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(a) Exercises for the November 17 session

Exercisel. Let N > 2andu € CY(RY \ {0}) be such that O,u € L} (RY). Prove that
u € L},.(RY) and that 9, u is the distributional derivative of u. What if N = 12

Exercise 2. Let wy be the area of S¥ 1. Let F be “the” fundamental solution of —A in RY,

B(z) = { 1/w2) Infel, N =2
| WIN = 2wn]) [N, N =3

1. Prove that, in the distributions sense,

1 T
0.F = g;, where g;(z) := —— —_
J gj g](z) Wy ’.Z"N

2. If1 <p < ooand f € LP(RY), then, in the distributions sense,
0;(f * E) = hj, where h;( / f(y) gj(z —y)dy.
Exercise3.Let K € Z'(RY) N L} (RY \ {0}). Let f € C>*(R") and set L := supp f. Then:

(K le) = [ FoK@=9)dy= [ )K=y, Vo g supp L ®

Exercise 4. Let (X, .7, ;1) be a measured space. (Warning: y is not supposed o-finite.) If f :
X — Rismeasurable and 1 < p < oo, then

1A= / (L] > 1)) dt

=Fy(t)

(b) Exercises for the November 24 session

Exercise 1. Let u € H}(f2) be an eigenfunction of —A. Prove thatu € C*(2).
In what follows, w is an open set in R,

Exercise 2. Let ® : w —  be a bi-Lipschitz C'*-diffeomorphism. Prove that, with constants
0 < Cyp < Cyy < oodependingonlyon 1 < p < oo and on @, we have

Cillf o @l oy < oy < Collf © @l (). ¥ measurable function f : @ — R.
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Slightly more difficult questions: (i) prove that the above constants depend only on p and on
the Lipschitz constants of ® and ®~!; (ii) prove that the above still holds under the weaker
assumption that & is a bi-Lipschitz homeomorphism.

Exercise 3. Let ® : w — Q be a C'-diffeomorphism. If f € W' (Q), prove that f o & €
W, (w) and that the chain rule holds, i.e.,

loc

N

0; (fo®) = Z[(ajf) o @] [9;®;]in Z'(w), V1 <i < N.

J=1

Exercise 4. Let d : w — Q be a C'-diffeomorphism. Let u € W' (Q) satisfy —Au = f €

loc
L}.(9Q) in the distributions sense. Set v := u o ® € W,>!(w). Then, in the distributions sense,

we have, in w,

—div (AVv) = g € Lj,(w), 2)
where

A= Az) =T [(JO) I [[(J) ']}, g =T | fo O.

Exercise 5. Set RY := {z € RY; xy > 0}. Letu € WH(RY). Let h € RV~ x {0}. Givea
meaning to and prove the equality tr u(- + h) = (tr u)(- + h).

Exercise 6. Let p, ¢ be conjugated exponents, g € LI(RY), w € W'P(RY), h € RN x {0}.
Then

/RN(Q(x +h) —g(x))w(z)dz| < [h||gll, [Vw],.

Exercise?. Let f € L] (RY). Then

limJ'?('Jrfej)—f

_ 9 fio (RN i N
i—0 ¢ 8me-@(R+)a ViI<j<N-1

Exercise 8. Let u € W (RY).

1. Let ¥ := RV~ x {0}, that we identify with RN~!. When ¢ € C2(RY), prove the gener-
alized (second) Green formula

/RN(—Au)SO = /RNl[tfz Onu] o — /RNl[trm u] Oy + /RNU(_ASO)_

2. If F: RY — R, set

F i
F*(x):F*(l.l”xN) — (LU), 1 :L‘N>O
_F(ajl,...,x]v_b—xN)a lfo <0

Letu € W2 (RY) satisfy trjs u = 0. Prove that —A(u*) = (—Au)*.
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(c) Warnings

Exercise (Weierstrass’ counterexample to Dirichlet’s principle) Let 0 < o < 1 and set
v(z,y) = (2 = y*) (= In(2® + %)%, VY (2,y) € D= {(2,y) € R* 2® +3* < 1},
Prove that:

@ v ¢ C?*(D).
(b) The distributional Laplacian f := Awv is continuous on ID.

(¢) The equation Au = f hasno classical (i.e., C?) solution near the origin.

Useful reference for items | B |and [ C }: [10]

Exercise Letaw € R\ {—1,1 — N} and set

ala+ N)
(a+1)(a+N-1)

u(z) =z |2|*, Vo € RV \ {0}, B:=—

Then

> o ( > (6 + B, |x|—2)aju> = 0in RV \ {0}.

1<i<N 1<j<N

Theorem (Serrin) A homogeneous uniformly elliptic equation in divergence form may
have locally unbounded W' (Q) weak solutions.

loc

More specifically, if N > 2and 0 < £ < 1, and we set

T1
u(x) = TN r € RY,
and
b N-—-1
A =1d —(x; T; i RN ithp = ——— — 1
(z) N+ |$|2(«'E Tj)i<ijen, © € RY, wi 1 N—2

then u € Wo!(RN) \ i< (RY), A is uniformly elliptic in RY, and

loc

div (AVu) = 0in 2/'(RY).

(d) Singular integrals
General reference: [8, Section 3]

Proposition. With the above notation, let X' := 09, = 0;0;E (in the distributions
sense). Then:

@ K e 2'(RY)n RN\ {0}), and in particular (1) holds.



(b) K € . and, in the distributions sense,

RIS
€7

(c) For some finite C, we have |[VK (z)| < C/|z|N T, Vx € RV \ {0}.

K(€) =, where (;,(¢) :=

Useful reference: [6, Theorem 2.3.4]

Marcinkiewicz interpolation theorem (special case) Let (X, .7, i) be a measured space.
Let 1 < r < oo and let T be a linear operator on L' N L"(X) such that, for every f €
L' N L"(X), Tf is a measurable function on X and, for some K, K, < oo, we have

p((7f > ) < sl v p e pto ) ves o

w([|Tf] > 1)) < K@ VfeL'NnL'(X),Vt>0.

Then, forevery 1 < p < rand some C), < oo,
ITfl, < Clifll,, ¥ feLnL'(X),

and in particular 7" admits a unique linear continuous extension from L?(X ) into LP(X).

In the special case where y is a Radon measure in RY, the same holds if 7" is initially
defined on C.(R") or even C>°(RY).

Calderén-Zygmund decomposition, second form Let f € C.(R")and¢ > 0. Then, with
finite constants independent of f and ¢ there exist: a family of disjoint cubes C,, C RY
and functions g, h,, € L*(RY) (depending on f and ¢) such that

@ g=finRY\ U,C,.
b) [g] < Ct.
(c) supp h, C C,,Vn.

(e) ][|hn| < Ct,Vn.

O f=g+ Zhn (pointwise).
I£11x

(g) an\Cn! < oR

M) lgll, + > el < ClIf,-

2
D ohal = Ihalls < £

2 n

0] ‘




D] Calderén-Zygmund theorem adapted tothe Laplace equation Let K € .7 (RV)NC'(RV\
{0}) satisfy

(1) K is a bounded real function.
(i) |[VK(z)| < C/|z|N*,Vx € RV \ {0}, for some finite C.

LetTf := K * f,V f € C®(RY). Then
ITfl, < Cpnllfl,, V1 <p<oo,VfeCERY).

In particular, for 1 < p < oo, T" admits a unique linear continuous extension from
LP(RY) into itself.

Corollary. Let 1 < p < ooand f € LP(RY), and setu := E * f. Then

10;0kull, < CpnIfll,, V1 < j, k< N.

A standard “elliptic estimate” Let 1 < p < oo, K C 2 C R", with K compact and
open. If —Au = f € L*(Q), then u € W,;>"(Q) and, for some finite C' = C,, y.0.x,

loc

HUHW2,p(K) < C(Hf”LP(Q) + Hu”Ll(Q))'

(e) L? regularity theory
Useful references: [4, Chapter 9] for the regularity theory, [8, Section 1.5] for trace theory

Main regularity theorem (Calderén, Zygmund, Koselev, Greco, Agmon, Douglis, Niren-
berg, ...) Let 2 C R" be abounded C!-domain. Let 1 < p < coand f € L?(2). Then
the problem

{—Au: f inQ

3
u=0 on 0f) ®

has a unique (generalized) solution u € W??(Q). In addition, for some finite C' inde-
pendentof f, HUHWQ»P(Q) < C”f”p'

Exercise. The above u is not only a distributional solution, but also a strong solution, in
the sense that for a.e. x € 2 we have

— Z d;u(x) = f(x).

Toolbox In what follows, w,  C RY are bounded open sets.
For the record.

Rademacher’s theorem A Lipschitz function f : 0 — R is differentiable a.e., and its
distributional gradient and point gradient coincide.
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Useful reference: [3, Section 3.1.2]

Exercise. Let ® : w —  be a C"'-diffeomorphism and 1 < p < oo. Prove that
f = | o @[z, is equivalent to the usual norm on W2P(Q).

Lemma. Let A € Lip,, (w), v € W2 (w), ¢ € Lip,.(w), and g € L. (w). If (2) holds,
then

—div (AV(¢v)) = (g — v div (AV() — (AVw) - V( — (AV() - V.

Adapted covering lemma. Let  C R” be a bounded C'!-domain. Given a number
e > 0, there exist:
(i) Anintegerm,
(i) mballs B; = B,,(0),1 < j <m,
(iiiy C*! diffeomorphisms ®; : B; — RV, 1 < j <m,
(iv) ¢ € C(R)and (; € C(B)), 1 <j<m,
such that:
(a) QC qu)j(Bj);
b) B;N(®;)" Q) = B :={x = (21,...,2n) € Bj; xy > 0},
(C) Bj N (@])71(89) = BJO = {[L‘ = (1‘1, Ce ,[L’N) € Bj; IN — 0},
(d) Bj N (q)j)—l((RN \g)) = Bj_ = {ZL’ = (Il, c. ,ZL’N) € B], Ty < 0},
€ p; <L, 1<j<m,

() Givenu : Q — R, ifwesetup :=yu: Q = R, v; := U, (B+) © P; B;-L — R, and
J
Wy 1= ijj: 1 S] <m, then

ol ~ Tolwas) + 3 Ttslhyasissy, Y1 <0< 00,
1<j<m

(g) Ifwe set
Alz) = Aj() = |J 0;(2)[[(JO;) " ()] [[(J@;) " (@)]], L < j <m, @ € By,
then = — A(x) is Lipschitz and A(z) = Id + B(x), where | B(z)||,, <&, 1<j <

m,x € Bj,
(h) Ifu € W21 (Q) satisfies, in 2/(Q), —Au = f € L} (), then ug and w; satisfy

loc
—Aug =1 f —2Vip - Vu —u Ay in ' (RY),
— div(A;Vw;) =G (fla,81) © @) €5 = v; div (4;V ()
— (AjVUj) : VCJ - (AJVC]) : ij in @/(Bj_), 1 Sj S m.



Exercise. Letu € W1 () and ¢ € C'(9Q). Prove that tr(pu) = pjan tr .

Exercise. Let {2 be a C'-domain, and let ¥ : U — RY be a C''-diffeomorphism from an
open set U C R" into its image. SetZ := ¥y : U — ¥(U)and ® := =, Setalso
Y :=900NUand A := ¥(X2). Letu € W (U) and set v := u o ®. Give a meaning to
and prove the equality try(sy v = (trg(u)) o [(\D)‘j\l]

Theorem (Higher order regularity) Let k > 0, Q € C*1land1 < p < oo If
f € WFP(Q), then the solution u of (3) satisfies u € W*2P(Q) and, for some finite
C independent of f, |[ullyyi+2n0y < Cllf e (q)-

[D] For the record, we mention some results in lower order regularity theory.
Theorem. Let 2 € C''and 1 < p < co. For F' € LP(Q); RY), the equation
—Au=divFin 2'(Q)

has a unique solution u € W,”?(Q). In addition, with some finite constant C' indepen-
dent of I, we have the estimate ||Vul|, < C|F],.

Theorem (Stampacchia) Let € C!. For f € LY(), the equation
_Au= fin 2'(Q)

has a unique solution u € W' (). Moreover, this u satisfies u € ﬂ1§p<N/(N_1)W01’p(Q)
and, with finite constants C), independent of f,

IVul, < Gl ¥1<p <

Useful reference: [9, Section 4.1]

Big picture of the proofs of Theorems| A |and

I. Preliminaries

(@) Localization of the problem.
(b) The effects of the change of coordinates: equation, traces.
(c) Equivalence of norms. Reduction to local estimates.

(d) Choice of adapted neighborhoods of points of 0f2.
II. L’ theory

(@) Interior estimates.

(b) Boundary estimates via Nirenberg’s quotient method.

III. L?,p > 2,theory



(@) Interior estimates via Calderén-Zygmund theory. Induction principle.

(b) Boundary estimates. Reflection and contraction principles.
IV. I?,p < 2,theory

(@) Uniqueness via duality.
(b) A priori estimates via uniqueness.

(c) Existence via a priori estimates.

V. Higher order regularity by induction

(f) A glimpse of the C* regularity theory

Useful reference: [4, Lemma 4.4, Theorem 6.14, Theorem 6.19]. For the record:

Theorem (C° regularity) (Kellogg) Let 0 < a < 1,k > 0,Q € Ck+2a If f € C**(Q), then
the solution of (3) satisfies u € C**+2%(Q). In addition, for some finite C' independent of f,

Hu”0k+2,a(ﬁ) < CHchk»a(ﬁ)-
Lemma (Hélder estimates for the Newtonian potential) (Korn) Let 0 < o < 1. If f € C%(RY)
and u := F x f, then, for some finite C' independent of f,

‘D2U‘CQ(RN) < C|f‘CO‘(RN)'

(g) Power growth nonlinearities. Bootstrap

Useful reference: [8, Section 3.3.2]. In what follows, we assume that N > 3.
Let f : Q x R — R be a measurable function satisfying

|f(x,t)| < C(1L+|tfP), Vo € Q, Vt € R.
Let u satisfy

we HL(Q), s flr,u(x) € LL(Q)
—Au = f(z,u(x)) in 2'(Q).

. N +2 .

Exercise. Assume that p < i * 5 Thenu € W,/ (Q),Vr < oo.
.. N +2
Proposition. The same holds when p = N—+2

Moreover, if u € H}

loc

() satisfies
—Au = a(z)u + b(x), witha € LN/2(Q), be L. (Q),

loc loc

thenu € L] (2),Vr < oc.

loc

N +2 .
Exercise. Letp > i i 5 Prove that the equation —Au = |u|? has a locally unbounded

solution u € H' N LP(B;(0)), of the form u(x) = \|z|~®, for appropriate constants
A a > 0.



(h) A glimpse of the De Giorgi regularity theory
Useful references: [4, Sections 8.5-8.9], [5, Chapter 4]. For the record:

Theorem (local boundedness; Stampacchia, Ladyzhenskaya, Uraltseva, Trudinger,...) Let
A = A(z) be uniformly elliptic in Q := B;(0). Let u € H(Q) satisfy — div (AVu) =

N . ) .
f € LP(Q), where p > 5 Then u € L;3.(2) and, with a finite constant depending only
on0 < R < 1andp,

”u”LOO(BR(O)) < C(”f”Lq(Q) + ||u||L1(Q))'

Theorem (local C'“ regularity; De Giorgi, Nash, Ladyzhenskaya, Uraltseva, Moser,...)
There exists some 0 < o < 1 depending only on p and the ellipticity constants of A
such that the above u belongs to C}.(€2) and satisfies, with a finite constant C' depend-
ing only on R and p

u(@) = u)l < CUfl Loy + lulpro))s Y.y € Br(0).

(i) Wente estimates. Compensation phenomena
Useful references: [1], [2], [7, Section 10.3]

Theorem (Wente) Let 2 € C! be a bounded domain in R?, and let F' € H'(Q);R?).
Then the problem

—Au =det (JF) inQ
u=20 on 02

has a (unique) weak solution v € H}(2). In addition, we have u € C(92) and, for some
finite constant independent of I, we have the Wente estimates

lull o + IVul, < CIVE],.

For the record:

Theorem (Fefferman, Stein, Coifman, Lions, Meyer, Semmes) If I € WLV (RY;RY),
and we set u := F * [det (JF)|, then D*>u € L'(R") and, with a finite constant inde-
pendent of F' and of its support,

HDQqu < C|VF| 5.

References

[1] Haim Brezis and Jean-Michel Coron. Multiple solutions of H-systems and Rellich’s con-
jecture. Comm. Pure Appl. Math., 37(2):149-187, 1984.



(2]

(6]

[9]

Ronald Coifman, Pierre-Louis Lions, Yves Meyer, and Stephen Semmes. Compensated
compactness and Hardy spaces. J. Math. Pures Appl. (9), 72(3):247-286, 1993.

Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions.
Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order, vol-
ume 224 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, second edition, 1983.

Qing Han and Fanghua Lin. Elliptic partial differential equations, volume 1 of Courant Lecture
Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences,
New York; American Mathematical Society, Providence, RI, 1997.

Lars Hormander. The analysis of linear partial differential operators. I, volume 256 of
Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, second edition, 1990. Distribution theory and Fourier
analysis.

Petru Mironescu. Fine properties of functions: an introduction. http://math.univ-1lyonl.
fr/"mironescu/resources/introduction_fine_properties_functions_2005.
pdf, 2005.

Petru Mironescu.  Sobolev spaces. Elliptic equations (Partial lecture notes). http:
//math.univ-1lyonl.fr/“mironescu/resources/sobolev_spaces_elliptic_
equations_2010.pdf, 2010.

Augusto C. Ponce. Elliptic PDEs, measures and capacities, volume 23 of EMS Tracts in Mathe-
matics. European Mathematical Society (EMS), Ziirich, 2016. From the Poisson equations
to nonlinear Thomas-Fermi problems.

James Serrin. Pathological solutions of elliptic differential equations. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (3), 18:385-387, 1964.

10



