisons le théoreme
de convergence décroissante (exercice 6.36). La premiére intégrande est intégrable, car

o0 (0.9] 1
/ (" —1)e *dx = / (e —e)dx = ~.
0 0 2

3



Comme (sans entrer dans les détails)

lim n (e’”/” — 1) =z, VreR,

n—0o0

nous obtenons que la limite de 'énoncé vaut

> 1
/ re Fdr = -,
0 4

la derniére égalité étant obtenue en traitant I'intégrale comme une intégrale généralisée et en faisant
une intégration par parties. (Une autre fagcon de procéder consiste a faire un changement linéaire de
variable, afin de se ramener a I'(2).) O

Exercice #9.(1p.) Soit F'la fonction de l'exercice 2, qui est dérivable (voir 'exercice 3). Calculer lim F’(x).

T—r00

Eléments de correction. Soit

1
"R—=R = — R
fiR=R f(t) = 1o VEER,
qui est Lebesgue intégrable.
Nous avons
cos(tx) st ~

F’(a:):/R = e = v {/Re t f(t)dt] = Re [f2)] . vz e R

Le lemme de Riemann-Lebesgue donne lim F’'(x) = 0. O

T—r00

Exercice # 10. (2 p.) Nous travaillons dans (R, g, v ). Soit

€172 — 1, si0< ¢ <1

ng_}C’g(f)::{O, si|¢|>1oué =0

a) Existe-t-il f € Z(R) telle que f = g?
b) Existe-t-il f € L?(R) telle que f=g?
Eléments de correction.

a) Nous avons %in% g(&) = oo, et donc g n’est pas continue en 0. La réponse est donc non.
—

b) Notons que la «vraie » question est s'il existe f € L?(R) telle que f= [g] (la classe d’équivalence de
g), et que la réponse est positive si et seulement si g € .Z*(R).

Sans entrer dans les détails, nous avons

JECRESY eV 1P dr < oo,

la derniére inégalité se justifiant via le critére de Riemann et le fait que

1

€713 = 1) ~oy 2



Problémes

Probléme # 1. (4 p.) Soit

E:={(z,y) €R*; 0 <y < z}.

Soit
fE—=R, f(r,y) =

oul <a< 2.

cosy

x(l

7v(x7y) E E7

a) Donner un sens a et montrer 'égalité

[ ([ senw)i= ([ sepa)a

b) Montrer que f n’est pas intégrable sur £/, et donc le théoréme de Fubini ne s’applique pas.

Eléments de correction.

a) Notons les égalités d’intégrales généralisées

sinx

flz,y)dy =
Ey

xe

Va >0, et flx,y)de =

Pour établir I'égalité de 'énoncé, montrons I'égalité d’intégrales généralisées

dz.

(o) : 1
/ smxdx:
g x° a—1

* cosx
0 xa—l

Notons que chacune des intégrales généralisées converge. Par exemple pour la premiere, nous avons

sin x 1
xe ~0+

ra—1 )

etlaconvergence en O suit du critére de Riemannen O et de'hypothésea < 2,quientrainea—1 < 1.A

l'infini, la convergence suit de la convergence des intégrales oscillantes de la forme

avec f € Ct, f \yet lim f(z
T—r00

Nous avons donc

1 o0
/ Ccos T dr —
a—1J), a7t

[e.e]

sinz f(z) dx,

A
) = 0.(Raisonnement analogue pour la seconde intégrale généralisée.)

) 1 M cosz _ 1 M gin' x
lim dr = lim dx
e=0+ a — 1 pa—l e=0+ q — 1 pa—1
M— o0 € M—oc0 €

. =M .

. 1 sinzx M ging

lim + dx
e—0+ a— 1 pae-1 o
M—o0 =€ €

i 1 sinM 1 sine +/M sinxd
im — T
et | a—1 Mot a—Tlet [ a0

—0,cara—1>0
M

—0,cara—1<1

. o
. sin x sin x
lim dr = dzx.
e—0+ c xa 0 ZEa
M —o00



b) Le théoréme de Tonelli local donne (sans entrer dans les détails)

1 < | cosy|
dxdy = d
/E\f(l’,y)! zdy a—1/0 =

En traitant cette intégrale comme une intégrale généralisée, nous obtenons (sans entrer dans les
détails), en utilisant successivement les inégalitésa — 1 > Oeta — 1 < 1,

] N 2nm N 2nm
sy / cosyl | . [ |cosyl
dy = lim E dy > limsup E —dy
/0 (T N=oo = Jo(n—1)r yot N—oo =1 J2(n-1)x (2nm)e-t

_hmsupz 27’L7T - a lzna 1 = 00

N—oo n=1 n>1
d’ot la conclusion. O

Probléme # 2. (4 p.) Nous travaillons dans (R", Bgn, ;).
Rappelons la propriété suivante :si f, g € £*(R"), alors

| J©©ds= | f@)5a)dr. 0
a) Soit
g R" = R, ¢°(x) :==exp (—¢|zy| — - —e|zn]), Vo = (21,...,2,) €R", Ve > 0.
Calculer ¢°.

b) Sif e Z'(R")estune fonction continue et bornée telle que ? € #! montrer,alaidede 1) eta),la
formule d’inversion

Eléments de correction.

a) Enreprenant les calculs de 'exercice 7, nous obtenons g° € Z! et
-~ 25)”
9°(§) = (

H (e + (&)%)

b) Nous obtenons

7€) exp (— Zem) dé = (22)" / L

L VEER", Ve > 0.

® =1 ' H g2 + (z;)?
7j=1
En faisant, dans l'intégrale de droite, le changement linéaire de variables x = ®(y) := ey, nous
obtenons
. - . fley
f(&) exp <—Z€|§j|> d§ =2 / #d?f
R i R” )
= [Ta+ @)
j=1



Nous considérons cette égalité le long d’une suite (¢,) C]0, co[telle quee;, — 0, et passons alalimite,
pour obtenir

[ Foae=2 [ L ay— ey o)

[T+ w)?
j=1
qui est la formule d’inversion.

Le passage a la limite utilise les hypothéses f bornée et continue et f € £, etle fait que g' € Z*.
Les dominations sont, a gauche,

exp< Zwl&) <1, V1, Ve,
et, a droite,
f(&gy) 1 1
o S| fllpe = flle= 9 (y), Y, Vy. O
H (1+ (y5)? H (1+ (y;)?
7j=1 7j=1

Probléeme # 3. (4 p.) Soient f, g :]0, co[— [0, co| deux fonctions boréliennes. Montrer que

00 x2 /4
x xy) |l — yldrdy = 2 x dy | dx.
[ S vatle—yidry =2 [ 5 >( | o y)

Eléments de correction. Lintégrande h étant borélienne positive, nous avons

/000[2 = [ns fns [

A={(z,9); 0<z <y}, B:={(r,y); 0<x =y}, C:={(z,9); 0 <y <z}

ou

Comme h = 0 sur B, nous avons /
10,002

= / h + / h. Nous calculons l'intégrale sur A. Par
c

symétrie, le calcul sur C' donne le méme résultat, et donc finalement nous aurons / h=2 / h.
10,002 A

Posons, pour (z,y) € A,u := z+y,v := zy,de sorteque u > 0,v > 0etu® > 4v.Réciproquement,
soit

(u,v) € A, avec A := {(u,v); u >0, v >0, u* > 4v}.

Alors le seul couple (z,y) € Atelque z + y = u et xy = v est donné par

u—\Vu:—4v u+ u? — 4o

Ty

Il s’ensuit que I'application

O:A— A P(u,v) = (u

—Vu? — 4 u+\/u2—4v>
) 2 )

2



1
e . . U2 - 4/l) .
En utilisant le théoreme du changement de variables et le théoréme de Tonelli local, nous obtenons
(sans donner les détails)

est bijective, et il est assez immédiat que c’est un C'-difféomorphisme tel que |Jo(u, v)| =

| #@ e o = yldzdy = [ 1 o) duav = | " ) ( / ) dv> d,

d’ot la conclusion. O
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Controle terminal
—le mercredi 6 janvier 2021 —
—quelques erreurs fréquentes —

Exercice # 1.

: o 1 . .
Erreur(s) fréquente(s). Majorer l'intégrande par g(z) := T ce qui est correct, puis affirmer que g
€T a

est intégrable —ceci est faux si a < 1. Le théoréme de convergence dominée ne s’applique passia < 1.
Point de vigilance. Si le théoréme de convergence dominée s’applique, la limite est finie. Ceci aurait di
vous montrer que, sia < 1, on ne pouvait pas utiliser la convergence dominée.
—z/n
Autre erreur. Faire une majoration qui dépend de n, par exemple aror <e
x
e—T/n

Travail inutile. Vérifier que les fonctions = +— {Taye sont intégrables. O

—z/n

Exercice # 2.

Erreur(s) fréquente(s). Utiliser la majoration

sin(tx)

R, VteR :
1+ ) , Ve e R, Vte R\ {0}

= t(1+12)

Cette majoration est fausse si ¢ < 0 (le membre de gauche est positif, celui de droite strictement
négatif).
Autre erreur. Majorer

sin(tx)

e < g(t) == ;, VzeR,VteR\ {0}

)

1
Ceci est correct, mais inutile, car g n’est pas intégrable. En effet, nous avons / g(t) dt = oc.
0

Autre erreur. Majorer avec une fonction qui dépend de x, par exemple :

sin(tx) ||
Yz eR,VteR\ {0}
t1+e)| -1+ " \ 10}
Travail inutile. Vérifier que 'intégrande est intégrable. O

Exercice # 3.
0 sin(tr)

0 sin(tx)
ott(1 + 12

Erreur(s) fréquente(s). Majorer aulieude Oz t(1 + ¢2)

Exercice # 4.



Erreur(s) fréquente(s). Ecrire D =)0, 1[x]2?, z[. Ga n’a pas de sens (qui est x?), et ne peut pas étre vrai,
méme si on donne une valeur a = (car D n’est pas un rectangle).
Autre erreur. Ecrire

T 1 Y
/ dxdy = / </ = dy) dx
D 2 \Jo ¥

Can’a pas de sens : qui est = ? Que veut dire / g(x)dx?
x2
Autre erreur. Ne pas invoquer le théoreme de Tonelli.

Travail inutile. Vérifier que I'intégrande est intégrable (inutile si on passe par le théoreme de Tonelli). []
Exercice #5.

Erreur(s) fréquente(s). Ne pas vérifier que le théoréme de Fubini s’applique.
Autre erreur. Donner 'argument suivant. Nous avons

cost 1
1+a3] — 142%
>~ 1
et estintégrable sur]0, co|.Ceci est vrai, mais inutile. Nous ne devons pas montrer que dx
1+ a3 o 1+a3
est finie, mais que / 5 drdt est finie.
A 14+
| sinz
Autre erreur. Vérifier la finitude de / 25 dx.Ceci est vrai, mais ce n’est pas la condition a vérifier
0 x
dans le théoréme de Fubini. O

Exercice # 6.

Erreur(s) fréquente(s). Présenter le passage en coordonnées polaires comme un difféomorphisme.
Autre erreur. Ne pas mentionner le théoréme de Tonelli. O

Exercice # 7.

Erreur(s) fréquente(s). Ne pas vérifier que f € .Z*.
Autre erreur. Ne pas savoir le sens de x - £. Par exemple, écrire x - £ = x1& + x2& + - - - + 1,.€.

Autre erreur. Décomposer R = R’} UR” (en général, d’ailleurs, sans avoir aucune idée de ce que pour-
raient étre ces deux ensembles). Sin = 2, auquel des deux ensembles appartient x = (—1,1)?

Autre erreur. Appliquer le théoréme de Tonelli pour calculer . Pour mémoire, nous avons
e = cos(z - &) —usin(x - €),

et en général ce nombre est complexe non réel, donc ni positif, ni négatif. O

Exercice # 8.

Erreur(s) fréquente(s). Ne pas comprendre la question a). Il s’agit d’étudier la monotonie en n (a = fixé) et
non pas d’étudier la monotonie de la fonction z +— n (e”/™ — 1).

Autre erreur. Utiliser un développement limité pour étudier la monotonie. C’est une approche difficile, a
manier avec prudence par les débutants (en 'occurrence, mal maniée par ceux qui 'ont choisie).

Point de vigilance. A moins d’étre un utilisateur éclairé, éviter d'utiliser les développements limités pour
étudier la monotonie ou établir des inégalités. O

Exercice # 9.

Erreur(s) fréquente(s). Conclure que la limite n’existe pas, car lim cos(tz) n’existe pas. So what? O

T—00
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Epreuve de substitution
—le jeudi 11 février 2021 —
—durée 60 + 30 minutes —

Consignes

1. Le seul document accepté est le support complet de cours, sous forme papier. Il ne doit pas conte-
nir d’ajouts concernant la correction des exercices.

2. Pas d'ordinateur, tablette, téléphone, calculatrice, montre connectée, ou autre objet connecté.
b
3. Pour chaque intégrale de la forme / f(z) dx, préciser s'il s’agit d'une intégrale de Riemann, gé-

a
néralisée et/ou par rapport a la mesure de Lebesgue ; justifier son existence et préciser a quel type
d’intégrale s’appliquent les résultats utilisés.

Sujet #1
1 tx—l

Exercice # 1. Soit f(x) := / dt,Vz eR.

o 1+t

a) Montrer que f est finie si et seulement si z > 0.

b) Montrer que f est continue sur |0, co|.

¢) Calculer f(z) + f(x + 1) pour > 0. En déduire la valeur de glcl\n%a: f(x).

Exercice # 2.

<1 1
nx ne_ oo

x2—1

1
a) Montrer que l'intégrale généralisée [ := / 7 dx existe et que [ = 2 /
0

. 12—
b) Calculer de deux fagons diftérentes I'intégrale

/ dxdy
R, xr, (1+¥y)(1+22y)

En déduire que I = 7% /4.

¢) Déduire des questions précédentes et d'un développement en série entiére de la fonction x — T2
—z
que
- 1 2 =1 w2
T LD DS
n=0 n=1

Exercice # 3. Calculer la transformée de Fourier de la fonction

f:R* =R, f(z,y) = eV vy e R

Sujet # 2

> In(1 2
Exercice # 1. Soit I («) := / In(1 + a7 dx,a > 0.

0 ]. + ZU2
a) Montrer que la fonction I : R, — R est continue sur R et de classe C' sur R*,.



b) Donner la formule de I'(«) si v > 0.

ZE2

(14 22)(1 + ax?)

c¢) Soit aw € R’ \ {1}. Décomposer la fraction en éléments simples. En déduire la

valeur de I'(«) pour av > 0.
d) Calculer I(«) pour o > 0.

Exercice # 2. Pour (z,y) € [—1, 1%, soit

0, sinon

Flz,y) = {(xy)/(x2 +y?)?%, si(z,y) #(0,0)

a) Montrer que les intégrales itérées de f existent et sont égales.
b) La fonction f est-elle \y-intégrable sur [—1, 1]%?

Exercice # 3. Calculer

0o efx/n

dz.

lim
n—oo Jq 1+2x
Sujet #3

Exercice # 1. Soient a, b > 0 deux constantes. Déterminer, en fonction de a et b, la nature de l'intégrale

*  sinzx
I := ——d
/0 x¢(1 4 z)b o

vue comme intégrale généralisée ou comme intégrale de Lebesgue.

Exercice # 2. Calculer

lim (1 — E>nsinacalx.
0

n—00 n
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Contrdle terminal —seconde chance —
—le mercredi 23 juin 2021 -
—durée 120 minutes —

Consignes

1. Le seul document accepté est le support complet de cours, sous forme papier. Il ne doit pas conte-
nir d’ajouts concernant la correction des exercices.

2. Pas d’ordinateur, tablette, téléphone, calculatrice, montre connectée, ou autre objet connecté.
b
3. Pour chaque intégrale de la forme [ f(x)dx, préciser s'il s’agit d’'une intégrale de Riemann, gé-

a
néralisée et/ou par rapport a la mesure de Lebesgue; justifier son existence et préciser a quel type
d’intégrale s’appliquent les résultats utilisés.

Exercice # 1. (3 p.) Soit
1 2
I, ::/ <1+—) e "dr,YneN,n>1.
0 n

Calculer

lim 1,,.
n—oo

Exercice # 2. (3 p.) Soit A :=]0, oo[2. Calculer
sin
/A gy dxdy.

Exercice # 3. (2p.) Soit D := {x € R?; |z| < 1}, 01 || désigne la norme euclidienne usuelle de » € R%.
Calculer

1
/—dx.
p 1+ |z

Exercice # 4. (4 p.) Soit

fR*" >R, f(x) =exp(—|z1| — -+ —|zp]), Vo = (21,...,2,) € R™.

Calculer J?
Exercice # 5. (4 p.) Soit

o0

((z) = Z%, Vo> 1.

n=1

a) Montrer que ((x) existe, est finie et strictement positive, V. > 1.

b) Montrer que la fonction ¢,
J1,00[3 2 = ((2) €]0, 00,

est continue.



¢) Montrer que ¢ € C'(]1, 00) et calculer ¢'(z),Vx > 1.
d) Proposer (sans justifier) une formule « raisonnable » pour (" (z).

e) En utilisant les formules des questions précédentes, montrer que
[¢'(@)]” < ¢(2)¢"(2), YV > 1.
f) Soit

¢
(@)

Montrer que f est strictement positive et décroissante.

f(x):

, Vo> 1.

g) (Question plus difficile) Montrer que f est strictement décroissante.

Exercice # 6. (4 p.) Soit

%1 _ cost
Fa)= | — g vaeR
0 2

Trouver toutes les valeurs de a telles que F'(a) soit finie.
Rappel. Nous avons 1 — cost < t2/2,Vt € R.

Exercice # 7. (3 p.) Soit

o sin ©
-[?’L = —d ; N, 22
/0 At a/n) z, Vn € n

a) Montrer que [, existe et est finie,Vn > 2.
b) Calculer

lim 1,,.
n—oo

Rappel. Pour tout z > —1,la suite ((1 + z/n)"), ., est croissante.

Exercice # 8. (3 p.) Calculer
1
/ ln—xdx, Va<l1:
o x*

a) A partir de la dérivée de la fonction

1
1

]—oo,l[SaHI(a)::/ —dx;
o ¢

b) Par calcul direct.

Exercice # 9. (3 p.) Soient i, v deux mesures boréliennes o-finies sur R". Soit

pxv(E) = / (/nXE(f +9) du(l’)) dv(y), VE € Ppo.

a) Montrer que pt * v = v * [.

b) Montrer que y * v est une mesure borélienne.
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Durée : 45 minutes. Le polycopié du cours est autorisé, a 'exclusion de tout autre
document, calculatrice...

1. Soit
xp = (—1)"(cos(1/n) +sin(1/n)) pourn € N.

Calculer limsup,,_,  x, et iminf;, e x;.

EAAXN

2. Soit By la tribu Borélienne sur R. Prouver ou réfuter les assertions suivantes
(@) Si A € Bret A(A) =0 alors A est fermé.

(b) L'ensemble € C Bgr formé des unions finies d’intervalles ouverts de R est un clan.

EAAXK

3. Soit X = N. Trouver la tribu sur X engendrée par A C P(N) donné par

A ={{p}, p estun entier premier} .

FAAXK

4. Soit f: R — R une fonction et soit g: R — R la fonction définie par g(x) = sin(f(x)).
(a) Est-il vrai que si f est borélienne alors g I'est aussi ?
(b) Est-il vrai que si g est borélienne alors f 1’est aussi ?

(Indciation : Dans cet exercice on peut admettre l’existence de parties de R non boréliennes.)

EAAXN

5. Soit A la mesure de Lebesgue sur R et soit A C R un ensemble borélien. Soit f la fonction
sur R™ définie par
f(x) =A([0,x]JNA) pourx € R".
(a) Montrer que f prend des valeurs finies pour tout x € R".

(b) Montrer que f est continue.
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1. Soit
xp = (—=1)"(cos(1/n) +sin(1/n)) pourn € N.

Calculer limsup,, _,  x, et iminf, e x;.

Solution. On remarque que
lim xp, = n]grt}ocos(l/(Zn)) +sin(1/(2n)) =1 et

1i_r>n Xopt1 = li_r>n —(cos(1/(2n+1)) +sin(1/(2n+1))) = -1,

d’ott on conclut que la suite (x,),en a deux points d’adhérence, a savoir 1 et —1, et que
limsup, x, = 1 et liminf, x, = —1.

EAAXN

2. Soit By la tribu Borélienne sur R. Prouver ou réfuter les assertions suivantes
(@) Si A € Bret A(A) =0 alors A est fermé.

Solution. C’est faux. On peut considérer par exemple 'ensemble {1/n : n € N*} qui
est borélien de mesure 0 (car dénombrable) mais qui n’est pas fermé (0 étant un point
d’adhérence qui n’est pas dans 'ensemble).

(b) L'ensemble C C Bgr formé des unions finies d’intervalles ouverts de R est un clan.

Solution. C’est faux. On va voir que [0,00) = R\ (—o0,0) n’est pas dans € ce qui montre
que C n’est pas clos par complémentaire.

En effet, supposons que [0,00) = [J/_ (a;, b;) et sans perte de généralité, supposons que
ap = min{a; : i < n}.Siag < 0, alors (ag,by)  [0,00) et siag > 0, alors 0 ¢ U;(a;, b;).
Dans les deux cas on obtient une contradiction.

EAAXN

3. Soit X = N. Trouver la tribu sur X engendrée par A C P(N) donné par

A = {{p}, p estun entier premier} .

Solution. Soit B = {p € N : p est premier}. Soit By = P(B) et B, = {(N\B)UA: A C
B}. On prétend que la tribu engendrée par A est I'ensemble Ty = B U B,. D’abord on
montre que Ty est une tribu. Le complémentaire de tout ensemble dans B; est dans B, et
le complémentaire de tout ensemble dans B, est dans B, ce qui montre que Ty est clos par
complémentaire. Soit maintenant A = (J; A; avec A; € Tp pour tout i. Si tout A; € B4, alors
A € B et s'il existe i tel que A; € By, alors A € B,. Ceci montre que Ty est également clos
par des réunions arbitraires (en particulier dénombrables).

Ensuite, supposons que T est une tribu qui contient A. Comme 7 est close par réunions
dénombrables, on obtient que By C T (tout élément de B étant une réunion dénombrable
d’éléments de A). Enfin, tout élément de B, est le complémentaire d'un élément de B; et
donc B, C T aussi.



ANAAN
4. Soit f: R — R une fonction et soit g: R — R la fonction définie par g(x) = sin(f(x)).
(a) Est-il vrai que si f est borélienne alors g 1'est aussi?
Solution. Oui, car la composition de deux fonctions boréliennes et borélienne.
(b) Est-il vrai que si g est borélienne alors f 1’est aussi?

Solution. Non. Soit A C R un ensemble non borélien et soit f définie par

0 sixeA,
f(x)_{n six & A.

Alors g(x) = 0 pour tout x (et ¢ est donc borélienne) mais f ne l’est pas (car f~1({0}) =
A est non borélien).

AN

5. Soit A la mesure de Lebesgue sur R et soit A C R un ensemble borélien. Soit f la fonction
sur R définie par
f(x) =A([0,x]NA) pourx e R".
(a) Montrer que f prend des valeurs finies pour tout x € R*.

Solution. On a, pour tout x € R, que

f(x) =A([0,x]NA) <A(]0,x]) = x < oo.

(b) Montrer que f est continue.

Solution. On a, pour tout x,y € R avec x < y, que

1f(x) = f(y)] = |A([0,x] N A) = A([0,y] N A)| < A([0,y] \ [0, x])
=M(xyl) =y —x,

ce qui montre que f est continue (méme uniformément).



UNIVERSITE CLAUDE BERNARD LYON 1 LICENCE DE MATHEMATIQUES 3*ANNEE
MESURE ET INTEGRATION AUTOMNE 2021

Controle 2 (9 novembre 2021)

Durée : 1 heure. Aucun document n’est autorisé, calculatrice non autorisée

Questions de cours

1. Soit (X, T, u) un espace mesuré et f: X — R une fonction mesurable.

— Si f est positive (c’est-a-dire f(x) > 0 pour tout x € X) donner la définition de 'inté-
grale de f par rapporta i : [ f(x)du(x). (En supposant que la définition de I'intégrale
des fonctions étagées est connue).

— Lorsque f n’est pas forcément positive, définir [, f(x)dpu(x) et dire quand elle bien
définie (au sens de l'intégrale de Lebesgue). Définir la notion "f est intégrable".

2. Enoncer le théoréme de convergence monotone

A4

Exercices.
3. Montrer que les intégrales suivantes sont bien définies et calculer la limite

) ® nsin(x/n)
lim —
n—oo J1 X

dx

4. Soit P une mesure de probabilité sur R (muni de la tribu Borélienne Bg). Montrer que les
intégrales suivantes sont bien définies et calculer la limite.

) 1
1}%/1{ 1+ n[x\dp(x)

5. Montrer que la série
% (mw)
2
n=0 L+n
est convergente pour s G]%,—i—oo[. On note K(s) la somme de cette série. Montrer que la
fonction s — K(s) est continue sur |3, +oo[. Calculer lim__, 1K (s).

6. Dans chacun des cas suivants, dites (et justifier en appliquant les résultats du cours et
les regles de convergence des intégrales généralisées) si : f est intégrable, respectivement
I'intégrale au sens de Lebesgue est bien définie (c’est-a-dire f admet une intégrale), sur
lI'intervalle I, par rapport a la mesure de Lebesgue.

— 1=]0,1], f(x) = \};
— I1=]0,00[, f(x) = &),
— I1=]0,00], f(x) = ).
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Questions de cours
1. Cf cours, Definition 6.5 et 6.8.
2. Cf cours Théoreme 6.25.

$ 34K

Exercices.
3. Fait en TD, feuille 3, exo 12.

4. Soit P une mesure de probabilité sur R (muni de la tribu Borélienne Bg). Montrer que les
intégrales suivantes sont bien définies et calculer la limite.

) 1
nh—rgo/R 1+ n[x|dp(x>

Solution. Pour tout n € N on note

_ 1
- 1+nlx

fu(x)

Alors x — f,(x) est continue donc mesurable. De plus 0 < f,(x) < 1. Comme P est une
mesure de probabilité, on a

[ 1ax)1dP(x) < [ dp(x) = P(R) =1

donc f, est intégrable sur R par rapport a P pour tout n € N. On va appliquer la convergence
dominée : on a vu précédemment que | f,,(x)| < 1 et1 est intégrable car P est une probabilité.
De plus, on a

1 six=20
li . = ! =1 .
lim f,(x) {0 Gix 20 01 (x)

Par le théoréme de convergence dominée on a

lim /R Fa(x)dP(x) = /R Loy (x)dP(x) = P({0}).

n—oo

5. Montrer que la série
5 (em)
2
= \1+n
est convergente pour s E]%,—f—oo[. On note K(s) la somme de cette série. Montrer que la
fonction s — K(s) est continue sur |3, +oo[. Calculer lim__, 1 K (s).

_1
1+n2

les régles de convergence des séries on sait que la série K(s) est convergente pour s > 1.

S
Solution. Les termes de la série étant positifs, et comme ( ) ~n lorsque n — co, par



S
Soit y la mesure de comptage sur N et f(n,s) = (ﬁ) ,ona

= [ fns)n(n)

Soit € > 0, on va appliquer le théoréeme de continuité des intégrales a parametres sur
]3 + €, +oo[. On voit que s — f(n,s) est continue, et n — f(n,s) mesurable (forcément car
tribu compleéte sur N). On a la domination suivante pour s €]3 + €, +0o[ :

o< ()

qui est intégrale sur N (vu plus haut). Donc Ve > 0, s — K(s) est continue sur |5 + €, +oo[,
donc continue sur U€>o]% + €, —|—oo[:]%, +oo].

Soit s; suite décroissante, sy > 3 et limy_,c5¢ = 3. En notant gx(n) = f(n,s,), on voit
que gx(n) est une suite croissante de fonctions (car +1 <1)et

1 ! :
kg?ogk( )= <1+n2) '
Par le théoreme de convergence monotone (appliqué a la suite de fonctions gi(n) et a la

mesure de comptage sur N), on a

1

+o0 +o0 1 2
lim K = li = — ] = .
oo (s6) kgl;longogk(n) = (1 +n2) e

NI

la derniere égalité venant du fait que (L) ~ 1 qui est une série divergente. Donc

1+n2
lim, s K(s) = +o0

. Dans chacun des cas suivants, dites (et justifier avec les résultats du cours et les regle de
convergence des intégrales généralisées) si : f est intégrable, respectivement l'intégrale au
sens de Lebesgue est bien définie (c’est-a-dire f admet une intégrale), sur l'intervalle I, par
rapport a la mesure de Lebesgue.

— 1=0,1], f(x) = Z=.
— 1=]0,00], f(x) = &),
In

— 1=]0,00[, f(x) = 2.

Solution. 1er cas : f est positive et continue. De plus l'intégrale généralisée fol %dx est

absolument convergente. Par résultat du cours, on en déduit que f est intégrable sur I.

2éme cas. On a f (x) = Ny [ (x) f(x). De plus, par régle de Bertrand [T f(x)dx = +oo,
donc [; fi = +co (au sens de l'intégrale de Lebesgue). De méme f_(x) = —11}0,”( x)f(x).
Par régle de Bertrand on a [; f- = +co. Donc f n’admet pas d’intégrale au sens de Lebesgue
sur I (en particulier n’est pas intégrable).

3éme cas. On a fy(x) = Lj o (x) f(x). De plus, par régle de Bertrand [T f(x)dx < +oo,
donc [, f4 < +oo. De méme f(x) = Ty (x)f(x). Par régle de Bertrand on a fI f- = +oco.
Donc f n’est pas intégrable mais admet une intégrale au sens de Lebesgue sur I (et on a

flf = —o0).
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Durée : 1 heure. Aucun document n’est autorisé, calculatrice non autorisée

Questions de cours

1. Enoncer les théoremes de Tonelli et Fubini (résultats permettant de relier l'intégrale par
rapport a la mesure produit et les intégrales itérées — énoncer les deux hypothéses de validité
de ces résultats).

B
Exercices.

2. Soit f: R — R une fonction Borélienne intégrable sur R. Montrer que la fonction

Fes f(t) = /R eI F(x)dx

est bien définie et continue sur R.

3. Calculer l'intégrale suivante
/ exp(—y/ x);dxd
[0,1] ]0,09] PRV ety

4. Soita,b > 0et B:= {(x,y) € R*: Z—; +Z—§ <1,x >0,y > 0}. Déterminer

2ydxdy.
/Bxyxy

5. Pour x > 0, soient F(x) := ([ exp(—#?) dt)2 et G(x) == [} Wﬁ%ﬂ)) dt.
(a) Montrer que F et G sont de classe C! sur R;.
(b) Calculer F'(x) + G'(x) pour x > 0.

(c) En déduire la valeur de [~ exp(—t?) dt.
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Durée : 3 heures. Aucun document n’est autorisé, calculatrice non
autorisée

Rappel et notations.

— On notera A la mesure de Lebesgue sur R (on note aussi souvent simplement dx pour
A(dx)). On rappelle qu'une fonction est dite Borélienne si elle est mesurable pour la
tribu Borélienne de R.

— Soit (X, T, u) un espace mesuré. Si f est une fonction mesurable sur X a valeurs réelles
ou complexes, on note ||f||rr sa norme LF, pour 1 < p < oo (on rappelle que pour
p <o, |fllr = (Jx | fQ)|Pul dx))l/p). On note LF(X) l'espace LP sur (X, T, ).
Par abus de notations (utilisé dans le cours et les TD) on dira qu’une fonction mesurable
f est dans LP(X) si || f||r < oo. Si I est un intervalle de R, implicitement LP(I) sera
compris pour la tribu Borélienne sur I et la mesure de Lebesgue sur 1.

— On rappelle que si f: R — R est une fonction 27t-périodique, intégrable sur [—, 7|,
ses coefficients de Fourier sont donnés par la formule ¢, = % ffn f(x)e "™ dx, pour
tout n € Z.

— On rappelle que si f est une fonction dans Ll(R) ti valeurs réelles ou complexes, sa
transformée de Fourier est définie par f(x = [g f(t)e ™ dt.

Partie I : questions de cours et d’application du cours

1.

Quelle propriété possede la limite d'une suite de fonctions mesurables qui converge
en tout point (donner un énoncé précis).

Application. Soit f: R — R continue et dérivable en tout point de R. Justifier ou
réfuter 1’assertion suivante : la dérivée f’ est Borélienne.

Enoncer l'inégalité de Holder (qui permet de majorer la norme L! d’un produit de
deux fonctions).

Application : soit (X, T, #) un espace mesuré tel que y(X) < oo. Montrer que
pour1 < p < g < o et f une fonction mesurable, on a || f||1» < ||f]|1s (u(X))/ P71,

. Enoncer l'identité de Parseval (qui relie la norme L? d’une fonction sur [0,27[ avec

ses coefficients de Fourier).
Application : justifier ou réfuter 1’assertion suivante : il existe une fonction dans
L%([0,27t]) dont les coefficients de Fourier (c,),cz vérifient lim,, o v/nc, = 1.

. Soit (fu)n la suite de fonctions de R dans R, données par f,,(t) = X{un +1[(t)e”’t (ot

Xinn+1[ €st la fonction indicatrice de l'intervalle [n,n + 1[). Calculer

lim / Fad — / lim_f,dA.
R

n—-+oo n——+4oo

Expliquer pourquoi le théoréme de convergence dominée ne s’applique pas.



Partie II : exercices

5. Soit 4, b deux réels tels que 0 < a < b < 0. Soit f: ]0,00[x[a,b] — R définie par
f(x,y) = exp(—xy). En calculant de deux fagon différentes f]O,oo[x (a,b] f(x,y)dxdy,
calculer la valeur de l'intégrale

00 p—aX _ e—bx
[Py,
0 X

6. Soit & un réel tel que « > 0. Soit f: R — C la fonction définie par 'intégrale

f(x) :/ v Lo~ tem X gy
0

(a) Justifier que f est bien définie. Montrer que f est continument dérivable et
calculer sa dérivée f’ sous la forme d’une intégrale.

(b) En faisant une intégration par partie montrer que f'(x) = — 1jf‘ix f(x).

(c) Montrer que
flx)=C(1+ xz)*%“ exp(—ix arctan(x))

ou C est une constante qu’on explicitera avec la fonction Gamma. (On rap-
pelle la valeur de la fonction Gamma : I'(z) = [~ t*~'e~'dt, pour z > 0).

(d) Montrer que si & > % la fonction f est dans L?(R). Expliquer aussi cette
proriété par un résultat du cours en interprétant f comme la transformée
de Fourier d"une fonction que l'on explicitera. Pour a > 1, calculer la trans-
formée de Fourier de f.

7. Soit f: R — R la fonction 27t périodique définie sur [—7r, 77| par f(x) = exp(x).
(a) Calculer les coefficients de Fourier de f.

(b) Trouver la valeur de la série de Fourier de f en tout point de [, 77| (soyez
précis sur le théoreme que vous utilisez).

(c) En déduire la valeur de la série }_,,~ ﬁ

8. Soit A un Borélien de R tel que A(A) > 1. Pour n € Z on note A —n = {x —
n, x € A}.

(a) Montrer que A(A) =Y ,,czA((A—n)N[0,1]).

(b) En déduire que les ensembles (A —n) N [0,1], n € Z, ne peuvent pas étre
deux a deux disjoints.

(c) En déduire qu’il existe a,b € A tels que a — b est un entier non nul.



UNIVERSITE CLAUDE BERNARD LYON 1 LICENCE DE MATHEMATIQUES 3°ANNEE
MESURE ET INTEGRATION AUTOMNE 2021

Controle terminal (7 janvier 2022)

Eléments de corrigé

Partie I : questions de cours et d’application du cours
1. Cours et fait en TD.

2. Cours et fait en TD.

3. Application : Non c’est faux. Par Parseval on sait que % 02” 1fI> = Copez len(F)]2
Sous I'hypothese de 1’énoncé on a que |c,|> ~ % lorsque n tend vers +oco. Donc la
série |c,|* est divergente. Ainsi [|f]|;2(0,0,[) = © et f n'est pas dans L2.

4. Par calcul, on a que [ fu(t)dt = f:“ e"'dt = (1 — 1). D’autre part, pour tout x €
R, il existe un entier 1y tel que f,,(x) = 0 pour n > ny. On a donc lim,_, f(x) =0

Vx € R. Donc .
lim /fndA—/ lim fudd=1— - > 0.
n—-+oo JR R n—+o0 e

Le théoreme de convergence dominée ne s’applique pas sinon on aurait o. Et en
effet, on voit qu’il est impossible de trouver une fonction intégrable qui domine la
suite f, : on remarque que pour x € [n,n+ 1], fy(x) > 1, donc sup,|fu(x)| > Lxr,
qui n’est pas intégrable. (On ne peut pas non plus dominer la suite des fonctions a

partir d’un certain rang, pour une raison similaire.)

Partie II : exercices

5. Soit I = f]o oo x [a,5] f(x,y)dxdy. La fonction f étant positive mesurable (car conti-

nue) sur son domaine, on peut appliquer le théoréme de Tonelli, et chacune des
intégrales ci-dessous ont a un sens comme intégrales de Lebesgue. On a donc

I = /OOO (/ab exp(—xy)dy) dx = /Ooo% (e_’”‘ — e‘bx> dax.

D’autre part, en intégrant d’abord sur la variable x, on obtient par calcul élé-

mentaire,
b ) b 1
I = / (/ exp(—xy)dx) dy = / ];dy = In(b) — In(a).
a 0 a

qui est donc la valeur de l'intégrale demandée.

6. (a) Soit g(t,x) = t* le~fe~#* On peut dominer g par |g(x,t)| = h(t) :=
t*~le~t, pour tout t > 0 et tout x € R. On a h(t) ~ t*~! lorsque t — 0.
Comme h(t) est positive, par critere de Riemann car « —1 > —1, on sait
que h est intégrable sur [0,1]. De plus par comparaison on sait que h(t) =



o(e~*/2) lorsque t — oo (car t*~! = o(e!/?)). Donc h est intégrable sur [1,o].
Donc t — g(f, x) est intégrable sur |0, o[ pour tout x € R.

D’autre part, g(x, t) est clairement C* en la variable x et £ ¢(x,t) = —it*e e~
que l'on peut dominer comme suit :

%g(x,tﬂ < h(t) :=t%"", Vt>0,xcR

(qui ne dépend pas de x). La fonction h; se prolonge continument en 0 et
est intégrable en +4-co pour la méme raison que /. On peut donc appliquer
le théoréme de dérivation des intégrales a parametres et f est C! et

f(x) = —i/o t*e e~ dt,

H(1+ix)

b) Par intégration par partie avec u = t* et v/ = ¢~ , on obtient,
g par p

0 t—it —1 to—it * n a1 —t —it
/ tYe et = | ———t%e e Y| 4+ , / e e L,
0 1+ix o 1+ixJo

Comme lim;_e0 [*efe | = limy_yo0 t*e¢ ™! = 0 et lim; o t¥e fe ™ = 0, le
premier terme est nul, et donc

/ —in *® a—1 _—t —itx
— t dt.
f) = o | et

(c) On constate que f est solution de 'équation différentielle linéaire f'(x) =
a(x)f(x), avec a(x) = {74 qui est une fonction continue sur R. Donc cette
ED admet une unique solution de la forme

) = F0)exp ([ atwny).

On voit que a(x) = % = —ioclJ:T — a7 2- On reconnait des dérivées
classiques et [; a(x)dx = —laln(1+ x?) — inarctan(x). Comme f(0) =

I'(«), on a le résultat.

(d) Ona|f(x)] =T(a)(1 +x2)~2% donc lorsque x — Fo0, |f(x)[* ~ T'(a)?|x| 2
qui est intégrable en +co par critére de Riemann car 2a > 1. Comme | f|? est
positive et continue sur R, cela donne [ |f|* < oo, donc f est dans L*(R).
Soit g(t) = t“‘le_t)(]oloo[(t) alors ¢ est dans L1(R) (cf a)) et par définition
¢ = f. Par théoreme de Plancherel on sait que || f||;2 = v27||g||;2. Par les
méme arguments qu’en a), on peut en effet vérifier que g est dans L?(R)
pour & > % Comme f et g sont dans L? on peut utiliser le théoréme d’in-
version de Fourier (pour la transformée de Fourier des fonctions L? définie
comme extension de la transformée sur L' N L?). On obtient

(1) = &(t) = 2mg(—t) = 27[t]* e Mxpeq (1)



7

(a)

(b)

(©)

(a)

(b)

()

En utilisant la 27-périodicité, par résultat du cours, on peut calculer les
coefficients de Fourier sur toute période, donc on a par calcul direct

1 e —e ™ (—1)"sinh(m)

_ 1 & . _ _a\n
cn(f)—ﬂ/nexp(x mx)dx_l—in( 1 2t 1—-in 7w

ceci car et = (—1)" pour tout n € Z.

La fonction f étant C! par morceaux on peut appliquer la théoréeme de
Dirichlet et donc la série de Fourier, notée Sf, converge simplement en tout
point et Sf(x) = 3(f(x*) + f(x~)). Comme f est continue sur | — 7, 7t[, on
aSf(x) =e"sur | —m, [. Comme f(—ntt) =e et f(—n")=f(n")=
e’ (par périodicité), on a Sf(—r) = cosh(m).

On a par b), Sf(—m) = cosh(7r). D’autre part
Sf(—m) = ) Ccpe T = Y (—1)"cq

nez nez
sinh(77) 1

- T Z1—z'n

nez

sinh(77) 1 1 sinh(77) 1
T ( +1§11—in+1+in> T * gl—kn

7t cosh(71) —sinh(7)
2 sinh(7)

Remarque : on aurait aussi pu appliquer l'identité de Parseval, ¢ca marche.

Au final on obtient, },~; Tlnz = (mcoth(n) — 1) =

On sait que ([n,n + 1]),cz forme une partition dénombrable de R, on a
donc

A=UpezAN[n,n+1],
Par additivité dénombrable, on a A(A) = Y,z A(AN[n,n+1[). D’autre
part, (A—n)N[0,1[= (AN [n,n+1[) — n, et par invariance par translation
de la mesure de Lebesgue, ona A(AN[n,n+1[) = A((A—n)N|0,1]). Ceci
conclut la preuve.

Supposons que les ensembles (A —n) N [0,1], n € Z, soient deux a deux
disjoints. Par additivité dénombrable on aurait

MA) =) M(A—=n)N0,1]) = AU(A —n) N[0, 1) < A([0,1]) =1
nez
car (A —n)NJ0,1[C [0,1[. Hors A(A) > 1 par hypothese.

Par b) on peut trouver n et m entiers distincts et x € (A —n)N[0,1[, x €
(A—m)N[0,1. Onadonc y; € Aety, € A tels que x = y; —n, et
x = yp — m. On en déduit que y; — y» = n — m est un entier non nul.

)



UNIVERSITE CLAUDE BERNARD LYON 1 LICENCE DE MATHEMATIQUES 3°ANNEE
MESURE ET INTEGRATION AUTOMNE 2021

Controle terminal 2eme chance (27 juin 2022)

Durée : 1 heure 30 minutes. Aucun document n’est autorisé,
calculatrice non autorisée

Rappel et notations.

— On notera A la mesure de Lebesgue sur R (on note aussi souvent simplement dx pour
A(dx)). On rappelle qu’une fonction est dite Borélienne si elle est mesurable pour la
tribu Borélienne de R.

— Soit A un sous-ensemble d’un ensemble X : on notera x: X — {0,1} la fonction
indicatrice de A (c’est-a-dire que x o(x) = 1si x € A, et 0 sinon).

— Soit (X, T, u) un espace mesuré. Si f est une fonction mesurable sur X a valeurs réelles
ou complexes, on note ||f||rr sa norme LP, pour 1 < p < oo (on rappelle que pour

p <o, |fllr = (Jx | fQ)|Pul dx)) P). On note LP(X) l'espace LY sur (X, T, u).
Par abus de notations (utilisé dans le cours et les TD) on dira qu’une fonction mesurable
f est dans LP(X) si || f||rr < oo. Si I est un intervalle de R, implicitement LP(I) sera
compris pour la tribu Borélienne sur I et la mesure de Lebesgue sur 1.

— On rappelle que si f: R — R est une fonction 2rt-périodique, intégrable sur [—, 7|,
ses coefficients de Fourier sont donnés par la formule ¢, = 5= [ f(x)e™™"*dx, pour
tout n € Z.

— On rappelle que si f est une fonction dans Ll(R) ti valeurs réelles ou complexes, sa
transformée de Fourier est définie par f(t) = [g f(x)e "dx.

Partie I : questions de cours et d’application du cours

1. Enoncer le théoreme de convergence dominée.

Application. Soit f: R — R une fonction borélienne intégrable (pour la mesure
de Lebesgue sur R). Montrer que

fim [ £ (6])x = 0.

b e bt

2. Enoncer le théoreme de Dirichlet (le résultat sur la convergence ponctuelle des séries
de Fourier; donner les conditions précises d’application) et la formule de Parseval
(qui relie les coefficients de Fourier a la norme L? de la fonction).

Application : Soit f: R — R la fonction 27m-périodique donnée par f(x) = x
pour x € [—m, 7|
(a) Appliquer le théoreme de Dirichlet pour donner, sans calcul des coefficients de
Fourier, la valeur de la série de Fourier sur l'intervalle [—7t, 7t[.

(b) Calculer les coefficients de Fourier de f.

(c) Ecrire a l'aide des coefficients de Fourier, la conclusion de la formule de Parse-
val.



Partie II : exercices

4. Dans cet exercice « est un réel tel que 0 < a < 2.

(a) Montrer que la fonction x — (1 — c:os(x))xal+1 est intégrable sur ]0,c0[. On

notera son intégrale :

i 1
I ::/O (1 —cos(x))mdx.

On note f: R — R la fonction donnée par f(x) = %Mﬁth[ﬂﬂ).
(a) Montrer que la fonction f est intégrable sur R. Calculer la valeur de [ f(x)dx.
Pour quelles valeurs de « la fonction |x|f(x) est-elle intégrable ?

(b) Montrer que la transformée de Fourier de f, que I’on note f, vérifie pour
tout réel t > 0 :

1 f(t) = & /tm(l — cos(x)) yppd

En déduire la valeur de 1 — f(t) pour tout t € R.

(c) Trouver un équivalent de 1 — f(t) lorsque t tend vers 0, en termes de 1'in-

tégrale I (on sera attentif a la justification des convergences).
A%

5. (La question c) peut étre faite indépendamment de a) et b)). Soit D C R?, donné par
D = {(x,y) € R?, 0 < x < y}.On consideére l'intégrale I donnée par

I:/ (f) e~ (V) dxdy.
D \Y

(a) En appliquant le théoreme de Tonnelli ou Fubini (dont on justifiera la va-
lidité), écrire I'intégrale I sous la forme d"une intégrale simple de la forme
Is” 8(y)dy avec une fonction g(y) que ’on précisera.

(b) En effectuant une intégration par partie (que l'on justifiera précisément),
calculer en fonction de I la valeur de 'intégrale

© (1 — V)2
= —dy.
J= o
(c) En faisant un changement de variables en coordonnées polaires, calculer

la valeur de l'intégrale I. (Indication : soyez attentif au domaine d’intégration

obtenu en coordonnées polaires).
ANk

6. Soit (X, T, 1) un espace mesuré. On suppose que i est une mesure finie, c’est-a-
dire que p(X) < oo.
(a) Montrer que pour 1 < p; < pp < o,
L*® C LP> C L.
(b) Soit f € LP(X,T,u) avec p > 1. Soit 1 < r < p. Montrer que

Hm | fl[zs = |l fller-

S—r

On pourra penser a découper 'ensemble X en A = {x, |f(x)| < 1} et A“.

2
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Controle Continu 1

La justification des réponses et un soin particulier de la présentation sont demandés et pris en compte
lors de la notation.

Exercice 1. Soit (zy,)n,>0 la suite définie par
z, = n?exp((—1)"n).

Calculer lim sup z,, et liminf x,,.
n—o00 n—o0

Exercice 2. Soit X = N. On considere A C P(N), 'ensemble de parties de N défini par
A:={{3k}, k € N}.

Déterminer 7 (.A), la tribu sur N engendrée par A.

Exercice 3. Soit (X,7) un espace mesurable et (f,),>0 une suite de fonctions mesurables de X dans
R. Montrer que I’ensemble B C X défini par

B:={z € X; ngrfoo fn(x) = +o0}

est mesurable, c’est-a-dire que B € T.

Exercice 4. On consideére (R, Br, P) avec P mesure de probabilité sur Br (c’est-a-dire une mesure telle
que P(R) = 1). Le but de I'exercice est de calculer
lim P([z,2z]). (1)

T——+00

1. Calculer la limite dans (1) dans le cas particulier ou P = §, avec a € R, ou §, est la mesure de
Dirac en a. (On rappelle que la mesure de Dirac est définie pour tout Borélien A par §,(A) =1 si
a € Aetd,(A) =0 sinon.)

2. On revient au cas général ou P est une mesure de probabilité sur Bg.
a. Soit (x,), une suite réelle croissante vers +oo.

Calculer li_}In P([xp, +00]).

b. En déduire lim P([z,2z]).

T—+400

Exercice 5. Soit f : R — R une fonction borélienne. Montrer que le graphe de f, G(f) := {(z,y) €
R?;y = f(x)} est un borélien de R2.
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Controle Continu 1

La justification des réponses et un soin particulier de la présentation sont demandés et pris en compte
lors de la notation.

Questions de cours
1. Soit (X, d) un espace métrique. Donner la définition de la tribu borélienne sur X notée Bx.

2. Soit (X, T) un espace mesurable. Donner la définition d’une mesure p sur 7.

Exercice 1. Soit (x,,),>0 la suite définie par
x, = n’exp((—1)"n).

Calculer lim sup z,, et liminf x,,.
n—00 n—00

Exercice 2. Soit X = N. On considere A C P(N), 'ensemble de parties de N défini par
A:={{3k}, k e N}.
Déterminer 7 (.A), la tribu sur N engendrée par A.

Exercice 3. Soit (X,7) un espace mesurable et (f,),>0 une suite de fonctions mesurables de X dans
R. Montrer que I’ensemble B C X défini par

B:={z € X; ngrfoo fn(z) = 400}

est mesurable, c’est-a-dire que B € T.

Exercice 4. On considére (R, Bgr, P) avec P mesure de probabilité sur Br (c’est-a-dire une mesure telle
que P(R) =1). Le but de I’exercice est de calculer
lim P([z,2z]). (1)

T——+00

1. Calculer la limite dans (1) dans le cas particulier ou P = §, avec a € R, ou §, est la mesure de
Dirac en a. (On rappelle que la mesure de Dirac est définie pour tout Borélien A par §,(A) =1 si
a € Aetd,(A) =0 sinon.)

2. On revient au cas général ou P est une mesure de probabilité sur Bg.

a. Soit (zy,), une suite réelle croissante vers +oo.
Calculer lim P([zy,+00]).
n—oo

b. En déduire lim P([z,2z]).

T—+400

Exercice 5. Soit f : R — R une fonction borélienne. Montrer que le graphe de f, G(f) := {(z,y) €
R%;y = f(x)} est un borélien de R2.



Correction :

2

Exercice 1 Observons que 2, = n?exp(n) et xo,+1 = n? exp(—n) pour tout n € N.

On a donc :
lim z9, = +o00 et lim zop+1 = 0.
n—-+oo n—oo
Comme lim 9, = +00 et lim z9,+1 = 0, on déduit que la suite (z,), a exactement deux points d’adhé-
n n

rence : 0 et 400, et on conclut que liminf z,, = 0 et lim sup x,, = +00.
n n

Exercice 2 Soit A := { {3k}, k € N} Cc P(N).
Notons
M := {3k, ke N} CN

et posons
T={ACN;AC M ou A°C M}.
On va montrer que 7 = T (A).
1. Montrons que 7 est une tribu sur N.
i) Onald Cc M doncheT.
ii) Soit A € T, montrons que A¢ € T. Deux cas :

a. A C M et donc A = (A°)° C M et par suite A° € T car son complémentaire est inclus
dans M.

b. A° C M et donc A€ € T car il est inclus dans M.

On a donc montré que dans les deux cas, A¢ € T.

ili) Soit (A,)n, C T. Montrons que UA” € T. Deux cas :
n

a. Vn e N, A, C M. On a alors UA" C M et par suite UA" eT.

b. Ing € N tel que A7, C M. On a alors
C
<U%>:ﬂ%C%ﬂM

et donc U A, €T car son complémentaire est inclus dans M.

n

On a donc montré que dans les deux cas, U A, eT.
n

Par suite, 7 est une tribu sur N.

2. Montrons que A C T.
On a V{3k} € A, (k€ N), {3k} C M et donc {3k} € T. Par suite A C T.

On déduit de 1) et 2) que T est une tribu qui contient A. Comme 7 (A) est la plus petite tribu
qui contient A, on a alors

T(A) CT. (2)

3. Reste & montrer que 7 C T (A).
Comme A C T(A) (et que ) € T(A) car T(A) tribu), on alors, par stabilité de T (.A) tribu par
union au plus dénombrable et par passage au complémentaire, que T (A) contient T i.e.

T CT(A) (3)



Conclusion : On déduit de (2) et (3) que T(A) =T.

Exercice 3
lére méthode : On a

B:={reX; ngrfoofn(x) = +o0}
={z e X;VM >0, 3Ing €N; Vn > ng, fu(x) > M}
={z € X;Vk €N, Ing € N; Vn > ng, fo(zx) >k}

= (VU M £ (ks +oel)

keNpeNn>p

Comme Vn € N, f, est mesurable et que [k, +00[€ Br car c’est un fermé de R (ou car intervalle), on a
alors Vk € N,Vn € N, f1([k, +oo]) € T car image réciproque par une fonction mesurable d’un borélien
de R.

On déduit alors par stabilité de T tribu par union et intersection dénombrable, que B € T i.e. mesurable.

2éme méthode :

Bi={zeX; lim fu(z)=+oo}
= {z € X; limsup fo(x) = lim inf f, (x) = +oc}
={r e X; lim:inf fn(z) = 400} (4)
= (timinf £, ) 7 (food)

ou on a utilisé dans (4) le fait que pour x € X, si liminf f,,(z) = +oo alors limsup f,(z) = +oo car
n n

limsup f,,(z) > liminf f,(z).

Conclusion : Comme Vn € N, f, est mesurable, alors d’apres le cours liminf f, : X — R est aussi
n

mesurable. D’autre part, {+oo} € Bg.

~1
On déduit alors que B = (lim inf fn) ({+o0}) € T car image réciproque par une fonction mesurable
n
d’un borélien de R.

Remarque (Erreur courante dans les copies) : La limite simple de (fy), sur X n’existe pas for-
cément . On ne peut pas donc dire que B = (lim f,) "' ({+00}), c’est faux!!!
n

Par contre, pour une suite de fonctions (f,), de X & valeurs dans R, les deux fonctions liminf f,, et
n

lim sup f,, sont bien définies de X & valeurs dans R et sont mesurables si f,, est mesurable pour tout n.
n

Exercice 4

1. On observe que pour tout > a avec x > 0, on a que a ¢ [z,2x] et donc d,([z,2x]) =0, Va > 0
avec r > a.
Par suite, lim 64([x,2x]) = 0.
T—>+00

2. a. Comme la suite ([z,, +00[)nen est une suite décroissante (car (zy,), croissante) de boréliens
de R avec P([xy, +0o0[) < +o0 pour tout n (il aurait suffi que ge soit vraie pour un ng) car P
est une mesure de probabilité donc finie, alors d’apres le cours

P(ﬂ[xn,+oo[) = lim P([zn,+00[).

n—-+o0o
neN



Comme ﬂ [y, +00[= 0 , on déduit alors que
neN

lim P([zn, +oof) = P(0) = 0.

n—-+0o

b. Soit (x,), une suite réelle croissante tel que limx,, = +00. Comme limx,, = +00, on peut
n n
supposer que x, > 0, Vn € N . Montrons que hr}rl P([zp,2x,]) = 0.
n—-—+0oo

On a Vn € N, [z, 22,] C |2y, +00[ et donc 0 < P([zy, 2x,]) < P([xy, +00[). Comme d’apres
a., EIE P([zp, +oo[) =0, on déduit alors que Erf P([xy,2x,]) = 0.

Conclusion : On a montré que V(z,), suite réelle croissante vers +oo, lim P([zy, 2z,]) = 0,
n

on déduit alors que 11)51_1 P([z,2z]) = 0.

Exercice 5
Soit f : R — R une fonction borélienne. Montrons que le graphe de f, G(f) := {(x,y) € R?; y = f(z)}
est un borélien de R%. On a

G(f) = {(z,y) €R% y = f(2)}
= {(z,y) eR* y — f(x) = 0}
Soit
g : R = R
(@,y) = y—[f(z)
On a g = py — fop; ol p et pp sont les projections canoniques de R? continues (car linéaires par

exemple et R? est de dimension finie) et donc en particulier boréliennes. Par suite, g est borélienne par
composée et somme de fonctions boréliennes.

Comme G(f) = g~1({0}), avec g est borélienne et {0} € Bg, on déduit alors que G(f) € Bg> (image
réciproque par une fonction borélienne d’un borélien de R).

Remarque (Erreur courante dans les copies) : f borélienne n’implique pas f continue. Prenez
I'exemple de f = xq borélienne car Q € Bg alors que f est discontinue en tout point de R.
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Controle Partiel 2

La soin apporté a la justification des réponses et a la présentation des copies sera un élément pris en
compte lors de la notation.
Comme dans le cours et les TD, on notera simplement dx pour désigner lintégration par rapport a la

mesure de Lebesgue \(dx) sur R.

_ 1
T 1422

On rappelle que pour tout réel z : 1 — cos(z) < ‘%2 On rappelle la formule dérivée : arctan’(z)
Questions de cours. Soit (X, 7, 1) un espace mesuré.
1. Donner la définition de I'intégrale [, fdu d’une fonction f étagée positive sur X.

2. Donner la définition de lintégrale [ + Jdp d’une fonction f mesurable positive sur X. Donner la
définition d’une fonction intégrable sur X.

Exercice 1. Montrer que pour tout réel u € [0, o0, 11% < 1. Pour tout entier strictement positif
. I . n?(1 — cos(z)) .
n € N*  on définit la fonction f, : [0,1] — R par f,(z) = EETNCHI Montrer que la fonction f;, est
nw

bornée sur [0, 1], uniformément en n. Calculer

lim fndz.
n—-+o0o [071]

Exercice 2. Soit p > 0, et

o .
o= ["em iy,
0 X

1. Justifier pourquoi l'intégrale dans la définition de F'(p) est bien définie pour p > 0.
2. Déterminer lim,_, o F(p).

3. Montrer que la fonction F(p) est continuement dérivable pour p > 0 et exprimez F'(p) sous la
forme d’une intégrale.

4. Calculer F'(p). Indication : on pourra vérifier que x + %e_pr est une primitive de
—e P¥sinzx.
5. En déduire la valeur de F(p).
Exercice 3. 1. Montrer que pour tout p > 0, la fonction G(z,y) = cos(zy)e P est intégrable sur

R+ X [0, ].]
2. En calculant de deux fagons l'intégrale de G' sur Ry x [0, 1], retrouver le résultat de I'exercice
précédent, c’est-a-dire calculez F(p) = [J° e P*S2L g,

Exercice 4. Soit f : R — R une fonction borélienne.
1. On suppose f positive. Montrer que

/Oléf(x%—n)dx—/Rf(x)dx.

2. En déduire que si f est intégrable pour la mesure de Lebesgue, > ., f(z + n) converge pour
presque tout x € [0, 1], puis montrer que c’est aussi vrai pour presque tout x € R.
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Controle Partiel 2 - Corrigé

La soin apporté a la justification des réponses et a la présentation des copies sera un élément pris en
compte lors de la notation.
Comme dans le cours et les TD, on notera simplement dx pour désigner l’intégration par rapport a la

mesure de Lebesgue A(dx) sur R.

_1
1+z2 -

On rappelle que pour tout réel z : 1 — cos(z) < “%2 On rappelle la formule dérivée : arctan’(x) =
Questions de cours. Soit (X, 7, ) un espace mesuré.
1. Donner la définition de l'intégrale [ + Jdu d’une fonction f étagée positive sur X.

2. Donner la définition de lintégrale [ + Jdp d’une fonction f mesurable positive sur X. Donner la
définition d’une fonction intégrable sur X.

, 11‘% < 1. Pour tout entier strictement positif n € N*,

n?(1 — cos(x))
1+ (nx)?

Exercice 1. Montrer que pour tout réel u € [0, 00|
on définit la fonction f, : [0,1] — R par f,(x) = . Montrer que la fonction f;, est bornée

sur [0, 1], uniformément en n. Calculer

lim fndz.
n—-4o00 [0’1]

Correction Pour tout u € [0,1] onau? <1< 1+ud et pouru > 1onau? <u? <1+, dont 1113 <1
1

2097 9 Qapres 1 ti
o S apres la question
précédente. Comme f,, est positive (puisque cos(x) < 1), on a donc montré que pour tout z € [0, 1],
|fn(x)] <1, donc f,, est bornée uniformément en n.

Pour tout z €]0, 1],

D’apres le rappel en début d’énoncé, pour tout = € [0,1], fn(z) <

| < 2n” —
- 14+ n3x3 n—oo

| fn()

et fn,(0) = 0 pour tout n € N*. La suite f,, converge donc simplement vers 0 sur [0,1]. De plus, pour
tout n € N*| f,, est continue donc mesurable. On a aussi montré que la suite (fy,), est dominée par la
fonction constante égale a 1, qui est intégrable sur [0, 1] puisque [0, 1] est de mesure finie. On peut donc
appliquer le théoréeme de convergence dominée pour conclure que

0,

lim Jn(z)ds = /[0 ; lim f,(z)dx = 0.

n—o0 [071} n—oo

Exercice 2. Soit p > 0, et

.
F(p) = / L
0 xr

1. Justifier pourquoi l'intégrale dans la définition de F'(p) est bien définie pour p > 0.

2. Déterminer lim,_, o F(p).



Montrer que la fonction F(p) est continuement dérivable pour p > 0 et exprimez F'(p) sous la
forme d’une intégrale.

— psinxz+cos T e—P%

1157 est une primitive de

Calculer F'(p). Indication : on pourra vérifier que x
—e PPginz.

En déduire la valeur de F(p).

Correction

1.

La fonction h(p,-) : & — e P*S2L est continue sur R*%. De plus, |h(p, )| < P (car |S|i;l‘x| <1

pour tout z > 0), et la fonction x — e P* est intégrable sur R, . D’ou U'intégrabilité de h(p,-) sur
R,.

. On peut appliquer le théoreme de convergence dominée, ou remarquer que la majoration a la

question précédente montre aussi que |F'(p)| < fR+ e P*dr = 1/p, donc F(p) — 0.
p—r00

Vérifions les hypotheses du théoréeme de dérivabilité des intégrales a parametre. On vient de voir
que pour tout p > 0, h(p,-) est intégrable. Pour tout = > 0, h(-,z) est clairement C!, de dérivée

d

d—ph(-, x)(p) = —e PPsinx

Soit € > 0. Alors pour tout p > € la dérivée est dominée par e~ ¥, ce qui est intégrable sur R,. On
peut donc appliquer le théoréeme de dérivation des intégrales a parametre, qui montre que F' est
Clet F'(p) = Jr, —e 7P sinada.

On vérifie facilement l'indication par dérivation. On obtient alors

Fr(y)  |Psinz feosz > 1
W=7z 7], T e
0 p

. En intégrant, on obtient F(p) = —arctanp + C avec C € R. La question 2 permet de déterminer

C, puisque lim,_,+ arctan p = 7 /2. On doit donc avoir F(p) = m/2 — arctan p.

Exercice 3. 1. Montrer que pour tout p > 0, la fonction G(x,y) = cos(zy)e P* est intégrable sur

R+ X [0, 1]

2. En calculant de deux fagons 'intégrale de G sur Ry x [0, 1], retrouver le résultat de lexercice

précédent, c’est-a-dire calculez F(p) = [;° e*p“i%dx.

Correction

1.

Soit p > 0. G est continue donc mesurable. Par un corollaire du théoreme de Tonelli, il suffit donc de
montrer que fR+ f[o 1] |G (z,y)|dydx < 0o (ou le méme résultat en inversant l'ordre d’intégration).

Pour tout (z,y) € Ry x [0,1],
Gz, y)] < e,

/ / |G (z,y)|dydz < / e PPdr =1/p < 0.
R, J[o,1] R,

Remarque Erreurs courantes dans les copies :

donc

(a) G n’est pas positive!

(b) Une fonction bornée n’est pas nécessairement intégrable si 'ensemble d’intégration est de
mesure infinie (par exemple, une fonction constante n’est pas intégrable sur R).



2. D’apres la question précédente, G est intégrable sur Ry x [0, 1] donc on peut appliquer le théoréme
de Fubini a son intégrale :

1 1
/ G(%y)dkz(fﬂ,y):/ / G(w,y)dyde/ G(z,y)dzdy.
R+><[0,1] R+ 0 0 R+

Utilisons la premiere expression : pour tout z > 0,
_pa [sin(zy) L sing
/ G(z,y)d pr =e Pr—
x 0 x

L’intégrale de G sur Ry x [0, 1] est donc égale a F'(p).
Utilisons la deuxiéme expression pour calculer cette quantité : pour tout y €]0, 1],

o0 . 1 .
G(:an)dx:me </ elwye—pa)dl,) :9%< ; >:m8<pz+ly2> = 2p 5
Ry 0 b=ty pT+ty p°+y

Reste a intégrer en y :

1 B 1/p 1/p
p u=y/p P 1 1
F(p) = dy " — P pdu= [ ——du=arctan (- ).
(p) /0 p2 yQ Y /0 p2(1 uz)p B /0 1+ u? 1 arckan (p)

Remarque C’est bien le méme résultat qu’a l’exercice 2 : pour tout = € R, arctan(1/z) = 7/2 —
arctan(x).

Exercice 4. Soit f : R — R une fonction borélienne.
1. On suppose f positive. Montrer que

/Zf +nda:—/f

nel

2. En déduire que si f est intégrable pour la mesure de Lebesgue, > ., f(z + n) converge pour
presque tout = € [0, 1], puis montrer que c’est aussi vrai pour presque tout = € R.

Correction

1. Soient A est la mesure de Lebesgue sur [0, 1] et u la mesure de comptage sur Z. Par théoreme de
Tonelli appliqué & A ® p et a la fonction positive sur [0,1] x Z (z, n) — flx +n),

/fo—l—ndx—Z/ flx +n)d yHnZ/ d:c:/Rf(:U)dx

nez neL neL
Remarque On pouvait aussi justifier interversion série/intégrale dans la premiere égalité par
convergence monotone.

2. On ne suppose plus f positive. Comme [ intégrable, [ g |fl(z)dx < co. Grace au résultat précédent
appliqué a |f|, fol Y onez |f(x 4+ n)|dr < oco. La fonction positive g :  — > . [f(z + n)| est
donc d’intégrale finie sur [0, 1], ce qui implique qu’elle est finie pour presque tout z € [0, 1] (car
fo x)dx > f “1(00) 9 g(z)dx, et I'intégrale de droite est infinie sauf si A\(g~!(00)) = 0). Pour presque
tout z € [0, 1], on a donc ), f(xz +n) qui converge absolument, et donc qui converge.

Pour tout z € R, Y ., |f(z +n)| = >,z |f(x — [z] +n)|, avec  — |x] € [0,1]. Considérons
I’ensemble
B={zeR: Z|f x — |z] +n)| diverge}.
nez
On peut aussi écrire

B={y+k:yel01],ke Z,Z |f(y + k +n)| diverge} = Ugez B,
nez
o By = {y+k :yc[0,1,> ,cz|fly +k+n)|diverge} = {y+k :y € [0,1,>, 7 |f(y +
n)| diverge}. Par invariance par translation de la mesure de Lebesgue, comme A(By) = 0, By, est
de mesure nulle pour tout k € Z. Par suite, B est de mesure nulle comme union dénombrable
d’ensembles de mesure nulle.



UNIVERSITE CLAUDE BERNARD LYON 1 LICENCE DE MATHEMATIQUES 3°ANNEE
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Durée : 2 heures. Aucun document n’est autorisé, calculatrice non
autorisée

Rappels et notations.

— On note P(X) 'ensemble de toutes les parties d'un ensemble X. Si E € P(X), on note
XE la fonction indicatrice de E (c-est-a-dire xg(x) = 1si x € E, et 0 sinon).

— On notera Ay, la mesure de Lebesgue sur R" muni de la tribu Borélienne Bgrn. On
notera aussi souvent simplement dx pour désigner l'intégration par rapport a la mesure
de Lebesque A1(dx) sur R, et dxdy pour désigner l'intégration par rapport a la mesure
de lebesgue Ao (dx,dy) sur R,

— Si E est une partie de I'espace produit X x Y, on note Ex := {y € Y, (x,y) € E} Ia
coupe en x de l'ensemble E.

. 2
— On rappelle que pour tout réel x : 1 — cos(x) < %

Partie I : questions de cours et d’application du cours

1. Enoncer le lemme de Fatou et le théoréme de convergence monotone.
Applications :

(a) Calculer limy e [; mdx

0 —x 2
(b) Montrer que [~ #%=dx = Y~ <1%n> .

B

2. Soit X un ensemble. Donner la définition d’une tribu sur X.

Application : soient X et Y deux ensembles et f : X — Y une fonction de X dans
Y. Montrer que si T est une tribu sur X alors {B C Y, f~1(B) € T} est une tribu sur
Y.

%ok % o4

Partie II : exercices
3. Soit a et b deux réels dans ]0,1[ et D C R? le domaine donné par
1 1
D = {(x,y) €]0,00]%, a < Y - -, b<axy< -}
X a b
En introduisant les nouvelles coordonnées u = xy et v = y/x sur un domaine
bien choisi, calculer
Y dxd
/D L Axdy.



4. Soit I = [ro e ¥ ¥ dxdy.
(a) En faisant un changement de coordonnées polaires, calculer I.

(b) En déduire la valeur de l'intégrale [ _oooo e~ dx.

B

5. Soit G: ]0,00[— R la fonction définie par

G(x) :/0 H;#(ﬂetxdt.

(a) Montrer que G est bien définie sur ]0, co|.

(b) Montrer G est deux fois dérivable sur ]0,c0[ et exprimer G’ et G’ sous la
forme d’une intégrale. Montrer que G”(x) = 1 — 5 e

(c) Calculer limy_,c G'(x) et en déduire la valeur de la fonction G’.

(d) Montrer que pour x > 0,
G(x) = xIn(x) — xIn /1 + x2 — arctan(x) + g

(e) Montrer que lim,_,o G(x) = fooo Sint(t) dt. (Indication : faire une intégration

par partie). En déduire la valeur de cette derniére intégrale.

Lt

6. (Exercice plus difficile. Plusieurs notations de cet exercice sont rappelées en en-téte du
sujet). Pour a € R%> et r > 0, on note D(a,7) = {(x,y) € R%,||(x,y) —all < r} le
disque Euclidien fermé de R? de centre a et de rayon r.

Soit D = D(0,1) le disque unité fermé de R?. On considere (Dy),>o une suite
de disques fermés de R? de rayons strictement positifs (c’est-a-dire que D, =
D(ay,ry) pour des suites (a,) € (R®)N et (r,) €]0,00[N). On suppose que les
disques D, sont deux a deux disjoints et tous inclus dans D. Le but de l'exercice
est de montrer que si A>(D \ Uy>0D;) = 0 alors )~ 7y = oco.
(@) Pour n > 1, on note I, = [(an)1 — n, (an)1 + rn] la projection de D, sur
I’axe des abscisses. Montrer que si ) ,~1 7, < oo, alors pour presque tout
x € [~1,1] il existe seulement un nombre fini d’indices 7 tels que x € I,.
Indication : on pourra s’intéresser a la somme des fonctions indicatrices des I,

f = Yuz0 X1,
(b) (difficile, peut étre admis pour la question c)) En déduire que si } > 7 < oo,
alors pour presque tout x € [—1,1],

M ((D\ Up>1Dp)x) >0,

ott (D \ Uy>1Dy)x est la coupe en x de I'ensemble D \ U, >1Dy,. (Indication :
on pourra montrer que pour preque tout x € [—1,1], la coupe (D \ Uy>1Dp)x
contient un ouvert non vide de Dy).

(c) Montrer par l’absurde que si A>(D \ U,>0D;) = 0 alors ), 1 = oo.

2
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Durée : 2 heures. Aucun document n’est autorisé, calculatrice non
autorisée

Partie I : questions de cours et d’application du cours
1. Enoncer le lemme de Fatou et le théoréme de convergence monotone.
Applications :

(a) Calculer limy 0 [y mdx

2
(b) Montrer que [5° —dx =¥ ,50 <1+n> .

Corrigé. Voir le poly pour les questions de cours. a) On considere f,(x) =

m. On remarque que f,(x) > 0 pour x > 0. On remarque aussi que

. 1 1
nlgrolofn( ¥) = i (sin?(n)/n) +x2  x%

pour tout x > 0. D’autre part, comme la limite existe pour tout x, on a aussi

liminf f,(x) = lim f,(x) = l

n—o00 n—o0 x2

En appliquant le lemme de Fatou sur |0, co[ pour la mesure de Lebesgue, on a

[ee]

n * 1

lim inf ——dx > / lim inf dx = / —dx = +o0.
n—eo Jo sin?(n) +nx2  ~ Jo noeo flx) 0o x?

ceci implique que limsup,, ., [, fu(x)dx > liminf,e 5 fu(x)dx = 4o0. Donc

par résultat du cours lim, .« fooo fu(x)dx = +oo0.

b) On développe en série : % = Y5 xe~ "t pour tout x > 0. On note

fu(x) = xe~("+1)* La somme partielle YV, f,(x) est positive sur |0, co[ et croissante.
Par le théoréme de convergence monotone :

/ooolxex Z/ fulx

(On peut aussi justifier I'échange somme et intégrale par le théoreme de Tonelli
appliqué a la mesure et Lebesgue et la mesure de comptage sur N). On fait ensuite
une intégration par partie pour calculer

1
(n+1)>

i 1
_[_ —(n+1)x —(n+D)x 3, _
/0 fn(x)dx = | L + - n 1 dx =

bRt



2. Soit X un ensemble. Donner la définition d'une tribu sur X.

Application : soient X et Y deux ensembles et f : X +— Y une fonction de X dans Y.
Montrer que si T est une tribu sur X alors {B C Y, f~1(B) € T} est une tribu sur Y.

Corrigé. Voir le poly pour la question de cours. Onnote § = {B C Y, f1(B) €
T}. On vérifie chacune des conditions dans la définition de tribu.

i. On sait que @ € T, donc f~1(@) = @ € T. On en déduit que @ € S.
ii. Soit B € 8. Donc f~}(B) € T, et f~1(B°) = (f1(B))¢ € 7. Donc B° € 8.
iii. Soit (By)u>0 C 8.Ona f~1(B,) € T, pour tout n. Donc, comme T est une tribu,
f~Y(UBy) = Uf1(B,) € 7. On en déduit donc que UB, € S.

Lt

Partie II : exercices
3. Soit a et b deux réels dans ]0,1[ et D C R? le domaine donné par
1 1
D = {(x,y) €]0,00[% a < % < b<axy< E}'

En introduisant les nouvelles coordonnées u = xy et v = y/x sur un domaine bien

choisi, calculer
y
Zdxdy.
/D X xay

Corrigé. On nous dit d’introduire les nouvelles coordonnées u et v. On voit que
si (x,y) € D alors (u,v) € D' :=]a,1/a[x]b,1/b[ et que de plus

= ssi x:\/g
v=1y/x Yy =/uv

On va donc considérer le changement de variable ¢ : D’ — D, donné par
¢(u,0) = (/% /uv). Comme (u,v) € D', alors ¢(u,v) € D, et ¢ est bijectif
par le calcul ci-dessus avec inverse u = xy et v = y/x qui sont dans D’. De plus
¢ est C! sur le domaine D’. on calcule le Jacobien :
1
) io

3471 ) %% % 7

N, u

Dy (u,v) = det 4) sty | (u,0) = det i’/% 1z
9v v v

La fonction ¢ est donc un C!'-difféomorphisme. On peut appliquer le change-

ment de variables, et on a donc, au sens du changement de variable :

/ f(x,y)dxdy = / f(\/g, Vuv) Dy (1, v)dudv.
D D/
On l'applique a f(x,y) = y/x, et on obtient

/ydxdy / V““dd _% ldudo = 2/ du/ dv
D/

D/

= (1/a—a)(1/b b),

en appliquant Tonelli dans I’avant derniere égalité (puisque l'intégrant est posi-
tif).



%% 4

4. Soit I = [po e~V dxdy.
(a) En faisant un changement de coordonnées polaires, calculer 1.

(b) En déduire la valeur de l'intégrale [ e~ dx.
Corrigé.
(a) Par résultat du cours, par le changement de variables en polaire, on a au
sens du changement de variables, en posant x = rcos(6) et y = rsin() :

I :/ e_xz_yzdxdy = e " rdrdf
R2 0,271 xR+

En appliquant Tonelli (I'intégrant étant positif), on obtient

T= (a0 [ e rdr = (270) (X
= = 7T\ —) = 7TT.
| ae [ e = 2m3)

(b) On peut d’autre part appliquer Tonelli a l'intégrale double I, I'intégrant

étant positif
2 2 © 2 2
I:/ exdx/ eydy:(/ exdx) .
0 0 0
On obtient donc [, e dx = /7.

5. Soit G: ]0,00[— R la fonction définie par

G(x) :/0 1_i%(t)e_txdt.

(a) Montrer que G est bien définie sur ]0, co].

(b) Montrer G est deux fois dérivable sur ]0,00[ et exprimer G' et G” sous la forme
1 X

d’une intégrale. Montrer que G"(x) = ¢ — 13-

(c) Calculer limy_,co G'(x) et en déduire la valeur de la fonction G'.

(d) Montrer que pour x > 0,
G(x) = xIn(x) — xInv/1+ x? — arctan(x) + g

(e) Montrer que limy_,o G(x) = 0°° Sint(t)dt. (Indication : faire une intégration par

partie). En déduire la valeur de cette derniere intégrale.

Corrigé.

(@) On note f(t,x) = 1‘3‘;5(%—“. La fonction f est mesurable en t pour tout

x > 0, car continue. Soit x €]0,00[, en utilisant 0 < 1 — cos(¢) < %, on a
donc |f(t,x)| < Je~™* qui est une fonction intégrable sur Ry pour la mesure
de Lebesgue dt. La fonction f est donc intégrable en t sur R, I'intégrale
est donc bien définie pour tout x €]0, oo[.

3



(b)

(©)

(d)

La fonction f est clairement C* en la variable x pour tout ¢t > 0. On calcule
% = —1_C—?S(t)e_tx et s > f =(1- cosz(t))e_tx. Soite > 0: pour tout x €Je, o],
on a en utilisant 0 < 1 —cos(t) < &

of t
< Z
ox| —

—te
7

aZ

qui sont bien intégrables par les regles usuelles (et ne dépendent pas de la
variable x). On a donc une bonne domination, la fonction f(x,t) étant C?
en la variable x (et bien slir mesurable en f car continue), on peut appliquer
le théoreme de dérivation des intégrales a parameétres et on a

01— t IS

G'(x) = — / %()e—fxdt, G"(x) = / (1 — cos(t))e~dt.
0 0

Calculons G”(x). On a G”(x) = 2 — [, cos(t)e""dt. On peut procéder

de deux fagons, soit en faisant 2 intégration par parties soit en écrivant

cos(t) = (e + e~ ), ce qu’on fait ci-dessous :

o0 1 1/ -1 1
—tx gy _ © Hi—x ti+x _
/0 cos(t)e dt—2</0 dt+/ dt) 2(i—x+i+x)

x
1+x2

Ceci conclue la question.

Par convergence dominée on limy_,« G'(x) = 0. En effet, soit (x,),>0 crois-
sante telle que lim, ;o x;, = 400 et x, > 0. On utilise la représentation
intégrale de la question précédente. On a lim; e 1_C—?S(t)e_“‘" = 0 pour

tout + > 0, donc presque surement sur [0,00[. De plus, x, > xp > 0, et
on a \ﬂe_tx'ﬂ < Lem™0 qui est intégrable. On peut donc appliquer
la convergence dominée qui donne lim,_,o G'(x,) = 0. On en déduit que
limy_ G'(x) = 0.

Comme primitive de G”(x), on sait que G'(x) = In(x) — + In(1 + x N tc=
ln(ﬁ) + ¢ pour une constante réelle c. Comme hmx_>oo In( ) =0,

onac=0et

1+x2

G (x) = In(x) — %mu +x2).

On vérifie facilement que (x In(x) — xInv1+4 x2 — arctan(x))/ = G'(x). De
plus, par convergence dominée (méme argument que précédemment en do-
minant \1C—Os(t) ~n| par e'%0 qui est intégrable), on a que limy_.c G(x) =
0. D’autre part, on a

xln(x)—xln\/l—kxz:lxln(l— 1 ) ~ X

2 1+ x? 1+ x2’

lorsque x — co. Donc limy ;e XIn(x) — xInv/1 4 x% — arctan(x) + 5 = 0.
On en déduit la formule de 1’énoncé en identifiant les limites lorsque x —
Q.



(e) On remarque que \% ~i*¥| <1, et que d’autre part |

On peut donc dominer l'intégrant dans G(x) par

1— cos —tx| < lz

1—cos(t) _ 1
L0 ot < xo®) + xpe(®), Vx>0,
qui est intégrable sur R par les regles classiques. D’autre part,

lim 1-— cos(t)e_tx _1- cos(t)
x—0 t2 t2

7

pour tout t € R1. On peut donc appliquer la convergence dominée (a une
suite x, — 0) et on a

lim G(x) = | 1=cos(t)yy
x—0 0 t

Par intégration par partie, on a

/O°° 1— (t:;s(t) g — {1 — c:)s(t)]: N /0°° sint(t)dt _ /0°° sint(t) i

En utilisant la formule de la question précédente, on a d’autre part lim,_,o G(x) =

Z, on en déduit foo sin(t) g —

k%4

6. (Exercice plus difficile. Plusieurs notations de cet exercice sont rappelées en en-téte du

sujet). Pour a € R?> et r > 0, on note D(a,r) = {(x,y) € R?,||(x,y) —all < r} e
disque Euclidien fermé de R? de centre a et de rayon r.
Soit D = D(0,1) le disque unité fermé de R?. On considére (D,),>o une suite de
disques fermés de R? de rayons strictement positifs (c’est-a-dire que D,, = D(ay, 1)
pour des suites (a,) € (R?)N et (r,) €]0,00[N). On suppose que les disques D,, sont
deux a deux disjoints et tous inclus dans D. Le but de I'exercice est de montrer que si
A2(D\ Up>0Dy) = 0alors Y~ o7y = 0.

(a) Pour n > 1, on note I, = [(an)1 — rn, (an)1 + 1u] la projection de D, sur 'axe
des abscisses. Montrer que si y_,~otn < 00, alors pour presque tout x € [—1,1] il
existe seulement un nombre fini d'indices n tels que x € I,,. Indication : on pourra
s'intéresser a la somme des fonctions indicatrices des Iy, f := ) ;>0 X1,-

(b) (difficile, peut étre admis pour la question c)) En déduire que si )~ r, < oo, alors
pour presque tout x € [—1,1],

A ((D \ UnZan)x) > 0,

oit (D \ Up>1Dy)y est la coupe en x de I'ensemble D\ U,>1Dy,. (Indication :
on pourra montrer que pour preque tout x € [—1,1], la coupe (D \ Uy>1Dyn)x
contient un ouvert non vide de D).

(c) Montrer par I'absurde que si Ay(D \ U,>oDy) = 0alors Y~ 1y = 0.

Corrigé.



(a)

(b)

(©)

Soit f := Y,>0X1,- On remarque f(x) est le nombre d’entier n tels que
x € I,. D’autre part, par le théoréme de convergence monotone on a

/Rf(x)dx = /Rig))gn(x)dx =) /R)(In(x)dx =Y Aln) =) 2r.

n>0 n>0 n>0

(En effet, la longueur de l'intervalle I, est 2r,,.) Donc si )~ 74 < 00, on en
déduit que [ f(x)dx < co. Comme f est un fonction mesurable positive, on
en déduit, par résultat du cours, que pour presque tout x on a f(x) < oo.
On en déduit donc que pout presque tout x € [—1,1] il n’y a qu'un nombre
fini d’entiers n tels que x € I,.

Pour tout entier n, (D, )y est soit vide (si x ¢ I,;) soit un intervalle fermé non
vide inclus dans Dy. Soit x €] — 1, 1] tel qu'il existe un nombre fini d’indices
n tels que x € I,. Montrons que Dy \ U, (Dy )y contient un intervalle ouvert.
On a

— Soit il y a au moins deux entiers n tels que x € I, : comme il y en a
d’autre part un nombre fini on peut trouver deux intervalles consécutifs
(Dy, )x et (Dy,)x inclus dans Dy. Ils sont donc du type [a, D] et [c, d] avec
b < c¢ (car disjoints). Donc l'intervalle ]b, [ est dans Dy \ Uy (Dy,)y.

— Soit il y a un seul entier n; tel que x € I,,. Soit (Dy, )y est strictement
inclus dans Dy, auquel cas Dy \ U, (D), contient un ouvert (car il est
du type [—a,a] \ [c,d] avec soit ¢ > —a soit d < a). Soit (Dy,)x = Dy,
ce qui est impossible, voir argument (*) ci-dessous.

On en déduit donc que pour presque tout x € [—1,1], Dy \ U, (Dy,)x contient
un intervalle ouvert, donc, par résultat du cours, A1((D \ U,Dy)x) > 0.

(*) Supposons que pour x €] —1,1], on ait un entier n; tel que (D, )x = Dx.
On a donc que (Dy,)x = Dy sont du type [—a,a] avec a > 0 (car |x| < 1
on est donc a l'intérieur de D). On sait que r,;, < 1 car Dy, est strictement
inclus dans D (il y a une infinité de disques disjoints de rayon positifs dans
D), donc a un rayon strictement plus petit que 1, qui est le rayon de D.
D’autre part, le centre du cercle D, est sur 1’axe des abscisses car (Dy, )«
est un intervalle symétrique. Donc les tangentes des cercles D et D, se
coupent strictement en le point (x, a) (faire un dessin pour visualiser), donc
Dy, ne peut pas étre inclus dans D.

Supposons donc que ) ,>o7: < c0. On a, en appliquant le théoréeme de
Tonelli

A2(D \ Uy=0Dy) =/D\U )
n>0n

= [ ([ o, ey ax = [ (DA UD))

dAy(x,y) = /

[—1,1]2 AXD\Uy>0Dx (x,y)dA2(x,y)

La justification de Tonelli vient du fait que la fonction indicatrice est posi-
tive et mesurable car D \ U, D,, est mesurable (car D et D, sont des fermés).
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Durée : 1 heure 30 minutes. Aucun document n’est autorisé,
calculatrice non autorisée

Rappel et notations.
— Si X est un ensemble, on note P(X) I'ensemble des parties de X.

— On rappelle qu’une fonction réelle définie sur un intervalle I est dite Borélienne si elle
est mesurable pour la tribu Borélienne sur I.

— On notera simplement A(dx) ou simplement dx pour désigner la mesure de Lebesgue
sur R. On notera aussi Ay(dx,dy) ou simplement dxdy pour désigner la mesure de
Lebesgue sur R?.

Partie I : questions de cours et d’application du cours

1. Enoncer le théoreme de convergence dominée.

Application. Soit f : [0,00[— R une fonction Borélienne et intégrable pour la
mesure de Lebesgue sur [0, co], calculer

lim cos(x)?" f(x)dx.

n—oo Jo

On suppose maintenant que y est une mesure sur [0, co| muni de la tribu Borélienne,
et que f : [0,00[— R est une fonction Borélienne et u-intégrable. Exprimer la limite
suivante en fonction de f et u sous la forme d’'une série :

Jim [ cos() f(x)dp(x).

%%

2. Donner la définition d’une tribu sur un ensemble X. Donnez la définition de tribu
engendrée par une partie A de P(X).

Application : soit X = N et A C P(X) donné par A = {{n},n € N}. Quelle est
la tribu engendrée par A (en justifiant la réponse bien sfir) ?

Partie II : exercices
3. Soit D C R? donné par

D ={(xy) EthelquexZO, y>0,1 §x2+y2 <4}
Dessiner le domaine D et calculer

*Y
/D PR dxdy.

*%3%



4. Pour tout x > 0 et tout £ > 0, on définit f (¢, x) = exp(=x)—exp(=£x)

X
(a) Montrer que pour tout > 0, la fonction x — f(t, x) est intégrable sur ]0, co|.

= /Ooof(t,x)dx

(b) Montrer que F est continue sur |0, oo|.

Pour tout t > 0, on note

(c) Montrer que F est dérivable sur |0, oo[ et calculer F'(¢).
(d) Calculer F(t).

%%

5. Dans cet exercice, on pourra admettre sans démonstration les égalités suivantes :

[Mefar= vz /+°°1+y_ﬂf.

(a) Montrer que la fonction & :]0,00[— R donnée par h(x) =

sm( ) nest pas in-

tégrable sur |0, 00|. (Indication : on pourra penser & minorer fzk (k+1)m " h(x)|dx
pour k € N.)

On considére maintenant la fonction f : R?> — R donnée par

f(x,y) = exp(—xy?) sin(x).

(b) Montrer que pour tout x > 0,

NG
2/

En déduire que f n’est pas intégrable sur [0, co[?.

/O exp(—xy*)dy =

(c) Montrer que pour tout a > 0, f est intégrable sur [0,a] x [0,00[. En utilisant le
théoreme de Fubini, montrer que pour tout a > 0,

smx +oo
\F/ dx = ; ga(y) dy,

ol g, : [0,00[— R est une fonction (dépendant du parametre a) que 1’on déter-
minera sous forme intégrale.

(d) Montrer par intégration que

2 2 .
1—e % cosa—y?>e ¥ sina
1+y

ga(y) = , Yy > 0.

+o00
(e) Montrer que / 24(y) dy a une limite quand a tend vers +co et calculer cette
0

limite. En déduire la valeur de lim, . [, ? SH\})dx.
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Contrdle continu # 1
Le 3 mars 2023 —durée 60 minutes

Exercice # 1. Soit U un ouvert non vide de R™. Nous travaillons dans (U, By, v,,).Si f € C(U), montrer
aue | 1= = supl 1.
Exercice # 2. Montrer que (' C (? et que ||z|, < |z|,,Vz € ¢*.

Exercice # 3. Soit 1 < p < oo. Nous travaillons dans ((£?, .7, ). Si f,, — f dans ZP et f,, — g p.p.
quelle est la relation entre f et g?

Exercice # 4. Soit
g:R=R, glx)=e VreR.

Soient1 < p < et f € ZP(R).
1. Montrer que f * g € ZP(R) N C(R).On précisera le sens de 'hypothese f € Z7(R).
2. Montrer, de plus, que, sip < r < oo, alors f * g € Z"(R).
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Contrdle continu # 2
Le 31 mars 2023 —durée 60 minutes

Exercice # 1. Soit H un espace de Hilbert réel. Soit (e;);>1 C H une suite orthonormée. Soit (a;),;>1 C R.
Montrer 'équivalence

) ajejconverge <= Y al < oc. o)

j>1 j>1

En cas de convergence de I'une des séries apparaissant dans (1), montrer que

2
§ _ E 2
ajej = CL]-.

Jz1 Jj=1

Exercice # 2. Soit H un espace de Hilbert réel. Soit F une partie non-vide de H. Montrer que :

a) [ est un sous-espace fermé de H.
b) Vect (F) = F*.
¢) F+t = Vect (F).

Exercice # 3. Soient H = L?*(R) muni de sa norme usuelle et

V—{feH;Af@mLﬂm—O}

a) Montrer que V' est un sous-espace fermé de H.

b) Déterminer une base de V.
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Controle continu de substitution # 2
Le 7 avril 2023 —durée 60 minutes

Exercice # 1. Soit £ un espace préhilbertien réel. Soit (e;)1<j«n C E(avec N = 2,3, ..., 00) une famille
orthonormée. Montrer l'inégalité de Bessel

> (@) <|lz)*, Yz € E.

1<j<N

Exercice # 2. Soit X 'espace vectoriel complexe engendré par les fonctions dela formeR > ¢ — e € C
ou w parcourt R. Pour f, g € X, soit

T

a) Montrer que ( , ) définit un produit scalaire sur X.
b) Vérifier que la famille (¢ — e™*'),,cg est orthonormée.
c) X est-ilun espace de Hilbert?

Exercice # 3. Soit H un espace de Hilbert réel. Soit V' un sous-espace de H. Montrer que toute forme
linéaire et continue sur V' se prolonge en une forme linéaire et continue sur H.
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Contrdle terminal
Le 26 mai 2023 —durée 90 minutes

Exercice # 1. Montrer que (* C (* et que ||z, < |z,,Vz € ¢2.

Exercice # 2. Soit (X, .7, ) un espace probabilisé. (Donc 1(X) = 1.) Montrer que, pour toute fonction
mesurable f : X — R, nous avons | f|, < | fl,-

Exercice # 3. Soit H = L*(2, 7, 1) (les fonctions sont supposées a valeurs dans R). On considére l'en-
sembleC'={fe H; f>0p.p.}.

a) Montrer que C est un convexe fermé.
b) Montrer que, si f € H,alors Po(f) = fx(s>op,ou{f >0} = {zr € X; f(x) > 0}.

Exercice # 4. Soit f : R — R la fonction 27-périodique, impaire et telle que f(z) = 7 — @ sur |0, 7]. En
sinn

utilisant la série de Fourier de f, calculer Z
n>1

Exercice # 5. Nous travaillons dans |0, oo| et dans ]0, co[?, chacun muni de sa tribu borélienne et de la
mesure de Lebesgue. Soient f, g :]0, co[— [0, oo deux fonctions boréliennes et positives.

Nous admettons les identités suivantes :

RS L/ E NV

En utilisant : (i) l'identité

fl@)gly) _ f@) Ve 9y vy
Ty Vrtydy o VrtyJr

(ii) linégalité de Cauchy-Schwarz sur ]0, oo[?; (iii) le théoréme de Tonelli; (iv) I'identité (1), montrer
inégalité de Hilbert-Schur

Vr,y>0;

)ty
4,00[2 T+y dxdy < || fll,llgll,- .

Bonus. Soient 1 < p, ¢ < oo deux exposants conjugués. En utilisant les identités

00 1/q 0 1/p
/ — dy:/ = e W > 0,
o (v+y)y’t o (z+y)a'/? sin(7/p)

1/(pq) 1/(pa)
f(x)g(y) _ f(l')l' X g<y>y K Va,y>0,

T+y ($ + y)l/p yl/(pq) (x + y)l/q 21/ (pa

inégalité de Holder avec exposants p et g et le théoreme de Tonelli, établir l'inégalité de Hardy-Riesz

f(@)g(y) m
[ I ey < iAol ®
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Corrigé du contrdle terminal
Le 26 mai 2023

Exercice # 1. Montrer que (2 C £3 et que ||z||; < |z],, Va € £2.

Solution. Soitx = (an)n>0 € (*.Nousavonsa;, < 3. qai = |13, dott |an| < ||z, ¥n > 0, et donc

3 2 3
lel3 = > lanl® = Y lanlay < Y llallyar, = lelllells = 2] < oo,

n>0 n>0 n>0

d’ott les deux conclusions de 'exercice. O

Exercice # 2. Soit (X, .7, uu) un espace probabilisé. (Donc 1(X ) = 1.) Montrer que, pour toute fonction mesurable
f:X — R,nousavons | fl|; < ||fll5-

Solution. L'inégalité de Cauchy-Schwarz donne

1£1ly :/\f\ :/f\-l = (/f2>1/2 </ 12>1/2: 1/l [e (T2 = £l =

Exercice # 3. Soit H = L?(2,.7, ) (les fonctions sont supposées a valeurs dans R). On considére I'ensemble
C={feH;f>0p.p}.

a) Montrer que C' est un convexe fermé.

b) Montrer que,si f € H,alors Pc(f) = fxqfsop,ou{f >0} = {z € X; f(z) > 0}.

Solution. Notons I'ambiguité usuelle de la définition de C'. Si [ | désigne une classe d’équivalence dans L?, il faut
plutétlire C' = {[f]; f € ZP, f > 0p.p.}. Parailleurs, quitte a remplacer f par fx(s>0},qui est dans la classe
de f,nous pouvons travailler avec des fonctions > 0.

a) Soient 0 € [0,1] et [f],[g] € C,avec f,g > 0.Nous avons f + (1 — 0)g > 0etf + (1 — 0)g € £?,etdonc
[0f + (1—0)g] € C,douC est convexe. Par ailleurs, soit ([f;]) C C une suite convergente dans L?, de limite [f].
Soient ([f;,]) une sous-suite et A € .7 négligeable tels que f;, — f dans A°. Par passage alalimite, f > 0 dans

A€, etdonc [f] € C.1ls’ensuit que C est fermé.
: : f(x), sif(x)>0
b) Soit € L2.Soitg = . Comme =
) [f] 9 = fxyr=o0 g(x) {0’ i f(z) <0
accolade’) ; (ii) positive; (iii) dans .#? (car f g> < f f? < 00) et donc sa classe est dans C'. Pour conclure, il faut
montrer que

, g est : (i) mesurable (‘fonction a

[he £?, h>0p.p] = (f—g,h—g) <0.

Or,

<f—g,h—g>=/(f—g)(h—g)=/{f<0}fh§0. 0

Exercice # 4. Soit f : R — R la fonction 27-périodique, impaire et telle que f(x) = 7 — 2 sur |0, 7]. En utilisant
la série de Fourier de f, calculer Z Smn .
n

n>1




Solution. Nous avons co(f) = 0, car f est impaire. Sin # 0, nous avons, avecle c.v.z = —vy,

T 0 T T
2men(f) :/ e " f(x)dr = / e " f(x)dx +/0 e " f(x)dx = / e f(—y) dy

—7 —7 0

—|—/ e " f(x)dr = / (e7"* — ") f(z) dx = —2@/ f(z)sin (nx) dzx
0 0 0
v - N o
= /0 f(z)[cos (nz)] dx = - |:(7T x) cos (nx)]o + - /0 cos (nx) dr = pat
etdonc ¢, (f) = —1/n. Le théoréme de Dirichlet donne

N N el e N sinn
rol=f1) = lim S ca(f)e = — lim ( ; ) 9 Jim |
N—o0 N—o00 n —-n N—o00 n
n=—N n=1 n=1

d’ott la somme de I'énoncé vaut (7 — 1)/2. O

Exercice # 5. Nous travaillons dans |0, oo[ et dans ]0, oo[?, chacun muni de sa tribu borélienne et de la mesure de
Lebesgue. Soient f, g :]0, co[— [0, oo[ deux fonctions boréliennes et positives.

Nous admettons les identités suivantes :
/ 7\/§ dy = / VY dr=m,Vz > 0. D
o (T+yVy 0o (z+yVe

En utilisant : (i) 'identité

f@)ely) _ f@) Ve g9) vy
Tty VrtyYy Vrtyde

(ii) l'inégalité de Cauchy-Schwarz sur |0, co[?; (iii) le théoréme de Tonelli; (iv) lidentité (1), montrer l'inégalité de
Hilbert-Schur

/]0 [2 F@9W) gy < [ fll2llgll2- :

Vr,y>0;

r+y

Bonus. Soient 1 < p, g < oo deux exposants conjugués. En utilisant les identités

o) 1/q o] 1/p
Iy L R S
0 (z+y)y'? 0 (z+y)a? sin(7/p)
1/(pq) 1/(pq)
f@)gly) _— fl@)z L 9wy Va0,
T+ (x4 )Pyt " (g 4 )t/ 1/ (Pa)
I'inégalité de Holder avec exposants p et g et le théoréme de Tonelli, établir 'inégalité de Hardy-Riesz

f(@)g(y) m
/}0’00[2 oty dxdy < m”f”;;”guq- (3)

Solution. Prouvons directement (3), qui englobe (2) (prendre p = g = 2). Nous avons

/ f(2)g(y) dzdy :/ f(z) 2t/ (P y g(y) y/ @ dndy
0002 Y 10,002 ( 4+ y)l/p yl/(W) (z + y)l/q 21/ (Pa)

/p 1/q
fP(z) ' 1 gy y'”
- dzd =27 dxd
- </}0,oo[2 (z+y)y'/e ‘ y) /m,ooP (z+y)a'/P o
00 00 1/q 1/p
- P _r
</0 f() </0 (z +y)y'/e dy) dw)
00 00 1/p /g
q Yy
X </ " </ @ty dx) dy)

. 1/p T 1/q T
~(r) M () Vol = gy bl 0




Université Claude Bernard Lyon 1 Licence de mathématiques 3° année
UE Eléments d’analyse fonctionnelle Année 2022-2023

Controle terminal
2¢ session - le 29 juin 2023 —durée 60 minutes

Exercice # 1. Nous travaillons dans R muni de la tribu borélienne et de la mesure de Lebesgue. Soit
p:R =R, p(z) := el V2 € R. Montrer que, pour 1 < p < 0o, nous avons

feZ"R) = [f+peLPR)et|fxpl, <2|fll,]-

Exercice # 2. Soit (X, .7, ) un espace probabilisé. (Donc 1(X) = 1.) Montrer que, pour toute fonction
mesurable f : X — R, nous avons || f||, < || f]5-

Exercice # 3. Soit (H, || || un espace de Hilbert réel. Soit C' la boule unité fermée de H. Nous admettons

1
que C est convexe et fermée. Siz ¢ C, montrer que po(z) = Hx
T

Exercice # 4. Soit f € C*(R) une fonction 27-périodique. Montrer que la série de Fourier de f converge
normalement.
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MESURE ET INTEGRATION AUTOMNE 2023

Contrdle (21 novembre 2023)

Durée : go minutes; documents et appareils électroniques interdits

Rappel de notations : On notera A la mesure de Lebesgue sur R muni de la tribu borélienne Br.
On notera aussi souvent simplement dx pour désigner l'intégration par rapport a la mesure de
Lebesgue A(dx) sur R.

Exercice 1
Pour n € N, on considere la fonction f,: R = R, x — ne™" E28

1. Soit n € N. Justifier brievement I'existence de I'intégrale [ fu(x)dx et la calculer.

2. Ftudier la convergence simple de la suite (f,),en-

3. Montrer qu’il n’existe pas de fonction g: R — R intégrable telle que pour tout n
entier et tout x réel, on ait f,(x) < g(x).

Exercice 2
Montrer que pour tout entier n > 2, I'intégrale

[ Entr,

x2

est bien définie et calculer sa limite quand # tend vers +co.

Exercice 3
1. Soit (4, )neN une suite de nombres réels et soit a un réel.
(a) Montrer que les conditions suivantes sont équivalentes :
i. limsup, u, <a;

ii. pour tout ¢ réel strictement positif, il existe n entier tel que pour tout n
supérieur a np, on a uy < a+é&.

(b) Enoncer une condition analogue pour la limite inférieure.
2. Soit (x)nen une suite de nombres réels avec liminf, x, = 0 et limsup,, x, = 1.
(a) Montrer que limsup,, [x,, 41 — x| < 1.

(b) Montrer que I'on peut extraire une sous-suite (X, )ken de (X;)nen telle que



Exercice 4
Soit y une mesure borélienne sur [0, 1], et soit A la mesure de Lebesgue.

1. On suppose que pour tout m € N et tout intervalle I C [0,1] tel que A(I) = 1/2",
onau(l)=1/2".
(a) Montrer que pour touta € [0,1], u({a}) = 0.
(b) Soit a € [0,1]. Soit M € N* un entier positif et (dy)m=1..m € {0,1}M. On note
c=a+YM  d,/2" Montrer que si c € [0,1], alors u([a,c]) = A([a,c]).
(c) Démontrer que pour tout segment [a,b] C [0,1], on a p([a,b]) = A([a, 1]).
Indication : pour a < b, on pourra écrire b — a en base deux, c’est-a-dire b — a =
Y dy /2™ avec dy, € {0, 1} pour tout m, puis introduire la suite définie par cpy =
a+YM d,/2" pour M € N*.
(d) En déduire que p = A.
2. On suppose dans cette question que pour tout borélien B C [0,1] tel que A(B) =
1/2,ona u(B) = 1/2 (les hypotheses faites dans la question 1 n’étant plus valables).
(a) Vérifier que y([0,1]) =1 et que u({1}) = 0.

(b) Pour k € {1,2,3,4}, on note my = y([kTTl, x D Déterminer my + m; si k et |
sont deux entiers distincts compris entre 1 et 4? En déduire que 1'on a les
égalités my; = my = m3 =my =1/4.

(c) Soit maintenant m un entier naturel et soit Iy C [0, 1] un intervalle avec A(Iy) =
2~ (m+1) Montrer que u(Iy) = 2"V, (Indication : On pourra considérer 2" +
1 intervalles deux a deux disjoints Iy, I, . .., Ipn.)

(d) Conclure que u = A.
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Controéle (21 novembre 2023)

Durée : go minutes; documents et appareils électroniques interdits

Rappel de notations : On notera A la mesure de Lebesgque sur R muni de la tribu borélienne BRr.
On notera aussi souvent simplement dx pour désigner l'intégration par rapport a la mesure de
Lebesgue A(dx) sur R.

Exercice 1
Pour n € N, on considere la fonction f,: R = R, x — ne™" E28

1. Soit n € N. Justifier brievement I'existence de I'intégrale [ fu(x)dx et la calculer.
Solution. La fonction f, est continue, donc mesurable, et positive, donc elle admet
une intégrale sur R. Par parité, elle est le double de 'intégrale sur RT. Par équiva-

lence entre intégrale de Riemann et intégrale de Lebesgue, on peut la calculer avec
une primitive :

/ fu(x)dx = 2/ ne "dx =2 [—e*”x]g’ -2 =
R 0

2. Etudier la convergence simple de la suite (f,),en:-

Solution. Pour x = 0, on a lim,_, fu(x) = co. Pour x # 0, on a lim, e fn(x) =0
par « croissances comparées ». [

3. Montrer qu’il n’existe pas de fonction g: R — R intégrable telle que pour tout n
entier et tout x réel non nul?, on ait f,,(x) < g(x).

Solution. S'il existait une telle fonction g, on pourrait par le théoreme de conver-

gence dominée permuter la limite et 'intégrale. Vu que la suite (f,) converge sim-
plement vers la fonction nulle presque partout, on aurait :

n—00 n—soo

2= 1im 2 = lim / Fu(x)dx = / 0dx = 0,
R R

ce qui est évidemment absurde. ]

1. Le texte proposé en examen ne précisait malheureusement pas « non nul ».



Exercice 2
Montrer que pour tout entier n > 2, I'intégrale

[ lEntar,

x2
est bien définie, puis calculer sa limite quand # tends vers +co.

Remarque. Pour mémoire, étant donné un espace mesuré (X, T, 1), 1l y a deux classes de
fonctions qui admettent une intégrale :

— les fonctions mesurables positives (a valeur dans [0, co[ ou méme [0, 0]); une telle
fonction est dite intégrable si son intégrale est finie;

— les fonctions mesurables dont la valeur absolue a une intégrale finie — autrement
dit, la valeur absolue, qui est une fonction mesurable positive, est intégrable.

De fagon générale, une fonction intégrable est une fonction mesurable dont I'intégrale de
la valeur absolue est finie.
Apres avoir noté que h, est mesurable, deux options :

— soit on démontre que &, est intégrable pour tout n en étudiant 1'intégrale de Rie-
mann généralisée « en 0 » et «en co »; a tort ou a raison, 'énoncé semble inciter a
procéder ainsi;

— soit on le déduit du théoreme de convergence dominée, ce qui revient a omettre la
partie entre *— et —x ci-dessous.

Solution. On note h;, : |0,00[ — R, x > (sin” x) /x2. C’est une fonction continue sur |0, o]
donc mesurable et méme localement intégrable, c’est-a-dire intégrable sur tout segment
compact inclus dans |0, co|.

+— Montrons que [;"|hn(x)|dx < oo. Il s’agit de montrer la convergence de cette inté-
grale de Riemann généralisée. Au voisinage de 0, vu que sinx ~ x, on a

n
hy(x) ~ o

-2
x2

Comme n > 2, la fonction h,; admet un prolongement par continuité en 0 donc elle est
intégrable sur [0, 1].

Sur [1,00[, on a
1

}hn(x )| < ;
et x — 1/x? est intégrable sur [1, o0[ donc h,, 1’est également.
Ainsi, h, est intégrable sur |0, co[. —x
Pour calculer la limite de I'intégrale de /1, on commence par calculer la limite simple
de (hy). Soit x > 0:
— six € §+ 21N, alors sinx = 1 donc limy 0 1 (x) = 1/x%;
— six € 3 427N, alors sinx = —1 et la suite (h,(x)) n’a pas de limite;
— six & Aot A= T 4 nN, alors |sinx| < 1 donc limy, e 1, (x) = 0.
Puisque A est dénombrable, sa mesure de Lebesgue est nulle donc la suite () tend
presque partout vers la fonction nulle 0.



Il ne reste plus qu’a dominer la suite (/,) par une fonction intégrable et indépendante
de n. Pour x € |0,1], vu que |sinx| < x,on a

ha(x)] < 2" 2 <1

et la fonction constante égale a 1 est intégrable sur |0, 1].

Pour x > 1,ona:
1
ha(x)| < =
()] <
et la fonction x — 1/x? est intégrable sur [1,c0].
Ainsi, pour tout x et tout 7 on a |h,| < g ot g est définie par

1 six <1;
Vx >0, x) =
g() lz six > 1.
X

Pour résumer :
— pour tout n, h,, est mesurable;
— pour presque tout x, (h,(x)) converge vers 0;

— on a pour tout x et tout x la majoration |h,| < g, ou1 g est intégrable et indépendante
de n.

Par le théoreme de convergence dominée, on a
(e (o)
lim hy(x)dx = / 0dx = 0. O
n—oo /0 0
Remarque. Erreurs les plus fréquentes sur cet exercice :

— confusion entre mesurabilité et intégrabilité (comme dans « f est continue donc
intégrable »);

— la fonction x + 1/x? [utilisée comme fonction g] est intégrable sur |0, co];

— invocation du théoreme de convergence dominée sans vérification d’une inégalité
de domination;

— écriture lim;; o0 ‘[boo hpdA = fooo limy, o h,dA sans savoir si la limite simple de (/)
existe;

— erreur sur le signe de h;,, vue comme positive;

— limite erronée : limy o0 1ty (x) = —1/x% si x € 3L + N7t

Exercice 3
1. Soit (#,)eN une suite de nombres réels et soit a un réel.
(a) Montrer que les conditions suivantes sont équivalentes :
i. limsup, u, <a;

ii. pour tout ¢ réel strictement positif, il existe ng entier tel que pour tout n
supérieur a ng, on a u, < a+é&.

(b) Enoncer une condition analogue pour la limite inférieure.

2. Soit (x;)sen une suite de nombres réels avec liminf, x,, = 0 et limsup,, x, = 1.

3



(a) Montrer que limsup,, |x,41 — x,| < 1.

(b) Montrer que l'on peut extraire une sous-suite (X, )ken de (xn)nen telle que
11mk ’x;zlk+1 - xnk| - 1.

Remargue. Outre la définition mal connue de limite supérieure, 1'exercice, du moins la
premiére question, utilisait deux faits tres simples mais qui ne sortent pas :

— pour une suite (s,) convergente,

lims, <a <= Ve>0, dng, Vn >ngy, s, <a-+e;

n—o00
en effet, si L = lim, .S, (supposée finie), on sait qu’il existe ny tel que pour
n > ny, |sp — L| < e Par suite, s, — L < ¢ d’otts, < L+e¢e < a+ e La réciproque
est vraie aussi mais on va essentiellement la démontrer plus bas.

— pour A et B réels,
A<B < Ve>0, A<B+es.

Solution. 1. Pour n > 0, on note s, = sup;., Ux. On sait que la suite (s,), qui est
décroissante et donc admet une limite, tend vers lim sup,, u;,.

(a) Supposons que limsup, ., u, < a, c’est-a-dire lim,, , s, < 4.1l existe donc ng
tel que pour n > ng, on ait s, < a + ¢; autrement dit, pour tout k > n, u, <
a + €. Cela signifie que pour tout k > ng, u, < a+ ¢, ce qui est I'assertion (ii).
Inversement, supposons (ii) satisfaite. Soit € > 0, trouvons 1y comme dans (ii).
Pour n > ng, on a u, < a+¢ donc, a n fixé, on a u;y < a+ e pour tout
k > n. Autrement dit, s, < a + € pour tout n > np. En passant a la limite, il
vient lim sup, uy < a+ ¢ Comme ceci est vrai pour tout ¢ > 0, on a en fait

limsup,, u, < a.

(b) En utilisant liminf, u, = —limsup, (—u;), on obtient I'équivalence entre les
assertions suivantes :

i. iminf, u,, > a;
ii. Ve >0, dng, Vn > ng, u, > a—«.

2. (a) On suppose que limsup, x, = 1 et liminf, x, = 0. Fixons ¢ > 0. D’apres la
question 1, il existe ng tel que pour n > ny, on ait simultanément x, <1+ ¢ et
X, > —e. Pour n € N, on a donc :

Xpp1 —Xn < 14e—(—¢) <142
et
Xp—Xp1 < 14+e—(—¢) <142
d’ou
|Xpa1 — x| <1+ 2e.
Toujours par la question 1.a, on en déduit que limsup,, |x,+1 — x| < 1.

(b) On sait que la limite supérieure (resp. inférieure) est la plus petite valeur
d’adhérence de la suite. Par hypothése, il existe donc deux extractrices [fonc-
tions N — N strictement croissantes] ¢ et ¢ telles que limy ;00 x,(,) = 1 et
im0 Xy() = 0. On pose alors, pour k entier, 1 = x,(;/2) s k est pair et
Mg = Xy((k—1)/2) Si k est impair. Alors |x; — x| est la valeur absolue de la

4



différence entre un terme pair proche de 1 et un terme impair proche de 0
donc elle tend vers 1.

Plus formellement (a quoi bon?), si on note dy = |x,|, alors pour tout p on
a [Xny, ., — Xnyy| = [Xy(p) — Xg(p)| donc limy oo day = 1 €t [xXny, ) — Xy, | =
|Xp(p1) — Xy(p)| donc limp_,e0dapi1 = 1 aussi. Cela suffit pour montrer que
limk_m k= 1.

O
Remarque. Erreurs les plus fréquentes dans cet exercice (un festival) :
— affirmation (tres fausse!) que toute suite admet une limite;
— affirmation fausse limsup(x,;1 — x,) = limsupx,,1 — liminfx, — penser a la

suite définie par x, = /n, pour laquelle lim, (X, 11 — x,) = 0 et limsupx, =
liminf x, = oo (de sorte que la différence n’a pas de sens), ou a xj, = sin+/n, pour
laquelle lim, 0 (X411 — %) = 0 et limsup x, = 1 et liminfx, = —1; ce qui est vrai
(le démontrer!), c’est que limsup(x,4+1 — xn) < limsup x,,+1 — liminfx, (disons
pour une suite bornée);

— affirmation fausse que si limsup, . u, = 1, alors il existe ng tel que Vn > ny,
U, <1 - et variations sur le théme; des suites comme u,, = 1 + %H permettent de
tester (réfuter) ces affirmations;

— manipulations hasardeuses des variables et des quantificateurs, par exemple :

— «onprend e =1/ndouVn > 1, uy, <a-+1/n (le probléeme est qu’ici n est a
la fois libre, définie hors de la formule par ¢ = 1/n, et liée));

— dans 2.a, penser qu’on fait une disjonction de cas en séparant un « premier
cas : X411 > Xp » et un « deuxieme cas : x,,11 < x,, », en sous-entendant (et en
utilisant) que ces inégalités sont vraies pour tout n : cela revient a affirmer que
toute suite est monotone;

— inégalité u, > a +¢aulieude u, > a —edans 1.b;

— (dans 2(a)) espoir de tirer quelque chose de l'inégalité triangulaire sous la forme
|Xn+1 — Xn| < |xp41| + |xn] : sion a écrit ¢a, c’est plus ou moins fichu;

— écritures fumeuses comme lim sup,, u, = lim;, . sup,, u, —au lieu de limsup,, u,, =
lim;; 00 SUPj>, Uk;

— écritures complétement hors de propos du genre limsup u, = ,,eny Uk>y Uk... au-

trement dit, confusion entre limite supérieure d"une suite réelle et d’une suite d’en-
sembles.

Exercice 4
Soit y une mesure borélienne sur [0, 1], et soit A la mesure de Lebesgue.

1. On suppose que pour tout m € N et tout intervalle I C [0,1] tel que A(I) = 1/2™,
onau(l)=1/2".

(a) Montrer que pour tout a € [0,1], u({a}) = 0.

Solution. Premiére solution. On suppose d’abord que a < 1. Pour m assez grand,
ona2 ™ <1l—adoncl=[a,a+2"™" C[0,1]. Maisalors [ et ] = |a,a+2""]



sont deux intervalles tels que A(I) = A(J) = 27" donc u(I) = u(J) =27 De
plus, I est la réunion disjointe de | et {a}, de sorte que

27" =u(I) = u(]) +u({a}) = 27" +u({a})

et par différence, y({a}) = 0.

Sia =1, onremplace [ et | par 271, 1] et [271,1].

Deuxieme solution (plus longue mais plus naturelle ?). Supposons d’abord que
a € ]0,1[. Pour m > 1, on note I, = [a — 2-m=1 g 4 2=m=1] Pour m assez
grand, disons m > mg, on a I, C [0,1] et A(L,) = 2™ donc u(l,) =27". On
peut alors invoquer le théoréme de limite décroissante, puisque (L) < oo

u({a}) Zﬂ( ﬂ Im) = lim u(L,) = lim 27" =0.

m—o0 m—00
m>mo

A présent, sia = 0 (resp. si a = 1), on n’a qu’a remplacer I, par [0,27"] (resp.
par [1 —27,1)). O

(b) Soit a € [0,1]. Soit M € N* un entier positif et (dy) =1 p € {0,1}M. On note
c=a+YM d,/2" Montrer que sic € [0,1], alors u([a,c]) = A([a, c]).

Solution. Si on note, pour m < M, ¢y =a+ Y 1dp27F, ona
a=c=cp<--Scp<--Scepm=¢C
et donc

M-
[a,c] = [co, cm] U Cm, Cmy1[U {em},

ot la réunion est disjointe. Or, pour tout m, on a soit ¢;,4+1 = ¢, auquel cas
Alem, emea]) = AM(@) = 0 = u([om, cms1]), soit cpsq — cm = 27+, auquel cas
Alem, emea]) =271 = p([em, cmra[)- 1L vient

M-—1
u(la,cl) = Y ulem cmanl) +p({c})

m=0
M-1

Z)\ cmsCmr1]) +A({c})

m=0

= A([a,c]). ]

(c) Démontrer que pour tout segment [a,b] C [0,1], on a p([a,b]) = A([a, 1]).
Indication : pour a < b, on pourra écrire b — a en base deux, c’est-a-dire b —a =
Y% dyw /2™ avec dy, € {0,1} pour tout m, puis introduire la suite définie par
e =a+YM  dy/2" pour M € N*.



(d)

Solution. On a, vu que u({b}) = 0 et que (cpm)pm>1 est une suite croissante qui
converge vers b :

#(la, b]) = p([a,b])
= ( U 2 cml

M>1

= im wlcl

En déduire que y = A.

Solution. La mesure de Lebesgue est 1'unique mesure définie sur la tribu boré-
lienne de [0, 1] pour laquelle la mesure d’un segment [a, b] est b — a. On vient
de voir que y satisfait a cette condition, ce qui entraine que y = A. H

2. On suppose dans cette question que pour tout borélien B C [0,1] tel que A(B) =
1/2,0ona pu(B) = 1/2 (les hypotheses faites dans la question 1 n’étant plus valables).

(a)

(b)

Veérifier que ([0,1]) =1 et que p({1}) = 0.

Solution. Le segment [0,1] est la réunion disjointe de [0,1/2[ et de [1/2,1],
lesquels sont deux boréliens dont la mesure de Lebesgue est 1/2. On a donc
w([0,1/2]) = u([1/2,1]) =1/2 et u([0,1]) =1/2+1/2 = 1.

Les boréliens [1/2,1] et [1/2,1] ont tous deux une mesure de Lebesgue égale
al/2donc

1
L (1) = A(/2.10) + (1))
= pu([1/21]) +p({1})
= u([1/2,1])
1
= A([1/2,1]) = 5
et enfin y({1}) = 0. Pour a € [0,1], on montrerait de méme en considérant
la—1/2,a] ou [a,a +1/2] que u({a}) = 0. O

Pour k € {1,2,3,4}, on note m; = y([ ,4D Déterminer my + m; si k et |

sont deux entiers distincts compris entre 1 et 4? En déduire que 'on a les
égalités my = my = m3 =my =1/4.

Solution. Pour k # I, la réunion de [*;}
un borélien de mesure de Lebesque
1/2 pour tous k # .

On a donc mq +m3 = 1/2 = my + m3, d’ou my; = my. On démontre de méme
que my = myp = m3 = my d’olt la valeur commune des my est 1/4. O

7

[, L] est disjointe donc c’est

k—
4 74
1/4 /2. On a donc my + m; =

k
,7| et
+1/4



(©)

(d)

Soit maintenant m un entier naturel et soit Iy C [0, 1] un intervalle avec A(Iy) =
2~ (m+1) Montrer que u(Iy) = 2~ "V, (Indication : On pourra considérer 2" +
1 intervalles deux a deux disjoints Iy, I, . .., Ipn.)

Solution. Soit J = [k2=("+1), (k + 1)2= "V [ pour k = 0,...,2"+! — 1. Ob-
sérvons que les Ji sont tous disjoints et que Iy intersecte au plus deux des Ji.
Donc on peut choisir Iy, ..., I» parmi les Jy de maniere que Iy, Iy, ..., [o» sont
deux a deux disjoints. Soit m; = u(I). On a pour tout k < 2™ :

Y omi=u(JL)=AJ L) =1/2 (1)
j#k j7k j#k
En faisant la somme de ces équations pour k < 2", on obtient :

2"y my= (2" +1)/2,
j

ou
Y mj=1/2+42" (M),
j

Ceci avec (1) pour k = 0 implique que my = 2~ ("+1), O
Conclure que u = A.

Solution. On s’est ramené a I'hypothese de la premiere question, ce qui assure
que u = A. O
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Rappel de notations et commentaires :

— On notera Ay, la mesure de Lebesgue sur IR" muni de la tribu borélienne Brn (et simplement
A sur R). On notera aussi souvent simplement dx pour désigner l'intégration par rapport
a la mesure de Lebesgue dA(x) sur R ou dxdy pour dA,(x,y) sur R2.

— Si (X, 7) est un espace mesurable et x € X, on rappelle que la mesure de Dirac au point x
est la mesure sur (X, T) notée oy, et donnée, pour A € T, par 6x(A) = 1six € Aet0
Sinon.

— Omn note P(X) I'ensemble des parties d'un ensemble X.

— On veillera particulierement a la qualité de la rédaction et de la justification des arguments
ou des calculs, en étant précis sur les résultats du cours utilisés.

Exercice 1 (Question de cours)
1. Enoncer le théoreme de convergence monotone

2. Donner la définition de tribu produit et énoncer le théoreme de Tonelli (ou Fubini
pour des fonctions positives).

Rt 2

Exercice 2 Soit (X, T, it) un espace mesuré. Soit B € T un ensemble mesurable fixé et tel
que 0 < p(B) < +o0. On définit (.| B) de T dans R4 U {+co} par, pour tout A € T,

u(ANB)
u(B)

1. Montrer que yu(.| B) est une mesure de probabilité sur (X, T).

n(A[B) =

On considére maintenant I’espace mesurable (N, P(IN)) et on note 6 la mesure de Dirac
au point k € IN (voir le rappel de notations ci-dessus). Supposons a présent que y est la
mesure sur (IN, P(IN)) définie par

+o00 1
= Z 2k+1 57“
k=0

Soit B = 2IN I’ensemble des entiers pairs.

2. Vérifier que y est bien une mesure sur 'espace (N, P(IN)), et montrer que c’est une
mesure de probabilité.

3. Calculer u(B).
4. Pour k € N, calculer u({k}| B).

5. En déduire que
T g

W18 = X gt

Lt



. . 1: P . . oo _42
Exercice 3 On pourra utiliser sans démonstration dans cet exercice que [,” e~"'dt =

V)2,

Pour tout t > 0 et pour tout x > 0, on pose

flt,x) = —

1. Montrer que pour tout x > 0, la fonction t — f(f,x) est intégrable (au sens de
Lebesgue) sur I =|0, +o0].

Pour tout x > 0 on pose
hx) = / £(t, %) dt.
I
2. Montrer, que / s’annule uniquement en zéro.

3. Montrer, en utilisant les intégrales a parametres, que / est continue sur R .

N N

4. Montrer, en utilisant les intégrales a parametres, que h est dans C! (c’est-a-dire
continument dérivable) sur R* . Calculer /' (x) pour tout x > 0 et en déduire h(x).

5. En remarquant que pour tout £ > 0 et pour tout x > 0,

* 2
f(t, x) :/ e " ds,
0

retrouver la valeur de /1(x) en utilisant une méthode différente.

A% %34

Exercice 4 Soit D C R? I'ouvert donné par D = {(x,y) € R?, 0 < x <y, xy > 1}.

1. Montrer que I'application ¢ définie par
x
#xy) =3y, ),

est un €! difféomorphisme de D sur un ouvert V de R? que l'on explicitera.
2. A l'aide de ce changement de variables, calculer

/D 32y 26~ dxdy.

bt

Exercice 5 Dans cet exercice on appelle rectangle de R?> un rectangle ouvert du type
R =]a,b[x]c,d| avec a, b, c,d des réels tels que a < b et ¢ < d. On dit que R est semi-entier
si un de ses cotés a une longueur entiere, c’est-a-dire que b —a € N oud —c € IN.
On dit qu'un rectangle R est pavé par une famille (finie) de rectangles Ry, ..., R, si les
R; sont deux a deux disjoints, si R; C R pour touti =1,...,1n, et si Ap(R\ (U"_;R;)) = 0.
On note f : R? — C la fonction définie par

f(x,y) — e2im(x+y)

1. Soit R un rectangle, caractériser la propriété "R est semi-entier" en fonction de la
valeur de [ f(x,y)dxdy.

2. En déduire qu’'un rectangle qui peut étre pavé par une famille finie de rectangles
tous semi-entiers est un rectangle semi-entier.

2
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Exercice 1 (Question de cours)
Voir cours.

bt
Exercice 2 Soit (X, T, u) un espace mesuré. Soit B € T un ensemble mesurable fixé et tel
que 0 < p(B) < 4o00. On définit y(.| B) de T dans Ry U {400} par, pour tout A € T,
1u(ANB)
u(B)

1. Montrer que yu(.| B) est une mesure de probabilité sur (X, T).

#(A|B) =

On considere maintenant I’espace mesurable (IN, P(IN)) et on note J; la mesure de Dirac
au point k € IN (voir le rappel de notations ci-dessus). Supposons a présent que yu est la
mesure sur (IN, P(IN)) définie par

+00 1
‘”_/;)Zk“rlok

Soit B = 2IN I'ensemble des entiers pairs.

2. Vérifier que yu est bien une mesure sur l'espace (IN, P(IN)), et montrer que c’est une
mesure de probabilité.

3. Calculer u(B).
4. Pour k € N, calculer u({k}|B).
5. En déduire que

> 3
‘Ll(‘ B) - 1(204/(+] 02]('

Corrigé. 1) Montrons tout d’abord que c’est une mesure. On vérifie que y(@|B) = % =

0. Soit (Ay)nenN une suite d’éléments de T deux a deux disjoints. On a

((UA))NB)  uw(U(ANB)) Y, u(ANB)
u(B) - 1u(B) - 1(B) = ;V(AHB),

ot nous avons utilisé dans la troisieme égalité que les (A, N B), sont deux a deux dis-

joints et que u est une mesure. Comme y(-|B) est une fonction sur T a valeurs dans [0, 0],

on a vérifié les propriétés de la mesure. De plus u(X|B) = wXnB) _ #(B) _ 1 est donc

u(B) u(B)

(UA,|B) = £

une probabilité.

2) Si A € P(N), alors u(A) = 1% 2,%5;((/1) est bien définie comme série de termes
positifs et est a valeurs dans [0, +oc0]. De plus, comme par définition &(®) = 0, nous
avons u(@) = 0. Soit (A,)yen une suite d’éléments de P(IN) deux a deux disjoints.
Come J; est une mesure sur P(IN),

—+o0
PO = Y 60 = Y i V(A = T 1 serdiAn) = Da(An),
k=0 k=0 n n k=0 n



ol l'interversion de la somme dans la troisieme égalité se justifie par le théoreme de
Tonelli car les termes de la somme sont tous positifs (rq : résultat du cours, c’est une
conséquence du théoreme de Tonelli alors appliqué au produit des mesures de comptage
sur IN x IN). u est donc une mesure. Finalement comme J;(IN) = 1 par définition, nous
avons u(IN) = Y79 zk - = 1, u est donc une probabilité.

3) Par définition de Jy, nous avons 6;(B) = 1 si k est pair et d;(B) = 0 si k est impair.

Donc
RS | 1821 1 1 2

}[(lg) —= 2:: _— = — —_— = — = —.
S 242113

4) Par 3), nous avons p({k}|B) = 3u({k} N B). De plus {k} N B = @ is k est impair et
{k} N B = {k} si k est pair. Donc

0, si k est impair

p(ik}[B) = {

%, si k est impair

5) Soit A € P(IN), nous avons A = Lgeo{k}, (-|B) étant une mesure, par additivité
et en utilisant 4),

d 3 > 3
keA p:O p=0

ce qui donne l'égalité voulue.

Bt

. 1 P . . o 42
Exercice 3 On pourra utiliser sans démonstration dans cet exercice que fo e ldt =

J7T/2.

Pour tout t > 0 et pour tout x > 0, on pose

1—e ¥t

f(t/x> - 12

1. Montrer que pour tout x > 0, la fonction ¢ — f(f,x) est intégrable (au sens de
Lebesgue) sur I =|0, -oo|.
- / £(t,x) dt
J1

2. Montrer, que h s’annule uniquement en zéro.

Pour tout x > 0 on pose

3. Montrer, en utilisant les intégrales a parametres, que / est continue sur R .

4. Montrer, en utilisant les intégrales a parametres, que h est dans el (c’est-a-dire
continument dérivable) sur R* . Calculer /' (x) pour tout x > 0 et en déduire h(x).

5. En remarquant que pour tout t > 0 et pour tout x > 0,

:X ‘tz
e ' ds,

fltx) = |

JO

retrouver la valeur de h(x) en utilisant une méthode différente.



Corrigé. 1) Pour tout x > 0, t — f(t,x) est positive et continue donc borélienne sur I. On
remarque d’autre part que pour tout x > Oett € I,

1
127 f(t/ x) S X,

ftx) <

~

la deuxieme inégalité venant du fait que 1 —e™" < u pour tout u > 0 (par exemple par
étude de fonction simple). On a donc 1'inégalité suivante pour tout x > Oett € I,

1
0 < f(tx) < xxpq(t) + t—zX[Loo[(t)/ (1)

ol on note x4 la fonction indicatrice d'un ensemble A. Donc la fonction t — f(¢,x) est
bornée sur |0, 1] donc intégrable sur |0, 1[. Elle dominée par tlZ sur [1, co[ qui est intégrable
sur ce dernier ensemble. Donc pour tout x > 0, f(-,x) est intégrable sur I.

2) On remarque d’abord que pour x = 0, f(¢,0) = 0 pour tout ¢t € I. On a donc (par
résultat du cours) h(0) = [; f(t,0)dt = 0. Réciproquement, pour x > 0 et t € I, nous
avons f(t,x) > 0. Comme t — f(f,x) est borélienne et positive, par résultat du cours,
h(x) > 0 et si h(x) = 0 cela implique que f(,x) = 0 A1-presque partout, ce qui est faux
pour x > 0 car f(t,x) > 0 pour tout t € I et A1(I) > 0. Donc h(x) > 0 pour x > 0.

3) On a vu que pour tout x > 0, t — f(t, x) est borélienne. D’autre part, par compo-
sition de fonctions usuelles, pour tout t € I, x — f(¢,x) est continue (en fait C®).

Vérifions maintenant la domination. Pour cela il est ici nécessaire de se restreindre a
un sous intervalle de I. Soit a > 0.

Pour x € [0, a], en utilisant (1), nous avons

1
£(6,2)] < axj011(0) + 00 (1)

Cette derniére fonction est intégrable sur I pour les raisons données en 1).

Remarque : On aurait pu aussi majorer pour tout x € [0,a], |f(¢,x)| = f(t x) par
f(t,a) pour tout t > 0 (x — f(t,x) est croissante sur R™, Vt > 0) avec f(.,a) Lebesgue
intégrable sur I d’apres 1).

Les propriétés pour appliquer le théoreme de continuité des intégrales a parametres
sont vérifiées pour x € [0,a], pour tout a > 0. Donc h est continue sur [0, a], pour tout
a >0, donc x — h(x) est continue sur [0, oo|.

4) On a vu que pour tout x > 0, t — f(t,x) est intégrable. De plus pour t € I,
x — f(t,x) est @ comme composée de fonctions usuelles, et

Soit b > 0. On a pour tout x €]b, 0],
fltx)| <e ™, Viel

Cette derniére fonction est intégrable sur I. On a donc vérifié les conditions du théoreme
de dérivation des intégrales a parametres pour x €]b, co[, pour tout b > 0. On a donc que
h est C! sur ]0, o] et

W (x) :/ e dt,
0
3



\%

Par changement de variable u = /xt, on a I'(x fo —u? 1 du = 5. Cette derniere

2
fonction a pour primitive v/711/x + ¢ pour une constante ¢ € IR Par 1),
[0,00[ et 1(0) = 0, donc ¢ = 0 et h(x) = /7ty/x, pour tout x > 0.

2
5) On vérifie I'identité donnée : [ e ds = [—tlze_Stz]s 2= 3;2 1 — f(t,x). Soit
g(t,s) = e, On remarque que g est positive et borélienne (car continue) sur Ix]0, x|.
On peut appliquer le théoreme de Tonelli a g(¢,s) et

/If(t,x)dt: /1 (/]O,x[g(t,s)ds) dt — /]le[ </IeSt2ds> it — /0 2—\/\/E§dt: NeN

la troisieme égalité venant du calcul fait en 4) avec x remplacé par s.

=3

est continue sur

R

Exercice 4 Soit D C R? I'ouvert donné par D = {(x,y) € R?>, 0 < x <y, xy > 1}.
1. Montrer que l'application ¢ définie par
X
p(x,y) = (xy, 9),
est un C! difféomorphisme de D sur un ouvert V de R? que 1’on explicitera.

2. A laide de ce changement de variables, calculer
/X3/2y1/28.\';/dxdy.
JD

Corrigé. 1) Soit V =]|1,00[x]0,1[. On remarque que ¢ est a valeurs dans V car xy > 1 et
0 < x <ydonc0 < x/y < 1. Montrons que ¢ est bijective de D dans V. Si (x,y) € D
et ¢(x,y) = (u,0) alors x> = uv et y> = u/v, donc comme x > Oety > 0onax = \/uv
et y = Vu/v. Donc ¢ est injective. D’autre part, si (u,v) € V, posons /uv = x et
Vu/v =y.On a nécessairement (x,y) € D carx,y > 0etx/y =v €]0,1[donc0 < x <y
et xy = u > 1. De plus ¢(x,y) = (1,v). Donc ¢ est bijective de D sur V et son inverse est

o H(u,v) = (Vuv, Vu/v).
La fonction ¢ est de plus ! comme composition de fonctions usuelles et on peut
calculer son déterminant Jacobien

991 991
2y y X 2x
Jo(x,y) = det (a<p2 aé@) (x,y) = det (1 _L> =——
ox oy y y?
Donc |J(x,y)| > 0 pour tout (x,y) € D et ¢ est un €' difféomorphisme par résultat du
cours (on peut aussi vérifier directement que ¢! est C1).
Remarque : On a aussi que ¢! est un €! difféomorphisme de V dans D et pour tout
— 1 = _1
(,0) €V, Jp1(u,v) = (o) — 2

2) On veut appliquer le théoreme de changement de variable :

1ere facon :
On fait apparaitre le Jacobien dans la formule. On écrit donc

_ 12x _ _
/2y e = B2y e = Ly [ e = go gl )

4



avec g(u,v) = 3 \f e *. On peut donc appliquer le théoréme du changement de variable
a ¢ sous la forme

1 u

J 22 e iy = [ g0 g(ey)l ol y)ldvdy = [ s(uo)dudo = | 5 T dud.

2eéme facon :
D’apres le Théoreme de changement de variables appliqué a f : (x,y) +— x%y%e_"y
continue sur l'ouvert D donc borélienne (f > 0 sur D et borélienne, elle admet donc une
intégrale par rapport a A, sur D), on a

/fxydxdy /f (u,0))[ Jp-1(u,v)| dudv
:/ \/ﬂ\/ﬁe*”—dudv
20

/ ——e_”dudv

On se ramene donc dans les 2 facons a fv %\/Lae_”dudv avec l'application (u,v) +—

%% e " positive et continue donc borélienne. Par suite (comme A est c— finie), on peut
appliquer Tonelli et on obtient

/V%%e”dudv—/ (/ —dv) du:/l ue “du.

Par IPP, on a finalement floo ue "du = [—ue "|P + fl e tdu = % On en conclut donc

2
3/2,1/2 ,—xy <
/Dx y e Vdxdy =~

b

Exercice 5 Dans cet exercice on appelle rectangle de IR?> un rectangle ouvert du type
R =]a, b[x]c,d| avec a, b, c,d des réels tels que a < b et c < d. On dit que R est semi-entier
si un de ses cOtés a une longueur entiere, c’est-a-dire que b —a € N oud —c € IN.
On dit qu'un rectangle R est pavé par une famille (ﬁnie) de rectangles Ry, .. R,l si les
R; sont deux a deux disjoints, si R; C R pour touti =1,...,n, etsi Ap(R\ (LW ;R;)) = 0.
On note f : R? — C la fonction définie par

f(x,y) _ e2i7r(x+}/).
1. Soit R un rectangle, caractériser la propriété "R est semi-entier" en fonction de la
valeur de [ f(x,y)dxdy.

2. En déduire qu'un rectangle qui peut étre pavé par une famille finie de rectangles
tous semi-entiers est un rectangle semi-entier.
Corrigé. 1) On remarque que sur tout rectangle R (qui est borélien car ouvert), f(x,y) est
continue donc borélienne et de plus |f(x,y)| = 1. Donc [ |f(x,y)|dxdy < A2(R) < co.
Donc f est intégrable sur tout rectangle R. On peut donc appliquer le théoréme de Fubini,
et pour R =la, b[x]c,d|

b d _. b _. d _.
/ f(x,y)dxdy = / </ ez’”(x+y)dy) dx = / e2imx (/ ezmydy> dx
R a c a c

2
— (L) (621'7'(19 _ eZirm)(ezmd _ 621'710)

2i7t
5



2imh

On a d’autre part que ¢ e’ = (0 ssi b —a € Z et idem pour l'autre terme. On en

déduit donc que
(R est semi-entier) < (b —a ou d — c est entier) < (/ f(x,y)dxdy = O) :
R
2) Si R est pavé par une famille des rectangles semi-entiers Ry, - - - , R;;, on peut décom-

poser R en R = (U"_;R;) U (R\ U”R;), 'union étant disjointe (chacun des ensembles
est borélien car R et les R; sont ouverts). Par la relation de Chasles du cours, on a

S b B S

Comme A, (R\ L' ,R;) = 0, on a (cf cours) fR\u’LlRif = 0. De plus par i), [ f = 0.

Donc [, f = 0. Par la réciproque de i) cela implique que R est semi-entier.
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Rappel et notations.

— Si X est un ensemble, on note P(X) 'ensemble des parties de X. Si A C X est une partie
de X on note x4 : X — {0,1} la fonction indicatrice de A donnée par x a(x) = 1 si
xe€Aet xa(x) =0six ¢ A

— On notera A(dx) ou simplement dx pour désigner la mesure de Lebesque sur R. On
notera aussi Ay (dx,dy) ou simplement dxdy pour désigner la mesure de Lebesgue sur
R?.

— La rigueur dans la justification des arguments et la qualité de la présentation de la copie
seront prises en compte dans la notation.

Partie I : questions de cours et d’application du cours

1. Enoncer le théoreme de convergence dominée.

Application : calculer
lim 0 nsin(;c/n)
n—oo Jq X

dx.

A NN

2. Soit X un ensemble et soit A C P(X) un ensemble de parties de X. Donner la
définition de la notion de « tribu engendrée par A ».

Application : soit X = R et soit
A ={B CR, tel que B est au plus dénombrable}.

(a) Est-ce que A est une tribu? Justifier la réponse.
(b) Déterminer la tribu engendrée par A (en justifiant la réponse bien sfir).

AN A 4K



Partie 1II : exercices

. Soit (X, T, u) un espace mesuré et f : X — [0, c0] une fonction mesurable, positive
et intégrable sur X. On souhaite démontrer le résultats suivant : pour tout ¢ > 0, il
existe 6 > 0 tel que

(S8

(AT, u(A) <d)= /Afdy <e.

(a) Montrer que le résultat est vrai si f est bornée, c’est-a-dire s'il existe M > 0 tel
que f(x) < M pour tout x € X.

(b) On suppose maintenant que f est positive intégrable. Etant donné M € [0, 0],
onnote Ay = {x € X, f(x) < M} et (Ap)° son complémentaire. Montrer, en
utilisant la convergence dominée, que

li du = 0.
Mgnoo (AM)Cf K

(c) Soit e > 0. Utiliser a) et b) pour démontrer le résultat pour toute fonction
f positive intégrable. (Indication : On pourra considérer f(x) = f(x)xa,,(x)
pour un réel M choisi en fonction de ¢.)

AN NN

4. Dans cet exercice, on pourra utiliser sans démonstration que fooo e dx = VT/2.
Pour tout réel z > 0, on définit

oo 1
K =/ e (tz/) gy,
(Z) 0 \/¥e

(a) Monter que l'intégrale K(z) est bien définie pour tout z > 0. Montrer que la
fonction K est continue sur [0, co[. Calculez K(0).

(b) Montrer que la fonction K est €' sur ]0, co[. Pour tout z > 0, exprimer K'(z) sous
forme d’une intégrale et trouver une relation entre K'(z) et K(z) (Indication : on
pensera a faire un changement de variable qui laisse I'expression t + z /t invariante).

(c) Montrer que pour tout z > 0, K(z) = /e 2VZ,

A AN

5. Soit D C R?, donné par D = {(x,y) € R?, 0 < x < y}. On considere l'intégrale I

donnée par
I :/ (E) e () dxdy.
D \Y

En faisant un changement de variables en coordonnées polaires, calculer la valeur
de l'intégrale I. (Indication : attention au domaine d’intégration obtenu en coordonnées
polaires, qu’il faut expliciter clairement dans votre copie).
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Dans les exercices, on pensera a considérer séparément, si nécessaire, lescas 1 < p < coetp = oc.

Exercice # 1. Soit « € R. Pourn € N, soit a,, = m Soit 1 < p < oo. Pour quelles valeurs de «
n (07

avons-nous (ay, ),>o € ¢7?

Exercice # 2. Nous travaillons dans un espace mesuré (X, .7, u1). Soient 1 < p,r < o0. Si f,, — f dans
ZLPet f, — gdans .Z", quelle est la relation entre fetg?

Exercice # 3. Nous travaillons dans (R", ZBgn, v,).
@ Sif,fi:R™— R, rappelerle sens de la notation f ~ f.
(b) Soient f, f1, 9,91 : R™ — R boréliennes telles que f ~ fi et g ~ g;. Soientx € R™ et

hohi :R" = R, h(y) = f(z —y)9(y), h(y) = filr —y)g1(y), Vy € R,

Montrer que h ~ h; etendéduire que f * g(x) = f1 * g1(x) au sens du théoréme du changement de
variables.

Exercice # 4. Nous travaillons dans (R, %g, 11 ). Soient: (i) 1 < p < oo;(ii) f € ZP(R);({ii) g(z) = e~ 2],
vV x € R. Montrer que :

@ [ 1f@leFde < (1= 1/ 1),
R

®) 1f + 91, < 151, + (15"

@ 17 +gl, < 1],

Exercice # 5. Nous travaillons dans un espace mesuré (X, .7, uu). Soit 1 < p < oo. Montrer que .£? est

un espace vectoriel. La démonstration ne doit pas utiliser I'inégalité de Minkowski (dont la preuve repose
sur le résultat demandé).
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Dans les exercices, on pensera a considérer séparément, si nécessaire,lescas 1 < p < coetp = oc.

Exercice # 1. (3 p.) Soit &« € R. Pourn € N, soit a,, = —~.8o0it 1 < p < co. Pour quelles valeurs de

1
(n+1)

« avons-nous (ay, )n>o € 0P?

. . 1 e,
Solution. Sil < p < 00, (ay)n>0 € F <— W < 00 <= « > —,laderniére équivalence
> E o o »
n>0

découlant du critére de Riemann.

Si (Gn)n>o € £ <— !
1p = o0, (Gp)n sup ——
P = w20 (n+ 1)

bornée, car ses termes sont compris entre O et 1. Si v < 0, elle n’est pas bornée, car sa limite est 00.) [

<00 <= a>0.(Sia > 0,lasuite (a,),>0 est

Exercice # 2. (3 p.) Nous travaillons dans un espace mesuré (X, .7, u).Soient 1 < p,r < 00.Si f,, — f
dans Z? et f,, — gdans ", quelle est la relation entre f et g?

Solution. Comme f,, — f dans_Z7,il existe une sous-suite ( f,,, ) et un ensemble négligeable A € 7 tels
que fn,(z) = f(z),Vz ¢ A.Comme f,, — gdans.Z",il existe une sous-suite (f,,, ) et un ensemble
négligeable B € J telsque f,, (z) — g(v),Vx ¢ B.Onobtientque f,, (z) — f(z)et fo, (¥) = g(2),
Vedg AUB,dou f(z) = g(z),Vo & AUB,dou f = gp.p. O

Exercice # 3. (4 p.) Nous travaillons dans (R", Zgn, v, ).
(@ Sif, fi:R™ — R,rappelerle sens de la notation f ~ f;.
(b) Soient f, f1, 9,91 : R™ — R boréliennes telles que f ~ f; et g ~ g1.Soientx € R™ et

hohi :R" = R, h(y) = f(z —y)9(y), h(y) = filr —y)g1(y), Vy € R,

Montrer que h ~ h; et en déduire que f * g(z) = f1 * g1(x) au sens du théoréme du changement
de variables.

Solution. a) f = fi A,-p. p. (ouv,-p. p. s'il s’agit de fonctions boréliennes).
b) Soient A, B € g~ négligeables tels que f(z) = fi(z)sixz ¢ A, respectivement g(x) = g;(x) si
x ¢ B.

Nous avons h(y) = hi(y)siz —y & Aety ¢ B,doncsiy ¢ (r — A) U B. La mesure de Lebesgue
étant invariante par isométries (affines), nous avons v, (z — A) = v,(A) = 0,etdonc h = hy v,-p. p.

Il s’ensuit que /

f*g(x) = fi * g1(x) au méme sens. O

h(y)dy = / hi(y) dy au sens du théoréme du changement de variables, d’ott
R™

n

Exercice # 4. (6 p.) Nous travaillons dans (R, Zg, ;). Soient : (i) 1 < p < oo; (i) f € ZLP(R); (iii)
g(x) = el ¥ € R. Montrer que :

@ / F@)le ! de < (1— 1/p) V2| £

® 1f +al, < If1,+ 1/p)"7.
© [f*gl, <111,



Solution. Sil < g < 0o, nous avons

o0 0
1 1 1
g|q:/62q|x|d1’:/ equdx—i-/ Ay = — + — =~
lgll : i N TR

dott [lgll, = (1/g)"/9.
Si ¢ = 00, g étant continue sur R, nous avons ||¢|| , = supg |g(x)| = g(0) = 1.
Ainsi, avec la convention 0° = 1, nous avons

lgll, = (1/@)"/%, V1 < ¢ < o0. (1)

(a) suitde (1) avec g le conjugué de p (de sorteque 1/q = 1—1/p) etl'inégalité de Holder; (b) suitde (1)
avec ¢ = p et 'inégalité de Minkowski; (c) suit de (1) avec ¢ = 1 et 'inégalité de Young (avecr = p). [

Exercice # 5. (4 p.) Nous travaillons dans un espace mesuré (X, .7, u). Soit 1 < p < co.Montrer que .£7
est un espace vectoriel. La démonstration ne doit pas utiliser I'inégalité de Minkowski (dont la preuve
repose sur le résultat demandé).

Solution. Si f est mesurable et A € R (ou ©), alors clairement [|Af||, = [A|[|f]|,. En particulier, f €
P = \f € ZLP.

Sip = 1, linégalité triangulaire |f + g| < |f| + |g| montre que, si f, g sont mesurables, alors
/]f + 9] < /(|f\ + lg|) = /!f| - / |g|. En particulier, si f, g € £, alors la derniére somme est

finie, et donc f + g € £

Sil < p < oo,lafonction R > ¢t — ®(t) = || est convexe. (En effet, sa dérivée est P'(t) =
p|t|P~1 sgnt, qui est croissante.) L'inégalité de Jensen donne ®((f + ¢)/2) < (®(f) + ®(g))/2, dow, si
f, g sont mesurables,

5 [1r+ar = [ow+am < [@u+ewyz=3 [1r+3 [l

En particulier, si f, g € £?, alors la derniére somme est finie, et donc f + g € ZP. ]
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Exercice # 1. Soit H un espace de Hilbert réel, séparable, de dimension infinie et de base hilbertienne
(€n)n>1. Montrer I'égalité de Parseval

a2 = 3 (o, en)?, Va € H.

n>1

Exercice # 2. Soit H un espace de Hilbert réel. Soit /' une partie non-vide de H. Montrer que :
a) F* estun sous-espace fermé de H.
b) Vect (F) = F*.
Q) (FL)L =Vect (F).

Exercice # 3. Soit

2 0 — R, 90((Q7L)n20> = Z

n>0

An

nt 1, V(an)nzo & 52.

Montrer que la série définissant ¢ ((a,),>0) est convergente, et que ¢ est une application linéaire et
continue sur /2.
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Exercice #1. (4 p.) Soit H unespace de Hilbert réel, séparable, de dimension infinie et de base hilbertienne
(€n)n>1. Montrer I'égalité de Parseval

lz]> = (x,en)* Va € H.

n>1

Solution. Par définition d’une base hilbertienne, la suite (e,,),>; est orthonormée et, pour tout x € H,
nous avons

T = Z(:p, en)en, = lim (x, en)en. o))}

n>1 1<n<N

Par ailleurs, la famille (e, )1 <, < étant orthonormée, le théoréme de Pythagore donne

Z An€n,

1<n<N

2

— Z (A3 VAL ..., Av €R. 2)

1<n<N

En utilisant (1), la continuité de H > = — ||z, et (2), nous obtenons

2 2

|z||* =|| lim E (x,en)en|| = lim E (x,en)en|| = lim E (z,e,)?
—00 N—o00 N—o00
1<n<N 1<n<N 1<n<N O
= <1‘,6n>2

Exercice # 2. Soit H un espace de Hilbert réel. Soit " une partie non-vide de H. Montrer que :
a) (4p.) F+ estun sous-espace fermé de H.
b) Gp)Vect (F) = F=.
0) @p) (F)* = Vect (F).

Solution. a) Soient z;, 7, € F* et A € R. Par linéarité du produit scalaire par rapport a sa premiére
variable, nous avons

<$1 + A$27y> = <$1,y> + )\<$2,y> =0, ‘v’y € F,

dottz; + Axy € F* et F- est un sous-espace vectoriel de H.

Par ailleurs, soient (z,) C F*etx € H tels que v, — x. En utilisant la continuité du produit
scalaire par rapport a sa premiére variable, nous avons

(x,y) = (limx,,y) = lim(x,,y) =0, Vy € F.

Il s’ensuit que v € F*, et donc F'* est fermé.
b) Clairement, si) # A C B C H, alors B- C A™'. En utilisant cette observation avec A = F et

B = Vect (F'), nous obtenons Vect (F)+ C F*.



Pour l'inclusion opposée, soit z € F*. Montrons dans un premier temps que x € [Vect (F)]*. En
effet, siy € Vect (F), il existe : un entier N, des scalaires A1, ..., Ay € Retdesvecteursy,,...,yy € F
tels quey = > .., «n An¥Un. Lalinéarité du produit scalaire par rapport a sa deuxiéme variable donne

(z,y) = (=, Z Ann) = Z A, yn) = 0.

1<n<N 1<n<N

Il s'ensuit que z € Vect (F)*.

Montrons maintenant que € Vect (F)*. Siy € Vect (F), il existe une suite (y,,),>1 C Vect (F)
telle que v, — y. La continuité du produit scalaire par rapport a sa deuxiéme variable et le fait que
x € [Vect (F')]* donnent

(x,y) = (x,limy,) = lim(z,y,) =0,

d’ott la conclusion.

c) Nous utilisons le fait que, si G C H est un sous-espace vectoriel fermé de H, alors (G+)* = G. Rap-
pelons également que 'adhérence d’'un sous-espace vectoriel de H est encore un sous-espace vectoriel
de H. En appliquant cette égalité a G = Vect (F') et en utilisant la question b), nous obtenons

(FH)* = (Vect (F)*:)* = Vect (F). O
Exercice # 3. (5 p.) Soit
a,
(ol 52 — R, @((an)nzo) = Z - 1T’ Y (an>n20 S 62.

n>0

Montrer que la série définissant ¢((a,),>0) est convergente, et que  est une application linéaire et
continue sur /2.

Solution. Dans ce qui suit, nous identifions une suite (a,),>0 ala fonction f : N — R, f(n) = a,, Vn.

Rappelons que (> = Z?*(N, 2(N), 11), olt i1 est la mesure de comptage sur N. Avec l'identification
ci-dessus, nous avons (a,)n>o € * < f € ZL*(N, Z(N), ), et par ailleurs ||(a, ) n>oll . = || fls-

Le critére de Riemann montre que la suite (1/(n + 1)),,>0 appartient a (2. Soit g € Z*(N, (N), u)
la fonction associée a cette suite. Ainsi, la suite (a,/(n + 1)),>¢ s'identifie a la fonction fg.

Linégalité de Hoélder donne fg € Z1(N, 2(N), uu). En se rappelant le lien entre série et intégrale
pour les fonctions de £ (N, Z(N), p), et la définition du produit scalaire dans .#?, nous obtenons que
 est bien définie et

((an)ns0) = / fgdu={f.g). G

Lidentité (3), lalinéarité de I'identification (ay,),>0 — f etlalinéarité du produit scalaire par rapport
a sa premiere variable impliquent la linéarité de ¢.
Par ailleurs, I'inégalité de Cauchy-Schwarz donne

[o((@n)nz0)| = [{f; )] < [IFll2llgll = llgllz ]l (@n)nzoll 2 “)

d’ott la continuité de ¢ comme application linéaire sur /2.

(De maniere alternative, a partir de la preuve de la validité de (3), on peut invoquer le théoréme de
Riesz, qui affirme que toute fonctionnelle de la forme (3) est linéaire et continue.) O
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Exercice # 1. Soit 1 < p < o0. Soit

o((an)n>0) = Z

n>0

An
n+1

@

a) Sil <p < ooet(a,)n>o € P, montrer que la série qui apparait dans (1) est convergente.
b) Sil < p < oo, montrer que ¢ est une application linéaire et continue sur /7.

c) Lesrésultats précédents restent-ils vrais sip = 0o0?

Exercice # 2. Nous travaillons dans I =]0, oo[ avec la tribu borélienne et la mesure de Lebesgue. Soit
1 < p < o0.Soit f € £P(I). Soit

F(z) = /Ow f(t)dt, Vx> 0.

a) Montrer que F est bien définie.
Nous admettons par la suite que F est continue.

. -1 . e ) ..
b) Soita := P Enutilisant l'inégalité de Holder, trouver des constantes explicites C' < coeta € R

2

telles que
x 1/p
|F(z)| < Cx® (/ tPIf(t) P dt) , Vo > 0. 2)
0
c) En déduire l'inégalité de Hardy

oo|F(x)|p . (L)p 00 AP da
/O Pk /O|f<)|d. 3

Exercice # 3. Nous travaillons dans R avec la tribu borélienne et la mesure de Lebesgue. Soit 1 < p < cc.
Soit f € ZP(R). Soit

_ fy) .
F(x) '_/Rl+(:v—y)2dy’v eR.

Montrer que F est bien définie (en tout point x € R) et bornée.

Exercice # 4. Soit H un espace de Hilbert réel, de norme || || et de produit scalaire (, ). Soita € H tel que
la|]| = 1. Soit C' :={z € H; (x,a) < 0}.

a) Montrer que C' est un ensemble convexe, fermé et non-vide.
b) Siz € H\ C, montrer que pc(z) = x — (z,a)a.

Exercice # 5. Soit f : [0, 27] — C une fonction de classe C" telle que f(0) = f(2m).
a) Sin € Z\ {0}, calculer ¢,,(f) en fonction de ¢, (f').



b) En utilisant 'égalité de Parseval pour f’, en déduire que

o0

Z n?len(f)? < oo. (4)

¢) Endéduire que

D fealf)] < 0. )

n=—oo

d) En déduire que la série Z ¢n(f)en converge normalement sur [0, 27] vers f. (Ici, e,(z) := €"*,

n=—oo

Vael0,2n],Vn € Z.)
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Exercice # 1. (4 p.) Soit 1 < p < 0. Soit

@((@n)nzo) = Z

n>0

ap,
n+1

@

a) Sil <p < ooet(a,)n>o € P, montrer que la série qui apparait dans (1) est convergente.

b) Sil < p < oo, montrer que p est une application linéaire et continue sur 7.

c) Lesrésultats précédents restent-ils vrais sip = co?

Solution. a),b) Lidée sous-jacente estl'utilisation del'inégalité de Holder. Nous identifionsla suite (ay, ),>0

aune fonction f : N — R, etla suite (1/(n + 1)),,>0 2 une fonction g : N — R. Soit ¢ le conjugué de p.
Largument-clé consiste a montrer que

(1/(n+1))u>0 € £, ouencore |g||, < oo. )

Preuvede (2) si1 < p < oo. Dans ce cas, nous avons 1 < g < oco. Le critére de Riemann montre que la

. 1 .
serie ; m converge, d’ou (2).

Preuve de (2) sip = 1. Cette fois-ci, nous avons ¢ = 0o, et ||g||., = sup,>q|1/(n 4+ 1)] =1 < oo.

Findelapreuve. En utilisant : (i) I'inégalité de Holder /7 —¢7; (ii) le lien entre série et intégrale pour les séries
absolument convergentes; (iii) la définition de la norme || || ,» nous obtenons que la série de (1) converge,
et, de plus (avec i la mesure de comptage sur N),

fge L1 (N, p), (3)
n)n> - d
¢((an)n>0) /Nfg I 4
1/p
[p((an)nz0)l < gl IIf1, = llgll, (Z !an!") : )
n>0

De : (i) 3)-(5); (ii) la linéarité de 'intégrale des fonctions intégrables, on obtient que ¢ est linéaire et
continue, de norme < [|g|,.

. 1 ,
¢) Prenons a,, = 1,V n > 0. Alors (a,,),>0 € ¢°°, mais la série de (1) vaut Z ——— = 00. Les résultats

n20n+1

précédents ne sont donc plus valides sip = oo. O

Exercice # 2. (7 p.) Nous travaillons dans I =|0, co] avec la tribu borélienne et la mesure de Lebesgue.
Soit 1 < p < o0. Soit f € £P([). Soit

F(z):= /Oxf(t) dt, V> 0.

a) Montrer que F est bien définie.
Nous admettons par la suite que F est continue.



. -1 . e e, ; ..
b) Soita := P >—- En utilisant I'inégalité de Holder, trouver des constantes explicites C' < coeta € R
p
telles que

x 1/p
F(z)] < Ca® (/ 7| £ (1) dt) V>0, ©
0
c) Endéduire 'inégalité de Hardy

T 4y (2 [
| B () [ @ ™

Solution. a) La mesure de Lebesgue du borélien |0, x[ étant finie, nous avons

fe gp([) — f|]0,z[ S gp(]o, ZED — f\]o,x[ S 31(]0,$D — F({E) bien définie.

Par la suite, nous allons utiliser les deux identités suivantes :

A

xr
1
tdt = ——t"| = — " vb> -1, Va>0 8
- c 1 c+1OO 1 c+1
zfdr = T = —— 1", Ve< =1, Vt > 0. 9)
¢ c+1 ot c+1

b) Soit g = p/(p — 1) le conjugué de p. En utilisant : (i) I'inégalité de Holder; (ii) (8) avec b = —aq =
—1/p > —1, nous obtenons

x x 1/17 x 1/‘1
/Otf(t)t dt‘g(/g tpyf(t)\Pdt) (/Ot th)
= xt“p P dt v ! 1-1/p v (10)
= () erorar) ()
T 1/p
=C'r® ap P ’
. (/t 70 t)

1 1/q (p—1)/p 1\ 1 _12 2 1
() () () e
1-1/p p—1 p)aq p p D

¢) En utilisant : (i) (10); (ii) le théoreme de Tonelli; (iii) (9) avecc = ap — p = =2 + 1/p < —1;(iv) (1D,

[F(x)] =

avec

nous obtenons (ennotantquec+ 1 =ap—p+1=—-1+1/p)
| F p 0 T 0 0o
/ |F (=)l dz gcp/ a:“p—p/ t°P|f(t)|P dtdx = / tap|f(t)|p/ VP dadt
0 xP 0 0 0 ¢
=— Cp/ P f ()P ———t TPt = CP—/ PR £ ()P dt,
ey o L 7o)
qui est I'inégalité souhaitée car, en utilisant (11) et la définition de «, nous avons
p
1
C’pi:(i) etap—1+-=0. ]
p—1 p—1 p

Exercice # 3. (4 p.) Nous travaillons dans R avec la tribu borélienne et la mesure de Lebesgue. Soit 1 <
p < 0. Soit f € ZP(R). Soit

_ fy) .
F(x) '_/leL(x—y)Qdy’v eR.

Montrer que F est bien définie (en tout point = € R) et bornée.

2



1 )
5 Vx € R. Clairement, g est

. 71" . . 7’ N 1 + I’ \ . .
continue, donc borélienne. Les conclusions suivent alors du théoreme de Young, a condition de montrer

que

Solution. Nous reconnaissons la formule F' = f % g, ou g(z) =

g € ZR), avec g le conjugué de p. (12)

Preuve de (12) si1 < g < oo. Nous avons

/ lg(2)|%(z) dx < / lg(x)| dx = / g(x)dr = arctan x =7 < 00.
R R R r=—00
Preuve de (12) si ¢ = oo. Nous avons
l9llo < suplg(z)] =1 < oo. O
zeR

Exercice # 4. (4 p.) Soit H un espace de Hilbert réel, de norme | || et de produit scalaire ( , ). Soita € H
tel que [la]| = 1. Soit C' := {z € H; (x,a) < 0}.

a) Montrer que C' est un ensemble convexe, fermé et non-vide.
b) Sixz € H \ C, montrer que pc(z) = = — (x,a)a.

Solution. a)Clairement, 0 € C (douC estnon-vide), et C' est fermé comme image réciproque de | — o0, 0]
par la fonction continue x + (x, a). Par ailleurs, siz,y € C'ett € |0, 1], nous avons

(A=t)z+ty,a) = (1 —1t) {z,a) + I _{y,a) <0,
~——r :6/\\,./
>0 <0 = <0

dot (1 —t)x + ty € C et donc C convexe.

b) Soitz € H \ C (donc nous avons (x,a) > 0). Soity = = — (z,a)a. D'apres la caractérisation de la
projection sur un convexe fermé, nous devons montrer que y € C' et que

(x —y,z—y) <0,VzeC. (13)

Preuve dey € C'. Nous avons (y, a) = (x,a) — (z,a) (a,a) =0, dotla conclusion.
~——

2
=[a]"=1

Preuve de (13). Soit = € C'. Nous avons

<l’ —Y <= y) :<<l’, CL)CL, 2=+ <J], CL)CL)
= 3 5 - 9 + 9 ) = ) ’ S 0 D
(z,aa, 2) — (. ®) + (o, a) (a, ) = (2,0} (a, )
=1 >0 <0
Exercice # 5. (6 p.) Soit f : [0, 27] — C une fonction de classe C' telle que f(0) = f(27).
a) Sin € Z \ {0}, calculer ¢, (f) en fonction de ¢, (f').
b) En utilisant 'égalité de Parseval pour f’, en déduire que

o0

Z n?len(f)? < oo. (14)

n=—oo

¢) Endéduire que

Z len(f)] < oo. (15)

n=—0oo



mx

d) En déduire que la série Z cn(f)en converge normalement sur [0, 27] vers f. (Ici, e, (z) := €7,

n=—oo

Va e [0,27],Vn € Z)

Solution. a) Nous avons, en utilisant : (i) le caractére C'! de f; (i) une intégration par parties; (iii) 'hypo-

these f(0) = f(2n) :

2

1 [ 1 w=2n i
alf) =5 [ @ de = e @S 4 g [ e "o
=(f(2m) = £(0)) +mec(f) = men(f),
d’olt en particulier
() = —eu(f), Y € 2\ {0}, @)

b) En utilisant : (i) (16); (ii) légalité de Parseval pour ' € C([0,27]) C £*(|0, 27]), nous obtenons

S OF = S leal P = 5= [ 17 0P dt <o,

c¢) Nous avons, en utilisant : (i) l'inégalité de Cauchy-Schwarz; (ii) le critére de Riemann pour la série

1 .. .
Z — ; (iii) la question b),
n#0 n

Y lealDI =leol N+ Y lealH = leal )+ %n\cn(f)l

n#0 n#0
| 1/2 1/2
<leo(f)] + <Z n—) (Z n2lcn(f)|2> < 00.
n#0 n#0
<oo (I;igmann) <oo‘(ge b))

d) Nous avons ||c,,(f)en|l,, = |cn(f)]. En utilisant cette égalité et la question c), nous obtenons que la
série Z ¢n(f)en est normalement convergente (et donc en particulier simplement convergente) vers

une limite que nous notons h. Il reste a vérifier que, sur [0, 27|, nous avons h = f. Notons g le prolon-
gement par 2m-périodicité de f. Les hypotheses f € C'([0,27]) et f(0) = f(27) nous assurent que g
est de classe C'! par morceaux, et continue. En utilisant : (i) le fait que, si une suite de nombres com-
plexes converge vers une limite ¢, alors toute sous-suite converge vers /; (ii) le caractére continu et C'!
par morceaux de g; (iii) le théoreme de Dirichlet appliqué a g, nous obtenons, pour tout x € [0, 27] :

o) N

W)= 3 clfeats) = Jim 37 calfeals) = g(x) = f(2). a
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Exercice # 1. Nous travaillons dans / =]0, co| muni de la tribu borélienne et de la mesure de Lebesgue.
Soit a € R un parametre. Soit

f:0,00[—= R, f(x) = i&, vV €]0,00].

Soit 1 < p < co. Montrer que

fe (0,00 <= %<a<2+%.

On pourra utiliser les propriétés suivantes :

2

Ogl—cosxg%,Va:E]R, 0))]
i 1—cosa;_1 @)
250 x? 2

Exercice # 2. Soit (X, .7, i) un espace probabilisé. (Donc ;(X) = 1.) Montrer que, pour toute fonction
mesurable f : X — R, nous avons || f||; < || f]]s.

Exercice # 3. Nous travaillons dans R muni de la tribu borélienne et de la mesure de Lebesgue. Soit f €
Z1(R). Soit

ola) = [ Fla = p)sinG?)dy. Vo € R
R
Montrer que g est bien définie en tout point x € R, continue et bornée.
Exercice # 4. Nous travaillons dans un espace mesuré (X, 7, u). Soit
C = {f € I}(X); f > 0}.

1. Expliquerlesensde« f > 0».
2. Montrer que C' est convexe, fermé et non-vide.

3. Si f € L*(X), montrer que pc(f) = f..On expliquera le sens de cette égalité.

Exercice #5. Soient N € N,a; e C,—N < j < N, et

N
f(z) = Z a;e’” vV eR.
j=—N

Pour tout n € Z, calculer ¢, (f).
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Soit (X, .7, pu) un espace mesuré.
Exercice # 1.
1. Sif,g: X — R, rappeler la définitionde f ~ g.
2. Soient f1, f2,91,92: X — Rett € R.Si f; ~ fyet g, ~ g, montrer que f1 + tg; ~ fo + tgo.

Exercice # 2. Supposons /(X ) < oo.
1. Soient1 < p <r <ooetf: X — Rmesurable. Montrer que || f||, < u(X)Y?=1/"7|| f]],..
2. Endéduire que £> C ¥" C ¥ C L.

Exercice # 3. Rappelons que, pour toute suite (ay,),>0,

(ano |an|p)1/p’ sil<p< oo

SUP, >0 |@n, sip =00

)

[(@n)nzoll, = {

etque & := {(an)n>0; [[(@n)nol, < oo}

Montrer quesil < p < r < oo, alors /1 C P C (" C (.
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Exercice # 1. (3 p.) Nous travaillons dans un espace mesuré (X, .7, ). Soit 1 < p < co. Montrer que .£?
est un espace vectoriel. La démonstration ne doit pas utiliser 'inégalité de Minkowski (dont la preuve
repose sur le résultat demandé).

Exercice # 2. (7 p.) Nous travaillons dans R muni de la tribu borélienne et de la mesure de Lebesgue.
Soient f, g : R™ — [0, oo| deux fonctions boréliennes positives.

(@) Montrer que la fonction f * g est borélienne.
(b) Soitl < p < o0.Sif € LPetge £, montrerque f x g € L.
Exercice # 3. (7 p.) Soit f € C2°(]0, oo[; [0, 00]). Soit F'(x) = / f(t)dt,¥Yz > 0.Soit1l < p < 0.
0

Rappelons 'inégalité de Hardy

/0°° [Fixp)}p dr < <%)p/0°°[f(az)]pdw, 0

qui peut étre montrée par une intégration par parties.

En s’'inspirant éventuellement de la preuve de (1), montrer le résultat suivant (avec f, F' et p comme
ci-dessus). Soit o > 1. Alors

[ () [T
p-1 a-p

On pourra se servir de I'identité suivante : v — 1 = a—— +
p p

Exercice # 4. (4 p.) Nous travaillons dans R avec la tribu borélienne et la mesure de Lebesgue. Soit 1 <
p < oo.Soit f € ZP(R).Soitg : R — R, g(z) = e 1|, Vo € R. Montrer que f * g est continue.
On pourra utiliser un théoréme de cours ou un exercice de TD sur les produits de convolution, dont la
conclusion est la continuité de f * g.

Exercice # 5. (4 p.) Nous travaillons dans un espace probabilisé (X, .7, u). (Donc p(X) = 1.) Existe-t-il
une fonction mesurable f : X — R telle que :

@ [fll, =2et|fll, =1?
®) [If]l, = Let|fll, =12
(©) (Question plus difficile) | f[|, = 1, | f]l, = 2 et | f|l,, = 3?

On pourra utiliser librement les inégalités vues en TD concernant les normes | ||, dans un espace
probabilisé.



Université Claude Bernard Lyon 1 Licence de mathématiques 3¢ année
UE Eléments d’analyse fonctionnelle Année 2024-2025

Contrdle continu # 1
— Eléments de correction —

Exercice # 1. (3 p.) Nous travaillons dans un espace mesuré (X, .7, ). Soit 1 < p < co. Montrer que .£?
est un espace vectoriel. La démonstration ne doit pas utiliser I'inégalité de Minkowski (dont la preuve
repose sur le résultat demandé).

Solution. Soient f,g € £P et A € R. Par homogénéité de l'intégrale, nous avons A f|, = [A[[|f],, et
donc \f € £P.Ilreste amontrer que f + g € ZP.Soit ® : R — R, &(t) = |t[’, Vt € R. Alors ® est

1
convexe, et satisfait par conséquence I'inégalité de Jensen ®((s + t)/2)) < 5(@(3) + ®(t)), Vs, t € R.

1
Ceci implique |(f + g)/2]P < 5(]f|p + |g|P), etdonc | f + g|P < 2P7(|f|P + |g|P). Il sensuit que

Jursar <z (fiees [lar) <o

dou f + g € £P. O

Exercice # 2. (7 p.) Nous travaillons dans R" muni de la tribu borélienne et de la mesure de Lebesgue.
Soient f, g : R™ — [0, oo[ deux fonctions boréliennes positives.

(@) Montrer que la fonction f * g est borélienne.

(b) Soitl < p<o0.Sif € LPetge L, montrerque f x g € L.
Solution. (a) Les fonctions
R" X R" > (z,y) — f(z —y) et R" xR" 3 (z,y) — g(y)
sont boréliennes, comme composées de fonctions boréliennes. Il s’ensuit que la fonction

R" X R" 3 (z,y) = k(z,y) = f(x —y)g(y)
est borélienne, et par ailleurs positive.

Comme [ x g(x) = / k(x,y) dy, le théoréme de Tonelli (appliqué a la mesure de Lebesgue sur la

n

R v
tribu %g~) implique que f * g est borélienne.

(b) Fixons x € R™. Linégalité de Holder avec exposants petp/(p—1) appliquée aux fonctions boréliennes

R™ 3y flz—y)gy)]"? et R" 3y [g(y)]' 7

donne

reo < ([ we—wrawm) ([ owma)

£rg@P <lalt [ 17— w)Potw) v @

n

d’ou



Comme dans la partie (a), I'intégrale dans le membre de droite de (A) est une fonction borélienne de
x. En intégrant (A) par rapport a z, en utilisant le théoréme de Tonelli (pour la mesure de Lebesgue sur
la tribu Ag-), et en faisant le changement de variables affine z = y + z, z € R", nous obtenons

If *gll? :/Rn [f * g(a)]P do < [gllp ™" /R (/n[f(w —y)lPg(y) dy) dx

ol [ ([ e wrac)swar=tan [ ([ e i) ow

=||g||§"1||f\|§/R g9(y) dy = |gIf|If} < oo,
dott f + g € L7 O

Exercice # 3. (7 p.) Soit f € C2°(]0, oo[; [0, 00]). Soit F'(x) = / f(t)dt,Vax > 0.Soitl < p < occ.
0
Rappelons 'inégalité de Hardy

/Ow [Fixp)}p dz < (]%)p/ooo[f(x)]pd% 0

qui peut étre montrée par une intégration par parties.

En s’'inspirant éventuellement de la preuve de (1), montrer le résultat suivant (avec f, F' et p comme
ci-dessus). Soit o > 1. Alors

/OOO [Fﬁ)}p dz < (afl)p/:o [{(ﬁ)jp da.
p—1 a—p

On pourra se servir de I'identité suivante : o« — 1 = a—— +
p p

Solution. Soient(0 < a < b < ootels que f(xz) = 0siz ¢]a,b[. Nous avons F'(z) = 0siz < a. Par
ailleurs, nous avons [F?|' = pFP~1f.

Soit M > b. Enutilisant : (i) une intégration par parties; (ii) ce qui précéde; (iii) l'identité de I'énoncé;
(iv) 'inégalité de Holder avec exposants pet p/(p—1) (appliquée aux fonctions continues z + f(z)/x(@~P)/P
et v+ [F(z)]P~! /x*?~1/P) nous obtenons

/OM s I/aM Eol - 1o /GM[F@:)]P (Ial_1>/dx
__ ! {[F(:vﬂpr:M P /QM [F(x)]p—i f@)

a—11| go! o~

L [FP  p (ME@)P ()
S a—1 Mot +oz—1/a -1

Iy GV PP Sy o TSN LCs

“a—1 e a—1 ree=1)/p p(a=p)/p

([ e ([ et
() ) ([ )

r=a

dx

<
d’ou
M P p [e%e) p
0 x a—1 0 xoTP
En faisant M — oo dans (B), nous obtenons I'inégalité demandée. O

2



Exercice # 4. (4 p.) Nous travaillons dans R avec la tribu borélienne et la mesure de Lebesgue. Soit 1 <
p < oo.Soit f € ZP(R).Soitg : R — R, g(z) := e 1|, Vo € R. Montrer que f * g est continue.
On pourra utiliser un théoréme de cours ou un exercice de TD sur les produits de convolution, dont la
conclusion est la continuité de f * g.

Solution. Soit q le conjugué de p. Sig € £, alors f * g est continue. Il suffit donc de vérifier que, pour
tout 1 < g < 0o, nous avons g € .Z7. Notons que g est borélienne.

Nous avons |g| < 1, d’ott |g|| ., <1 < oo, etdoncg € L.

Sil < ¢ < oo, nous avons

e 2
||g||g = / el dg = 2/ e " dr = - < oo,
R 0 q

etdonc g € Z1. O

Exercice # 5. (4 p.) Nous travaillons dans un espace probabilisé (X, .7, u). (Donc p(X) = 1.) Existe-t-il
une fonction mesurable f : X — R telle que :

@ [[fll, = 2et|fll, =12
®) [IFll, = Te|lfll, =12
(¢) (Question plus difficile) || f||, = 1, || fll, = 2et | f|., = 3?
On pourra utiliser librement les inégalités vues en TD concernant les normes | ||, dans un espace

probabilisé.

Solution. (a) Non, car dans un espace probabilisé nous avons | f||, < [[f[|, si1 < p < r < oo, eten
particulier | /], < | /],

b)Ooui: f=1.
(c) Nous avons | f| < | fll, p- p- et donc

||f||§=/|f| /] < Hf||oo/!f| = [ Flloo 1 £1ly-

Cette inégalité m'étant pas satisfaite par les valeurs de 'énoncé, la réponse est négative. O
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Contrdle en TD # 2
Le 28 mars 2025 — durée 30 minutes

Soit H un espace de Hilbert réel, muni d’un produit scalaire noté (-, -) et de la norme induite par le
produit scalaire, notée ||| .

1. Soit (e;);>1 C H une suite orthonormée. Soit (a;);>1 C R. Montrer 'équivalence :

2
E a;e; converge <— E aj < +00.
j=1 j=1

2. Montrer que pour, toutz € H,
]l = max {{z, y);y € H, [yl < 1}.

3. Déterminer la projection orthogonale sur la boule unité fermée de H.
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UE Eléments d’analyse fonctionnelle

Contrdle continu # 2
Le 4 avril 2025 — durée 60 minutes
Le baréme est donné a titre indicatif

Exercice # 1. (4 p.) Soient H un espace de Hilbert réel et I une partie non-vide de . Montrer que F'*+ =
Vect(F )L.
Exercice # 2. (7 p.) Nous travaillons dans R" (avec n > 2), muni de la norme euclidienne usuelle

n 1/2
Iz, = (Z(%V) Vo= (21,...,2,) ER™

i=1
Soit
C={x=(21,...,2,) € R"; z,, <0}

a) Montrer que C' est convexe, fermé, non-vide.

b) Dessiner C'sin = 2.
0 Sin=2etx € R?\ C, trouver graphiquement pc ().

d) Montrer que, pour n > 2 arbitraire,

po(z) = (z1,...,2,-1,0), Vo = (21,...,T4_1,2,) € R"\ C.

Exercice # 3. (8 p.) Nous travaillons dans |0, co[ muni de la tribu borélienne et de la mesure de Lebesgue.
Soit
o: L? >R, o(f) = / e 2 f(x)dx, ¥V f € L2
0

a) Montrer que  est linéaire et continue, et calculer sa norme.
b) Soit F' := Ker(y). Montrer que F est un sous-espace vectoriel fermé de L2.
¢) Trouver F*.
d) Sif e L?, déterminer g == pr(f).
Exercice # 4. (2 p.) Soit H un espace de Hilbert réel séparable, de dimension infinie et de base hilbertienne
(€n)n>1- La série

1
E Ten
n>1 n
est-elle convergente ? Pour justifier la réponse, on pourra utiliser sans preuve un résultat de cours ou TD

concernant les séries E Ap€n.
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Controle continu # 2
— Eléments de correction —

Exercice # 1. (4 p.) Soient H un espace de Hilbert réel et " une partie non-vide de . Montrer que F'+ =
—_—
Vect(F) .

Solution. 1l est immédiat que, si A C B C H, alors Bt C At. Comme F' C Vect(F) C Vect(F), il
s’ensuit que

Vect(F) " C [Vect(F)]* ¢ FL. )

Montrons que les inclusions inverses dans (1) sont encore vraies, ce qui permettra de conclure.
Etapel. F+ C [Vect(F)]*. Soitz € F*. Soity € Vect(F). Soientn € N*, \,....\, €R, f1,..., [n €
Ftelsquey = 37 | \;f;. Parlinéarité du produit scalaire et le fait que (z, f;) = 0,V j (carx € Ftet
fj € F), nous avons

(w,9) = 3 gl fi) = 0.

y € Vect(F) étant arbitraire, il s'ensuit que z € [Vect(F)]*.

Etape 2. [Vect(F)]*+ C Vect(F)L. Soitz € [Vect(F)]*. Soity € Vect(F). Soit (y,) C Vect(F) telle

que y, — y. Par continuité du produit scalaire et le fait que (z,y,) = 0,Vn (car x € [Vect(F)]* et
yn, € Vect(F)), nous avons (x,y) = lim,, o (z, yn) = 0.
y € Vect(F') étant arbitraire, il s’ensuit que = € Vect(F)l. O

Exercice # 2. (7 p.) Nous travaillons dans R" (avec n > 2), muni de la norme euclidienne usuelle

n 1/2
lzll, = <Z($¢)2> Vo= (1,...,2,) ER™

i=1
Soit
C={z=(21,...,2,) € R"; 2, <0}
a) Montrer que C' est convexe, fermé, non-vide.
b) Dessiner C'sin = 2.

¢) Sin =2etx € R?\ C, trouver graphiquement pc ().

d) Montrer que, pour n > 2 arbitraire,
po(x) = (r1,...,2p-1,0), Vo = (21,...,Tp_1,2,) € R"\ C.

Solution. a)Lafonction f : R" — R, f(x) := x,, est continue. Comme C' = f~!(] — o0, 0]), C est fermé.
C'estnon-vide, car 0 € C. Enfin,siz,y € C'ett € [0, 1], nous avons

l—te+tyy=1-t)x =, + t x y, <0,
(A =tz +ty) =(1-1) Xy
>0 <0 20 <0



etdonc (1 — t)z + ty € C. Il s’ensuit que C' est convexe.

d) Soity = (z1,...,x,_1,0). Clairement, y € C'. Pour conclure, nous devons montrer que
(x—y,z—y) <0,VzeCl. 2)
Or,siz = (21,...,2,) € C,alors

(x—y,z—y)=  x, X z, <0,
>0,carxgC <0, carzeC

d’ot (2) et la conclusion. O

Exercice # 3. (7 p.) Nous travaillons dans |0, co[ muni de la tribu borélienne et de la mesure de Lebesgue.
Soit
o:L* >R, o(f) = / e f(x)dx, V f € L2
0
a) Montrer que ¢ est linéaire et continue, et calculer sa norme.
b) Soit F' := Ker(y). Montrer que F est un sous-espace vectoriel fermé de L?.
c) Trouver F*.
d) Sif e L?, déterminer g := pr(f).

Solution. a) Soit a :]0, co[— R, a(z) := e~%/2. Alors a est borélienne, et

/aQ(x)d:C:/ e fdr=1<o0.
0 0

En observant que ¢(f) = (f, a), nous obtenons, via la partie facile du théoréme de Riesz, que ¢ est
linéaire, continue, et de norme |al|, = 1.

b) F est sous-espace vectoriel de L?, comme noyau d’une application linéaire. Il est fermé, car F' =
© 1 ({0}) et p est continue.

c) Posons G = Vect({a}) = Vect({a}), la deuxiéme égalité se justifiant par le fait quun sous-espace
de dimension finie est fermé. Nous avons F' = {a}* et donc, du premier exercice, F' = G*. G étant un
sous-espace vectoriel fermé de H, nous avons F'+ = G+ = G, la deuxiéme égalité étant un résultat de
cours.

d) {a} étant une base orthonormée de G = F*, nous avons
pre(f) = palf) = {f,a)a=¢(f)a.
Ilsensuitque g = pr(f) = f —pro(f) = f — ¢(f) a. O

Exercice # 4. (2 p.) Soit H un espace de Hilbert réel séparable, de dimension infinie et de base hilbertienne
(€n)n>1. La série

1

est-elle convergente ? Pour justifier la réponse, on pourra utiliser sans preuve un résultat de cours ou TD
concernant les séries E .

Solution. D'apres un résultatvuenTD, si (e,),>1 C H est une suite orthonormée et (o, ),>1 C R, alors

Z a, e,converge < Z(an)2 < 0.

n>1 n>1

Dans notre cas, a, = 1/y/n, -, - (a,)® = 3, 1/n = oo, et donc la série ne converge pas. [
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Contrdle terminal
Le 16 mai 2025 — durée 90 minutes
Le baréme est donné a titre indicatif

Questions de cours. (4 p.)
a) Soit f : R — R une fonction 27-périodique. Indiquer une condition sur f, aussi faible que possible,
permettant de définir ¢, (f) et S,,(f)(z), quantités dont on rappellera la définition.
b) Soit f : R — R une fonction avec les trois propriétés suivantes : (i) f est continue; (ii) f est 27-
périodique; (iii) f admet, en tout point x € R, des dérivées latérales.

1. Montrer que f satisfait, en tout point z € R, le critére de Dini.
2. Quelle conséquence a ce fait sur le comportement de la suite (.S,,(f)(2))n>0?

Exercice # 1. (3 p.) Soit & > 1 un parametre. Soit f : R — R la fonction 27-périodique et paire définie
par

1

f(z) =< 1+ |nzl’
0, six =0

si0<ax <7

Montrer que f satisfait le critére de Dini en x = 0.

Exercice # 2. (1p.) Soit f : R — Rune fonction avec les trois propriétés suivantes : (i) f est 27r-périodique;
(ii) sur |0, 27|, f € £*1; (i) il existe deux constantes 0 < C' < coet 1 < a < oo telles que

e < - vn ez {0},

In|*’

Montrer quelasérie >~ ¢, (f)e™ converge uniformément.

Exercice # 3. (4 p.) Rappelons que, siz € R, 27 estla partie positive de x, définie par

L. )z, siz >0
© o]0, siz <0

Nous travaillons dans /% = ¢*(N). Soit
C = {(an)n>0 € *; a, >0, Vn >0}

a) Montrer que C est convexe, fermé, non-vide.

b) Six = (a,)n>0 € ¢, montrer que pc(x) =y, oty = ((an) ™ )n>o-

Exercice # 4. (3 p.) Nous travaillons dans R avec la tribu borélienne et la mesure de Lebesgue.

Rappelons que

/e_ax2 dr = \/E, Va>0.
R a

Soit f : R = R, f(x) =e /%, Vz € R.
a) Sans calculer explicitement f * f, montrer que f x f € ZP(R),V1 < p < 0.



b) Calculer explicitement f x f(z),Vz € R.
Exercice # 5. (3 p.) Soient 1 < p,q < oo deux exposants conjugués. Soit (X, .7, ) un espace mesuré.
Soient f € ZP(X)etg € ZX).
Nous rappelons 'inégalité de Young
aP q

ab§—+b—,‘v’a,b20, @
p q

quil n'est pas demandé de montrer.

a) Siflf|l, = 1et|gl, =1, montrer, en utilisant (1), avec a := | f(x)| et b := |g(z)|, l'inégalité de Holder

IFglly < U f1L gl 2)
b) Montrer (2) pour tout f et g (sans supposer | f||, = 1et|g[, = 1.

Exercice # 6. (6 p.) Nous travaillons dans I =]0, oo| avec la tribu borélienne et la mesure de Lebesgue.
Soient: (i) 1 < p < coetqle conjuguéde p; (i) 1 < o < oo; (i) f € C2°(]0, 00]; [0, 00[). Soient

Fla) = /:f(t) dt, Vx> 0,

et

_-Dp—-—a+l) p—a+l
8= - — .
p pq

a) En utilisant I'inégalité de Holder, trouver des constantes explicites 0 < C' < oo ety € R telles que
[F(z)]F < Cx” /Ox tPIF(O)]P dt, Vo > 0.
b) Endéduire I'inégalité
/deng/dex,
0 * o TP

avec 0 < D < oo une constante dont on donnera I'expression en fonction de p et «.
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Contrdle terminal
—Eléments de correction—

Questions de cours. (4 p.)
a) Soit f : R — R une fonction 27-périodique. Indiquer une condition sur f, aussi faible que possible,
permettant de définir ¢, (f) et S,.(f)(z), quantités dont on rappellera la définition.
b) Soit f : R — R une fonction avec les trois propriétés suivantes : (i) f est continue; (ii) f est 27-
périodique; (iii) f admet, en tout point x € R, des dérivées latérales.
1. Montrer que f satisfait, en tout point z € R, le critére de Dini.
2. Quelle conséquence a ce fait sur le comportement de la suite (S,,(f)(z))n>0?

Solution. 2) Si f € £*(]0, 2n[), alors nous pouvons définir c,,(f) et S, (f)(x), par les formules
2m n

cn(f) = % fly)e ™ dy,VneZ,etS,(f)(z) = Z cr(f)e*™ ¥n e N, Vo € R.

0 k=—n

b) 1. Prenons f(z+) := f(x). Nous avons, pour0 < y < m,
(@) = fle+y)l | |f(@) = flz—y)l
Y y '

Clairement, G est continue sur |0, 7]. Par ailleurs, salimite en O est | f'(z+)| + | f'(z—)|, qui est finie.
Il s’ensuit que G est bornée sur |0, 7|, donc intégrable sur |0, 7[. Le critére de Dini est donc satisfait.

2. D’apres le théoreme sur le critere de Dini, nous avons lim S, (f)(z) = flat) + f@) = f(zx). O

n—oo 2

|f(z£) — fx £y)| <yG(y), avec G(y) =

Exercice # 1. (3 p.) Soit & > 1 un parameétre. Soit f : R — R la fonction 27-périodique et paire définie
par
1
f(z) =< 1+ |nzl’
0, sir =20

si0<ax <7

Montrer que f satisfait le critére de Dini en x = 0.

Solution. En prenant f(0£) = 0, nous avons, pour0 < y < 7,

| f(0£) — F(0+y)| < yG(y), avec G(y) = m

. Comme a > 1, le critére de

G est continue, positive, et nous avons G(y) ~or H(y) = T gF
y |y

Bertrand donne fol/ *H (y)dy < oo. Le théoréme des équivalents montre que l'intégrale (de Lebesgue
ou généralisée) fol G(y) dy converge, et donc G € .£*(]0, 7[). Le critére de Dini est donc satisfait.  [J

Exercice # 2. (1p.) Soit f : R — Rune fonction avec les trois propriétés suivantes : (i) f est 27-périodique;
(i) sur |0, 27 [, f € £1; (iii) il existe deux constantes 0 < C' < coet 1 < a < oo telles que

ea(f) < <~ ¥n e 2\ {0},

[nje”

Montrer que lasérie Y >° ¢, (f)e™ converge uniformément.



Solution. Nous avons

o0

S lalNemle = 3 IS lalf +2Z_<oo

n=—oo n=—oo

la derniére inégalité découlant du critére de Riemann. Il s'ensuit que les série Y >~ _ ¢, (f)e™ est nor-
malement convergente, et en particulier uniformément convergente. O

Exercice # 3. (4 p.) Rappelons que, siz € R, x est la partie positive de x, définie par

ot x, sizx>0
0, siz<0’

Nous travaillons dans ¢/ = ¢*(N). Soit
C = {(an)n>0 € *; a, >0, Vn > 0}.

a) Montrer que C' est convexe, fermé, non-vide.

b) Six = (a,)n>0 € ¢, montrer que po(x) =y, oty = ((an) ™ )n>o-

Solution. a) Les applications ¢; : (> — R, ¢;((an)n>0) = a;, j > 0, sont linéaires et de norme < 1,
donc continues. Comme C' = N;>0(p;) ([0, o0[), C est fermé.

C' estnon-vide car 0 € C.

C'estconvexe : Six = (ap)n>0,2 = (bn)n>0 € Cet0 <t < 1,alors (1 —t)z +tz € C,car

(1—-t) an +_t b, >0,Vn>0.
—_—— N S~

>0 >0 20 >0

b) Soient z, y comme dans 'énoncé. Posons ¢, = (a,)". Comme |¢,| < |a,|, Vn > 0, nous avons
Y osolen)? <30 Solan)? etdoncx € (2 = y € (%, Parailleurs il est clair que, siz € (2, alorsy € C.
I reste 2 montrer linégalité (x — y,2 —y) < 0,V 2z = (by)n>0 € C. Or, comme (a, — c,)c, = 0,Vn,
nous avons

(x =y, 2z —y) =((an — cn)n>0, (bn — Ca)nz0) = Z(an — ¢n)(bn — cn)

n>0

——

Exercice # 4. (3 p.) Nous travaillons dans R avec la tribu borélienne et la mesure de Lebesgue.
Rappelons que

/(3‘“’32 dr = \/E, Va>0.
R a

Soit f : R — R, f(z) =e*/2,Vz R,
a) Sans calculer explicitement f * f, montrer que f x f € ZP(R),V1 < p < 0.
b) Calculer explicitement f x f(z),Vz € R.



Solution. a) D'aprés I'inégalité de Young, il suffit de montrer que f € Z1(R) et f € £P(R). Montrons
que f € Z'(R),V1 <t < o00.8it =00, cecidécoulede |f(z)|< 1,Vz € R.Sil <t < oo, ceci suit de

2
Il = [ e an = /2 < o
R t

b) Nous avons

= f(z) :/e—(m—y)2/2e—y2/2 dy = / R tay—a?/4,—x?/4 dy
R R .
:6_502/4/6_(34_2?/2)2 dy — e—x2/4/6—z2 dz = ﬁe_x2/4.
R R

c.v.y=z+x/2

Exercice # 5. (3 p.) Soient 1 < p,q < oo deux exposants conjugués. Soit (X, .7, ) un espace mesuré.
Soient f € £P(X)etg € L1X).
Nous rappelons l'inégalité de Young

P B
ab< L+ Ya,b>0, M
p o q

quil nest pas demandé de montrer.

a) Sif|f|, = 1et|lg|, =1, montrer, en utilisant (1) avec a := | f(x)| et b := |g(x)], linégalité de Holder
IFglly < U109l 2)

b) Montrer (2) pour tout f et g (sans supposer | f||, = Let|g[, = D.

Solution. a) Nous avons
1 1
U@NXWWNS?ﬂ@f+jﬂ@ﬁVx€X, 3)
et les deux membres de (3) sont mesurables et positifs. En intégrant par rapport a x, nous obtenons
1 1 1 1
p q __ — —
HMMS5WM+5MM—5+E—1—WMMM

b)Si|fll, = 0,alors f = 0p.p., dott fg = 0p.p., et linégalité 3 montrer est claire. De méme si

lgll, = 0. Il reste a étudier le cas ot || f[|,, > Oet |||, > 0. Soient I := ﬁf, G = mg, de sorte que
|F||, = Let|G], = 1. La question précédente donne
1
[ﬂﬂavUMMZHFQMSHFMWNqZL
d’ou (2). [

Exercice # 6. (6 p.) Nous travaillons dans I =]0, co| avec la tribu borélienne et la mesure de Lebesgue.
Soient: (i) 1 < p < coetqle conjuguéde p; (i) 1 < o < oo; (i) f € C2°(]0, 00]; [0, 00[). Soient

F(z) = /Um ft)dt, Vo >0,

et

_-Dp—-—a+l) p—a+l
B 2 - .
p pq




a) En utilisant I'inégalité de Holder, trouver des constantes explicites 0 < C' < co ety € R telles que

(F(2)]P < Ca / Pt Y > 0.

0

b) En déduire I'inégalité
o [F(x)]P 00 P
[T g, p [TUEP,
0 e o TP
avec 0 < D < oo une constante dont on donnera I'expression en fonction de p et a.

Solution. a) En utilisant d’abord l'inégalité de Holder, ensuite le fait que

_p—a—l—l_l a—1
p p

<1

Bq

(car o > 1) et en posant

— (p— _ :(p—l)(a—l):a_1
= tp- 101 - o) = 22N =

nous obtenons

Fla)P = [ / RO dtr < / "] dt ( / g dt)”/q
- [ o ( | dt)pl _ (1 jﬁq)’”ﬂ [ st
Mo

c

b) En divisant I'inégalité ci-dessus par 2, en intégrant, en utilisant le fait que les intégrandes sont conti-
nues et positives, en utilisant le théoréme de Tonelli et le fait que

-1 1 —1
fy—a—l—lza —(a—l)z(a—l)(——l)z—a <0,
q q p

nous obtenons

/0°° o, / ™ g / PP dt = © /0” sy [ e
___ ¢ [

— o / tﬁervfaH[f(t)}p dt.
—_——— 0

D

Nous obtenons I'inégalité de 'énoncé en notant que, de ce qui précede,

p L\ p (b=Dg\"! p \
D: = — [ — ,
a—1\1-[q a—1 a—1 a—1
p—a+tl a-1 (p-lpEp-a+l) a-1
q p p p

Bp+y—a+1l=
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Questions de cours. (2 p.)

a) Soit f : R — R une fonction 27-périodique. Indiquer une condition sur f, aussi faible que possible,
permettant de définir ¢, (f) et S, (f)(z), quantités dont on rappellera la définition.

b) Enoncer le critére de Dini pour une fonction f et un point z € R, en précisant toutes les hypothéses
faites sur f.

Exercice # 1. (2 p.) Soit (e,,),>1 une suite orthonormée dans un espace de Hilbert. Soit &« > 0 un para-

\ z . 7’ . 1
metre. Déterminer toutes les valeurs de « telles que la série E —e,, converge.
n
n>1

Exercice # 2. (4 p.) Nous travaillons dans ¢? = (?(N). Soit
C = {(an)n>0 € *; a, < 1,Vn >0}

a) Montrer que C est convexe, fermé, non-vide.

b) Six = (a,)n>0 € ¢, montrer que pc(x) = y, olty = (min(a,, 1)),>o-

Exercice # 3. (2 p.) Soit (X, .7, i) un espace mesuré. Soient f, g € .£*(X).
Nous rappelons I'inégalité de Cauchy-Schwarz

[ f9< 17kl o

quil n'est pas demandé de montrer.
En utilisant (1), montrer 'inégalité de Minkowski pour p = 2, a savoir

1F +glly < 1715 + Nlgll,- 2)

On pourra commencer par « mettre (2) au carré ».

Exercice # 4. (4 p.) Nous travaillons dans R avec la tribu borélienne et la mesure de Lebesgue.
Soit f : R = R, f(z) :=e ",Vz € R.

a) Sans calculer explicitement f * f, montrer que f x f € Z*(R).
b) Calculer explicitement f * f(x),Vz > 0.

Exercice # 5. (5 p.) Soit & € R un parameétre. Soit f : R — R la fonction 27-périodique et paire définie
par

x* si0<zx <7
T) = :
/(@) {0, sizx =0

Déterminer toutes les valeurs de « telles que le critere de Dini soit satisfait en x = 0. On fera parti-
culierement attention au cas ot v = 0.

Exercice # 6. (4 p.) Soit f : R — R une fonction avec les deux propriétés suivantes : (i) f est 27-
périodique; (ii) sur [0, 27], f € C'. Montrer que lasérie Y - ¢,(f)e™ converge uniformément.
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